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Abstract

We discuss the application of model based diagnosis to (multi-)agent based plan-
ning. First, we model a plan as a system to be diagnosed, taking into account the
behavioural relations that might exist between several instances of actions occurring
in a plan. Then we consider the case of a spatially distributed agent planning system
where different agents are responsible for a part of the total plan.

1 Introduction

Model-Based Diagnosis (MBD) [1, 2, 4] is a well-known technique to infer abnormali-
ties of (internal) components of a given systemS from the input-output behaviour ofS.
To this end a model ofS is given where the possible behaviours of each of the compo-
nents and the relations between the components have been specified. Usually, for each
componentc at least two differenthealth statesare distinguished: anormalstate and an
abnormalstate1. For each health state a specific behaviour of the componentc is spec-
ified. The diagnostic engine is triggered whenever there is a discrepancy between the
output —as predicted from the model and the input observations— and the actually ob-
served output. The result of the diagnostic process is an assignment of health states to
the components, called adiagnosissuch that the actually observed output isconsistent
with this state qualification or can beexplainedby the state qualification. Usually, one re-
quires the diagnosis to be specified in such a way that the number of components behaving
abnormally is minimized.

Our contribution in this paper is an extension of MBD to both single agent and multi-
agentplanningsystems. First, we introduce a notion ofplan diagnosisin a single agent
system, adapting MBD to deal with aplan as a system to be diagnosed. Here, the main
idea is that by applying model based diagnosis, observations during plan execution can
be used(i) to infer which already executed actions (the components of a plan) have to be
qualified as failed and(ii) to predict which future actions will fail and whether the goals of
the plan still will be achieved by executing the remaining part of the plan. An important
difference with classical system diagnosis is that here we have to take into account that in

1In a more general set-up, we often distinguish a partially ordered set of health states.



a plan several related instances of actions occur and the health state of a subset of these
instances might be used to infer the health state of other instances related to them.

Secondly, we concentrate on multi-agent plan diagnosis. Here, the agents together are
assumed to execute a joint plan. This plan is partitioned over the agents. Each agent is
responsible for the execution of its sub-plan and has to respect the dependencies with sub-
plans of other agents. Concepts from classical MBD are extended to cover plan diagnosis
for multi-agent systems.

2 Plan Based Diagnosis

States and Goals Unlike classical MBD, in plan-based diagnosis the model is not a
description of an underlying system but aplan of an agent. For our purposes, we prefer
to take an object orresource-basedview on the world2, assuming that, for the planning
problem at hand, the world can be described by a setObj = {o1, o2, . . . , on} of objects,
their respectivedomainsSi and and their (current) valuesvi ∈ Si. A state of the world
σ then simply is an element of the setS1 × S2 × . . . × Sn. The valuevj ∈ Sj of the
objectoj in the stateσ will be denoted byσ(j). It will not always be possible to give
a complete state description . Therefore, we introduce apartial stateπ ∈ Si1 × Si2 ×
. . . × Sik

, where1 ≤ i1 < . . . < ik ≤ n. We will useO(π) to denote the set of objects
{oi1 , oi2 , . . . , oik

} ⊆ Obj specified inπ. The value ofoj ∈ O(π) will be denoted by
π(j). Partial states can be ordered with respect to their information content:π is said to
be contained inπ′, denoted byπ v π′, iff O(π) ⊆ O(π′) andπ(j) = π′(j) for every
oj ∈ O(π). The value of an objectoj ∈ O not occurring in a partial stateπ is said to be
undefined (w.r.t.π).

A goalG of an agent is specified as a set of partial statesG = {g1, g2, . . . , gm} over
the domainsS1, S2, . . . , Sn, at least one of which the agent wants to bring about, i.e., a
goalG is said to besatisfied by a partial stateπ if there exists agi ∈ G such thatgi v π.

Actions An action can be viewed as a function that replaces the values of a subset
of the objects inObj by other values, dependent upon the values of a (possibly dif-
ferent) subset of objects. Hence, every actiona can be modeled as a (partial) func-
tion fa : Si1 × . . . × Sik

→ Sj1 × . . . × Sjl
, where1 ≤ i1 < . . . < ik ≤ n and

{j1, . . . , jl} ⊆ {i1, . . . , ik}. That is, all objects whose value domains occur inran(fa),
denoted byranO(a) = {oi1 , . . . , oik

}, are contained in the analogously defined set of
objectsdomO(a) = {oj1 , . . . , ojl

}. The function specificationfa constitutes thenor-
mal behaviour of the action, denoted byfnor

a . The abnormalbehaviour of abroken
action is specified by the functionfab

a : Si1 × . . . × Sik
→ Sj1 × . . . × Sjl

, where
fab

a (sj1 , sj2 , . . . , sjl
) = (>,>, . . . ,>). Here,> denotes an arbitrary value of the corre-

sponding objectoi in the domainSi. We assume that this choice of values as the result
of a broken action always is observable, i.e., for every(si1 , si2 , . . . , sik

) ∈ dom(fa),
fab

a (si1 , si2 , . . . , sik
) 6= fnor

a (si1 , si2 , . . . , sik
): there is always at least one value distin-

guishingfab
a from fnor

a .

Behavioural rules A plan P is conceived as a partially ordered setA of instances
of actions. The main difference with components in a classical system is that often in

2In contrast to the conventional approach to state-based planning, cf. [3].



a plan the behaviour of different instances of actions are closely related. For example,
suppose that we have a plan for carrying luggage from a depot to a number of waiting
planes. Such a plan will contain several instances of a drive action pertaining to the
same carrier. Suppose that we detect that a drive action behaves abnormally because
of malfunctioning of the carrier. Then it is reasonable to assume that instances of the
same drive action that occur in the planafter this instance can be predicted to behave
abnormally, too. To capture such behavioural relations between related instances, we
specify a set ofrules. Each such a rule is of the form{ai1 , . . . , aik

} → {aj1 , . . . , ajl
},

expressing that whenever a set{ai1 , . . . , aik
} of instances of actions occurs as a subset of

the set of instances actions qualified as behaving abnormally, it is inferred that from that
time on all instancesaj1 , . . . , ajl

will be qualified as behaving abnormally, too. A setΦA

of such rules3 is said to specify abehavioural theoryfor the set of instancesA.
Given a subsetAb ⊆ A of abnormal instances of actions, the set of immediate be-

havioural consequences ofAb usingΦ is defined as the setBCΦ(Ab) =
⋃
{β | α → β ∈

Φ | α ⊆ Ab}. We say thatΦ is behaviourally closedif the following condition holds:
WheneverΦ contains two rulesα → β andγ → δ such thatβ ∩ γ 6= ∅, thenΦ also
contains a ruleα′ → β′ such thatα′ ⊆ α ∪ (γ − β) andβ ∪ δ ⊆ β′.

A simple example of a behaviourally closed set of rules is the following: Let' be an
equivalence relation onA, wherea ' a′ iff a anda′ are instances of the same action, e.g.,
the driving action we mentioned above. LetA′ be a union of some equivalence classes
in A/' specifying those types of actions where abnormal behaviour will be preserved.
That is, ifa ∈ A′ is detected as behaving abnormally, then every future similar instance
a′ ' a will also behave abnormally. Then we can define a behaviourally closed set
Φ = {{a} → {a′ : a′ ' a} | a ∈ A′} of rules indicating that from now on every instance
a′ similar to an instancea characterized as abnormal will be evaluated as abnormal, too.

If a rule set is behaviourally closed, two or more successive applications of rules
always can be obtained by applying just one single rule inΦ, i.e., the behavioural conse-
quence operatorBCΦ needs to be applied just once to obtain all the behavioural conse-
quences of a subsetAb ⊆ A and the setAb itself:

Proposition 1 Let Φ be a behaviourally closed set of rules for a set of instancesA
and Ab ⊆ A. Define the inflationary operator4 BC1

Φ(Ab) = Ab ∪ BCΦ(Ab). Then
BC1

Φ(Ab) = BC1
Φ(BC1

Φ(Ab)).

Plans A plan P = 〈A,<, Φ〉 is a triple consisting of the set of actionsA, a partial
ordering< ⊆ A × A on the actions, and a set of behaviour rulesΦ. The partial order
< specifies the dependencies between actions; e.g.,a < a′ means that the actiona must
finish beforea′ may start. We will often denote thetransitive reductionof < by�, i.e.,
the transitive closure�+ of � equals<. Note that an actiona may change the values of
the objects in the domaindomO(a′) of another actiona′; i.e.,ranO(a)∩domO(a′) 6= ∅.
Obviously, if a planP allows an actiona to be executed concurrently with an other action
a′, we would not allow that their domains and ranges do overlap. Therefore, we have the
following requirement:

3Often we will omit the subscriptA in ΦA if the context of the set of actions is clear.
4A consequence operatorT is called inflationary ifT applied toA returns the set of all immediate conse-

quences andA itself.



Concurrency Requirement:Let P = 〈A,<, Φ〉 be a plan anda, a′ ∈ A two
actions such that neithera < a′ nor a′ < a holds. Then bothranO(a) ∩
domO(a′) = ∅ andranO(a′) ∩ domO(a) = ∅ should hold.

Plan execution For simplicity, when a plan is executed, we will assume that every action
takes a unit of time to execute and we are allowed to observe the execution of a planP at
discrete timest = 0, 1, 2, . . . , k wherek is the depth of the plan, i.e., the longest<-chain
of actions occurring inP . LetdepthP (a) be the depth5 of actiona in planP = (A,<, Φ),
i.e.,depthP (a) = 0 if {a′ |a′ � a} = ∅ anddepthP (a) = 1+max{depthP (a′) | a′ �
a}, else. We assume that the plan starts to be executed at timet = 0 and that concurrency
is completely specified by the plan, i.e., ifdepthP (a) = k then execution ofa has been
completed at timet = k + 1. Now all actionsa with depth(a) = 0 are completed at time
t = 1 and every actiona with depth(a) = k + 1 will be started at timek and will be
completed at timek + 1. The above specifiedconcurrency requirementensures that the
concurrent execution of actions leads to a well-defined result.

The effect of the execution of planP on a given (partial) stateπ at some timet ≥ 0,
denoted by(π, t), can be defined as follows: LetPt denote the set of actionsa with
depth(a) = t and letP>t =

⋃
t′>t Pt. Moreover, let the partial stateπ restricted to a

given setO, denoted asπ � O, be defined asπ � O = π′ whereπ′ v π andO(π′) =
O ∩ O(π). Now we say that(π′, t + 1) is (directly) generated bynormalexecution ofP
from (π, t), abbreviated by(π, t) →P (π′, t + 1), iff the following conditions hold:

1. π′ � ranO(a) = fnor
a (π �domO(a)) for eacha ∈ Pt with domO(a) ⊆ O(π), that

is, the consequences of all actionsa enabled inπ should be visible inπ′;

2. O(π′) ∩ ranO(a) = ∅ for eacha ∈ Pt with domO(a) 6⊆ O(π), that is, the values
of objects modified by an actiona are left undefined inπ′ if a is not enabled inπ;

3. π′(i) = π(i) for eachoi 6∈
⋃

a∈Pt
ranO(a), that is, every object not in the range of

an action at timet should remain unchanged.

For arbitrary values oft ≤ t′ we say that(π′, t′) is (directly or indirectly) generated
by normal execution ofP from (π, t), denoted by(π, t) →∗

P (π′, t′), iff the following
conditions hold:(i) if t = t′ thenπ′ = π; (ii) if t′ = t + 1 then(π, t) →P (π′, t′); (iii) if
t′ > t + 1 then there must exists some state(π′′, t′ − 1) such that(π, t) →∗

P (π′′, t′ − 1)
and(π′′, t′ − 1) →P (π′, t′).
Qualifications In order to predict the result of a plan execution, we introduce the notion
of a qualified plan. A qualified versionPQ of a planP = (A,<, Φ) is a tuplePQ =
(A,<, Φ, Q), whereQ ⊆ A is the set ofabnormallybehaving actions.6 For such a subset
Q we define the execution relation→Q;P as follows:(π′, t+1) is (directly) generated by
execution ofP where actions inQ are behaving abnormally from(π, t), abbreviated by
(π, t) →Q;P (π′, t + 1), if for all i = 1, . . . , n we have

1. π′ �ranO(a) = fnor
a (π �domO(a)) for eacha ∈ Pt −Q with domO(a) ⊆ O(π),

2. O(π′) ∩ ranO(a) = ∅ for eacha ∈ Q,

5If the context is clear, we often will omit the subscriptP in referring to the depth of an actiona.
6Hence,A−Q is the set of normally executed actions.



3. O(π′) ∩ ranO(a) = ∅ for eacha ∈ Pt with domO(a) 6⊆ O(π), and

4. π′(i) = π(i) for eachoi 6∈
⋃

a∈Pt
ranO(a).

Note that this leaves free the values ofπ′(i) for those objects affected by abnormal actions
a ∈ Pt ∩ Q. Furthermore, by definition,→∅;P =→P . The reflexive transitive closure
→∗

Q;P is defined analogously.

Diagnosis Suppose that we have a (possibly partial) observationobs(t) = (π, t) of the
state of the worldπ at time pointt and an observationobs(t′) = (π′, t′) at time point
t′ > t during execution of the planP . Then, assuming a normal execution of the plan
P we can predict the state of the world at a time pointt′ given the observationobs(t):
if all actions behave normally, we should haveobs(t)→∗

∅;P (π′′, t′) whereπ′′ satisfies
(π′ � O(π′′)) v π′′. If not, the execution of some actions must have gone wrong. In
that case, we would like to determine which action may have failed. To this end, we may
apply the standard definition of MBD (cf. [2]):

Definition 1 Let P = (A,<, Φ) be a plan, letBeh =
⋃

a∈A(fnor
a ∪ fab

a ) be the be-
havioural description of the actionsA, let obs(t) = (π, t) and obs(t′) = (π′, t′) with
t < t′ be two (partial) observations, and letobs(t)→∗

∅;P (π′′, t′) be the normal execu-
tion of a plan. Moreover, letQ be a qualification and letobs(t)→∗

Q;P (π′′′, t′) be the
plan execution given this qualification. The qualificationQ is an O-plan-diagnosis of
〈P,Beh, obs(t), obs(t′)〉 iff

1. π′ �O = π′′ �O,

2. π′′′ is consistent withπ′; i.e., for everyoj ∈ O(π′) ∩O(π′′′): π′(j) = π′′′(j).

ChoosingO = {oj | oj ∈ O(π′) ∩ O(π′′), π′(j) = π′′(j)} in 1. gives the strongest
diagnostic definition.7 ChoosingO = ∅ results in consistency-based diagnosis [4].

In MBD normally either numericalminimumor subsetminimaldiagnoses are consid-
ered. Here, we will even further refine the set of diagnoses by taking the behavioural rules
Φ into consideration.

Behavioural Rules and Diagnosis Using the rule setΦ in establishing a diagnosis, we
could reason as follows: If a qualificationQ has been established as a diagnosis, some
of the actions executed at some timet′ and detected as abnormal could easily occur as
the behavioural consequences of other abnormally behaving and earlier executed actions.
Hence, instead of a diagnosisQ, what has to be established is a minimum setQ′ of
abnormally behaving actions such that

1. the diagnosisQ can be generated using the rules inΦ from Q′,

2. no action inQ′ is the behavioural consequence of another action inQ′ and

3. Q′ is a minimum set of actions satisfying 1. and 2.

In a certain sense, the setQ′ has to be considered as a set ofcausesof the abnormal
behaviour under the set of rulesΦ.

7Note, however, that if one broken action may repair the effects of another broken action, this form of
diagnosis may overlook a correct plan-diagnosis.



Definition 2 Let Q be a standard diagnosis of〈P,Beh, obs(t), obs(t′)〉. We say that
Q′ ⊆ Q is a minimum causal explanationof Q using the rule setΦ if the following
conditions hold:

1. Q = Q′ ∪BCΦ(Q′), i.e.,Q′ and its set of immediateΦ-consequences generate the
diagnosisQ;

2. Q′ = Q′
t ∪ Q′

t+1 ∪ . . . ∪ Q′
t′ whereQ′

t+i = Pt+i ∩ Q′, that isQ′ can be split in
(disjoint) sets of abnormalities established at time pointst, t + 1, . . . t′;

3. Q′
t+i ∩BCΦ(Q′

t ∪ . . .∪Q′
t+i−1) = ∅ for i > 0, i.e., no set of causes occurring at

timet + i can be explained by abnormalities occurring at some earlier time under
the rule setΦ.

4. Q′ is a smallest set of abnormalities such that the conditions above do hold.

Prediction of plan results Except for playing a role in establishing causal explanations,
the set of behavioural consequences also plays a major role in the prediction of the results
of the plan. The main purpose of plan diagnosis of course is topredictwhether the goalG
still can be reached given the observationsobs(t) during plan execution. This prediction
can be based on the diagnosisQ and the behavioural consequences of it established at time
t as follows: LetQ be the set of instances of actions qualified as abnormal as the result of
a diagnosis at timet. Let Qpred ⊆ A be defined as the setQpred = BCΦ(Q) ∩ P>t, i.e.,
the set of to be executed actions that usingΦ andQ can be inferred to behave abnormally,

too. Then the predicted output at timet′ > t equals the stateτ such thatobs(t) →(t′−t)
Qpred;P

(τ, t′). Suppose thatt′ = depth(P ), i.e., the plan has been executed completely, then we
can check whether or not for some stateσ ∈ G: σ v τ . If such a state does not exist, we
infer that given the abnormalities inferred, the goalG of the plan will not be achieved.

3 Multi-agent diagnosis of multi-agent plans

A group of collaborating agents often have to coordinate their actions. If the problem
addressed by the agents is complex, planning is required, resulting in a distributed multi-
agent plan.

Multi-agent plans A multi-agent plan is a partition of a planP = (A,<, Φ) over
a group of agentsAg such that agenti is responsible for the execution of the sub-plan
Pi = (Ai, Ii, Oi <i,Φi) whereA =

⊎
i Ai, Ii = {a ∈ (A − Ai) | a � a′, a′ ∈ Ai},

Oi = {a ∈ (A − Ai) | a′ � a, a′ ∈ Ai}, <i= (< ∩((Ai ∪ Ii) × Ai)) ∪ (< ∩(Ai ×
(Ai ∪ Oi))) andΦ =

⋃
i Φi. Note that the set of actionsIi provide input for the plan of

agenti and the set of actionsOi of other agents receive output from the plan of agenti.
Here, agenti has to synchronize its action with other agents.

Multi-agent plan execution To enable agents to collectively determine the effect of
executing the planP using only their local knowledge, requires that agents communicate
information about the state of the world. Since we use an object oriented view of the
world (i) agents only have to communicate in situations where they must synchronize their
actions with actions,Ii andOi, of other agents, and (ii ) they only have to communicate
the values of the objects required by the actionsa ∈ Oi of another agent.



Proposition 2 If the value of an objecto required by an actiona ∈ Ai is determined by
an actiona′ ∈ Aj with i 6= j, thena′ � a, a′ ∈ Ii anda ∈ Oj .

To derive the partial stateπ′ at timet′ of a sub-planPi = (Ai, Ii, Oi <i,Φi) given
an partial stateπ at time t, we must take into account the effect of the actionsa ∈ Ii

such that for somea′ ∈ Ai with depthP (a′) < t′, a � a′. Let (πa1 , t1), ..., (πak , tk)
with {aj ∈ Ii | depthP (ai) < t′}, tj = depthP (aj) and O(πaj ) ⊆ ranO(aj) ∩⋃

a′∈Ai|aj�a′ domO(a′) describe the known values of the objects inranO(a) that are
relevant for agenti. Then we say that(π′, t′) is generated from(π, t) by the execution
of the plan of agenti given an qualificationQi ⊆ Ai, for i = 1, 2, ..., n, abbreviated by
(π, t), (πa1 , t1), ..., (πak , tk) →∗

Qi;Pi
(π′, t′). Note that the value of an objecto in O(π)

may (indirectly) be determined by one or more actionsa ∈ Ii. We assume that there are
no inconsistencies between the value ofo in π and the value ofo that follows form the
action inIi if this information is available in(πa1 , t1), ..., (πak , tk).

The multi agent plan presented here is closely related to the spatially distributed sys-
tem of connected components discussed in [5]. In [5] it was pointed out that predicting
the behaviour of such a system is in general an NP-Hard problem. The underlying reason
was the possible existence of cyclic dependencies between components. In a (multi-agent)
plan similar cycles between actions do not occur. A cycle would imply that the input of
an action depends on the output of a future action. In fact predicting the execution of a
(multi-agent) plan can be done in linear time.

The diagnosis of a sub-plan An agent executing a sub-plan may make partial obser-
vation of the local state of the world at different timest andt′ with t < t′. Agenti can
predict the expected state of the world at timet′ using the knowledge of its local plan
and information received from other agents about the expected effects of action inIi. If
agenti notices a difference between the expected and the observed state of the world at
t, diagnosis is required. Since an observed discrepancy may be caused by the execution
of another sub-plan, agenti may also receive information from other agents about the
expected values of objects indomO(a) with a ∈ Oi.

Definition 3 Let Pi = (Ai, Ii, Oi <i,Φi) be the sub-plan of agenti and let obs(t)
and obs(t′) with t < t′ be two observations. Moreover let(πa1 , t1), ..., (πak , tk) with
tj < t′ be the communicated information about the expected effects ofaj ∈ Ii and let
(πa′

1 , t′1), ..., (π
a′

k , t′l) with t < t′j be the communicated information about the expected
effects of planPi for the actionsa′j ∈ Oi.

Then a local diagnosis is a plan-diagnosis according to Definition 1 of

〈P,Beh, {obs(t), (πa1 , t1), ..., (πak , tk)}, {obs(t′), (πa′
1 , t′1), ..., (π

a′
k , t′l)}〉.

Multi-agent plan-diagnosis An important question is whether the combined diagnoses
of the individual agents lead to the same set of global diagnoses of the whole planP . The
following two propositions show that this is the case.

Proposition 3 Let the qualificationQ be a plan-diagnosis of〈P,Beh, obs(t), obs(t′)〉.
Moreover, let(πa1 , t1), ..., (πak , tk) be the (predicted) values of the objectsO(πaj ) ⊆
ranO(aj) ∩

⋃
a′∈Ai|aj�a′ domO(a′) with aj ∈ Ii and t ≤ depthP (aj) ≤ t′, and let



(πa′
1 , t′1), ..., (π

a′
k , t′l) be the (predicted) values of the objectsO(πa′

j ) ⊆ domO(a′j) ∩⋃
a′∈Ai|a′�a′

j
ranO(a′) with a′j ∈ Oi andt ≤ depthP (a′j) ≤ t′.

Then the qualificationQi = Q ∩Ai is a plan-diagnosis of

〈P,Beh, {obs(t), (πa1 , t1), ..., (πak , tk)}, {obs(t′), (πa′
1 , t′1), ..., (π

a′
k , t′l)}〉.

Proposition 4 Let the qualificationQi be a plan-diagnosis of

〈P,Beh, {obs(t), (πa1 , t1), ..., (πak , tk)}, {obs(t′), (πa′
1 , t′1), ..., (π

a′
k , t′l)}〉

with aj ∈ Ii, t ≤ depthP (aj) ≤ t′, a′j ∈ Oi andt ≤ depthP (a′j) ≤ t′.
Then the qualificationQ =

⋃
i Qi is a plan-diagnosis of〈P,Beh, obs(t), obs(t′)〉 iff

• (πa1 , t1), ..., (πak , tk) are the (predicted) values of the objectsO(πaj ) ⊆ ranO(aj)∩⋃
a′∈Ai|aj�a′ domO(a′) with aj ∈ Ii andt ≤ depthP (aj) ≤ t′; and

• (πa′
1 , t′1), ..., (π

a′
k , t′l) are the (predicted) values of the objectsO(πa′

j ) ⊆ domO(a′j)∩⋃
a′∈Ai|a′�a′

j
ranO(a′) with a′j ∈ Oi andt ≤ depthP (a′j) ≤ t′.

To determine a global plan diagnosis without any agent having complete knowledge
of the multi-agent plan or even the global diagnosis itself, the protocol presented in [5]
can be applied. This protocol enables agents to efficiently determine a diagnosis. The
communication overhead of the protocol is linear in the product the number of agents and
of the number of action determining the observed object at timet′ (cf. [5]).

4 Conclusion

We have presented a new object-oriented model for describing multi-agent plans con-
sisting of (related) instances of actions. This model enables agents to find causes for
discrepancies between the predicted and observed effects of a plan-execution by apply-
ing techniques developed for multi-agent model-based diagnosis. Moreover, we have
extended the diagnostic theory enabling the prediction of future failure of actions.
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