
Active Opening Book Application
for Monte-Carlo Tree Search in 19×19 Go

Hendrik Baier and Mark H. M. Winands

Games and AI Group, Department of Knowledge Engineering
Maastricht University, Maastricht, The Netherlands

Abstract

The dominant approach for programs playing the Asian board game of Go is nowadays Monte-Carlo
Tree Search (MCTS). However, MCTS does not perform well in the opening phase of the game, as the
branching factor is high and consequences of moves can be far delayed. Human knowledge about Go
openings is typically captured in joseki, local sequences of moves that are considered optimal for both
players. The choice of the correct joseki in a given whole-board position, however, is difficult to formalize.

This paper presents an approach to successfully apply global as well as local opening moves, extracted
from databases of high-level game records, in the MCTS framework. Instead of blindly playing moves that
match local joseki patterns (passive opening book application), knowledge about these moves is integrated
into the search algorithm by the techniques of move pruning and move biasing (active opening book
application). Thus, the opening book serves to nudge the search into the direction of tried and tested local
moves, while the search is able to filter out locally optimal, but globally problematic move choices.

In our experiments, active book application outperforms passive book application and plain MCTS in
19×19 Go.

1 Introduction
Since the early days of Artificial Intelligence (AI) as a scientific field, games have been used as testbed and
benchmark for AI architectures and algorithms. The board game of Go, for example, has stimulated con-
siderable research efforts over the last decades, second only to computer chess. Nevertheless, the strongest
19×19 Go programs are still only able to play at the level of an advanced amateur player [23]. Traditional
game tree search methods like αβ search, being quite successful in e.g. computer chess or checkers [5, 25],
are impractical in Go; writing a master strength Go program stands as a grand challenge of AI [4].

After its introduction in 2006, Monte-Carlo Tree Search (MCTS) [9, 19] has quickly become the dom-
inant paradigm in computer Go [20]. MCTS has considerably advanced the strength of computer Go pro-
grams; however, it still has its shortcomings. Similar to other game tree search algorithms like αβ search for
example, it is difficult for MCTS to properly evaluate opening positions [2]. This weakness stems from the
fact that MCTS decides on the best move in a given situation on the basis of statistical sampling. In an open
position at the beginning of a Go game however, when the branching factor of the game tree is highest and
the consequences of actions lie many moves in the future, MCTS is blind to the differences between good
and bad opening moves. MCTS Go programs tend to play their first moves haphazardly [22], falling behind
their human opponents who are familiar with opening theory.

In other games, similar problems have been approached by the creation of opening books [3, 5, 10, 16,
21, 24]—large databases of trusted moves that can be used to safely lead a game-playing program into the
kind of middle-game positions that it is more comfortable with. However, little is known about how to
build an opening book for 19×19 Go and how to combine it with MCTS. The concept of joseki, used to
organize human knowledge about Go openings, bears considerable challenges regarding formalization and
automated application. The goal of this paper is the construction of an opening book for 19×19 Go. The
approach taken is active application of opening books, the integration of opening knowledge into the search
process—as opposed to passive application, the replacement of search by a book lookup in the early phase
of the game.



This paper is organized as follows. Section 2 describes the game of Go in more detail, followed by
a presentation of MCTS in Section 3. Section 4 gives an overview of related work on opening books for
game-playing programs in general and Go programs in particular. The specific difficulties with regard to Go
openings are explained. Section 5 outlines the approach to opening books taken in this work, while Section
6 presents experimental results in 19×19 Go. Conclusions and future work follow in Section 7.

2 The Game of Go
Go is played on a grid board of typically 19×19 intersections, although smaller board sizes exist for quicker,
informal games and for educational purposes. Starting with an empty board, two players alternatingly place
white and black stones on an empty intersection of their choice (Fig. 1(a) shows a possible beginning of
a game). If a player can surround any enemy stones completely with his own, the surrounded stones are
removed. In the end of the game—after both players have passed—the player who occupies or surrounds
more intersections on the board (“territory”) than his opponent wins.

(a) The first moves of a 19×19 game.

12
34 5

6

7

8

(b) A corner joseki.

Figure 1: Global and local view of Go openings.

Since the goal of the game lies in the surrounding of board area, players usually play in the corners of the
board first. Here, two edges of the board serve as additional territory walls and make it possible to surround
a given area with a smaller number of stones. After the corners have been claimed, players move on to the
sides, where at least one edge of the board helps the player’s stones in surrounding intersections. Only after
this opening phase, stones are typically placed in the center of the board, where the building of territory is
most difficult and fights are most complex.

Two Japanese terms are often used to describe opening play in Go. (1) Fuseki means the thinly spread
out moves at the start of the game, when players claim corners and sides without immediately getting into
fights. The term relates to the situation on the whole board. (2) Joseki means specific, established sequences
of moves in a local area of the board—typically a single corner—which are judged to be locally optimal and
balanced for both black and white sides. Fig. 1(b) shows an example joseki.

The largest part of Go opening theory deals with joseki. While joseki have some similarity to standard
opening moves in other games like chess, there is an important difference. Joseki achieve locally optimal
play, but they do not deal with the whole-board position. Players therefore have to choose wisely which
joseki to play, based on their assessment of the board on a global scale and on their strategy for the game.

3 Monte-Carlo Tree Search
For each move decision in a game of Go, the Monte-Carlo Tree Search (MCTS) algorithm [9, 19] constructs
a search tree to determine the best move. This tree starts from the current position and is selectively deepened
into the direction of the most promising moves, which are chosen according to the success of simulated Go
games starting with these moves. Initially, the tree contains only the root node, representing the current
board position. Each further node added to the tree stands for one of its possible successor positions (or
moves), and stores the current value estimate for this position. MCTS works by repeating the following
four-phase loop until computation time runs out [7]. It can be interrupted after any number of iterations



to return the current result—the highest-valued move at the root node. Each loop represents one simulated
game.

Phase one: selection. The tree is traversed from the root to one of the leaf nodes. At every step, MCTS
utilizes a selection policy to choose the move to sample from this position. The selection policy tries to
balance exploitation of positions with high value estimates and exploration of positions with uncertain value
estimates.

Phase two: expansion. After a leaf node has been reached, a decision is made on whether to apply zero,
one or more of its successors to the tree. A common expansion policy in Go is the addition of one newly
sampled position per simulation [9].

Phase three: simulation. According to a simulation policy, moves are played in self-play until the game
is finished. While uniformly random move choices are sufficient to achieve convergence of MCTS to the
optimal move in the limit, more sophisticated (“quasi-random”) playout policies have been found to improve
convergence speed.

Phase four: backpropagation. After the end of the simulation has been reached and the winner of the
simulated game has been determined, the result is used to update value estimates at all nodes traversed
during the playout.

Two strategies that have been used amongst others to improve MCTS Go programs in the past are the
(often temporary) pruning of moves which are judged inferior by expert heuristics [7, 8], and the biasing
of the search tree into a direction chosen by expert heuristics [7, 13]. In Section 5, these two methods are
considered to integrate opening book information into MCTS.

4 Opening Books
In this section, we review some of the literature on opening books and outline the obstacles to opening
books for 19×19 Go. Section 4.1 focuses on opening books in other games than Go, using Lincke’s [21]
categories for opening book construction and newly introduced categories for opening book application
to classify them. Section 4.2 reviews closely related work on opening books in Go. Finally, Section 4.3
specifies what we consider the main problem for opening books in 19×19 Go.

4.1 Classification of Opening Books
Opening theory was introduced to computer game-playing soon after the first game programs had been
written. Opening books consisting of thousands of board positions and moves were compiled for some
of the first chess [16] and checkers programs [24]. Typically, these books are constructed passively [21]:
Information is gathered from strong players and entered into a database, usually in the form of expert games.
This information is then used to modify opening play, in the most basic case by immediately playing a stored
expert move whenever the current game position could be found in the database. More sophisticated ways
of adapting expert knowledge to the needs of a game-playing program have been described e.g. in [17, 10]
for chess or [25] for checkers.

Other research focused on active book learning [21], learning techniques that do not depend on expert
information and instead construct an opening book automatically by actively playing and exploring the
space of opening moves. Lincke [21] applied such methods to Awari and Othello, Buro [3] to Othello and
Karapetyan and Lorentz [18] to Amazons.

Similar to how the construction methods of opening books can be divided into active and passive ap-
proaches, the information contained in opening books can be applied actively and passively as well. Here,
we use the term passive application for methods that do not involve any search in the game tree. The current
position is looked up in the book, and if it is found, the stored information is used to compute an optimal
move. Active application uses book information to modify the search process, instead of replacing it.

Examples of active application—the integration of book information into a game tree search algorithm—
can be found in [5, 10]. In both approaches, the “goodness” of a move, computed from the opening book, is
used to shift the αβ search window of the respective move. Thus, book information is not trusted blindly,
but used to bias the search algorithm. This biasing is particularily effective in avoiding disastrous openings
by faulty book moves, which appear with higher probability as opening book sizes grow. Active application
is robust against “partially dirty statistical information” [10]. The famous chess machine DEEP BLUE [5]
even combined a small passively applied book (a couple thousand moves hand-picked by an expert) with a
bigger actively applied book (the first 30 moves of 700,000 grandmaster games).



4.2 Related Work in Go
In [6], a form of Meta-MCTS was used to construct a Go opening book. Thousands of complete games were
played from the empty board, and the results of these games were used to build an opening book similar to
how results of quasi-random games are used by MCTS to build a search tree. A drawback of this technique,
while conceptually elegant, is that it is quite time-consuming—it has therefore only been applied to Go
on the small 9×9 board instead of the regular 19×19 board. Consequently, the problem of joseki was not
handled specifically, since there are no standardized corner sequences for 9×9 boards. Also, the authors
found opening books handcrafted by experts to be more robust than Meta-MCTS books with respect to
different time controls. It appears as if books constructed by self-play contain less universal Go knowledge
and more information depending on the specific parameters, strengths and weaknesses of the program used
for building them. We expect that by learning from expert games instead of self-play, a book of more lasting
value can be built, at least until computers surpass humans in Go and are able to refine opening theory
beyond the level currently known to human masters.

In [2], expert games were used in a novel way to improve opening play in 19×19 Go. Instead of building
an opening book, the authors used a game database to tune a multivariate evaluation function for opening
positions. This evaluation function was then applied to MCTS in two different ways: First to preselect a
number of good opening moves for the MCTS search, and second to bias the nodes of the MCTS tree with
opening knowledge. Only the first approach was experimentally tested. However, the improved openings
were not tested by comparing their performance in complete games of Go, but by comparing positions
reached after the opening through the evaluation of the strong MCTS Go program MOGO [20]. The authors
wanted to avoid statistical noise in the remaining moves to the end of the game. This makes it difficult to
compare the effectiveness of their method with the results of this paper.

In [22], fuseki and joseki books were constructed from expert games and applied passively, i.e. without
combining their information with a search process. Whenever the board matched a whole-board position
found in the opening book, the corresponding most frequent expert move was played (fuseki book), while
joseki moves were found by matching individual corners of the board with corners extracted from the ex-
pert games, and then playing the most frequent next expert move stored for that corner. No significant
improvements could be shown here. Nevertheless, we use a similar method for constructing opening books
in this paper, combining it with an active technique for applying books in MCTS that is similar to the second
technique proposed in [2].

4.3 The Problem of Joseki
One of the main difficulties in understanding Go openings, for humans as well as for computers, is the
context-sensitiveness of joseki mentioned in Section 2. Failure to properly take subtle features of the global
situation into account when choosing local exchanges can lead to worse results for a player than not knowing
how to play locally optimal at all. Thus, a famous Go proverb says, “Learning joseki loses two stones
strength—studying joseki gains four stones strength”, meaning that rote memorization of joseki can be
harmful, while understanding their principles and adapting them to the overall board situation as well as the
own individual style increases playing strength.

From the point of view of pattern matching, joseki pose the following problem. If the opening book
on the one hand does not recognize joseki at all and handles only whole-board positions, it has to find and
store the same joseki in countless combinations with all other possible joseki in the other corners. The result
could be a shallow and sparse book that has little effect on playing strength, as new games will often show
new combinations of joseki that the book will be unable to match. If the book on the other hand does store
individual corner sequences, it has to deal with challenges in the application of this knowledge. When a
corner position allows for several possible joseki continuations, which one of them is most appropriate to
the whole-board situation and to the playing style of the program?

Since computers still play Go on a level below that of the best humans, it is the goal of this paper
to passively construct an opening book for Go, in order to fully exploit the knowledge contained in the
thousands of professional or high-level amateur game records that are available on the internet. Furthermore,
the opening book will be actively applied inside MCTS, to seamlessly integrate the information of an expert
fuseki and joseki book with the strengths of the search algorithm. This integration is intended to mitigate the
joseki problem as well: Search itself is tasked with choosing the optimal joseki in a given position. We hope
that ineffective joseki will be filtered out by MCTS search just like problematic opening moves are filtered
out by αβ search in [5, 10].



5 An Opening Book for MCTS
In this section, we propose our two-step approach for combining opening books with MCTS.

1) The book is constructed passively from game records by professional or highly-ranked amateur play-
ers. Passive book construction is preferred to active construction due to its relative speed and the
potential that is still untapped in human opening theory. Book information is collected in two ways:

a) First, for each game all positions up to move 50 are stored together with the move that was made
from the position. This is the fuseki book. Three parameters can be used to modify the content
of this book: (1) The minimum number of times θ a position has to appear in the games in order
to be stored, (2) the minimum number of times ρ a move has to appear in a given position in
order to be stored, and (3) the minimum percentage of times σ a move has to appear in a given
position in order to be stored.

b) Second, for each game each corner is examined separately; up to move 100, every partial board
position appearing in every corner is stored in a second book, together with the next move that
was made in the same corner (not necessarily the next move in the original game, since players
can switch back and forth between corners in the opening). This is the joseki book. The same
parameters apply as for the fuseki book.

All positions that can be produced by reflecting or rotating a position from an actual game record are
taken into account as well. This procedure is similar to the book building described in [22]. Three
modifications were made. (1) Instead of only the most frequent move for each book position, we store
all moves that are “frequent enough” as defined by the parameters described above; (2) instead of the
moves of both Black and White, only the moves of the winning player of each game are considered;
and (3) a corner is defined as 10×10 intersections instead of 9×9 such that stones on the middle lines,
especially on the side star points and the tengen (the middle of the board), are not ignored.

2) The combined fuseki and joseki book is used actively by integrating it into MCTS. Four techniques
of using book information in MCTS have been implemented:

a) The information can be used in the selection phase of MCTS by looking up the current whole-
board position in the fuseki book and the current four corners of the board in the joseki book
whenever a new tree node is created. The move choice at this game position is then simply re-
stricted to the moves found in the books—all other moves are excluded (book pruning). Among
all book moves, MCTS can choose the one it understands best.

b) A second way the information can be used in the selection phase of MCTS is by not restricting
move choice when a new node is created, but by giving each move found in the books a certain
number of virtual wins (book bias through node priors) [13]. The strength of the bias can be
uniform or depend on e.g. the number of appearances in the book. MCTS explores book moves
first as their value estimates are better than those of other moves initially; however, if no book
move is appropriate for the current position or if the search algorithm does not understand in time
how to utilize them properly, the prior bias can be overcome and another move can be chosen.

c) Similarly, book pruning can be used in the simulation phase of MCTS by looking up the current
whole-board position in the fuseki book and the current four corners of the board in the joseki
book whenever a move decision has to be made. Between all moves found in the various books—
if any—one is then chosen at random and the simulation continues. If no book move is found,
the algorithm falls back to its standard simulation policies. The application of book moves in
simulations is introduced to ensure that book moves in the tree are not evaluated incorrectly
because their move sequences are not played out fully after leaving the tree.

d) And finally, the “soft” approach of giving book moves a bias can also be applied in simulations—
by increasing the chances of book moves to be played as compared to non-book moves. Com-
pared to the previous method, this could lead to more diversity in the simulations and to a better
exploration of possible outcomes if the opponent would not continue with the expected joseki.

The first two techniques apply book information in the tree, and the second two methods apply it in the
simulations. From both groups, a choice can be made independently and combined with each other
or with the default behavior of MCTS. The performance of four settings of techniques is evaluated in
the next section.



6 Experimental Results
All experiments were run using OREGO [11] version 7.08 as the basic platform. The baseline version
of OREGO uses a number of MCTS enhancements like a transposition table [16], RAVE [13], a simulation
policy similar to that proposed in [14], and LGRF-2 [1]. The program was run on two CentOS Linux servers,
each consisting of four AMD Twelve-Core OpteronT 6174 processors (2.2 GHz). Each experimental run
involved 5632 19×19 games in total—2816 games as Black and 2816 games as White—either in self-play
or against the classic (non-MCTS-based) program GNU GO 3.8 [12], using Chinese rules (area scoring),
positional superko, and 7.5 komi. GNU GO ran at its default level of 10, with the capture-all-dead option
turned on. The time limit for OREGO was 10 seconds per move, and it used a single thread.

The remainder of this section is structured as follows. In 6.1, the construction of our opening book is
described. Next, 6.2 presents results of passively applying this book in games against GNU GO. Active
application is tested in 6.3. Finally, 6.4 presents the results of active book application in self-play.

6.1 Construction of Opening Book
In all experiments presented in this section, the same opening book was used. It was built from about 50,000
game records as described under 1) in Section 5. All of the games are freely available on the internet (the
majority on [15]). The parameters were set as follows. Whole-board moves were stored if they appeared at
least 5 times in the game records and were used in at least 5% of the cases in their corresponding position.
Corner moves were stored if they appeared at least 20 times and were used in at least 2% of the cases in
their corresponding position. The minimum number of times a position has to appear in the game records in
order to be considered was set to 0, so all positions were stored if at least one corresponding move fulfilled
the constraints of the other parameters. This procedure resulted in a relatively small opening book of less
than 3MB for fuseki and joseki book combined.

6.2 Passive Application of Opening Book
For the first experiment, a baseline was established by letting OREGO without any opening book play against
GNU GO. Baseline OREGO only uses the following heuristic to roughly guide opening play: It prunes all
moves that are neither on the third or fourth line from the edge of the board, nor near to another stone.

In the second experiment, the opening book was applied passively. As proposed for the “combined
book” in [22], whenever the board matched a whole-board position in the fuseki book, the corresponding
most frequent expert move was played. If there was no whole-board match, the joseki book was consulted,
checking first the corner of the opponent’s last move and then in random order all other corners for a match-
ing partial board position. Again, the most frequent expert move was played in case of a match. Until no
corner of the board could be found in the book anymore, no search was involved in the process of choosing
a move. Table 1 shows the results.

Table 1: Performance of passive application of opening book.
Player Win rate against GNU Go 95% confidence interval

Baseline OREGO 39.3% 38.0%–40.5%
OREGO with passively applied opening book 40.2% 38.9%–41.5%

Passive application of the book did not result in significantly stronger play. This agrees with the findings
of [22]. After the fuseki book is left, joseki in the four corners are chosen without any relation to each other;
what is gained by the correct local responses is probably lost by the lack of overall strategy.

6.3 Active Application of Opening Book
In the next experiment, the opening book was applied actively. Four settings of the techniques described
under 2) in Section 5 were tested. The first setting in this group tested the combination of book pruning in
the selection phase with default simulations that do not use book information (OREGO prune-default). In
the second setting, book pruning in the selection phase was combined with book pruning in the simulation
phase (OREGO prune-prune). The third setting tested the combination of book bias in the selection phase
with default simulations (OREGO bias-default). Whenever a new node was added to the search tree, every
corresponding book move retrieved from either the fuseki or the joseki book was given a prior bias of 40



Table 2: Performance of active application of opening book.
Player Win rate against GNU Go 95% confidence interval

Baseline OREGO 39.3% 38.0%–40.5%
OREGO prune-default 41.7% 40.4%–43.0%
OREGO prune-prune 41.6% 40.3%–42.9%
OREGO bias-default 44.2% 42.9%–45.5%
OREGO bias-prune 42.5% 41.2%-43.8%

virtual won simulations. In the fourth setting, book bias in the selection phase was combined with book
pruning in the simulation phase (OREGO bias-prune). Again, the bias was 40 wins for every book move.
All four settings were compared to the baseline evaluated above. Table 2 shows the results.

All four settings are significantly stronger than baseline OREGO (p<0.001 for bias-default and bias-
prune, p<0.01 for prune-default and prune-prune), although the effect of the opening book, influencing
only the first few moves of a game, is rather small. OREGO bias-default is significantly stronger than prune-
default and prune-prune (p<0.01) and almost significantly stronger than bias-prune (p<0.1). A possible
hypothesis for the ineffectiveness of pruning is the lack of diversity that might come with it. Too much
determinism is known to hurt MCTS performance [13].

6.4 Active Application in Self-Play
In the last experiment described in this paper, the opening book was applied actively in self-play. The goal of
this experiment was to test how the opening book influences the performance against MCTS-based players.
The best-performing algorithm variant in games against GNU GO, OREGO bias-default, was pitted against
baseline OREGO without any opening book. Table 3 shows the results.

Table 3: Performance of active application of opening book in self-play.
Player Win rate against baseline OREGO 95% confidence interval

OREGO bias-default 50.6% 49.3%–51.9%

The addition of the opening book does not significantly improve OREGO’s play against itself. The prob-
able reason is that baseline OREGO chooses non-standard moves in the opening, which forces its opponent
quickly out of the book. If the book is left too quickly, OREGO bias-default does not gain a sufficient
advantage—the book might even be harmful in cases when OREGO bias-default does not find the proper
follow-up moves to the fuseki or joseki it started, and abandons advantageous positions.

7 Conclusion and Future Research
In this paper, we introduced the distinction between active and passive application of opening books in
game-playing programs, and proposed several ways of active application in the framework of Monte-Carlo
Tree Search. Special attention was given to the problem of joseki in 19×19 Go. Empirical results show
that of the variants tested so far, biasing tree nodes with opening book information works best, significantly
improving on the performance of the MCTS-based program OREGO as well as on the combination of the
same opening book with a passive application method proposed in the literature.

Several directions appear promising for future work. First, we hope to integrate opening knowledge
successfully into MCTS simulations beyond the tree, for example by only slightly increasing the playing
probability of book moves and thus keeping more diversity in simulations. Second, the application of open-
ing knowledge could be refined, e.g. by taking the frequency of moves into account when deciding on the
strength of the prior bias for a given position. Third, it remains to be tested how active book application
scales with computation time, and whether it can improve on the almost instant passive book application
also in games with a per-game time limit (instead of per-move).

The performance of the proposed application methods depends on the quality of the opening book used,
which could also be improved. An unsolved problem with the automatic extraction of joseki from high-
level games—as shown by our self-play experiment—is that it is unclear how to learn optimal refutations to
non-joseki moves from games in which non-joseki moves do not appear.

Finally, there is much room for optimization of the various parameters involved in the construction and
application of opening knowledge according to our techniques.



Acknowledgment.

This work is funded by the Netherlands Organisation for Scientific Research (NWO) in the framework of the project
Go4Nature, grant number 612.000.938.

References
[1] H. Baier and P. Drake. The Power of Forgetting: Improving the Last-Good-Reply Policy in Monte-Carlo Go. IEEE

Transactions on Computational Intelligence and AI in Games, 2(4):303–309, 2010.
[2] J. Basaldúa, T.-N. Yang, and J. M. M. Vega. M-eval: A multivariate evaluation function for opening positions in

computer Go. In Workshop on Computer Games (IWCG 2010). IEEE conference, 2010.
[3] M. Buro. Toward Opening Book Learning. ICCA Journal, 22(2):98–102, 1999.
[4] X. Cai and D. C. Wunsch, II. Computer Go: A Grand Challenge to AI. In W. Duch and J. Mandziuk, editors,

Challenges for Computational Intelligence, volume 63 of Studies in Computational Intelligence, pages 443–465.
Springer, 2007.

[5] M. Campbell, A. J. Hoane Jr., and F.-h. Hsu. Deep Blue. Artificial Intelligence, 134(1-2):57–83, 2002.
[6] G. M. J.-B. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, O. Teytaud, and M. H. M. Winands. Meta Monte-Carlo

Tree Search for Automatic Opening Book Generation. In Proceedings of the IJCAI’09 Workshop on General
Intelligence in Game Playing Agents, pages 7–12, 2009.

[7] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. van den Herik, J. W. H. M. Uiterwijk, and B. Bouzy. Progressive
Strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation, 4(3):343–357, 2008.

[8] R. Coulom. Computing Elo Ratings of Move Patterns in the Game of Go. ICGA Journal, 30(4):198–208, 2007.
[9] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. volume 4630 of Lecture

Notes in Computer Science, pages 72–83. Springer, 2007.
[10] C. Donninger and U. Lorenz. Innovative Opening-Book Handling. In H. J. van den Herik, S.-C. Hsu, T.-S. Hsu,

and H. H. L. M. Donkers, editors, Advances in Computer Games, 11th International Conference (ACG 2005),
volume 4250 of Lecture Notes in Computer Science, pages 1–10. Springer, 2006.

[11] P. Drake et al. Orego Go Program, 2011. Available online: http://legacy.lclark.edu/˜drake/Orego.html.
[12] Free Software Foundation. GNU Go 3.8, 2009. Available online: http://www.gnu.org/software/gnugo/, 2009.
[13] S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Z. Ghahramani, editor, Proceedings

of the Twenty-Fourth International Conference on Machine Learning (ICML 2007), volume 227 of ACM Interna-
tional Conference Proceeding Series, pages 273–280. ACM, 2007.

[14] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with Patterns in Monte-Carlo Go. Technical
report, HAL - CCSd - CNRS, 2006.

[15] U. Görtz and B. Shubert. KGS game records, 2011. Available online: http://www.u-go.net/gamerecords/.
[16] R. Greenblatt, D. Eastlake III, and S. D. Crocker. The Greenblatt Chess Program. In Proceedings of the Fall Joint

Computer Conference, pages 801–810, 1967.
[17] R. M. Hyatt. Book Learning - A Methodology to Tune an Opening Book Automatically. ICCA Journal, 22(1):3–

12, 1999.
[18] A. Karapetyan and R. J. Lorentz. Generating an Opening Book for Amazons. In H. J. van den Herik, Y. Björnsson,

and N. S. Netanyahu, editors, Computers and Games (CG 2004), volume 3846 of Lecture Notes in Computer
Science, pages 161–174. Springer, 2006.

[19] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. volume 4212 of Lecture Notes in Computer
Science, pages 282–293. Springer, 2006.

[20] C.-S. Lee, M.-H. Wang, G. M. J.-B. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud, S.-R. Tsai, S.-C. Hsu, and
T.-P. Hong. The Computational Intelligence of MoGo Revealed in Taiwan’s Computer Go Tournaments. IEEE
Transactions on Computational Intelligence and AI in Games, 1(1):73–89, 2009.

[21] T. R. Lincke. Strategies for the Automatic Construction of Opening Books. In T. A. Marsland and I. Frank, editors,
Computers and Games, volume 2063 of Lecture Notes in Computer Science, pages 74–86. Springer, 2000.

[22] J. Mullins and P. Drake. Using Human knowledge to Improve Opening Strategy in Computer Go. pages 730–734.
CSREA Press, 2010.

[23] A. Rimmel, O. Teytaud, C.-S. Lee, S.-J. Yen, M.-H. Wang, and S.-R. Tsai. Current Frontiers in Computer Go.
IEEE Transactions on Computational Intelligence and AI in Games, 2(4):229–238, 2010.

[24] A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and
Development, 3(3):211–229, 1959.

[25] J. Schaeffer, R. Lake, P. Lu, and M. Bryant. Chinook: The World Man-Machine Checkers Champion. AI Magazine,
17(1):21–29, 1996.


