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Abstract. In the previous work we presented a new gait for humanoid robots,
such as the Nao developed by Aldebaran. This new gait implemented on a Nao,
reduces the energy consumption by 41%. Then main feature of the new gait is the
absence of an area of support. The foot can rotate freely around the ankle joint.
This feature makes the gait suited for uneven terrains.
Stability is an important aspect of walking on uneven terrains, especially the lat-
eral stability. During the single support phase of a step the robot balances above
the stance leg. If the robot steps on a bump or in a hole, the lateral stability may
be disrupted. This paper presents a controller that guarantees the lateral stability
in the present of such disruptions.

1 Introduction

Bipedal walking for humanoid robots is one of the most interesting challenges in robotics.
In the papers [1–3], we have investigated the possibility of creating an dynamically sta-
ble and energy efficient gait without an area of support. Here, the absence of an area
of support means the ankle joint can move freely while the foot is on the ground. In
the sagittal direction the robot’s Center of Mass (CoM) is falling forward till the foot
of the swing leg touches the ground. In the lateral direction, the robot balances above
the stance foot in the single support phase, and falls towards the new stance foot in the
double support phase. The falling towards the new stance foot is stopped by putting a
force on the new stance leg. The resulting gait1 was subsequently evaluated on a real
Nao robot. The stability of the gait is validated on flat ground but not on uneven terrain
since there is no feedback on the controller, thus robot cannot adjust the gait parameters
to compensate for the uneven floor. In this paper, we improve the gait’s lateral stability
on uneven terrain by introducing such a controller.

The remainder of this paper is organized as follows. In the next section, we will give
a brief overview of existing research about kinematics models for humanoid robots, sta-
bility criteria and various approaches to obtain energy efficient bipedal walking. Sec-
tion: 3 briefly describes the new gait that we developed and presented in [1]. We used
the Inverted Pendulum Model (IPM) to investigate the energy consumption in the sagit-
tal plane. Subsequently, we extended the model to the lateral plane and describe a gait
controller with multiple parameters for a 3D full-body humanoid robot. The controller
can achieve a stable gait on a physical robot in the real world after we optimize the

1 A video of the new gait at: https://project.dke.maastrichtuniversity.nl/
robotlab/?attachment_id=153



parameters through an Policy Gradient Reinforcement Learning (PGRL). Section: 4
introduces our work on the neural network controller to enhance the lateral stability.
Section: 5 concludes this paper. We provide a brief summary of the results and outline
the future research.

2 Related Work

2.1 Movement Models

Humanoid robots have complex bodies with irregular shape and mass distribution.
Therefore, it is advantageous to obtain an elemental representation of the robot’s dy-
namics. Ideal features of a model are simplicity, and both a conceptually and mathemat-
ically accurate representation of the dynamics of the real system. The main approaches
employed to model the kinematics of humanoid robots are based on the Inverted Pen-
dulum Model (IPM) ([4]) which involves a simplification compared to the body of the
robot. The IPM represents the whole body of the robot as a point mass located at the
center of mass (CoM) of the actual robot. The point mass is linked to the base of the
robot by a telescopic massless leg. Restraining the movements of the CoM to a hori-
zontal plane allows to simplify the motion equation of the IPM. The resulting model
is known as the Linear Inverted Pendulum Model (LIPM) which [5] proposed to de-
scribe humanoid robot locomotion. The LIPM provides an efficient means to represent
the kinematic behavior of the robot and it is therefore a popular tool to understand and
manipulate the balance of a humanoid robot. With the LIPM and zero moment point
(ZMP) stability criteria [6], institutes/companies have successfully built biped robots
that can walk with various gaits adapting to different walking situations (e.g. [7–10]).

2.2 Energy Consumption

However, the movement model is not the only factor to be considered. The energy con-
sumption of a gait is an important issue. Various approaches have been proposed to
reduce the energy consumption of a gait. One of these approaches is passive-dynamic
walking where the robot’s dynamics are designed to enable a robot to walk down slight
slopes without control input, except for the gravitational force. The paper of [11] ex-
plained this well. [12] believed that there are three primary flaws of passive-dynamic
walker: they can only walk down slopes, their gaits are restricted by their dynamics,
and they are sensitive to perturbations. Realizing these limitations, researchers [13]
have sought to improve passive-dynamic walker by adding actuators.

A second approach to obtain energy efficient bipedal walking is the application of
mechanical compliance. In the work of [13] and [14], springs were added across the
hip, thigh, knee and ankle simultaneously. [15] exploited parallel knee compliance on
the robot ERNIE and discussed how soft/stiff springs affect the energy efficiency at
different walking speed. [16] described the implementation of series-elastic actuation
on Spring Flamingo (a MIT’s planar bipedal walking robot) to enable the control of the
ground reaction forces during walking.

A third approach to obtaining energetically-efficient bipedal walking is the design of
gaits that minimize the energetic cost of walking. The most common means of design



is to use parametric optimization to the parameters that specify the gait of the robot.
For example, [17] used parametric optimization to design fourth degree polynomial
functions that give the joint motions over a step as functions of time. Unlike the previous
example, in the work of [18] cubic splines connected at points uniformly distributed
along the motion time are used to generate complete optimal steps, including a double-
support phase.

Parametric optimization methods are also implemented to optimize the walking gen-
erator on humanoid Nao robots. In the work of [19], the proposed method models the
omni-directional motion as the combination of a set of periodic signals. The parameters
controlling the characteristics of the signals are encoded into genes and evolutionary
strategies is used to learn an optimal set of parameters. Nao humanoid robots are used
as the test platform. [20] augmented the 3D inverted pendulum with a spring model and
use policy search to optimize the parameters of the walking engines on Nao robots. [21]
introduced a two-stage learning algorithm for Central Pattern Generator (CPG) of Nao
robot’s bipedal walking.

3 Our New Gait

This section briefly describes our new gait presented in [1–3]. We first analyzed the
gait without an area of support using an IPM with telescopic legs. Then we designed a
controller which implements the gait on a real Nao robot.
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Fig. 2: The CoM lateral movement during
double support phase.



3.1 Kinematics Model in Sagittal Direction

The IPM with telescopic legs allows the length of the virtual support leg to vary during
a step. We proposed the leg-length policy δ : [−π2 ,

π
2 ] → [0, 1] that determines how

much the virtual support leg will be shortened as function of the angle between stance
leg with vertical axis. The shortening of the stance leg is realized by bending the knee
joint, see the right side of Figure 1.

To identify the leg-length policy that minimizes the energy consumption of a robot,
we make use of the fact that the robot has to bend the knee in order to shorten the leg.
The knee torque is the main factor determining the energy consumption [1]. Figure 3
shows the optimal leg-length policy δ(α) as a function of the angle α from the beginning
till the end of the step that we identified and Figure 4 shows the realization using the
5-link model. The detailed information can be found in our previous publication [1].

Since we assumed the absence of an area of support and to further reduce the total
energy cost, we set the stiffness on both ankle joints to almost zero. Thus, the stance leg
of the robot can freely rotate around ankle joints, and the area of support reduces to a
point.𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑝𝑝𝑠𝑠 

𝑑𝑠𝑠𝑑𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑝𝑝𝑠𝑠 

𝛼 

Slight bent Stretched Knee locked 

𝜃2 

𝜃1 

1 

𝛼𝑏 𝛼𝑒  

𝛿(𝛼) 

𝜃5(𝑚𝑠) 

𝛿(𝛼𝑏) 

Fig. 3: The optimal leg-length policy
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Fig. 4: Kinematic of sagittal motion

3.2 Kinematics Model in Lateral Direction

For a simple forward step, it is insufficient to only consider 2D dynamics in sagittal
direction. To address the lateral stability, we designed a lateral controller to regulate
the CoM lateral movement during double support phase which is proposed in [3]. We
use the upper body tilt to initiate the lateral movement of the CoM towards the swing
foot. Next, we use a force generated by the swing leg to stop the movement when
CoM is balanced above the swing foot, which then becomes the new stance foot. The
force generated by the swing leg is described by a force policy. In order to smooth
the CoM transition trajectory, we determines the shape of the force policy by means
of Quadratic Bezier curve which introduces the quadratic bezier point θ7, one of the
controller parameters in next subsection.



3.3 Controller Design

We designed a controller which implements this gait on a Nao robot. Because of the dif-
ferences between the abstract model and the Nao, several parameters of the controller
need to be fine-tuned. This subsection presents the parameters of a gait controller that
realizes the leg-length policy described in Section: 3.1 and the parameters that con-
trol the lateral movement of the CoM in the DPS. We identified 9 parameters that are
essential in controlling a dynamic gait:

– Step Length (θ1): Defines the distance which Nao moves in a singe step (sagittal).
– Step Height (θ2): Defines the maximal altitude between ground and lifting feet.

A high step height requires swing leg’ faster move and may cause horizontal in-
stability. A low step height increases the possibility of tripping and limits the step
length.

– Knee Bending (θ3): Defines the maximal bending of the swing leg at the beginning
of the double support phase which determines the value of δ(αb), see Figure 3. This
parameter determines the sagittal velocity and the energy cost.

– Step Time (θ4): Defines how long a single step lasts. This parameter determines the
sagittal walking velocity.

– Stretch Time (θ5): Defines how long it takes for the stance leg to stretch from θ3
(angle of bent knee) to its full length at the beginning of the single support phase,
see Figure 3.

– Torso Pitch Inclination (θ6): Defines the maximum angle that torso leans in sagittal
direction at the beginning of the first step. If positive, it will move the center of
mass (CoM) in sagittal direction. If it is set not appropriate, a fall will occur. In our
experiments, the inclination lasts for 200 ms.

– Quadratic Bezier point (θ7): Defines the magnitude of middle points in Quadratic
Bezier Curves, which determines the force policy on swing leg (introduced in Sec-
tion: 3).

– Torso Roll Inclination (θ8): Defines the maximum angle that torso leans in lateral
direction. If positive, it will move the center of mass (CoM) towards the swing leg
in lateral plane as discussed in Section: 3.

– Ratio of single support duration (θ9): Defines how long the single support phase
lasts in one single step. The single support phase duration equals this parameter
times step time θ4.

All parameters except θ1 (the step length) will be optimized in the experiments.
We do not consider the step length for optimization because we need step length to be
variable when the velocity is changing. We manually set different walking velocity v
in each experiment and determined the optimal Step Time θ4. The corresponding step
length is given by: θ1 = vθ4.

Algorithm for Learning Controller Parameters We use a policy gradient reinforce-
ment learning method[22] to automatically search the set of possible parameters with
the goal of finding the stable and low energy cost walk. In order to generate a gait that
is energy efficient and stable, we considered a fitness function based on the total energy



cost and the stability over a certain distance of forward walk. The energy cost deter-
mines 30% of the fitness function value and the distance which the robot walks without
falling determines 70% of the fitness function value [1].

Learning Optimal Parameters in the Simulator To generate the optimal gait param-
eters and validate the gait’s performance, we uploaded the controller of our proposed
gait together with an implementation of the policy gradient algorithm into the Webots
simulator. We used a relatively elementary hand-tune gait as a starting policy for the
policy gradient algorithm. Each new policy was evaluated by letting a robot walk at a
constant distance of 0.75 meters. During the walking, the energy consumption and sta-
bility were determined. The policy gradient algorithm converges to a parameters set P
shown in Table 1.

Table 1: Learned Parameters set P
Parameter ε Learned Value
step length 0.1 3.9(cm)
step height 0.02 3.24(cm)
knee bending 0.1 14.2 (degree)
step time 25 650(ms)
stretch time 25 78(ms)
torso pitch inclination 0.1 8.9 (degree)
torso roll inclination 0.1 6.5 (degree)
Quadratic Bezier point 0.1 (0.9*DSP time, 0.2)
ratio 0.1 0.8
velocity 6 (cm/s)

The algorithm presented here converges to a local optimum. In order to investigate
whether the results could be a global optimum, we repeated the learning experiment
500 times, each time starting from a randomly generated parameter vector xπ with the
same velocity. The results of the experiments indicate that the local optimum we have
in Table 1 is probably the global optimum. Therefore, the parameters set P most likely
results in the most energy efficient gait.

The accompanying video material2 shows the Nao robot walking on flat ground
with our proposed gait controller at a speed of 6 cm/s. We also compare the new gait
with the standard gait Aldebaran supplies with the Nao. The energy consumption of
new gait is 41% less than the Aldebaran gait.

4 Walking on Uneven Floor

The gait without support areas we proposed is validated as a dynamically stable gait on
flat ground. However, the controller cannot compensate for external disturbances. This

2 https://project.dke.maastrichtuniversity.nl/robotlab/
?attachment_id=153



means any disturbance such as a push or stepping on uneven terrain may jeopardize its
balance, because the ankle stiffness is set to almost zero. To enhance the walking stabil-
ity, the gait should adapt to unknown disturbances. For example, if the robot is standing
on a slope or stepping on a bump in the floor, the feet are not on the same altitude in
the lateral plane, this may cause the CoM undershoot/overshoot the balance position
when switching the stance leg. In order to make the problem tractable, simplifying as-
sumptions are made. Since bipedal robot’s stepping on the uneven terrain makes the
altitude of robot’s two foot different, the robot’s walking on uneven floor can be viewed
as walking on the slope in the lateral direction. The gait controller should adapt the gait
parameters to compensate for the slope in the lateral direction.
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4.1 Controller design

As a first step in designing a controller that can handle disturbances influencing the
lateral stability, we determined the optimal control parameters θ2 to θ9 when walking
on a certain slope in the lateral direction, see Figure 6. Since the left and right foot are
at different height, the control parameters for the left and right leg might be different.
Therefore, θ3 to θ9 are split into parameters for the left leg θLi and the right leg θRi . Next
we addressed how to adapt the control parameters.

The robot does not know that it walks on a slope or about other disturbances. The
only information it has available is (1) the angular speed β̇ of the rotation of the CoM
around the ankle of the stance leg. (2) the lateral acceleration measured by the Inertia
Measurement Unit (IMU). This value approximates the angular acceleration β̈. (3) the
angle β′ of the CoM w.r.t the swing foot. Figure 2 shows the three parameters (β′,β̇,β̈).
We chose to use these three parameters as inputs for the controller that can adapt the
gait parameters.

Z.Sun
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We designed a series of experiment in the simulator Webots to obtain the optimal
control parameters and input vector (β′,β̇,β̈) corresponding to certain slopes. In the
experiments, the same policy reinforcement learning method in subsection 3.3 is used
to find the proper control parameters that can generate the stable walking gait under
different slopes. The experiments require the robot stands on various slopes where tilt
angles varies from 0.00 to 0.139 (rad) in robot’s lateral plane (see Figure. 6). We kept the
robot walking on the slope and ran the policy search method to get the corresponding
controller parameters which ensure robot’s stability. Each new policy was evaluated by
letting a Nao robot move for 5 seconds. The fitness function of each policy will get high
score if the robot keeps stable. Otherwise, the function gets a penalized score. After the
result of policy search converged while the robot’s movement become stable, the control
parameters are recorded. Table 2 shows the results fo those experiments. Next, from the
beginning of DPS to its end, we sampled the data from IMU and joint sensors every 10
ms in order to determine (β′,β̇,β̈) values during the DSP for each lateral slope.

Table 2: Learned control parameters adaptive to different slop angles
p (slop angle) θL3 θL4 (ms) θL5 (ms) θL6 θL8 θL9 θL7

0° 14.2° 650 78 8.9° 6.5° 0.8 (0.90,0.20)
3° 14.5° 650 75 8.9° 5.5° 0.8 (0.86 0.16)
5° 15.3° 650 76 8.9° 3.5° 0.8 (0.84 0.14)
8° 15.8° 650 74 8.9° 2.0° 0.8 (0.80 0.12)

10° 16.4° 650 75 8.9° 0.5° 0.8 (0.78 0.12)
p (slop angle) θR3 θR4 (ms) θR5 (ms) θR6 θR8 θR9 θR7

0° 14.2° 650 78 8.9° 6.5° 0.8 (0.90,0.20)
3° 13.5° 650 74 8.9° 6.5° 0.8 (0.90 0.22)
5° 11.7° 650 70 8.9° 7.5° 0.8 (0.91 0.26)
8° 9.6° 650 68 8.9° 8.5° 0.8 (0.92 0.28)

10° 8.2° 650 65 8.9° 9.5° 0.8 (0.94 0.29)

A controller that uses (β′, β̇, β̈) as inputs cannot adapt θ7. At the end of the DSP,
(β′, β̇, β̈) must become equal to (0, 0, 0) for every θ7 value. So, in the neighborhood of
(0, 0, 0) the correct θ7 value is not well defined. Therefore, instead of θ7, the stiffness
determined by θ7 will be used instead. The stiffness values are determined by sampling
the the Bezier curve determined by θ7 for different β′ values, see Fig 7.

Moreover, since in the lateral direction, the parameter θ3 is solely dependent on the
relative elevation between stance and swing leg, θ3 can be determined by end of the
DSP where β′ should become zero. And from Table 2, we know that parameters θ5 and
θ8 are relevant to θ3. At the beginning of the DSP, the value of θ3 which accommodates
the variation in ground height is determined and can be used to generate the adaptive θ5
and θ8 using a separate neural network.
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4.2 Controller Implementation and Evaluation

We implemented a neural network to control and improve the robot’s lateral stability
by adjusting the controller parameters adaptive to unknown slope. The backpropagation
method has been applied for training multi-layer feedforward networks, see Figure 5.
With the trained network, we designed a simple neural network controller to maintain
robot’s walking stability on uneven terrain in the lateral direction. Figure 8 depicts
the general architecture of the lateral stability controller that was implemented in this
paper. There are two neuron network controllers included. When the robot’s walking on
uneven floor and a new DSP begins, with the data retrieved from joint sensors (β′ and β̇)
and IMU (β̈), the first network controller takes those three variables as the input vector
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and outputs the new stiffness values for new stance leg. The second network controller
determines the value of θ3 according to the current gradient of the slope and use θ3
as input to generate adaptive parameters θ5 and θ8 which are essential to the lateral
stability. Together with other fixed parameters, θ5 and θ8 are sent into the gait controller
to generate updated joints command which aims to compensate the CoM shift caused
by the uneven terrain and maintain stability. Figure 9 shows the roll angles trajectories
of left/right legs when robot is walking on slope in 0.00 rad, 0.07 rad (≈ 4 degrees) and
0.12 rad (≈ 7 degrees). From this figure, we can see that right foot is higher than the
left one when the slope exists which makes the joints on right leg rotate in less angles
to let CoM approach its balance point. Moreover, under the different slopes, the time
for one step does not change which means our proposed gait can make a stable walk on
different slopes without the loss of walking velocity. The accompanying video material3

shows the Nao robot walking on uneven terrain with our proposed gait controller in the
simulator Webots which proves our controller can handle the altitude difference of foot
placement and adjust the control parameters to maintain balance.
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Fig. 9: The roll angle of both legs under different slope in 0 degree, 4 degrees, 7 degrees.

5 Conclusion

In previous work we have presented a new gait for humanoid robots. An implementation
of the gait on a Nao robot reduces the energy consumption with 41% compared to the
standard gait of the Nao. An important feature of new the gait is that it does not use
an area of support. That is, the robot can rotate freely around the ankle joint while

3 https://www.youtube.com/watch?v=7DxHVEd8hc8

Z.Sun
高亮

Z.Sun
高亮



walking. This makes the new gait suited for uneven terrains because the feet can adapt
to the slope of the terrain.

The absence of an area of support implies that, in principle, the robot is unstable.
In the sagittal plane, the robot falls forwards in each step, and in the lateral plane, the
robot balances above the stance foot in the single support phase and falls towards the
swing foot in the double support phase. Nevertheless, experiment with a Nao robot on
an almost flat floor consisting of wooden planks showed that the gait is stable.

In this paper, we investigate how we can improve the lateral stability of the gait
when walking on an uneven terrain. The most important aspect of walking on an un-
even terrain is the lateral stability. Since the robot balances above the stance leg in the
single support phase while it can turn freely around the ankle joint, a bump or a hole
in the walking surface may disrupt the lateral stability. Therefore, during the double
support phase the robot may over- or undershoot its stable end point, namely, balancing
stable above the new stance foot. The paper presents a feedback controller based on a
feedforward neural network, that adapts the gait parameters in order ensure the lateral
stability while walking on an uneven terrain.

The feedback controller for the lateral stability also enables the robot to handle, to
some degree, slopes in the sagittal plane. In future work, we will extend the feedback
controller to specifically address the effects of walking uphill or downhill.
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