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Abstract

Modern game playing programs use opening books
in order to perform better. Generating opening
books automatically in combination with anαβ
program has been well studied. A challenge is
to generate automatically an opening book for the
new Monte-Carlo Tree Search (MCTS) algorithms.
In this article, we tackle this issue by combin-
ing two level of MCTS. The resulting algorithm is
called Meta-MCTS. Instead of applying a simula-
tion strategy, it uses an MCTS program to play a
simulated game. We describe two Meta-MCTS al-
gorithms: the first one, Quasi Best-First, favors ex-
ploitation. The second one, Beta Distribution Sam-
pling, favors exploration. Our approach is generic
and can be used for general game playing. It will be
particularly useful when there is off-line time avail-
able. In order to evaluate the performances of these
algorithms, we generated and tested9×9 Go open-
ing books.

1 Introduction

Monte-Carlo Tree Search (MCTS) is a new best-first search
that appeared in 2006[Chaslotet al., 2006b; Coulom, 2007;
Kocsis and Szepesvári, 2006]. It caused a revolution in the
field of Computer Go: whereas non-MCTS programs were
not able to defeat most of the amateurs, MCTS programs are
now able to defeat professionals for the first time on the9×9
board. MCTS also led to state-of-the-art programs in sev-
eral games, such as Amazons[Lorentz, 2008], Production
Management Problems[Chaslotet al., 2006a], SameGame
[Schaddet al., 2008], LOA [Winandset al., 2008], and gen-
eral game playing[Finnsson and Björnsson, 2008]. MCTS
programs need, just likeαβ programs, an opening book to
perform better. There have been a number of attempts to
create opening books forαβ based programs[Buro, 1999;
Karapetyan and Lorentz, 2006; Lincke, 2002]. Because the
proposed methods so far are designed for programs based on
a static evaluation function, it is a challenge to generate an
opening book for an MCTS program. In this article we pro-
pose to tackle this issue by combining two levels of MCTS.
The algorithm is called Meta Monte-Carlo Tree Search. In-

stead of using a weak simulation strategy, it uses an entire
MCTS program (MOGO) to play a simulated game.

This approach is particularly useful when off-line compu-
tations can be performed. For instance, it can be applied
in a general game playing competition when there is some
time between the release of the rules and the actual competi-
tion. Given an extensive start-clock, the best use of that time
in a simulation based agent - an approach quite popular in
contemporary GGP agent[Finnsson and Björnsson, 2008] -
might actually be to build an opening book.

As a test domain we will use9 × 9 Go. This game is in-
teresting, since the MCTS programs are reaching the level of
professional players.

The structure of the article is as follows. In Section 2, we
describe the MCTS mechanism. Section 3 presents previ-
ous research on creating opening books. Next, in Section 4
we discuss Meta-MCTS and propose two algorithms, Quasi
Best-First and Beta Distribution Sampling. Subsequently,
Section 5 presents the experimental results. Finally, Section
6 concludes and gives insights for future research.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS)[Chaslotet al., 2006b;
Coulom, 2007; Kocsis and Szepesvári, 2006] is a best-first
search method that does not require a positional evaluation
function. It is based on randomized explorations of the search
space. Using the results of previous explorations, the algo-
rithm gradually grows a game tree in memory, and succes-
sively becomes better at accurately estimating the values of
the most promising moves.

MCTS consists of four strategic phases, repeated as long
as there is time left. The phases are as follows. (1) In the
selection stepthe tree is traversed from the root node until
it selects a leaf nodeL that is not added to the tree yet. (2)
Subsequently, theexpansion strategyis called to add the leaf
nodeL to the tree. (3) Asimulation strategyplays moves in
a self-play mode until the end of the game is reached. The
resultR of such a “simulated” game is+1 in case of a win
for Black (the first player in Go),0 in case of a draw, and−1
in case of a win for White. (4) Abackpropagation strategy
propagates the resultsR through the tree, i.e., in each node
traversed the average result of the simulations is computed.



3 Automatic Opening Book Generation
For programs usingαβ search, there are quite a few meth-
ods for generating opening books automatically. The most
popular is based on the concept of the drop-out mechanism
[Karapetyan and Lorentz, 2006; Lincke, 2002]: it explores
the move that maximizes theαβ score minus a certain depth
penalty. The depth penalty increases with the distance to the
most-promising leaf node. It enables that a player drops out
the book quickly only when the position is quite advanta-
geous for him. The application of this mechanism to9 × 9
Go raises a problem: there is no fast and efficient evaluation
function available in Go for using anαβ search. It would
be possible to replace theαβ search by MCTS. However, the
score of a MCTS search is quite stochastic (instable), in con-
trast to the stable minimax score of anαβ search. This could
have negative effect when constructing the opening book. Us-
ing an MCTS variant to generating an opening book appears
to be more natural and elegant. We will discuss this further in
the next section. Finally, we remark that in some games, pro-
grams evolve so fast that a good opening book may becomes
out-dated quickly. Some programs have therefore shifted to
online verification of the book moves[Donninger and Lorenz,
2006].

4 Meta Monte-Carlo Tree Search
In this section, we first give the general structure of Meta
Monte-Carlo Tree Search (Subsection 4.1). In Subsection 4.2,
we describe the Quasi Best-First algorithm. In Subsection
4.3, we introduce the Beta Distribution Sampling algorithm.

4.1 General Idea
An MCTS program uses a weak simulation strategy in or-
der to derive a good policy from it. The idea of Meta-MCTS
consist of replacing the weak simulation strategy at the lower
part of the search by an entire MCTS program (e.g., our Go
program MOGO, or a general game playing program based
on MCTS, such as[Finnsson and Björnsson, 2008]). This
program is the lower level of the Meta-MCTS. Cazenave got
the world record in the one-player game “Morpion Solitaire”
by using an online Meta-MCTS composed of two UCT algo-
rithms[Cazenave, 2007]. However, this approach is designed
for one-player games and gives poor results when applied to
two player games, as for instance Go. We show in this paper
that using a Meta-MCTS off-line for generating an opening
book is possible for these games.

We call the part of the search where the selection strategy
decides which move will be explored further, the upper level.
This selection strategy has to be adapted as well. The stan-
dard UCT[Kocsis and Szepesvári, 2006] algorithm requires
an exploration constant to be tuned. Tuning such a constant
for a two-level MCTS would take quite an amount of time.
Therefore, we propose two alternatives: Quasi Best-First and
Beta Distribution Sampling. They are described in the fol-
lowing subsections.

4.2 Quasi Best-First
MCTS is often emphasized as a compromise between ex-
ploration and exploitation. Nevertheless, many practitioners

have seen that in the case of deterministic games, the explo-
ration constant, when optimized, has to be set close to zero.A
small exploration is given to every move using a specific strat-
egy, for instance RAVE[Gelly and Silver, 2007] or Progres-
sive Bias[Chaslotet al., 2008]. In both cases the exploration
term will converge fast to zero. The consequence of using
such a small exploration is that, after a few games, a move
is further analyzed as long as it is the move with the highest
winning rate. Hence, most MCTS programs can be qualified
as being greedy. We already proposed the algorithm Quasi
Best-First (QBF), previously called MVBM in[Audouardet
al., 2009]. It usually selects the child with the highest win-
ning rate. However, if a move’s wining rate drops below a
certain thresholdK, QBF will ask MOGO to chose a move.
The pseudo-code is given in Algorithm 1.

Algorithm 1 The “Quasi Best-First” (QBF) algorithm.λ is
the number of machines available.K is a constant.g is a
game, defined as a sequence of game states. The function
“MoGoChoice” asks MOGO to choose a move.

QBF(K, λ)
while Truedo

for l = 1..λ, do
s =initial state;g = {s}.
while s is not a final statedo

bestScore = K
bestMove = Null
for m in the set of possible moves ins do

score =percentage of won games by playing the
movem in s
if score > bestScore then

bestScore = score
bestMove = m

end if
end for
if bestMove = Null then

bestMove = MoGoChoice(s) // lower level
MCTS

end if
s = playMove(s, bestMove)
g = concat(g, s)

end while
Add g and the result of the game in the book.

end for
end while

4.3 Beta Distribution Sampling

Each node of the tree has a game-theoretic value, which is
either0 in case it corresponds to a won position for White,
or 1 in case it corresponds to a won position for Black. But
in practice, the convergence to the game-theoretic value is
slow. We observe that the value of a node may get stuck
in a local optima for a long time. From this observation,
we make an hypothesis of stabilityHs: each positionP
has a stationary average valueµs,P that only depends onP
and on the simulation strategys that is used. For instance,
the standard version of MOGO usesµfastPattern,P , where



fastPattern is a fast simulation strategy that uses3× 3 pat-
terns to make its decision. The upper level of the Meta-MCTS
usesµMoGoGames,P , whereMoGoGames is a simulation
strategy that uses MOGO to make its decision.

Let ws,P be the number of victories from the games made
by the simulation strategys, which went through the position
P . Let ls,P be the number of defeats from the games made
by the simulation strategys, which went through the position
P . Under the hypothesisHs, the probability that the game
is a victory for the player to move in positionP , is µs,P .
The number of victories and defeats obeys a Bernoulli distri-
bution. Hence, the probability distribution ofµs,P knowing
ws,P andls,P is given by the conjugate prior of the Bernoulli
distribution, which is:

p(µs,P = x|ws,P , ls,P ) = xws,P · (1 − x)ls,P

We propose the following selection strategy, called Beta
Distribution Sampling (BDS), which consists of sampling a
random numberri from each beta distribution for each child
i.1 The child selected is the one with the bestri. The pseudo
code is provided in Algorithm 2. According to this selec-
tion strategy, each node is selected with the probability that
it is the best node, assuming the hypothesisHs. This con-
cept is similar to the idea of the selection strategy developed
in [Chaslotet al., 2006b; Coulom, 2007]. The benefit of our
new approach is that there are less approximations.

5 Experiments
In this section, we generate several9 × 9 Go opening books
using QBF and BDS. We evaluated their performances and
provide statistics that help understanding the structure of
these books. All these opening books were generated on a
grid.2 For all experiments the symmetry of the board posi-
tions was taken into account.

Subsection 5.1 present experiments on QBF, and subsec-
tion 5.2 present a comparison of QBF and BDS.

5.1 Experiments on QBF
In this subsection we show the performances of QBF for9×9
Go. First, we perform experiments withK = 0.5 in QBF.
Next, experiments with different time settings for the lower
level are presented. Finally, we present tests in self-playand
with an expert opening book. In order to give more insight on
QBF, we present some of the experiments from[Audouardet
al., 2009].

Experiment with a QBF constant of 0.5
In the following series of experiments we tested the quality
of the QBF generated opening book with a constantK of 0.5.
When generating the book the program MOGO used 10 sec-
onds for choosing a move at the lower level. The generated
QBF book contained 6,000 games. For evaluating the quality
of the QBF book we matched two versions of MOGO against
each other. One was using the QBF book and the other one

1We used the scientific library[Blitz++, 2006] to draw random
numbers according to a beta distributions.

2The grid was Grid5000, well-suited for large scale scientific ex-
periments.

Algorithm 2 The “Beta Distribution Sampling” (BDS) algorithm.
λ is the number of machines available.g is a game, defined as a
sequence of game states. The function “MoGoChoice” asks MOGO

to choose a move.
BDS(λ)
while Truedo

for l = 1..λ, do
s =initial state;g = {s}.
while s is not a final statedo

bestScore = −∞
bestMove = Null
for m in the set of possible moves ins do

score =draw from distribution:
x → xwMoGoGames,m · (1 − x)lMoGoGames,m

if score > bestScore then
bestScore = score
bestMove = m

end if
end for
if bestMove = Null then

bestMove = MoGoChoice(s) // lower level
MCTS

end if
if random int modulos.visit count = 0 then

bestMove = MoGoChoice(s) // lower level
MCTS

end if
s = nextState(s, bestMove) (transition operator)
g = concat(g, s)

end while
Add g and the result of the game in the book.

end for
end while

did not use a book at all. Both programs received 10 seconds
thinking time per move and played on an 8-core machine.
Moreover, we also matched the program using the QBF book
against one using an “expert book”. This expert opening book
has been designed specially for MOGO by Pierre Audouard.3

The results are given in Table 1.
The first column gives an average success rate of50%,

since it is self-play. The second column shows the results for
White (resp. Black) with the QBF book against no book. We
see that the one using an opening book performs significantly
better. In the third column we see that the QBF book also out-
performs the expert book. However, in both cases we observe
that the Black player does not improve when using the QBF
book. This can be explained as follows: as long as Black has
not found a move with success rate> 50%, it always asks
MOGO for a move to play. Therefore, White improves its
results by choosing moves with a high success rate, but not
Black. This is why that in the remainder of the paper, we will
useK = 10% for Black. Table 2 shows that this setting also
improves the level as Black).

3Pierre Audouard was the French Champion in19×19 Go and is
the current World Champion in9× 9 Go for people with a physical
handicap.



Table 1: Performance of the QBF algorithm with 10 seconds
per move andK = 0.5. The confidence interval is± 1.9 %

No book QBF book QBF vs.
vs. no book vs. no book expert book

White 51.5 % 64.3 % 64.1 %
Black 48.5 % 48.0 % 46.1 %

Average 50.0 % 56.2 % 55.1 %

Time Settings
The results above look promising, so we tested what happens
if we use this QBF book, constructed with 10 seconds a move
at the lower level, in a stronger version of MOGO (i.e., a ver-
sion using more time). We matched again a program with the
QBF book against a program with the expert book. Both pro-
grams had now 60 seconds thinking time for each move. The
success rate of the QBF book against expert book was: 30.6
% as Black, 40.7 % as White. The QBF book constructed
with 10 seconds a move, is not sufficient strong enough when
MOGO was thinking 60 seconds per move. However, the ex-
pert book is more robust when the programs used more time.
In the case where the thinking time was set to 60 seconds,
the success rate of the expert book against no book was: 50
% as Black, 63 % as White. Moreover, even in the case the
thinking time was set to 300 seconds, the success rate of the
expert book against no book was: 49.6 % as Black, 57.0 % as
White.

The QBF results show that a weak player cannot estimate
efficiently an opening sequence. Whenever this weak player
plays hundreds of games - the opening sequence might im-
prove the weak-player, but this opening sequence will be-
come a handicap when the player will become stronger. This
result explains why we may not use a fast MCTS player to
build the opening book. The conclusion is that the time set-
ting at the lower level when constructing the book should be
of the same order as the time setting of the program that will
use the book.

QBF in Self-Play and against Expert Opening Book
In this section we generate a QBF by using more time at the
lower level. Instead of using 10 seconds a move we used 12
hours for the complete game (six hours for each side) on a
quad-core machine. The final book consisted of 3000 games.

We tested the quality of the QBF book by matching two
versions of MOGO against each other. One version was us-
ing the book, the other was not. The time setting was six
hours for each side. The results are presented in Table 2. For
comparison reasons we also tested in a similar way the quality
of the expert book. We observe that MOGO performs better
when using the QBF book than when using the expert book.
Finally, we see that QBF book improves the performance of
both colors.

5.2 Comparison between QBF and BDS
We considered QBF within self-play experiments. However,
it should be remarked that self-play experiments favor the
greedy strategies[Lincke, 2002]. Hence, a comparison of
QBF and BDS on this basis would be biased. We propose

Table 2: Success rate of the QBF book and expert book
against the default MOGO using 6 hours for each side

QBF Expert
opening book opening book

White 74.5%± 2.3 % 62.9 %± 3.8 %
Black 64.6 %± 2.4 % 49.7 %± 3.8 %

Average 69.6 %± 2.4 % 56.3 %± 3.8 %
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Figure 1: Number of book moves when playing against
FUEGOwith the opening book. The x-axis is the depth and y-
axis is the density of probability. First row: playing as Black.
Second row: playing as White. First column: expert opening
book. Second column: QBF opening book of12, 000 games.
Third column: BDS opening book of12, 000 games. Each
label contains the average length of the book. All histograms
are estimated on500 games.

a different way of comparison. First, we measure the length
of play against other opponents. Next, we compare QBF and
BDS on the computer Go server CGOS.

Comparison of length of play against different
opponents.
We compare the QBF book consisting of18, 000 games to
BDS book consisting of12, 000 games. We remark that QBF
benefits from a larger set.

Figure 1 shows the distribution of the length of staying in
the opening book when playing 500 games as Black and 500
games as White against FUEGO [Fuego, 2009]. This program
is quite similar to MOGO. In the figure we see that as Black
QBF has an average length of 9.58 and BDS has an aver-
age length of 9.83. As White, QBF has an average length of
14.64 whereas BDS has only a length of 8.96. As FUEGO is
quite close to MOGO, the opening book generated by QBF
is a good predictor; yet it missed some moves for Black. We
may conclude that QBF builds a book that is asymmetrical in
considering Black and White. Because Black has the disad-
vantage, its best move value will go belowK more often than
it would be for White.

In the following series of experiments, we played against
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Figure 2: Number of book moves when playing against GNU
GO with the opening book. The x-axis is the depth and y-axis
is the density of probability. First row: playing as Black.
Second row: playing as White. First column: expert opening
book. Second column: QBF opening book of12, 000 games.
Third column: BDS opening book of12, 000 games. Each
label contains the average length of the book. All histograms
are estimated on500 games.

GNU GO [Gnu Go, 2004]. This program is not MCTS-based
and therefore much more different from MOGO than FUEGO.
Figure 2 shows the distribution of the length of staying in
the opening book when playing 500 games as Black and 500
games as White. It is clear that as White BDS stayed longer in
the opening book than QBF, 4.7 and 3.7 moves, respectively.
However, as Black BDS stayed shorter in the opening book
than QBF,5.27 and7.77, respectively.

In the next series of experiments we compared the number
of moves staying in the opening book against expert human
opponents. All the responses that are found in the classic9×9
Go book4 are also found in the QBF book.

Unfortunately, an in-depth analysis showed that when QBF
was generating the book it soon selected alwayse5 as the first
move. Hence, all other opening moves in the initial position
were only explored a small number of times. This was a clear
drawback of the QBF approach when playing against human
players. This was observed in the game against Prof. Tsai
(6D), who played against the QBF book consisting of18, 000
games.

• First, second, third games: Prof. Tsai played in a classic
way. Four moves were in the book. Prof. Tsai won these
two games as White.

• Fourth game: after three moves in the book, MOGO gets
a good position and wins.

• Fifth, sixth, seventh games and eight: only two book
moves, but a good position for MOGO. MOGO won.

• Ninth game: Prof. Tsai played the sequenceg3-d6-
d4; MOGO had no more than one book move. MOGO
played correctly this opening of the game, but made a

4Seehttp://senseis.xmp.net/?9x9Openings

Table 3: Results on the computer Go server CGOS
QBF BDS CGOS rating Games
No No 2216 371
Yes No 2256 374
No Yes 2268 375
Yes Yes 2237 373

mistake later that would have been less likely if MOGO
had saved some time by using more book moves. Inter-
estingly, the BDS approach, with a smaller set of games,
would have played five book moves instead of only one.
QBF had missed an important opening that BDS would
not have missed.

Another example can be found in the official match played
against Motoki Noguchi, 7 dan, with 30 minutes sudden death
per side. The result of the match was 2-2. This was the
first time that a computer program was able to draw against a
player of that calibre. These games were played with the QBF
and expert book, with6, 000 games. In the games won by
MOGO, the opening book gave an advantage to MOGO and
continuously increased its advantage. In both lost games, Mo-
toki Noguchi went out of the opening book quite fast. How-
ever, the book later developed by BDS would have contained
more moves. The sequencee5-c4-g3-e3-e4-d4 was explored
only 22 times by the QBF opening book, but424 times by the
BDS. In the other game lost by MOGO, the sequencee5-e7-
g6-f3 has been explored13 times by QBF and18 times by
BDS.

This shows that, despite the quite long sequence in the
opening book against computers, QBF does not explore
enough promising moves for playing against humans. BDS
appears to be a better alternative against human play.

Comparison on the Go Server CGOS.
We used the Go server CGOS in order to assess the different
algorithms. In order to perform a fair comparison between
the algorithms, we created two dedicated opening books. The
first was created by QBF and the second by BDS. Each open-
ing book was created by using32 cores in parallel, 1 second
per move, with a total of5, 120 games. We launched four
versions of MOGO on CGOS, one without a book, one with
a QBF book, one with a BDS book, and one with a com-
bined book. Subsequently, we compared the ELO rating that
they obtained by playing against a pool of different oppo-
nents. In order to make the comparison as fair as possible, we
launched both program simultaneously on the server. More-
over, to avoid that the different MOGO versions played too
many games against each other, we only launched them when
there were enough other programs available. Hence, the dif-
ferent versions of MoGo played around70% of their games
against non-MOGO versions. The results can be found in Ta-
ble 3. The conclusion of this experiment is that QBF and
BDS present a significant improvement on the version with-
out opening book, and that merging directly the two opening
books is counter-productive. The two books were not built
to be combined with each other, so negative side effects may
appear.



6 Conclusion
In this paper, we used a Meta Monte-Carlo Tree Search
(MCTS) in order to build opening books. Meta-MCTS is
similar to MCTS, but the random player is replaced by a
standard MCTS program. We described two algorithms for
Meta-MCTS: Quasi Best-First (QBF) and Beta Distribution
Sampling (BDS). The first algorithm, QBF is an adaptation
of greedy algorithms that are used for the regular MCTS. It
therefore favors more exploitation. During this events we no-
ticed that despite the good performances of the opening book,
some branches were not explored sufficiently. The second al-
gorithm, that we call BDS, favors exploration more. BDS
does not need an exploration/exploitation coefficient to be
tuned. This approach resulted in an opening book which is
shallower and larger. The book has the drawback to be less
deep against computers, but the advantage is that it stayed
longer in the book in official games against humans. Exper-
iments on Go server CGOS server revealed that both QBF
and BDS were able to improve MOGO. In both cases the
improvement was more or less similar. We presented differ-
ent results to show the efficiency of our algorithms on the
game of9×9 Go. However, our methodology is independent
of the game and can be easily used for general game play-
ing. Furthermore, Meta-MCTS does not rely on any domain-
dependent static evaluation function, which is a major advan-
tage for general game playing. We believe that Meta-MCTS
will be particularly useful for games with a small branching
factor in the opening, and when offline computational time is
available.

As future research, we will experiment with different ways
to build an opening book. In particular, adapting classic tech-
niques derived fromαβ search to MCTS constitutes an inter-
esting challenge. Moreover, we want to try our Meta-MCTS
approach in combination with a GGP program.
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