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Summary. Proof-Number (PN) search is a best-first adversarial search algorithm
especially suited for finding the game-theoretical value in game trees. The strategy
of the algorithm may be described as developing the tree into the direction where the
opposition characterised by value and branching factor is to expect to be the weakest.
In this chapter we start by providing a short description of the original PN-search
method, and two main successors of the original PN search, i.e., PN2 search and the
depth-first variant Proof-number and Disproof-number Search (PDS). A comparison
of the performance between PN, PN2, PDS, and αβ is given. It is shown that PN-
search algorithms clearly outperform αβ in solving endgame positions in the game
of Lines of Action (LOA). However, memory problems make the plain PN search
a weaker solver for harder problems. PDS and PN2 are able to solve significantly
more problems than PN and αβ. But PN2 is restricted by its working memory, and
PDS is considerably slower than PN2. Next, we present a new proof-number search
algorithm, called PDS-PN. It is a two-level search (like PN2), which performs at
the first level a depth-first PDS, and at the second level a best-first PN search.
Hence, PDS-PN selectively exploits the power of both PN2 and PDS. Experiments
show that within an acceptable time frame PDS-PN is more effective for really hard
endgame positions. Finally, we discuss the depth-first variant df-pn. As a follow
up of the comparison of the four PN variants, we compare the algorithms PDS
and df-pn. However, the hardware conditions of the comparison were different. Yet,
experimental results provide promising prospects for df-pn. We conclude the article
by seven observations, three conclusions, and four suggestions for future research.

1 Endgame Solvers

Most modern game-playing computer programs use the adversarial search
method called the αβ algorithm [16] for online game-playing [11]. However,
the αβ search even with its enhancements is sometimes not sufficient to play
well in the endgame. A variety of factors may cause this lack of effective-
ness, for instance the complexity (in Go) and the depth of search (in many
endgames). In some games, such as Chess, the latter problem is solved by
the use of endgame databases [22]. Due to memory constraints this solution
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is only feasible for endgames with a relatively small state-space complexity,
although nowadays the size may be considerable.

In the last three decades many other search approaches have been pro-
posed, tested and thoroughly investigated (for an overview see [12]). Two
lines of research focused on the possibilities of the opponent and the potential
threats of the opponent. The development started with the idea of conspiracy-
number search as developed by McAllester [17] and worked out by Schaeffer
[30]. This idea was heuristical by nature. It inspired Allis [1] to propose PN
Search, a specialised binary (win or non-win) search method for solving games
and for solving difficult endgame positions [2].

PN search is a best-first adversarial search algorithm especially suited
for finding the game-theoretical value in game trees. In many domains PN
search outperforms αβ search in proving the game-theoretic value of endgame
positions. The PN-search idea is a heuristic, which prefers expanding slim
subtrees over wide ones. PN search or a variant thereof has been successfully
applied to the endgame of Awari [2], Chess [6], Checkers [31, 32, 33], Shogi
[34], and Go [15]. Since PN search is a best-first search, it has to store the
whole search tree in memory. When the memory is full, the search has to end
prematurely.

To overcome this problem PN2 was proposed by Allis [1] as an algorithm
to reduce memory requirements in PN search. It is elaborated upon in Breuker
[5]. Its implementation and testing for chess positions is extensively described
in Breuker, Uiterwijk, and Van den Herik [8]. PN2 performs two levels of
PN search, one at the root and one at the leaves of the first level. As in the
B* algorithm [4], a search process is started at the leaves to obtain a more
accurate evaluation. Although PN2 uses far less memory than PN search, it
does not fully overcome the memory obstacle.

Therefore, the idea behind the MTD(f ) algorithm [25] was applied to PN
variants: try to construct a depth-first algorithm that behaves as its corre-
sponding best-first search algorithm. This idea became a success. In 1995, Seo
formulated a depth-first iterative-deepening version of PN search, later called
PN* [34]. The advantage of this variant is that there is no need to store the
whole tree in memory. The disadvantage is that PN* is slower than PN [29].

Other depth-first variants are PDS [18] and df-pn [21]. Although their
generation of nodes is even slower than PN*’s, they are building smaller search
trees. Hence, they are in general more efficient than PN*.

In this chapter we will investigate several PN-search algorithms, using the
game of Lines of Action (LOA) [26] as test domain. We will concentrate on the
offline application of the PN-search algorithms. The number of positions they
can solve (i.e., the post-mortem analysis quality) is tested on a set of endgame
positions. Moreover, we will investigate to what extent the algorithms are
restricted by their working memory or by the search speed.

The chapter is organised as follows. In Section 1 we discuss the need for
special algorithms to solve endgame positions. Section 2 describes PN, PN2,
PN*, PDS, and df-pn. In Section 3 two enhancements of PN and PN2 are
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described. In Section 4 we examine the offline solution power and the solution
time of three PN variants, in relation to those of αβ. In Section 5 we explain
the working of PDS-PN by elaborating on PDS and the idea of two-level search
algorithms. Then, in Section 6, the results of experiments with PDS-PN on a
set of endgame positions are given. Subsequently, we briefly discuss df-pn and
compare the results by PDS and df-pn in Section 7. Finally, in Section 8 we
present seven observations, three conclusions and four suggestions for future
research.

2 Five Proof-Number Search Algorithms

In this section we give a short description of PN search (Subsection 2.1), PN2

search (Subsection 2.2) and three depth-first variants of PN search . Recently,
three depth-first PN variants, PN*, PDS, and df-pn have been proposed, which
solved the memory problem of PN-search algorithms. They will be discussed
in Subsection 2.3, 2.4, and 2.5.

2.1 Proof-Number Search

Proof-Number (PN) search is a best-first search algorithm especially suited
for finding the game-theoretical value in game trees [1]. Its aim is to prove the
true value of the root of a tree. A tree can have three values: true, false, or
unknown. In the case of a forced win, the tree is proved and its value is true.
In the case of a forced loss or draw, the tree is disproved and its value is false.
Otherwise the value of the tree is unknown. In contrast to other best-first
algorithms PN search does not need a domain-dependent heuristic evaluation
function to determine the most-promising node to be expanded next [2]. In PN
search this node is usually called the most-proving node. PN search selects
the most-proving node using two criteria: (1) the shape of the search tree
(the branching factor of every internal node) and (2) the values of the leaves.
These two criteria enable PN search to treat game trees with a non-uniform
branching factor efficiently. The strategy of the algorithm may be described
as developing the tree into the direction where the opposition characterised
by value and branching factor is to expect to be the weakest.

Below we explain PN search on the basis of the AND/OR tree depicted in
Figure 1, in which a square denotes an OR node, and a circle denotes an AND
node. The numbers to the right of a node denote the proof number (upper)
and disproof number (lower). A proof number (pn) represents the minimum
number of leaf nodes which have to be proved in order to prove the node.
Analogously, a disproof number (dpn) represents the minimum number of leaf
nodes which have to be disproved in order to disprove the node. Because the
goal of the tree is to prove a forced win, winning nodes are regarded as proved.
So, they have proof number 0 and disproof number ∞ (e.g., node i). Lost or
drawn nodes are regarded as disproved (e.g., nodes f and k). They have proof
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Fig. 1. An AND/OR tree with proof and disproof numbers

number ∞ and disproof number 0. Unknown leaf nodes have a proof and
disproof number of unity (e.g., nodes g, h, j, and l). The proof number of
an internal AND node is equal to the sum of its children’s proof numbers,
since to prove an AND node all the children have to be proved. The disproof
number of an AND node is equal to the minimum of its children’s disproof
numbers, since to disprove an AND node it suffices to disprove one child. The
proof number of an internal OR node is equal to the minimum of its children’s
proof numbers, since to prove an OR node it suffices to prove one child. The
disproof number of an internal OR node is equal to the sum of its children’s
disproof numbers, since to disprove an OR node all the children have to be
disproved.

The procedure of selecting the most-proving node to expand is as follows.
We start at the root. Then, at each OR node the child with the lowest proof
number is selected as successor, and at each AND node the child with the
lowest disproof number is selected as successor. Finally, when a leaf node is
reached, it is expanded (which makes the leaf node an internal node) and
the newborn children are evaluated. This is called immediate evaluation. The
selection of the most-proving node (j ) in Figure 1 is given by the bold path.

The number of node traversals to select the most-proving node can have
a negative impact on the execution time. Therefore, Allis [1] proposed the
following minor enhancement. The updating process can be terminated when
the proof and disproof number of a node do not change. From this node we
can start the next most-proving node selection. For an adequate description
of implementation details we refer to Allis et al. [2], where the essentials for
implementation are given.
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In the naive implementation, proof and disproof numbers are each ini-
tialised to unity in the unknown leaves. In other implementations, the proof
number and disproof number are set to 1 and n, respectively, for an OR node
(and the reverse for an AND node), where n is the number of legal moves.
In LOA this would mean that we take the mobility of the moving player in
the position into account, which is an important feature in the evaluation
function as well [37]. The effect of this enhancement is tested in Section 3. We
would like to remark that there are other possibilities to initialise the proof
and disproof numbers. Allis [1] applies domain-specific knowledge to set the
variables in Awari. Saito et al. [27] apply an algorithm called MC-PNS in the
game of Go. It gives a value to the proof and disproof number by performing
a Monte-Carlo evaluation at the leaf node of the tree.

Here we reiterate that a disadvantage of PN search is that the whole search
tree has to be stored in memory. When the memory is full, the search process
has to be terminated prematurely. A partial solution is to delete proved or
disproved subtrees [1]. In the next subsections we discuss two main variants
of PN search that handle the memory problem more adequately.

2.2 PN2 Search

For an appropriate description we repeat a few sentences of our own. PN2 is
first described by Allis [1], as an algorithm to reduce memory requirements
in PN search. It is elaborated upon in Breuker [5]. Its implementation and
testing for chess positions is extensively described in Breuker et al. [8]. PN2

consists of two levels of PN search. The first level consists of a PN search
(PN1), which calls a PN search at the second level (PN2) for an evaluation
of the most-proving node of the PN1-search tree. This PN2 search is bound
by a maximum number of nodes to be stored in memory. The number is a
fraction of the size of the PN1-search tree. The fraction f(x) is given by the
logistic-growth function [3], x being the size of the first-level search:

f(x) =
1

1 + e
a−x

b

, (1)

with parameters a and b, both strictly positive. The number of nodes y in a
PN2-search tree is restricted to the minimum of this fraction function and the
number of nodes which can still be stored. The formula to compute y is:

y = min(x× f(x), N − x), (2)

with N the maximum number of nodes to be stored in memory.
The PN2 search is stopped when the number of nodes stored in memory

exceeds y or the subtree is (dis)proved. After completion of the PN2 search,
the children of the root of the PN2-search tree are preserved, but subtrees are
removed from memory. The children of the most-proving node (the root of
the PN2-search tree) are not immediately evaluated by a second-level search;
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evaluation of such a child node happens only after its selection as most-proving
node. This is called delayed evaluation. We remark that for PN2-search trees
immediate evaluation is used. The essentials of our implementation are given
in [5].

As we have seen in Subsection 2.1, proved or disproved subtrees can be
deleted. If we do not delete proved or disproved subtrees in the PN2 search
the number of nodes searched is the same as y, otherwise we can continue
the search longer. The effect of deleting (dis)proved PN2 subtrees is tested in
Section 3.

2.3 PN*

In 1995, Seo formulated the first depth-first iterative-deepening version of
PN search, later called PN* [34]. PN* uses a method called multiple-iterative
deepening. Instead of iterating only at the root node such as in the ordinary
iterative deepening, it iterates also at AND nodes. To each AND node a
threshold is given. The subtree rooted at that node is continued to be searched
as long as the proof number is below the assigned threshold. To keep iterative
deepening effective, the method is enhanced by storing the expanded nodes
in a transposition table.

2.4 PDS

The disadvantage of PN* is that it has difficulties to disprove a (sub)tree,
which harms its solving performance [29]. Nagai [18, 19] proposed a second
depth-first search algorithm, called Proof-number and Disproof-number Search
(PDS), which is a straight extension of PN*. Instead of using only proof
numbers such as in PN*, PDS uses disproof numbers too.1 Moreover, PDS
uses multiple-iterative deepening in every node. To keep iterative deepening
effective, the method is enhanced by storing the expanded nodes in a TwoBig
transposition table [7]. PDS uses two thresholds in searching, one for the
proof numbers and one for the disproof numbers. We note that PDS suffers
from the Graph-History Interaction (GHI) problem (cf. [9]).2 In the present
implementation this problem is ignored [19]. In Section 5.2 we will describe
PDS in detail.

2.5 df-pn

Nagai [20, 21] has introduced a third depth-first PN algorithm, called df-
pn (depth-first proof-number search). It is mainly a variant of PDS. The
1 We recall that PN and PN2 use disproof numbers too.
2 In a search graph a node’s value may be dependent on the path leading to it.

Different paths may lead to different values. Hence, it is difficult to determine the
value of any node unambiguously. The problem is known as the Graph-History
Interaction (GHI) problem (see [10, 23]).
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algorithm df-pn does not perform iterative deepening at the root node. As
with PDS, df-pn uses two thresholds for a node, one as a limit for proof
numbers (pnt) and one for disproof numbers (dnt). In contrast to PDS, it sets
the thresholds of both proof number and disproof number at the root node
to ∞. Once the thresholds are assigned to a node, the subtree rooted in that
node is stopped to be searched if the proof number (pn) or disproof number
(dpn) is larger than or equal to their corresponding threshold. Obviously, the
condition pn < ∞ and dn < ∞ holds if the tree is not solved. As the search
goes more deeply, the threshold values are distributed among the descendant
nodes.

At an OR node p we select the child n with lowest pn just like in the
regular PN search. Assume that there is a node s with the second lowest pn
value. The thresholds of node n are set in the following way:

pntn = min(pntp, pns + 1), (3)
dntn = dntp − dnp + dnn. (4)

Similarly, at an AND node p we select the child n with lowest dn just
like in the regular PN search. Assume that there is a node s with the second
lowest dpn value. The thresholds of node n are set in the following way:

pntn = pntp − pnp + pnn, (5)
dntn = min(dntp, dpns + 1). (6)

Contrary to PDS, it has been proved that df-pn always selects the most-
proving node [20]. Initially, the results of df-pn were mixed [21, 28]. Although
df-pn sometimes solves positions faster than PDS, it may solve in practice
fewer positions [28]. It turns out that the standard df-pn algorithm suffers
more from the GHI problem than PDS. It has a fundamental problem when
applied to a domain with repetitions [14]. Nagai proposed an ad-hoc way
to solve this problem for Tsume-Shogi [20]. Recently, Kishimoto and Müller
proposed a solution, which adequately handles the GHI problem in df-pn
[13, 15].

To prevent multiple recreations of a subtree due to multiple-iterative deep-
ening, Pawlewicz and Lew [24] developed the 1 + ε trick enhancement that
might improve df-pn considerably. It transforms formula 3 to formula 7 for
the child’s proof-number threshold in a OR node:

pntn = min(pntp, dpns(1 + ε)e), (7)

where ε is a small real number greater than zero.
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3 Two Enhancements of PN and PN2

Below, we test the effect of enhancing PN and PN2 with (1) adding mobil-
ity and (2) deleting (dis)proved PN2 subtrees. For PN and PN2, all nodes
evaluated for the termination condition during the search are counted. The
node count is equal to the number of nodes generated. The maximum number
of nodes searched is 50,000,000. The maximum number of nodes stored in
memory is 1,000,000. These numbers roughly corresponds to the tournament
conditions of the Computer Olympiad with respect to Pentium III. The pa-
rameters (a,b) of the growth function used in PN2 are set at (1800K, 240K)
according to the suggestions in Breuker et al. [8].

In the first experiment, we tested PN search and PN2 with the mobility
enhancements on a test set of 116 LOA positions.3 The results are shown in
Table 1. In the second column we see that PN search solved 85 positions using
mobility; without mobility it solved 53 positions. PN2 search using mobility
solved 109 positions and without it solved only 91 positions. Next, in the third
column we see that on a set of 53 positions solved by both PN algorithms,
PN search using mobility is roughly 5 times faster in nodes than PN search
without mobility. Finally, in the fourth column we see that on a set of 91
positions solved by both PN2 algorithms, PN2 search using mobility is more
than 6 times faster in nodes than PN2 search without using mobility. In general
we may conclude that mobility speeds up the PN and PN2 with a factor 5
to 6. The time spent on the mobility extension is estimated at 15% of the
total computing time. Owing to mobility PN search can make better search
decisions and therefore solve many more positions. The underlying reason is
that the memory constraint is violated less frequently.

Table 1. Mobility in PN and PN2

Algorithm # of pos. solved Total nodes (53 pos.) Total nodes (91 pos.)

PN 53 24,357,832 -

PN + Mob. 85 5,053,630 -

PN2 91 - 345,986,639

PN2 + Mob. 109 - 56,809,635

In the second experiment, we tested the effect of deleting (dis)proved sub-
trees at the PN2 search of the PN2. The results are shown in Table 2. Both
variants (not deleting PN2 subtrees and deleting PN2 subtrees) used mobility
in the experiment. On a set of 108 positions that both versions were able to
solve, we can see that deleting (dis)proved subtrees improves the search by
10%. It also solves one additional position.

In the remainder of this chapter we will use these two enhancements (i.e.,
mobility and deleting (dis)proved PN2 subtrees) for PN and PN2.

3 The test set can be found at www.cs.unimaas.nl/m.winands/loa/tswin116.zip.
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Table 2. Deleting (dis)proved subtrees at the second-level search PN2

Algorithm # of pos. solved Total nodes (108 pos.)

PN2 not deleting PN2 subtrees 108 463,076,682

PN2 deleting PN2 subtrees 109 416,168,419

4 PN Search Performance

In this section we test the offline performance of three PN-search variants
by comparing PN, PN2, PDS, and αβ search with each other. The goal is
to investigate the effectiveness of the PN-search variants by experiments. We
will look how many endgame positions they can solve and how much effort (in
nodes and CPU time) they take. For the αβ depth-first iterative-deepening
search, nodes at depth i are counted only during the first iteration that the
level is reached. This is how analogous comparisons are done in Allis [1]. For
PN, PN2, and PDS search, all nodes evaluated for the termination condition
during the search are counted. For PDS this node count is equal to the number
of expanded nodes (function calls of the recursive PDS algorithm). PN, PN2,
PDS, and αβ are tested on a set of 488 forced-win LOA positions.4 Two
comparisons are made, which are described in Subsection 4.1 and 4.2.

4.1 A General Comparison of Four Search Techniques

In Table 3 we compare PN, PN2, PDS, and αβ on a set of 488 LOA positions.
The maximum number of nodes searched is again 50,000,000. In the second
column of Table 3 we see that 470 positions were solved by the PN2 search,
473 positions by PDS, only 356 positions by PN, and 383 positions by αβ.
In the third and fourth column the number of nodes and the time consumed
are given for the subset of 314 positions, which all four algorithms were able
to solve. If we have a look at the third column, we see that PN search builds
the smallest search trees and αβ by far the largest. PN2 and PDS build larger
trees than PN but can solve significantly more positions. This suggests that
both algorithms are better suited for harder problems. PN2 investigates 1.2
times more nodes than PDS, but PN2 is (more than) 6 times faster than PDS
in CPU time for this subset.

From the experiments we may draw the following three conclusions.

1. PN-search algorithms clearly outperform αβ in solving endgame positions
in LOA.

2. The memory problems make the plain PN search a weaker solver for the
harder problems.

3. PDS and PN2 are able to solve significantly more problems than PN and
αβ.

4 The test set can be found at www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip.
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Table 3. Comparing the search algorithms on 488 test positions

Algorithm # of positions solved 314 positions
(out of 488) Total nodes Total time (ms.)

αβ 383 1,711,578,143 22,172,320

PN 356 89,863,783 830,367

PN2 470 139,254,823 1,117,707

PDS 473 118,316,534 6,937,581

4.2 A Deep Comparison of PN2 and PDS

For a better insight into how much faster PN2 is than PDS in CPU time, we did
a second comparison. In Table 4 we compare PN2 and PDS on the subset of 463
test positions, which both algorithms were able to solve. Now, PN2 searches
2.6 times more nodes than PDS. The reason for the decrease of performance is
that for hard problems the PN2-search tree becomes as large as the PN1-search
tree. Therefore, the PN2-search tree is causing more overhead. However, if we
have a look at the CPU times we see that PN2 is still three times faster than
PDS. The reason is that PDS has a relatively large time overhead because
of the delayed evaluation. Consequently, the number of nodes generated is
higher than the number of nodes expanded. In our experiments, we observed
that PDS generated nodes 7 to 8 times slower than PN2. Such a figure for the
overhead is in agreement with experiments performed in Othello and Tsume-
Shogi [29]. We remark that Nagai’s [19] Othello results showed that PDS was
better than PN search, (i.e., it solved the positions faster than PN). Nagai
assigned to both the proof number and the disproof number of unknown nodes
a 1 in his PN search and therefore did not use the mobility enhancement.
In contrast, we incorporated the mobility in the initialisation of the proof
numbers and disproof numbers in our PN search. We believe that comparing
PDS with a PN-search algorithm without using the mobility component is not
fair. Since PDS does not store unexpanded nodes that have a proof number
1 and disproof number 1, we may state that PDS initialises the (dis)proof
number of a node by counting the number of its newborn children [19]. So in
the PDS search, the mobility enhancement coincides with the initialisation of
the (dis)proof number.

From this second experiment we may conclude that PDS is considerably
slower than PN2 in CPU time. Therefore, PN2 seems to be a better endgame
solver under tournament conditions. Counterbalancing this success, we note
that PN2 is still restricted by its working memory and is not fit for solving
really hard problems.

Table 4. Comparing PDS and PN2 on 463 test positions

Algorithm Total nodes Total time (ms.)

PN2 1,462,026,073 11,387,661

PDS 562,436,874 34,379,131
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5 PDS-PN

In Section 4 we have observed two facts: (1) the advantage of PN2 over PDS
is that it is faster and (2) the advantage of PDS over PN2 is that its tree
is constructed as a depth-first tree, which is not restricted by the available
working memory. In the next sections we try to overcome fact (1) while pre-
serving fact (2) by presenting a new proof-number search algorithm, called
PDS-PN [35, 36]. It is a two-level search (like PN2), which performs at the
first level a depth-first Proof-number and Disproof-number Search (PDS), and
at the second level a best-first PN search. Hence, PDS-PN selectively exploits
the power of both PN2 and PDS. In this section we give a description of
PDS-PN search, which is a two-level search using PDS at the first level and
PN at the second level. In Subsection 5.1 we motivate why we developed the
method. In Subsection 5.2 we describe the first-level PDS, and in Subsection
5.3 we provide background information on the second-level technique. Finally,
in Subsection 5.4 the relevant parts of the pseudo code are given.

5.1 Motivation

The development of the PDS-PN algorithm was motivated by the clear ad-
vantage that PDS is traversing a depth-first tree instead of a best-first tree.
Hence, PDS is not restricted by the available working memory. As against
this, PN has the advantage of being fast compared to PDS (see Section 4).

The PDS-PN algorithm is designed to combine the two advantages. At
the first level, the search is a depth-first search, which implies that PDS-PN
is not restricted by memory. At the second level the focus is on fast PN.
It is a complex balance, but we expect that PDS-PN will be faster than
PDS, and PDS-PN will not be hampered by memory restrictions. Since the
expectation on the effectiveness of PDS-PN is difficult to prove we have to
rely on experiments (see Section 6). In the next two subsections we describe
PDS-PN.

5.2 First Level: PDS

PDS-PN is a two-level search like PN2. At the first level a PDS search is
performed, denoted PN1. For the expansion of a PN1 leaf node, not stored in
the transposition table, a PN search is started, denoted PN2.

Proof-number and Disproof-number Search (PDS) [18] is a straightforward
extension of PN*. Instead of using only proof numbers such as in PN*, PDS
uses disproof numbers too. PDS exploits a method called multiple-iterative
deepening. Instead of iterating only in the root such as in ordinary iterative
deepening, PDS iterates in all interior nodes. The advantage of using the
multiple-iterative-deepening method is that in most cases it accomplishes to
select the most-proving node (see below), not only in the root, but also in
the interior nodes of the search tree. To keep iterative deepening effective, the
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method is enhanced by storing the expanded nodes in a TwoBig transposition
table [7].

PDS uses two thresholds for a node, one as a limit for proof numbers
and one for disproof numbers. Once the thresholds are assigned to a node, the
subtree rooted in that node is stopped to be searched if both the proof number
and disproof number are larger than or equal to the thresholds or if the node
is proved or disproved. The thresholds are set in the following way. At the
start of every iteration, the proof-number threshold pnt and disproof-number
threshold dnt of a node are equal to the node’s proof number pn and disproof
number dn, respectively. If it seems more likely that the node can be proved
than disproved (called proof-like), the proof-number threshold is increased.
If it seems more likely that the node can be disproved than proved (called
disproof-like), the disproof-number threshold is increased. In passing we note
that it is easier to prove a tree in an OR node, and to disprove a tree in an
AND node. Below we repeat Nagai’s [18] heuristic to determine proof-like and
disproof-like.

In an interior OR node n with parent p (direct ancestor) the solution of
n is proof-like, if the following condition holds:

pntp > pnp AND (pnn ≤ dnn OR dntp ≤ dnp), (8)

otherwise, the solution of n is disproof-like.
In an interior AND node n with parent p (direct ancestor) the solution of

n is disproof-like, if the following condition holds:

dntp > dnp AND (dnn ≤ pnn OR pntp ≤ pnp), (9)

otherwise, the solution of n is proof-like.
When PDS does not prove or disprove the root given the thresholds, it in-

creases the proof-number threshold if its proof number is smaller than or equal
to its disproof number, otherwise it increases the disproof-number threshold.
Finally, we remark that only expanded nodes are evaluated. This is called
delayed evaluation (cf. [1]). The expanded nodes are stored in a transposition
table. The proof and disproof number of a node are set to unity when not
found in the transposition table. Since PDS does not store unexpanded nodes
which have a proof number 1 and disproof number 1, it can be said that PDS
initialises the proof and disproof number by using the number of children.
The mobility enhancement of PN and PN2 (see Subsection 2.1) is already
implicitly incorporated in the PDS search.

PDS is a depth-first search algorithm but behaves like a best-first search
algorithm. In most cases PDS selects the same node for expansion as PN
search. By using transposition tables PDS suffers from the GHI problem (cf.
[9]). Especially the GHI evaluation problem can occur in LOA too. For in-
stance, draws can be agreed upon due to the three-fold-repetition rule. Thus,
dependent on its history a node can be a draw or can have a different value.
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However, in the current PDS algorithm we ignore this problem, since we be-
lieve that it is less relevant for the game of LOA than for Chess.

A Detailed Example

A detailed step-by-step example of the working of PDS is given in Figure
2. A square denotes an OR node, and a circle denotes an AND node. The
numbers at the upper side of a node denote the proof-number threshold (left)
and disproof-number threshold (right). The numbers at the lower side of a
node denote the proof number (left) and disproof number (right).

In the first iteration (top of Figure 2), threshold values of the root A are
set to unity. A is expanded, and nodes B and C are generated. The proof
number of A becomes 1 and the disproof number becomes 2. Because both
numbers are larger than or equal to the threshold values the search stops.

In the second iteration (middle of Figure 2), the proof-number threshold
is incremented to 2, because the proof number of A (i.e., 1) is the smaller one
of both A’s proof number and disproof number (i.e., 2). We again expand A
and re-generate B and C. The proof number of A is below its proof-number
threshold and we continue searching. Now we have to select the child with
minimum proof number. Because B and C have the same proof number, the
left-most node B is selected. Initially, we set the proof-number and disproof-
number threshold of B to its proof and disproof number (both 1). Because B
is an AND node we have to look whether the solution of B is disproof-like
by checking the appropriate condition (i.e., formula 9). The disproof-number
threshold of A is not larger than its disproof number (both are 2), therefore
the solution of B is not disproof-like but proof-like. Thus, the proof-number
threshold of B has to be incremented to 2. Next, node B is expanded and
the nodes D, E, F and G are generated. The search in node B is stopped
because its proof number (i.e., 4) and disproof number (i.e., 1) are larger than
or equal to the thresholds (i.e., 2 and 1, respectively). Node B is stored in
the transposition table with proof number 4 and disproof number 1. Then the
search backtracks to A. There we have to check whether we still can continue
searching A. Since the proof number of A is smaller than its threshold, we con-
tinue and subsequently we select C, because this node has now the minimum
proof number. The thresholds are set in the same way as in node B. Node C
has two children H and I. The search at node C is stopped because its proof
number (i.e., 2) and disproof number (i.e., 1) are not below the thresholds. C
is stored in the transposition table with proof number 2 and disproof number
1. The search backtracks to A and is stopped because its proof number (i.e.,
2) and disproof number (i.e., 2) are larger than or equal to the thresholds. We
remark that at this moment B and C are stored because they were expanded.

In the third iteration (bottom of Figure 2) the proof-number threshold of
A is incremented to 3. Nodes B and C are again generated, but this time we
can find their proof and disproof numbers in the transposition table. The node
with smallest proof number is selected (C with proof number 2). Initially,
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we set the proof-number threshold and disproof-number threshold of C to
its proof and disproof number (i.e., 2 and 1, respectively). Because C is an
AND node we have to look whether the solution is disproof-like by checking
condition 9. The disproof-number threshold of A is not larger than its disproof
number (both are 2), therefore the solution is not disproof-like but proof-like.
Thus, the proof-number threshold of C has to be incremented to 3. C has now
proof-number threshold 3 and disproof-number threshold 1. Nodes H and I
are generated again by expanding C. This time the proof number of C (i.e.,
2) is below the proof-number threshold (i.e., 3) and the search continues. The
node with minimum disproof number is selected (i.e., H ). Initially, we set the
proof-number threshold and disproof-number threshold of H to its proof and
disproof number (i.e., both 1). Because H is an OR node we have to look
whether the solution is proof-like by checking condition 8. The proof-number
threshold of C (i.e., 3) is larger than its proof number (i.e., 2), therefore the
solution is proof-like. Hence, the search expands node H with proof-number
threshold 2 and disproof-number threshold 1. Nodes J and K are generated.
Because the proof number of H (i.e., 1) is below its threshold (i.e., 2), the
node with minimum proof number is selected. Because J is an AND node we
have to look whether the solution of J is disproof-like by checking condition
9. The disproof-number threshold of H (i.e., 1) is not larger than its disproof
number (i.e., 2), therefore the solution of J is not disproof-like but proof-like.
J is expanded with proof-number threshold 2 and disproof-number threshold
1. Since node J is a terminal win position its proof number is set to 0 and
its disproof number set to ∞. The search backtracks to H. At node H the
proof number becomes 0 and the disproof number ∞, which means the node
is proved. The search backtracks to node C. The search continues because the
proof number of C (i.e., 1) is not larger than or equal to the proof-number
threshold (i.e., 3). We select now node I because it has the minimum disproof
number. The thresholds of node I are set to 2 and 1, as was done in H. The
node I is a terminal win position; therefore its proof number is set to 0 and
its disproof number to ∞. At this moment the proof number of C is 0 and
the disproof number ∞, which means that the node is proved. The search
backtracks to A. The proof number of A becomes 0, which means that the
node is proved. The search stops at node A and the tree is proved.

5.3 Second Level: PN Search

For an adequate description we reiterate a few sentences from Subsection 2.2.
At the leaves of the first-level search tree, the second-level search is invoked,
similar as in PN2 search. The PN search of the second-level, denoted PN2

search, is bounded by the number of nodes that may be stored in memory.
The number is a fraction of the size of the PN1-search tree, for which we
take the current number of nodes stored in the transposition table of the PDS
search. Preferably, this fraction should start small, and grow larger as the
size of the first-level search tree increases. A standard model for this growth
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is the logistic-growth model [3]. The fraction f(x) is therefore given by the
logistic-growth function, x being the size of the first-level search:

f(x) =
1

1 + e
a−x

b

, (10)

with parameters a and b, both strictly positive. The parameter a determines
the transition point of the function: as soon as the size of the first-level search
tree reaches a, the second-level search equals half the size of the first-level
search. Parameter b determines the S-shape of the function: the larger b, the
more stretched the S-shape is. The number of nodes y in a PN2-search tree is
restricted by the minimum of this fraction function and the number of nodes
which can still be stored. The formula to compute y is:

y = min(x× f(x), N − x), (11)

with N the maximum number of nodes to be stored in memory.
The PN2 search is stopped when the number of nodes stored in memory

exceeds y or the subtree is (dis)proved. After completion of the PN2-search
tree, only the root of the PN2-search tree is stored in the transposition table
of the PDS search. We remark that for PN2-search trees immediate evaluation
(cf. [1]) is used. This two-level search is schematically sketched in Figure 3.

Leaf node in the first level. 

Root node in second level.

Second-level search stops when 

a certain limit of nodes in 

memory is reached or its root is 

(dis)proved.

The subtrees of the root are 

deleted when the second-

level search stops. 

PDS 

PN

Fig. 3. Schematic sketch of PDS-PN

In the second-level search proved or disproved subtrees are deleted. If we
do not delete proved or disproved subtrees in the PN2 search, the number
of nodes searched becomes the same as y. When we include deletions the
second-level search can continue on average considerably longer.
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//Iterative deepening at root r

procedure NegaPDSPN(r){

r.proof = 1;

r.disproof = 1;

while(true){

MID(r);

//Terminate when the root is proved or disproved

if(r.proof == 0 || r.disproof == 0)

break;

if(r.proof <= r.disproof)

r.proof++;

else

r.disproof++;

}

}

Fig. 4. PDS-PN: Root node

5.4 Pseudo Code for PDS-PN

In this subsection we provide the pseudo code for PDS-PN. For ease of compar-
ison we use similar pseudo code as used by Nagai [18] for the PDS algorithm.
The proof number in an OR node and the disproof number in an AND node
are equivalent. Analogously, the disproof number in an OR node and the proof
number in an AND node are equivalent. As they are dual to each other, an
algorithm similar to negamax in the context of minimax searching can be
constructed. This algorithm is called NegaPDSPN (see Figure 4).

In the following, procedure MID(n) performs multiple iterative deepening
(see Figure 5). The function proofSum(n) computes the sum of the proof
numbers of all the children. The function disproofMin(n) finds the minimum
of the disproof numbers of all the children. The procedure putInTT() stores
information to and lookUpTT() retrieves information from the transposition
table. isTerminal(n) checks whether a node is a win, a loss, or a draw.
The procedure generateChildren(n) generates the children of the node. By
default, the proof number and disproof number of a node are set to unity.
The procedure findChildrenInTT(n) checks whether the children are already
stored in the transposition table. If a hit occurs for a child, its proof number
and disproof number are set to the values found in the transposition table.
The procedure PN() is just the plain PN search. The algorithm is described
in Allis [1] and Breuker [5], and is reproduced in the Appendix . The function
computeMaxNodes() computes the number of nodes, which may be stored for
the PN search, according to Equation 11.

Finally, the function selectChild() selects the child that will be traversed
next (see Figure 6).
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procedure MID(n){

//Look up in the transposition table

lookUpTT(n, &proof, &disproof);

if(proof == 0 || disproof == 0

|| (proof >= n.proof && disproof >= n.disproof)){

n.proof = proof; n.disproof = disproof;

return;

}

if(isTerminal(n)){

if((n.value == true && n.type == AND_NODE)

||(n.value == false && n.type == OR_NODE)){

n.proof = INFINITY; n.disproof = 0;

}

else{

n.proof = 0; n.disproof = INFINITY;

}

putInTT(n);

return;

}

generateChildren(n);

//Avoid cycles

putInTT(n);

//Multiple-iterative deepening

while(true){

//Check whether the children are already stored in the TT.

findChildrenInTT(n);

//Terminate when both pn and dn exceed their thresholds

if(proofSum(n) == 0 || disproofMin(n) == 0 || (n.proof <=

disproofMin(n) && n.disproof <= proofSum(n))){

n.proof = disproofMin(n);

n.disproof = proofSum(n);

putInTT(n);

return;

}

proof = max(proof, disproofMin(n));

n_child = selectChild(n, proof);

if(n.disproof > proofSum(n) && (proof_child <= disproof_child

|| n.proof <= disproofMin(n)))

n_child.proof++;

else

n_child.disproof++;

//This is the PDS-PN part

if(!lookUpTT(n_child)){

PN(n_child, computeMaxNodes());

putInTT(n_child);

}

else

MID(n_child);

}

}

Fig. 5. PDS-PN: Multiple-Iterative Deepening
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//Select among children

selectChild(n, proof){

min_proof = INFINITY;

min_disproof = INFINITY;

for(each child n_child){

disproof_child = n_child.disproof;

if(disproof_child != 0)

disproof_child = max(disproof_child, proof);

//Select the child with the lowest disproof_child (if there are

//plural children among them select the child with the lowest

//n_child.proof)

if(disproof_child < min_disproof || (disproof_child

== min_disproof && n_child.proof < min_proof)){

n_best = n_child;

min_proof = n_child.proof;

min_disproof = disproof_child;

}

}

return n_best;

}

Fig. 6. PDS-PN: Selection mechanism

6 Experiments

In this section we compare αβ, PN2, PDS, and PDS-PN search with each
other. The goal is to prove experimentally the effectiveness of PDS-PN. We will
investigate how many endgame positions it can solve and the effort (in terms
of number of nodes and CPU time) it takes compared with αβ, PN2, PDS.
For PDS and PDS-PN we use a TwoBig transposition table. In Subsection 6.1
we test PDS-PN with different parameters a and b for the growth function. In
Subsection 6.2 we compare PDS-PN with αβ, PN2, and PDS on a set of 488
LOA positions in three different ways. In Subsection 6.3 we compare PDS-PN
with PN2 on a set of hard LOA problems. Finally, we evaluate the algorithms
PDS-PN and PN2 in solving problems under restricted memory conditions in
Subsection 6.4.

6.1 Parameter Tuning

In the following series of experiments we measured the solving ability with
different parameters a and b. For our specific parameter choice we follow
Breuker [5], i.e., parameter a takes values of 150K, 450K, 750K, 1050K, and
1350K, and for each value of a parameter b takes values of 60K, 120K, 180K,
240K, 300K, and 360K. The results are given in Table 5. For each a holds that
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the number of solved positions grows with increasing b, when the parameter b
is still small. If b is sufficiently large, increasing it will not enlarge the number
of solved positions. In the process of parameter tuning we found that PDS-PN
solves the most positions with (450K, 300K) (see the bold line in Table 5).
However, the difference with parameter configurations (150K, 180K), (150K,
240K), (150K, 300K), (150K, 360K), (450K, 360K), and (1350K, 300K) is not
significant. On the basis of these results we decided that it is not necessary to
perform experiments with a larger a.

Table 5. Number of solved positions (by PDS-PN) for different values of a and b

a b # of solved accuracy
positions (%)

150,000 60,000 460 94.3

150,000 120,000 458 93.9

150,000 180,000 466 95.5

150,000 240,000 466 95.5

150,000 300,000 465 95.3

150,000 360,000 466 95.5

450,000 60,000 445 91.2

450,000 120,000 463 94.9

450,000 180,000 460 94.3

450,000 240,000 461 94.5

450,000 300,000 467 95.7

450,000 360,000 464 95.1

750,000 60,000 432 88.5

750,000 120,000 449 92.0

750,000 180,000 461 94.5

a b # of solved accuracy
positions (%)

750,000 240,000 463 94.9

750,000 300,000 460 94.3

750,000 360,000 461 94.5

1,050,000 60,000 421 86.3

1,050,000 120,000 448 91.8

1,050,000 180,000 451 92.4

1,050,000 240,000 459 94.1

1,050,000 300,000 459 94.1

1,050,000 360,000 460 94.3

1,350,000 60,000 421 86.3

1,350,000 120,000 433 88.7

1,350,000 180,000 447 91.6

1,350,000 240,000 454 93.0

1,350,000 300,000 465 95.3

1,350,000 360,000 459 94.1

6.2 Three Comparisons of the Algorithms

In the experiments with PN2, PDS, and PDS-PN all nodes evaluated during
the search are counted; for the αβ depth-first iterative-deepening searches
nodes at depth i are counted only during iteration i. We adopted this method
from Allis [1]. It makes a general comparison possible. The maximum number
of nodes searched is 50,000,000. The limit corresponds roughly to tournament
conditions. The maximum number of nodes stored in memory is 1,000,000. The
parameters (a,b) of the growth function used in PN2 are set at (1800K, 240K)
according to the suggestions in Breuker et al. [8]. The parameter configuration
(450K, 300K) found in the previous subsection will be used for PDS-PN. The
smaller value of a corresponds to the smaller PN1 trees resulting from the use
of PDS-PN instead of PN2. The fact that PDS is much slower than PN is an
important factor too.
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First Comparison

αβ, PN2, PDS, and PDS-PN are tested on the same set of 488 forced-win
LOA positions as described in Section 4. The results are given in Table 6. In
the first column the four algorithms are mentioned. In the second column we
see that 382 positions are solved5 by αβ, 470 positions by PN2, 473 positions
by PDS, and 467 positions by PDS-PN. The set of 488 positions contains
no position that only could be solved by αβ search. In the third and fourth
column the number of nodes and the time consumed are given for the subset
of 371 positions, which all four algorithms are able to solve. A look at the third
column shows that PDS search builds the smallest search trees and αβ by far
the largest. Like PN2 and PDS, PDS-PN solves significantly more positions
than αβ. This suggests that PDS-PN is a better endgame solver than αβ. As
we have seen before, PN2 and PDS-PN investigate more nodes than PDS, but
both are still faster in CPU time than PDS for this subset. Due to the limit
of 50,000,000 nodes and the somewhat lower search efficiency, PDS-PN solves
three positions fewer than PN2 (result PDS-PN is 99.4% with respect to PN2)
and six fewer than PDS (result PDS-PN is 98.7% with respect to PDS).

Table 6. Comparing the search algorithms on 488 test positions with a limit of
50,000,000 nodes

Algorithm # of positions solved accuracy 371 positions
(out of 488) (%) Total # of nodes Total time (ms.)

αβ 382 78.3 2,645,022,391 33,878,642

PN2 470 96.3 505,109,692 3,642,511

PDS 473 96.9 239,896,147 16,960,325

PDS-PN 467 95.7 924,924,336 5,860,908

Second Comparison

To investigate whether the memory restrictions are an actual obstacle we
increased the limit of nodes searched to 500,000,000 nodes. In this second
comparison PN2 solves now 479 positions and PDS-PN becomes the best
solver with a performance of 483 positions. The detailed results are given in
Table 7.

The performance of PDS-PN in Table 7 is more effective than that of PN2,
viz. 483 to 479. However, we should thoughtfully take into account the condi-
tion for the total number of nodes searched and the time spent. Therefore, we
continue our research in the direction of nodes searched and time spent with
the 50,000,000 nodes limit. A reason for this decision is that the experimental
time constraints are necessary for the PDS experiments.
5 We remark that a slightly less inefficient version of our αβ implementation could

solve 383 positions (see Section 4).
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Table 7. Comparing PN2 and PDS-PN on 488 test positions with a limit of
500,000,000 nodes

Algorithm # of positions solved accuracy 479 positions
(out of 488) (%) Total # of nodes Total time (ms.)

PN2 479 98.2 2,261,482,395 13,295,688

PDS-PN 483 99.0 4,362,282,235 23,398,899

Third Comparison

For a better insight into the relation between PN2, PDS, and PDS-PN we
performed a third comparison. In Table 8 we provide the results of PN2,
PDS, and PDS-PN on a new subset of 457 positions of the principal test
set, viz. all positions the three algorithms could solve under the 50,000,000
nodes limit condition. Now, PN2 searches 2.6 times more nodes than PDS.
The reason for the difference of performance is that for hard problems the
PN2-search tree becomes as large as the PN1-search tree. Therefore, the PN2-
search tree is causing more overhead. However, if we look at the CPU time we
see that PN2 is almost 4 times faster than PDS. PDS has a relatively large
time overhead because it performs multiple-iterative deepening at all nodes.
PDS-PN searches 3.7 times more nodes than PDS but is still 3 times faster
than PDS in CPU time. This is because PDS-PN is focussing more on the fast
PN at the second level than on PDS at the first level. PDS-PN searches more
nodes than PDS since the PN2-search tree is repeatedly rebuilt and removed.
The overhead is even bigger than PN2’s overhead because the children of the
root of the PN2-search tree are not stored (i.e., this is done to focus more
on the fast PN search). It explains why PDS-PN searches 1.4 times more
nodes than PN2. Hence, our provisional conclusions are that on this set of
457 positions and under the 50,000,000 nodes condition: (1) PN2 outperforms
PDS-PN, and (2) PDS-PN is a faster solver than PDS and therefore more
effective than PDS.

Table 8. Comparing PN2, PDS and PDS-PN on 457 test positions (all solved) with
a limit of 50,000,000 nodes

Algorithm Total # of nodes Total time (ms.)

PN2 1,275,155,583 9,357,663

PDS 498,540,408 36,802,350

PDS-PN 1,845,371,831 11,952,086
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6.3 Comparing the Algorithms for Hard Problems

Since the impact of the 50,000,000 nodes condition somewhat obscured our
provisional conclusions above and since we felt that the 99.4% score by PDS-
PN with respect to PN2 was rather close, we performed a new experiment
with a different set of LOA problems in an attempt to find more insights
into the intricacies of these complex algorithms. In the new experiment PN2

and PDS-PN are tested on a set of 286 LOA positions, which were on aver-
age harder than the ones in the previous test set.6 In this context ‘harder’
means a longer distance to the final position (the solution), i.e., more time is
needed. The conditions are the same as in the previous experiments except
that the maximum number of nodes searched is set at 500,000,000. The PDS
algorithm is not included because it takes too much time given the current
node limit. In Table 9 we see that PN2 solves 265 positions and PDS-PN 276.
We remark that PN2 solves 10 positions, which PDS-PN does not solve, but
that PDS-PN solves 21 positions that PN2 does not solve. The ratio in nodes
and time between PN2 and PDS-PN for the positions solved by both (255) is
roughly similar to the previous experiments. The reason why PN2 solves fewer
positions than PDS-PN is its being restricted in working memory. We are in a
delicate position since new experiments with much more working memory are
now on the list to be performed. However, we assume that the nature of PN2

with respect to using so much memory cannot be overcome. Hence we may
conclude that within an acceptable time frame PDS-PN is a more effective
endgame solver than PN2 for hard problems.

Table 9. Comparing PN2 and PDS-PN on 286 hard test positions with a limit of
500,000,000 nodes

Algorithm # of positions solved accuracy 255 positions
(out of 286) (%) Total # of nodes Total time (ms.)

PN2 265 92.7 10,061,461,685 57,343,198

PDS-PN 276 96.5 16,685,733,992 84,303,478

6.4 Comparing the Algorithms under Reduced Memory

From the experiments in the previous subsection it is clear that PN2 will not
be able to solve very hard problems since it will run out of working memory.
To further solidify this statement experimentally, we tested the solving abil-
ity of PN2 and PDS with restricted working memory. In these experiments
we started with a memory capacity sufficient to store 1,000,000 nodes, sub-
sequently we divided the memory capacity by two at each next step. The
parameters a and b were also divided by two. The relation between memory
and number of solved positions for both algorithms is given in Figure 7. We

6 The test set can be found at www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip.
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Fig. 7. Results with restricted memory

see that the solving performance rapidly decreases for PN2. The performance
of PDS-PN remains stable for a long time. Only when PDS-PN is restricted
to fewer than 10,000 nodes, it begins to solve fewer positions. This experiment
suggests that PDS-PN is to be preferred above PN2 for the very hard prob-
lems when the memory capacity is in some way restricted. The reason is that
PDS-PN is not suffering from memory constraints. If there are no memory
constraints at all, PN2 is preferred because under those circumstances it is
the fastest algorithm.

7 Df-pn and PDS Comparison

Pawlewicz and Lew [24] used the set of 286 LOA positions of Subsection 6.3 to
compare their implementation of df-pn and PDS with each other. Moreover,
they enhanced df-pn and PDS with the 1 + ε trick. To compare the speed
differences in CPU time for each two methods, they calculated the geometric
mean of the ratio of solving times (see Table 10). We see that the enhanced
df-pn is the most efficient method, plain df-pn is the second best, and both
PDS versions are the least efficient. Although the 1+ ε trick was not designed
for PDS, there is a noticeable difference between enhanced PDS and plain
PDS in their experiments. For more details we refer to their paper [24].

Pawlewicz and Lew did neither implement nor tested PN2 and PDS-PN
on their hardware and with their data-structure implementation. Up to now
there has not been a direct comparison between df-pn with PDS-PN using the
same hardware and the same data-structure implementation. However, even
so, we may still conclude that df-pn is an interesting alternative to PDS-PN.
In Table 10 we see that df-pn is 4 times faster than PDS, while in Table 8
(Subsection 6.3) we see that PDS-PN is able to search 3 times faster than
PDS.
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Table 10. Comparison of df-pn and PDS on 286 hard test positions with a limit of
30 minutes by Pawlewicz and Lew [24]. The rate number r in row A and in column
B indicates that algorithm A is r times faster than algorithm B

Algorithm df-pn df-pn 1 + ε PDS PDS 1 + ε

df-pn 1.00 0.63 2.83 2.64

df-pn 1 + ε 1.58 1.00 4.46 4.17

PDS 0.35 0.22 1.00 0.93

PDS 1 + ε 0.38 0.24 1.07 1.00

8 Conclusions and Future Research

Below we offer seven observations, three conclusions, and four suggestions
for future research. Since observations and conclusions are intermingled, we
present the conclusions in relation to the observations.

First, we have observed that mobility and deleting (dis)proved PN2 sub-
trees speed up PN and PN2 and increase their ability of solving endgame posi-
tions. Second, we have seen that the various PN-search algorithms outperform
αβ in solving endgame positions in LOA. Third, the memory problems make
the plain PN search a weak solver for the harder problems. Fourth, PDS and
PN2 are able to solve significantly more problems than PN and αβ.

Our first conclusion is that PN and its variants offer a valuable tool for
enhancing programs in endgames. We remark that PN2 is still restricted by
working memory, and that PDS is three times slower than PN2 (Table 4)
because of the delayed evaluation.

Our fifth observation is that PDS-PN is able to solve significantly more
LOA endgame problems than αβ search with enhancements. Our sixth ob-
servation is that the PDS-PN algorithm is almost as fast as PN2 when the
parameters for its growth function are chosen properly. It turns out that for
each a it holds that the number of solved positions grows with increasing b,
when the parameter b is still small. If b is sufficiently large, increasing it will
not enlarge the number of solved positions. Our seventh observation states
that (1) PDS-PN solves more hard positions than PN2 within an acceptable
time frame and (2) PDS-PN is more effective than PN or even PN2 because it
does not run out of memory for hard problems. Moreover, PDS-PN performs
quite well under harsh memory conditions. This is especially appropriate for
hard problems and for environments with very limited memory such as hand-
held computer platforms.

Hence, our second conclusion is that PDS-PN may be a more effective
endgame solver for a set of hard problems than PDS and PN2.

In this chapter we discussed the results of comparing PDS with df-pn
as performed by Pawlewicz and Lew [24]. Df-pn was solving the set of hard
problems 4 times faster than PDS. In Subsection 6.3 we saw that PDS-PN
was able to search 3 times faster than PDS, whereas in Section 7 df-pn was



26 H. Jaap van den Herik and Mark H.M. Winands

4 times faster than PDS. Although the conditions were different, our third
conclusion is that df-pn may be an interesting alternative to PDS-PN.

Finally, we believe that there are four suggestions for the near future. The
first challenge is testing PDS-PN in other domains with difficult endgames. An
example of a game notoriously known for its complicated endgames is the game
of Tsume-Shogi (a variant of Shogi). Several hard problems including solutions
over a few hundred ply are solved by PN* [34] and PDS [20, 29]. It would be
interesting to test PDS-PN on these problems. Second, it would be interesting
to have a direct comparison between df-pn with PDS-PN using the same
hardware and the same data-structure implementation. The third challenge
would be to construct a two-level Proof-Number search variant using df-pn
at the first level search, and a plain best-first PN search at the second level.
Fourth, one problem clearly remains, viz. that there is no dynamic strategy
available that determines when to use PN search instead of αβ in a real game.
This will be subject of future research as well.
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Appendix: Pseudo Code for PN Search

Below we give the pseudo code for PN search, which was discussed in Subsec-
tion 2.1. For ease of comparison we use similar pseudo code as given in Breuker
[5]. PN(root, maxnodes) is the main procedure of the algorithm. The proce-
dure evaluate(node) evaluates a position, and assigns one of the following
three values to a node: FALSE, TRUE, and UNKNOWN. The proof and disproof
numbers of a node are initialised by setProofAndDisproofNumbers(node).
The function selectMostProvingNode(node) finds the most-proving node.
Expanding the most-proving node is done by expandNode(node). After the
expansion of the most-proving node, the new information is backed up by
updateAncestors(node, root). The function countNodes() gives the num-
ber of nodes currently stored in memory.

//The PN-search algorithm

PN(root, maxnodes){

evaluate(root);

setProofAndDisproofNumbers(root);

while(root.proof != 0 && root.disproof != 0

&& countNodes() <= maxnodes){
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//Second Part of the algorithm

mostProvingNode = selectMostProvingNode(currentNode);

expandNode(mostProvingNode);

currentNode = updateAncestors(mostProvingNode, root);

}

}

//Calculating proof and disproof numbers

setProofAndDisproofNumbers(node){

if(node.expanded) //Internal node;

if(node.type == AND_NODE){

node.proof = 0;

node.disproof = INFINITY;

for(each child n){

node.proof = node.proof + n.proof;

if(n.disproof < node.disproof)

node.disproof = n.disproof;

}

}

else{ //OR node

node.proof = ProofNode.INFINITY;

node.disproof = 0;

for(each child n){

node.disproof = node.disproof + n.disproof;

if(n.proof < node.proof)

node.proof = n.proof;

}

}

else //Leaf

switch(node.value){

case FALSE:

node.proof = INFINITY;

node.disproof = 0;

case TRUE:

node.proof = 0;

node.disproof = INFINITY;

case UNKNOWN:

node.proof = 1;

node.disproof = 1;

}

}

//Select the most-proving node

SelectMostProvingNode(node){

while(node.expanded){

n = node.children;

if(node.type == OR_NODE) //OR Node

while(n.proof != node.proof)
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n = n.sibling;

else //AND Node

while(n.disproof != node.disproof)

n = n.sibling;

node = n;

}

return node;

}

//Expand node

expandNode(node){

generateAllChildren(node);

for(each child n){

evaluate(n);

setProofAndDisproofNumbers(n);

//Addition to original code

if((node.type == OR_NODE && n.proof == 0) ||

(node.type == AND_NODE && n.disproof == 0))

break;

}

node.expanded = true;

}

//Update ancestors

updateAncestors(node, root){

do{

oldProof = node.proof;

oldDisProof = node.disproof;

setProofAndDisproofNumbers(node);

//No change on the path

if(node.proof == oldProof &&

node.disproof == oldDisProof)

return node;

//Delete (dis)proved trees

if(node.proof == 0 || node.disproof == 0)

node.deleteSubtree();

if(node == root)

return node;

node = node.parent;

}while(true)

}



Index

1 + ε trick, 7
αβ, 1

adversarial search, 1

delayed evaluation, 6
df-pn, 6
disproof number, 3
disproof-like, 12
disproof-number threshold, 6

endgame solvers, 1

first-level search, 5

immediate evaluation, 4

LOA, 2
logistic-growth function, 5

mobility, 5
most-proving, 3
multiple-iterative deepening, 6

PDS, 6
PDS-PN, 11
PN2, 5
PN*, 6
proof number, 3
proof-like, 12
Proof-Number Search, 1, 3
proof-number threshold, 6

second-level search, 5


