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Abstract—Monte-Carlo Tree Search is a sampling-based search
algorithm that has been successfully applied to a variety of games.
Monte-Carlo rollouts allow it to take distant consequences of
moves into account, giving it a strategic advantage in many
domains over traditional depth-limited minimax search with
alpha-beta pruning. However, MCTS builds a highly selective
tree and can therefore miss crucial moves and fall into traps
in tactical situations. Full-width minimax search does not suffer
from this weakness.

This paper proposes MCTS-minimax hybrids that employ shal-
low minimax searches within the MCTS framework. The three
proposed approaches use minimax in the selection/expansion
phase, the rollout phase, and the backpropagation phase of
MCTS. Without requiring domain knowledge in the form of
evaluation functions, these hybrid algorithms are a first step
at combining the strategic strength of MCTS and the tactical
strength of minimax. We investigate their effectiveness in the test
domains of Connect-4 and Breakthrough.

I. INTRODUCTION

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first
tree search algorithm that evaluates each state by the average
result of simulations from that state. Instead of considering
all possible moves from a state as traditional minimax search
algorithms [3] would, it samples moves and can therefore
handle large search spaces with high branching factors. Instead
of depending on a static heuristic evaluation function to
compare non-terminal states as in the minimax approach, it
uses Monte-Carlo simulations that can take long-term rewards
into account.

MCTS has been successfully applied in a variety of do-
mains from the games of Go, Amazons, and Lines of Action,
to General Game Playing, planning, and optimization [4].
While MCTS has shown considerable success, there are still
a number of games such as Chess and Checkers in which the
traditional approach to adversarial planning, minimax search
with alpha-beta pruning [5], remains superior. Since MCTS
builds a highly selective search tree, focusing only on the
most promising lines of play, it has been conjectured that it
could be less appropriate than traditional, full-width minimax
search in search spaces containing a large number of shallow
traps [6]. In trap situations such as those frequent in Chess,
precise tactical play is required to avoid immediate loss. MCTS
methods based on sampling could easily miss a crucial move
or underestimate the significance of an encountered terminal
state due to averaging value backups. Conversely, MCTS could
be more effective in domains such as Go, where terminal
positions and potential traps are rare or do not occur until
the latest stage of the game. MCTS can here fully play out its

strategic and positional understanding resulting from Monte-
Carlo simulations of entire games.

In this paper, we explore ways of combining the strategic
strength of MCTS and the tactical strength of minimax in order
to produce more universally useful hybrid search algorithms.
We do not assume the existence of evaluation functions,
allowing the MCTS-minimax hybrids to be applied in any
domain where plain MCTS is used.

This paper is structured as follows. Section II provides
some background on MCTS as the baseline algorithm. Section
III gives a brief overview of related work on the relative
strengths of minimax and MCTS, as well as results with
combining or nesting tree search algorithms. Section IV de-
scribes different ways of incorporating shallow-depth minimax
searches into the different parts of the MCTS framework, and
Section V shows experimental results of these MCTS-minimax
hybrids in the test domains of Connect-4 and Breakthrough.
Conclusions and future research follow in Section VI.

II. BACKGROUND

In this section, we shortly review the baseline algorithm
used in this paper: MCTS with the MCTS-Solver extension.

A. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [1], [2] is a best-first tree
search algorithm using statistical sampling to evaluate states.
MCTS works by repeating the following four-phase loop until
computation time runs out [7]. Each iteration represents one
simulated game.

Phase one: selection. The tree is traversed from the root to
one of the leaves, using a selection policy to choose the move
to sample from each state. Critical is a balance of exploitation
of states with high value estimates and exploration of states
with uncertain value estimates. In this work, we use the popular
UCT variant of MCTS, with the UCB1 policy as selection
policy [8].

Phase two: expansion. When a leaf has been reached, one
or more of its successors are added to the tree. In this paper, we
always add the one successor played in the current iteration.

Phase three: rollout. A rollout (also called playout) policy
is used to choose moves starting from the state represented
by the newly added node until the simulated game ends. The
simplest choice of uniformly random moves is sufficient to
achieve convergence of MCTS to the optimal move in the limit.
We use uniformly random moves except for Subsection IV-A,
where rollout moves are chosen with the help of minimax.



Phase four: backpropagation. The result of the finished
game is used to update value estimates of all states traversed
during the simulation.

Our implementation also takes transpositions into account,
i.e. builds a rooted directed acyclic graph instead of a tree [9].
In games where transpositions occur, nodes can have more
than one parent.

B. MCTS-Solver

In this paper, we do not assume the availability of heuristic
evaluation functions. Therefore, minimax search can only
distinguish terminal and non-terminal game states, potentially
producing search results such as proven win or proven loss
through minimax backup. In order to be able to handle these
proven values, we use MCTS with the MCTS-Solver extension
[10] as the baseline algorithm.

The basic idea of MCTS-Solver is allowing for the back-
propagation of not only regular simulation outcomes such as
lost or won games, but also game-theoretic values such as
proven losses and proven wins whenever terminal states are
encountered by the search tree. First, whenever a move from
a given game state s has been marked as a proven win for
player A, the move leading to s can be marked as a proven
loss for the opposing player B. Second, whenever all moves
from a given state s have been marked as proven losses for
A, the move leading to s can be marked as a proven win for
B. If at least one move from s has not been proven to be a
loss yet, the move leading to s is only updated with a regular
rollout win in this backpropagation phase. (We do not prove
draws in this paper. Draws are backpropagated as half a win.)

This solving extension to plain MCTS has been suc-
cessfully used e.g. in Lines of Action [10], Hex [11], [12],
Havannah [13], Shogi [14], Tron [15], and Focus [16]. It
has been generalized to more than two game outcomes in
a way that allows for alpha-beta style pruning [17], and to
simultaneous move games in the concept of General Game
Playing [18].

MCTS-Solver handles game-theoretic values better than
MCTS without the extension because it avoids wasting time on
the re-sampling of proven game states. However, it still suffers
from the MCTS weakness that such game-theoretic values need
time to propagate all the way up through the tree in order to
influence the move decision at the root. MCTS-Solver may
for example need to keep sampling a state many times until
it has proved all moves from this state to be losses, such that
it can backpropagate a proven win to the next-higher level of
the tree. In Subsection IV-C of this paper we describe how we
use shallow-depth, exhaustive minimax searches to speed up
this process and guide MCTS more effectively.

III. RELATED WORK

Ramanujan et al.’s work [6], [19], [20] has repeatedly dealt
with characterizing search space properties that influence the
performance of MCTS relative to minimax search. Shallow
traps were identified in [6] as a feature of domains that
are problematic for MCTS, in particular Chess. Informally,
Ramanujan et al. define a level-k search trap as the possibility
of a player to choose an unfortunate move such that after

executing the move, the opponent has a guaranteed winning
strategy at most k plies deep. While such traps at shallow
depths of 3 to 7 are not found in e.g. Go until the latest part
of the endgame, they are relatively frequent in Chess games
even at grandmaster level [6], partly explaining the problems of
MCTS in this domain. A resulting hypothesis is that in regions
of a search space containing no or very few terminal positions,
shallow traps should be rare and MCTS variants should make
comparatively better decisions, which was confirmed in [19]
for the game of Mancala. In [20] finally, a synthetic tree model
was used to explore the dependence of MCTS performance on
the density of traps in the search space. A similar problem to
shallow traps was presented by Finnsson and Björnsson [21]
under the name of optimistic moves—seemingly strong moves
that can be refuted right away by the opponent, but take MCTS
prohibitively many simulations to find the refutation. One of
the motivations of this paper was to employ shallow-depth
minimax searches within MCTS to increase the visibility of
shallow traps and allow MCTS to avoid them more effectively.

In the context of General Game Playing, Clune [22] com-
pared the performance of minimax with alpha-beta pruning and
MCTS and, restricted to the class of turn-taking, two-player,
zero-sum games we are addressing here, identified a stable
and accurate evaluation function as well as a relatively low
branching factor as advantages for minimax over MCTS. In
this paper, we explore the use of minimax within the MCTS
framework even when no evaluation function is available.

One method of combining different tree search algorithms
that was proposed in the literature is the use of shallow
minimax searches in every step of the MCTS rollout phase.
This was typically restricted to a 1-ply lookahead, as in [23]
and [13] for the game of Havannah. 2-ply searches have been
applied to the rollout phase in Lines of Action [24], Chess
[25], as well as various multi-player games [26]. However,
the existence of an evaluation function was assumed here. A
different hybrid algorithm UCTMAXH was proposed in [19],
employing minimax backups in an MCTS framework. How-
ever, again a strong heuristic was assumed as a prerequisite. In
our work, we explore the use of minimax searches of various
depths without any domain knowledge beyond the recognition
of terminal states. Minimax in the rollout phase is covered in
Section IV-A.

In the framework of proof-number search (PNS [27]), 1-
and 3-ply minimax searches have been applied in the expansion
phase of PNS [28]. In [29], nodes proven by PNS in a first
search phase were stored and reused by alpha-beta in a second
search phase. In [30], Monte-Carlo playouts were used to
initialize the proof and disproof numbers at newly expanded
nodes.

Furthermore, the idea of nesting search algorithms has
been used in [31] and [32] to create Nested Monte-Carlo
Tree Search and Nested Monte-Carlo Search, respectively. In
this paper, we are not using search algorithms recursively,
but nesting two different algorithms in order to combine their
strengths: MCTS and minimax.

IV. HYBRID ALGORITHMS

In this section, we describe the three different approaches
for applying minimax with alpha-beta pruning within MCTS



that we explore in this work.

A. Minimax in the Rollout Phase

While uniformly random move choices in the rollout are
sufficient to guarantee the convergence of MCTS to the opti-
mal policy, more informed rollout strategies typically greatly
improve performance [33]. For this reason, it seems natural
to use fixed-depth minimax searches for choosing rollout
moves. Since we do not use evaluation functions in this paper,
minimax can only find forced wins and avoid forced losses, if
possible, within its search horizon. If minimax does not find
a win or loss, we return a random move.

This strategy thus improves the quality of play in the
rollouts by avoiding certain types of blunders. It informs tree
growth by providing more accurate rollout returns. We call this
strategy MCTS-MR for MCTS with Minimax Rollouts.

B. Minimax in the Selection and Expansion Phases

Minimax searches can also be embedded in the phases of
MCTS that are concerned with traversing the tree from root
to leaf: the selection and expansion phases. This strategy can
use a variety of possible criteria to choose whether or not
to trigger a minimax search at any state encountered during
the traversal. In this paper, we experimented with starting a
minimax search as soon as a state has reached a given number
of visits (for 0 visits, this would include the expansion phase).
Other possible criteria include e.g. starting a minimax search
for a loss as soon as a given number of moves from a state have
already been proven to be losses, or starting a minimax search
for a loss as soon as average returns from a node fall below
a given threshold (or searching for a win as soon as returns
exceed a given threshold, conversely), or starting a minimax
search whenever average rollout lengths from a node are short,
suggesting proximity of terminal states. These are left as future
work.

This strategy improves MCTS search by performing
shallow-depth, full-width checks of the immediate descendants
of a subset of tree nodes. It informs tree growth by avoiding
shallow losses, as well as detecting shallow wins, within or
close to the MCTS tree. We call this strategy MCTS-MS for
MCTS with Minimax Selection.

C. Minimax in the Backpropagation Phase

As mentioned in Subsection II-B, MCTS-Solver tries to
propagate game-theoretic values (proven win and proven loss)
as far up the tree as possible, starting from the terminal state
visited in the current simulation. It has to switch to regular
rollout returns (win and loss) as soon as at least one sibling
of a proven loss move is not marked as proven loss itself.
Therefore, we employ shallow minimax searches whenever
this happens, actively searching for proven losses instead of
hoping for MCTS-Solver to find them in future simulations.
If minimax succeeds at proving all moves from a given state
s to be losses, we can backpropagate a proven win instead of
just a win for the opponent player to the move leading to s.
Since these minimax searches can both consider the values of
terminal states as well as states already proven in previous
rollouts, it is possible to get different results for repeated

minimax searches starting from the same state at different
times during the search.

This strategy improves MCTS-Solver by providing the
backpropagation step with helpful information whenever pos-
sible, which allows for quicker proving and exclusion of
moves from further MCTS sampling. Other than the strategies
described in IV-A and IV-B, it only triggers when a terminal
position has been found in the tree and the MCTS-Solver ex-
tension applies. For this reason, it avoids wasting computation
time on minimax searches in regions of the search space with
no or very few terminal positions. We call this strategy MCTS-
MB for MCTS with Minimax Backpropagation.

V. EXPERIMENTAL RESULTS

We tested the MCTS-minimax hybrids in two different
domains: The two-player, zero-sum games of Connect-4 and
Breakthrough. These games, popular in the General Game
Playing community [34]–[36], were chosen due to their simple
rules and bounded game length, while still providing search
spaces of non-trivial size and complexity. In all experimental
conditions, we compared the hybrids against regular MCTS-
Solver as the baseline. Optimal UCT parameters such as the
exploration factor were determined once for MCTS-Solver in
both games and then kept constant for both MCTS-Solver
and the MCTS-minimax hybrids during testing. Draws, which
are possible in Connect-4, were counted as half a win for
both players. We used minimax with alpha-beta pruning,
but no other search enhancements. Unless stated otherwise,
computation time was 1 second per move.

A. Games

1) Connect-4: The variant of Connect-4 we are using is
played on a 7 × 6 board. It has been proven to be a win for
the first player [37].

At the beginning of the game, the board is empty. The two
players alternatingly place white and black tokens in one of the
seven columns, always filling the lowest available space of the
chosen column. The game is won by the player who succeeds
first at connecting four tokens of his own color either vertically,
horizontally, or diagonally. If the board is filled completely
without any player reaching this goal, the game ends in a draw.

2) Breakthrough: The variant of Breakthrough we are
using is played on a 6 × 6 board. The game was originally
described as being played on a 7 × 7 board, but other sizes
such as 8×8 are popular as well, and the 6×6 board preserves
an interesting search space.

At the beginning of the game, the first two rows of the
board are occupied by twelve white pieces, and the last two
rows are occupied by twelve black pieces. The two players
alternatingly move one of their pieces straight or diagonally
forward, onto an empty square of the board. Two pieces cannot
occupy the same square. However, players can capture the
opponent’s pieces by moving onto their square in diagonal
direction only. The game is won by the player who succeeds
first at reaching the home row of his opponent, i.e. reaching
the first row as Black or reaching the last row as White, with
one piece.



B. Existence of Shallow Traps

In order to measure an effect of employing shallow min-
imax searches without an evaluation function within MCTS,
terminal states need to be present in sufficient density through-
out the search space, in particular the part of the search space
relevant at our level of play. We played 1000 self-play games
of MCTS-Solver in both Connect-4 and Breakthrough to test
this property, using 50, 000 rollouts per move. At each turn, we
determined whether there exists at least one trap at depth (up
to) 3 for the player to move. The same methodology was used
in [6]. Figures 1 and 2 show that shallow traps are indeed found
throughout both domains, which suggests improving the ability
of MCTS to identify and avoid such traps is worthwhile. Next,
we see that in contrast to Breakthrough the density of traps
for both players differs significantly in Connect-4. Finally, we
note that Breakthrough rarely last longer than 40 turns, which
explains why the data become more noisy.
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Fig. 1. Density of level-3 search traps in Connect-4.
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Fig. 2. Density of level-3 search traps in Breakthrough.

C. Connect-4

In this subsection, we summarize the experimental results
in the game of Connect-4. Our baseline MCTS-Solver imple-
mentation performs about 91, 000 simulations per second when
averaged over an entire game.

1) Minimax in the Rollout Phase: We tested minimax at
search depths 1 ply to 4 plies in the rollout phase of a Connect-
4 MCTS-Solver player. Each resulting player, abbreviated as
MCTS-MR-1 to MCTS-MR-4, played 1000 games against
regular MCTS-Solver with uniformly random rollouts. Figure
3 presents the results.

Minimax is computationally more costly than a random
rollout policy. MCTS-MR-1 finishes about 65% as many
simulations per second as the baseline, MCTS-MR-2 about
18% as many, MCTS-MR-3 about 6% as many, MCTS-MR-
4 about 2% as many when searching the start position of
Connect-4 for one second. This typical speed-knowledge trade-
off explains the decreasing performance of MCTS-MR for
higher minimax search depths, although the quality of rollouts
increases. Remarkably, MCTS-MR-1 performs significantly
worse than the baseline. This also held when we performed
the comparison using equal numbers of MCTS iterations
(100, 000) per move instead of equal time (1 second) per
move for both players. In this scenario, we found MCTS-MR-
1 to achieve a win rate of 35.7% in 1000 games against the
baseline. It remains to be shown in future work whether this
is e.g. due to some specific imbalance in Connect-4 rollouts
with depth-1 minimax.

In our Connect-4 experiments, MCTS-MR-2 outperformed
all other conditions. Over an entire game, it completed about
30, 000 simulations per second on average. In an additional
2000 games against the baseline, it won 73.2% of games,
which is a significant improvement (p<0.001).
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Fig. 3. Performance of MCTS-MR in Connect-4.

2) Minimax in the Selection and Expansion Phases: The
variant of MCTS-MS we tested starts a minimax search from a
state in the tree if that state has reached a fixed number of visits
when encountered by the selection policy. We call this variant,
using a minimax search of depth d when reaching v visits,



MCTS-MS-d-Visit-v. If the visit limit is set to 0, this means
every tree node is searched immediately in the expansion phase
even before it is added to the tree.

We tested MCTS-MS-d-Visit-v for d ∈ {2, 4} and v ∈
{0, 1, 2, 5, 10, 20, 50, 100}. We found it to be most effective to
set the alpha-beta search window such that minimax was only
used to detect forced losses (traps). Since suicide is impossible
in Connect-4, we only searched for even depths. Furthermore,
we started independent minimax searches for each legal move
from the node in question, which allows to store found losses
for individual moves even if the node itself cannot be proven to
be a loss. Each condition consisted of 1000 games against the
baseline player. The results are shown in Figure 4. Low values
of v result in too many minimax searches being triggered,
which slows down MCTS. High values of v mean that the
tree below the node in question has already been expanded to
a certain degree, and minimax might not be able to gain much
new information. Additionally, high values of v result in too
few minimax searches, such that they have little effect.

MCTS-MS-2-Visit-2 was the most successful condition. It
played about 83, 000 simulations per second on average over
an entire game. There were 5000 additional games played
against the baseline and a total win rate of 53.4% was achieved,
which is a significantly higher performance (p<0.001).
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Fig. 4. Performance of MCTS-MS in Connect-4.

3) Minimax in the Backpropagation Phase: MCTS-Solver
with minimax in the backpropagation phase was tested with
minimax search depths 1 ply to 6 plies. Contrary to MCTS-MS
as described in V-C2, we experimentally determined it to be
most effective to use MCTS-MB with a full minimax search
window in order to detect both wins and losses. We therefore
included odd search depths. Again, all moves from a given
node were searched independently in order to be able to prove
their individual game-theoretic values. The resulting players
were abbreviated as MCTS-MB-1 to MCTS-MB-6 and played
1000 games each against the regular MCTS-Solver baseline.
The results are shown in Figure 5.

MCTS-MB-2 as the best-performing variant played 5000
additional games against the baseline and won 52.1% of them,

which shows a significant improvement (p<0.05). It played
about 90, 000 simulations per second when averaged over the
whole game.
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Fig. 5. Performance of MCTS-MB in Connect-4.

D. Breakthrough

The experimental results in the Breakthrough domain are
described in this subsection. Our baseline MCTS-Solver im-
plementation plays about 61, 000 simulations per second on
average.

1) Minimax in the Rollout Phase: As in Connect-4, we
tested 1-ply to 4-ply minimax searches in the rollout phase
of a Breakthrough MCTS-Solver player. The resulting players
MCTS-MR-1 to MCTS-MR-4 played 1000 games each against
regular MCTS-Solver with uniformly random rollouts. The
results are presented in Figure 6.

Interestingly, all MCTS-MR players were significantly
weaker than the baseline (p<0.001). The advantage of a 1-
to 4-ply lookahead in rollouts does not seem to outweigh the
computational cost in Breakthrough, possibly due to the larger
branching factor, longer rollouts, and more time-consuming
move generation than in Connect-4. MCTS-MR-1 searches
only about 7.3% as fast as the baseline, MCTS-MR-2 about
1.3% as fast, MCTS-MR-3 about 0.2% as fast, MCTS-MR-4
about 0.03% as fast when measured in simulations completed
in a one-second search of the empty Connect-4 board. When
comparing with equal numbers of MCTS iterations (10, 000)
per move instead of equal time (1 second) per move for
both players, MCTS-MR-1 achieved a win rate of 61.5% in
1000 games against the baseline. MCTS-MR-2 won 83.5% of
1000 games under the same conditions. It may be possible to
optimize our Breakthrough implementation—however, as the
following subsections indicate, application of minimax in other
phases of MCTS seems to be the more promising approach in
this game.

2) Minimax in the Selection and Expansion Phases: We
tested the same variants of MCTS-MS for Breakthrough as
for Connect-4: MCTS-MS-d-Visit-v for d ∈ {2, 4} and v ∈
{0, 1, 2, 5, 10, 20, 50, 100}. 2000 games against the baseline
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Fig. 6. Performance of MCTS-MR in Breakthrough.

player were played for each experimental condition. Figure
7 shows the results.

Just as in Connect-4, MCTS-MS-2-Visit-2 turned out to
be the most effective variant. When averaged over the whole
game, it performed about 47, 000 simulations per second. 2000
additional games against the baseline confirmed a significant
increase in strength (p<0.001) with a win rate of 62.2%.
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Fig. 7. Performance of MCTS-MS in Breakthrough.

3) Minimax in the Backpropagation Phase: MCTS-MB-2
to MCTS-MB-6 were tested analogously to Connect-4, playing
1000 games each against the regular MCTS-Solver baseline.
Figure 8 presents the results.

The best-performing setting MCTS-MB-2 played 2000
additional games against the baseline and won 55.0% of them,
which shows a significant improvement (p<0.05). It played
about 60, 000 simulations per second on average.
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Fig. 8. Performance of MCTS-MB in Breakthrough.

E. Comparison of Algorithms

Sections V-C and V-D show the performance of MCTS-
MR, MCTS-MS and MCTS-MB against the baseline player in
both Connect-4 and Breakthrough. In order to facilitate com-
parison, we also tested the best-performing variants of these
MCTS-minimax hybrids against each other. In Connect-4,
MCTS-MR-2, MCTS-MS-2-Visit-2 and MCTS-MB-2 played
in each possible pairing; in Breakthrough, MCTS-MR-1,
MCTS-MS-2-Visit-2 and MCTS-MB-2 were chosen. 2000
games were played in each condition. Figure 9 presents the
results.
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Fig. 9. Performance of MCTS-MR, MCTS-MS and MCTS-MB against each
other in Connect-4 and Breakthrough.

Consistent with the results from the previous sections,
MCTS-MS outperformed MCTS-MB in Breakthrough, while
no significant difference could be shown in Connect-4. MCTS-
MR was significantly stronger than the two other algorithms
in Connect-4, but weaker than both in Breakthrough.

In a second experiment, the best-performing MCTS-
minimax hybrids played against the baseline at different time
settings from 250 ms per move to 5000 ms per move. The
results are shown in Figure 10 for Connect-4, and Figure 11



for Breakthrough.
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Fig. 10. Performance of MCTS-MR-2, MCTS-MS-2-Visit-2 and MCTS-MB-
2 at different time settings in Connect-4.
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Fig. 11. Performance of MCTS-MR-1, MCTS-MS-2-Visit-2 and MCTS-MB-
2 at different time settings in Breakthrough.

We can observe that at least up to 5 seconds per move,
additional time makes the performance differences between
algorithms more pronounced. While in Connect-4, it is MCTS-
MR that profits most from additional time, we can see the same
effect for MCTS-MS and MCTS-MB in Breakthrough.

VI. CONCLUSION AND FUTURE RESEARCH

The strategic strength of MCTS lies to a great extent in
the Monte-Carlo simulations, allowing the search to observe
even distant consequences of actions, if only through the
observation of probabilities. The tactical strength of minimax
lies largely in its exhaustive approach, guaranteeing to never
miss a consequence of an action that lies within the search
horizon, and backing up game-theoretic values from leaves
with certainty and efficiency.

In this paper, we examined three knowledge-free ways
of integrating minimax into MCTS: The application of mini-
max in the rollout phase with MCTS-MR, the selection and
expansion phases with MCTS-MS, and the backpropagation
phase with MCTS-MB. In both test domains of Connect-4
and Breakthrough, the newly proposed variants MCTS-MS and
MCTS-MB significantly outperformed regular MCTS with the
MCTS-Solver extension. The only way of integrating minimax
into MCTS known from the literature (although typically used
with an evaluation function), MCTS-MR, was quite strong in
Connect-4 but weak in Breakthrough, suggesting it might be
less robust with regard to differences between search spaces.

Note that in all experiments except those of Subsections
V-D1 and V-C1, we used fast, uniformly random rollout
policies. On the one hand, the overhead of our methods
would be proportionally lower for any slower, informed rollout
policies such as typically used in state-of-the-art programs. On
the other hand, improvement on already strong policies might
prove to be more difficult. Examining the influence of such
MCTS implementation properties is a possible first direction
of future research.

Second, the effect of properties of the games themselves
deserves further study, e.g. average branching factor, average
game length, trap density, and others. The successful appli-
cation of MCTS-MB and MCTS-MS e.g. may depend on
the frequency of terminal nodes found in the tree (or close
to the tree, respectively) in the deciding phases of a game.
Synthetic search spaces could be used to study these properties
in isolation—the large number of differences between games
like Connect-4 and Breakthrough potentially confounds many
effects.

A third worthwhile direction of work is the incorporation
of evaluation functions into the hybrid algorithms. This could
make minimax potentially much more useful in regions of
search spaces without or with very few terminal nodes. The
main challenge for this approach is properly combining results
of heuristic evaluation functions with the results of rollout
returns, their averages and confidence intervals, as produced
by MCTS.
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