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Abstract

We discuss the application of model based diagnosis to (multi-)agent based plan-
ning. First, we model a plan as a system to be diagnosed, taking into account the
behavioural relations that might exist between several instances of actions occurring
in a plan. Then we consider the case of a spatially distributed agent planning system
where different agents are responsible for a part of the total plan.

1 Introduction

Model-Based Diagnosis (MBD) [1, 2, 4] is a well-known technique to infer abnormali-
ties of (internal) components of a given systénfrom the input-output behaviour .

To this end a model of is given where the possible behaviours of each of the compo-
nents and the relations between the components have been specified. Usually, for each
component at least two differenbealth statesre distinguished: aormalstate and an
abnormalstaté. For each health state a specific behaviour of the companisnépec-

ified. The diagnostic engine is triggered whenever there is a discrepancy between the
output —as predicted from the model and the input observations— and the actually ob-
served output. The result of the diagnostic process is an assignment of health states to
the components, calleddiagnosissuch that the actually observed outputasistent

with this state qualification or can lexplainedby the state qualification. Usually, one re-
quires the diagnosis to be specified in such a way that the number of components behaving
abnormally is minimized.

Our contribution in this paper is an extension of MBD to both single agent and multi-
agentplanningsystems. First, we introduce a notionmén diagnosisn a single agent
system, adapting MBD to deal withdan as a system to be diagnosed. Here, the main
idea is that by applying model based diagnosis, observations during plan execution can
be usedi) to infer which already executed actions (the components of a plan) have to be
qualified as failed an@i) to predict which future actions will fail and whether the goals of
the plan still will be achieved by executing the remaining part of the plan. An important
difference with classical system diagnosis is that here we have to take into account that in

1in a more general set-up, we often distinguish a partially ordered set of health states.



a plan several related instances of actions occur and the health state of a subset of these
instances might be used to infer the health state of other instances related to them.

Secondly, we concentrate on multi-agent plan diagnosis. Here, the agents together are
assumed to execute a joint plan. This plan is partitioned over the agents. Each agent is
responsible for the execution of its sub-plan and has to respect the dependencies with sub-
plans of other agents. Concepts from classical MBD are extended to cover plan diagnosis
for multi-agent systems.

2 Plan Based Diagnosis

States and Goals Unlike classical MBD, in plan-based diagnosis the model is not a
description of an underlying system bupkan of an agent. For our purposes, we prefer
to take an object oresource-basegiew on the world, assuming that, for the planning
problem at hand, the world can be described by adgt= {01, 02, ..., 0,} of objects,
their respectivelomainsS; and and their (current) values € S;. A state of the world
o then simply is an element of the s&f x S, x ... x S,. The valuev; € S; of the
objecto; in the states will be denoted by (j). It will not always be possible to give
a complete state description . Therefore, we introduparéial stater € S;, x S;, X
... xS, wherel < iy < ... <1, < n. We will useO(r) to denote the set of objects
{0iy,0iy,...,0i, } € Obj specified inm. The value ofo; € O(r) will be denoted by
7(7). Partial states can be ordered with respect to their information contésitsaid to
be contained in’, denoted byr C «/, iff O(x) C O(«’) andn(j) = #'(j) for every
oj € O(m). The value of an objeet; € O not occurring in a partial state is said to be
undefined (w.r.txr).

A goal G of an agent is specified as a set of partial stétes {g1, g2, ..., gm } Over
the domainsSy, Ss, ..., Sy, at least one of which the agent wants to bring about, i.e., a
goalG is said to besatisfied by a partial state if there exists q; € G such thay; C «.

Actions An action can be viewed as a function that replaces the values of a subset
of the objects inOb; by other values, dependent upon the values of a (possibly dif-
ferent) subset of objects. Hence, every actionan be modeled as a (partial) func-
tion fo : S; X ... xS, — S5, x ... x 8, wherel < i; < ... <14 < nand

{j1,---, 51} € {é1,...,ix}. Thatis, all objects whose value domains occurdn(f,),
denoted byrano(a) = {o;,,...,0;, }, are contained in the analogously defined set of
objectsdomo(a) = {oj,,...,05,}. The function specificatiorf, constitutes theior-

mal behaviour of the action, denoted If/°". The abnormalbehaviour of abroken
actionis specified by the functioff?® : S;, x ... x S;, — S;, x ... x Sj,, where
fa%(8jy48jps---r85) = (T,T,...,T). Here, T denotes an arbitrary value of the corre-
sponding objecb; in the domainS;. We assume that this choice of values as the result
of a broken action always is observable, i.e., for evety, si,, ..., s:,) € dom(f.),

T3 (Siy, Sinys -y 8i) F F1O (84, Siy, - - -, 84y, ): there is always at least one value distin-
guishingf2® from fror.

Behavioural rules A plan P is conceived as a partially ordered sétof instances

of actions. The main difference with components in a classical system is that often in

2In contrast to the conventional approach to state-based planning, cf. [3].



a plan the behaviour of different instances of actions are closely related. For example,
suppose that we have a plan for carrying luggage from a depot to a number of waiting
planes. Such a plan will contain several instances of a drive action pertaining to the
same carrier. Suppose that we detect that a drive action behaves abnormally because
of malfunctioning of the carrier. Then it is reasonable to assume that instances of the
same drive action that occur in the plafter this instance can be predicted to behave
abnormally, too. To capture such behavioural relations between related instances, we
specify a set ofules. Each such a rule is of the forfw;,,...,a;.} — {a;,,...,a;},
expressing that whenever a §et, . .., a;, } of instances of actions occurs as a subset of
the set of instances actions qualified as behaving abnormally, it is inferred that from that
time on all instances;, , . .., a;, will be qualified as behaving abnormally, too. A det

of such ruled is said to specify &ehavioural theoryor the set of instances.

Given a subsetlb C A of abnormal instances of actions, the set of immediate be-
havioural consequences @b using® is defined as the sé&Cs(Ab) = | {8 |a — B €
® | o C Ab}. We say thatd is behaviourally closedf the following condition holds:
Wheneverd contains two rulesxy — g andy — ¢ such that3 N v # @, then® also
contains a rule’ — ' suchthat Ca U (y—F)andguéd C 3.

A simple example of a behaviourally closed set of rules is the following~L bt an
equivalence relation oA, wherea ~ o' iff ¢ anda’ are instances of the same action, e.g.,
the driving action we mentioned above. L&t be a union of some equivalence classes
in A/~ specifying those types of actions where abnormal behaviour will be preserved.
That s, ifa € A’ is detected as behaving abnormally, then every future similar instance
a’ ~ a will also behave abnormally. Then we can define a behaviourally closed set
® = {{a} — {d': d’ ~a} | a € A’} of rules indicating that from now on every instance
a’ similar to an instance characterized as abnormal will be evaluated as abnormal, too.

If a rule set is behaviourally closed, two or more successive applications of rules
always can be obtained by applying just one single rukg,ine., the behavioural conse-
guence operataBCs needs to be applied just once to obtain all the behavioural conse-
quences of a subsdih C A and the setdb itself:

Proposition 1 Let ® be a behaviourally closed set of rules for a set of instandes
and Ab C A. Define the inflationary operatbrBC}(Ab) = Ab U BCgs(Ab). Then
BCL(Ab) = BCL(BCL(AD)).

Plans A plan P = (A, <,®) is a triple consisting of the set of actions a partial
ordering< C A x A on the actions, and a set of behaviour rulesThe partial order

< specifies the dependencies between actions;®eg.¢’ means that the actianmust

finish beforea’ may start. We will often denote theansitive reductiorof < by <, i.e.,

the transitive closure™ of < equals<. Note that an action may change the values of

the objects in the domaidom (a’) of another actiom’; i.e.,rano(a) Ndomo (a') # 2.
Obviously, if a planP allows an actior to be executed concurrently with an other action

a’, we would not allow that their domains and ranges do overlap. Therefore, we have the
following requirement:

30ften we will omit the subscript in 4 if the context of the set of actions is clear.
4A consequence operat@t is called inflationary ifT” applied toA returns the set of all immediate conse-
guences and! itself.



Concurrency Requirementtet P = (A, <, ®) be a plan and, a’ € A two
actions such that neither < a’ nora’ < a holds. Then bothrang(a) N
domo(a') = @ andrano(a’) N domep(a) = @ should hold.

Plan execution For simplicity, when a plan is executed, we will assume that every action
takes a unit of time to execute and we are allowed to observe the execution of/a atan
discrete times$ = 0,1, 2, ..., k wherek is the depth of the plan, i.e., the longestthain
of actions occurring irP. Letdepthp(a) be the depthof actiona in planP = (4, <, ®),
i.e.,depthp(a) = 0if {a’ |o’ <« a} = @ anddepthp(a) = 1+maz{depthp(a’) | o’ <«
a}, else. We assume that the plan starts to be executed at tineand that concurrency
is completely specified by the plan, i.e.dépthp(a) = k then execution of has been
completed at time = &k + 1. Now all actionsa with depth(a) = 0 are completed at time
t = 1 and every actior with depth(a) = k + 1 will be started at timé: and will be
completed at timé + 1. The above specifiedoncurrency requiremergnsures that the
concurrent execution of actions leads to a well-defined result.

The effect of the execution of plaR on a given (partial) state at some time > 0,
denoted by(r, t), can be defined as follows: L&t denote the set of actions with
depth(a) = t and letP.; = |J,, P;. Moreover, let the partial state restricted to a
given setO, denoted asr | O, be defined ag | O = 7’ wherer’ C 7w andO(n’) =
O N O(r). Now we say thafr’, ¢t + 1) is (directly) generated byormalexecution ofP
from (7, t), abbreviated by, t) —p (7', t + 1), iff the following conditions hold:

1. 7 [ rano(a) = f2°" (7 [ domo(a)) for eacha € P, with domo(a) C O(rw), that
is, the consequences of all actianenabled int should be visible int’;

2. O(7") Nranp(a) = & for eacha € P, with domo(a) € O(x), that is, the values
of objects modified by an actianare left undefined ir’ if a is not enabled irr;

3. 7'(i) = 7 (i) for eacho; & |J,cp, rano(a), thatis, every object not in the range of
an action at time should remain unchanged.

For arbitrary values of < ¢ we say tha(#’,t') is (directly or indirectly) generated
by normal execution ofP from (=, t), denoted by(w,t) —% (#',t'), iff the following
conditions hold:(i) if ¢ = ¢’ thenz’ = ; (i) if ¢’ = ¢ + 1 then(n,t) —p (7', t'); (iii) if
t’ >t + 1 then there must exists some stét&, ¢’ — 1) such thai(w,t) —% (7”,t' — 1)
and(7”,t' — 1) —p (7', 1').

Qualifications In order to predict the result of a plan execution, we introduce the notion
of a qualified plan. A qualified versiorP, of a planP = (A4, <, ®) is a tuplePy =
(A, <, ®,Q), whereQ C A is the set ohbnormallybehaving action$.For such a subset
@ we define the execution relatieh g, p as follows: (7', ¢ + 1) is (directly) generated by
execution ofP where actions i) are behaving abnormally froifr, ¢), abbreviated by
(m,t) —q.p (7', t+1),ifforall : =1,...,n we have

1. 7' [ranp(a) = fr°" (7 [domo(a)) for eacha € P, — @ with domo(a) C O(7),

a

2. O(7") Nranp(a) = @ for eacha € Q,

51f the context is clear, we often will omit the subscriptin referring to the depth of an actien
6Hence,A — Q is the set of normally executed actions.



3. O(n") Nranp(a) = @ for eacha € P, with domo(a) € O(w), and
4. 7'(i) = (i) for eacho; & U, p, rano(a).

Note that this leaves free the valuestdfi) for those objects affected by abnormal actions
a € P, N Q. Furthermore, by definition;» 4. p=—p. The reflexive transitive closure
—0.p Is defined analogously.

Diagnosis Suppose that we have a (possibly partial) observatieft) = (w,t¢) of the
state of the worldr at time pointt and an observationbs(t') = (#’,t') at time point

t’ > t during execution of the plaf®. Then, assuming a normal execution of the plan
P we can predict the state of the world at a time paingiven the observationbs(t):

if all actions behave normally, we should haates(t)—%,. p(7"”,t") wherer"” satisfies

(=" | O(x")) € «”. If not, the execution of some actions must have gone wrong. In
that case, we would like to determine which action may have failed. To this end, we may
apply the standard definition of MBD (cf. [2]):

Definition 1 Let P = (A, <, ®) be a plan, letBeh = |J,c ,(f2°" U f2) be the be-
havioural description of the actiond, let obs(t) = (m,t) and obs(t') = («’,t') with

t < t' be two (partial) observations, and lebs(t)—. »(7",¢’) be the normal execu-
tion of a plan. Moreover, let) be a qualification and lebbs(t)—¢.p (7", 1) be the

plan execution given this qualification. The qualificati@nis an O-plan-diagnosis of
(P, Beh, obs(t), obs(t')) iff

1.7 1O=7x"]0,
2. " is consistent withr’; i.e., for everyo; € O(7') N O(x""): ©'(j) = ="' (j).

ChoosingO = {o; | 0; € O(x") N O(x"),n'(j) = «"(j)} in 1. gives the strongest
diagnostic definitiorf. ChoosingD = @ results in consistency-based diagnosis [4].

In MBD normally either numericahinimumor subseminimaldiagnoses are consid-
ered. Here, we will even further refine the set of diagnoses by taking the behavioural rules
® into consideration.

Behavioural Rules and Diagnosis Using the rule se® in establishing a diagnosis, we
could reason as follows: If a qualificatigp has been established as a diagnosis, some

of the actions executed at some timieand detected as abnormal could easily occur as
the behavioural consequences of other abnormally behaving and earlier executed actions.
Hence, instead of a diagnosig, what has to be established is a minimum &étof
abnormally behaving actions such that

1. the diagnosig) can be generated using the rulespifrom Q’,
2. no action inQ’ is the behavioural consequence of another actiap'iand
3. Q" is a minimum set of actions satisfying 1. and 2.

In a certain sense, the s@t has to be considered as a setcafisesof the abnormal
behaviour under the set of rulés

"Note, however, that if one broken action may repair the effects of another broken action, this form of
diagnosis may overlook a correct plan-diagnosis.



Definition 2 Let @ be a standard diagnosis dfP, Beh, obs(t), obs(t')). We say that
Q' C @ is aminimum causal explanatioof @) using the rule sefp if the following
conditions hold:

1. Q@ =Q'UBCs(Q"),i.e.,Q" and its set of immediat&-consequences generate the
diagnosisQ);

2. Q' =QUQi,U...UQ, whereQ;,, = P,1; N Q', thatisQ’ can be split in
(disjoint) sets of abnormalities established at time pointst 1, .. .¢';

3. Q. NBC(QU...UQ;;_,) =2 fori>0,i.e., nosetof causes occurring at
timet + ¢ can be explained by abnormalities occurring at some earlier time under
the rule setd.

4. ()’ is a smallest set of abnormalities such that the conditions above do hold.

Prediction of plan results Except for playing a role in establishing causal explanations,
the set of behavioural consequences also plays a major role in the prediction of the results
of the plan. The main purpose of plan diagnosis of coursepsadictwhether the goals

still can be reached given the observatiohs(t) during plan execution. This prediction

can be based on the diagno§isind the behavioural consequences of it established at time

t as follows: LetQ be the set of instances of actions qualified as abnormal as the result of
a diagnosis attime LetQ,,.q C A be defined as the sét,,..q = BCs(Q) N Ps4, i.e.,

the set of to be executed actions that usingnd@ can be inferred to behave abnormally,

too. Then the predicted output at tirtie> ¢ equals the state such thabbs(t) ng‘*jp
(r,t"). Suppose that = depth(P), i.e., the plan has been executed completely, then we
can check whether or not for some state G: o C 7. If such a state does not exist, we

infer that given the abnormalities inferred, the gGabf the plan will not be achieved.

3 Multi-agent diagnosis of multi-agent plans

A group of collaborating agents often have to coordinate their actions. If the problem
addressed by the agents is complex, planning is required, resulting in a distributed multi-
agent plan.

Multi-agent plans A multi-agent plan is a partition of a plaR = (A4, <, ®) over

a group of agentslg such that agent is responsible for the execution of the sub-plan

P, = (Ai7[i70i <ia(I)i) whereA = Lﬂz A I = {a S (A — Az) | a <K a’7a’ c Ai},

0; = {a S (A — Az) | a < a, a € Al}, <;= (< ﬁ((Az UIZ) X Az)) U (< ﬁ(Al X

(A; U0Oy))) and® = | J, ®;. Note that the set of actions provide input for the plan of
agent: and the set of action®; of other agents receive output from the plan of agent
Here, agent has to synchronize its action with other agents.

Multi-agent plan execution To enable agents to collectively determine the effect of
executing the pla® using only their local knowledge, requires that agents communicate
information about the state of the world. Since we use an object oriented view of the
world (i) agents only have to communicate in situations where they must synchronize their
actions with actions]; andO;, of other agents, andi) they only have to communicate

the values of the objects required by the actiers O; of another agent.



Proposition 2 If the value of an object required by an actiom € A; is determined by
an actiona’ € A; withi # j, thend’ < a,d’ € I; anda € O;.

To derive the partial state’ at timet’ of a sub-planP; = (4;,I;,0; <;,®;) given
an partial stater at timet, we must take into account the effect of the actians I;
such that for some’ € A; with depthp(a’) < t/, a < o'. Let (7%, t1), ..., (7% 1))
with {a; € I, | depthp(a;) < t'}, t; = depthp(a;) andO(w%) C rano(aj) N
Uareija; <ar domo(a’) describe the known values of the objectsrimo(a) that are
relevant for agent. Then we say thatr’,t') is generated frontr, t) by the execution
of the plan of agent given an qualificatior); C A;, fori = 1,2, ..., n, abbreviated by
(m, 1), (4, 1), ooy (W%, 1) —5,.p, (7',t'). Note that the value of an objeatin O(r)
may (indirectly) be determined by one or more actians I;. We assume that there are
no inconsistencies between the valueoh 7 and the value ob that follows form the
action inl; if this information is available if7%, ¢1), ..., (7%, tx).

The multi agent plan presented here is closely related to the spatially distributed sys-
tem of connected components discussed in [5]. In [5] it was pointed out that predicting
the behaviour of such a system is in general an NP-Hard problem. The underlying reason
was the possible existence of cyclic dependencies between components. In a (multi-agent)
plan similar cycles between actions do not occur. A cycle would imply that the input of
an action depends on the output of a future action. In fact predicting the execution of a
(multi-agent) plan can be done in linear time.

The diagnosis of a sub-plan An agent executing a sub-plan may make partial obser-
vation of the local state of the world at different timeandt’ with ¢ < ¢’. Agenti can

predict the expected state of the world at timeaising the knowledge of its local plan

and information received from other agents about the expected effects of acfiorifin

agent; notices a difference between the expected and the observed state of the world at
t, diagnosis is required. Since an observed discrepancy may be caused by the execution
of another sub-plan, agentmay also receive information from other agents about the
expected values of objectsdlom (a) with a € O;.

Definition 3 Let P, = (A4;,1;,0; <;,®;) be the sub-plan of ageritand let obs(t)
and obs(t') with ¢ < ¢’ be two observations. Moreover 1&t?,¢1), ..., (7%, ;) with
t; < t' be the communicated information about the expected effects ef I; and let
(7, 8)), .., (%, 1)) with £ < t’. be the communicated information about the expected
effects of planP; for the actionSa;- € 0;.

Then a local diagnosis is a plan-diagnosis according to Definition 1 of

(P, Beh, {obs(t), (7%, t1), ..., (=%, t;)}, {obs(t'), (2%, £}), ..., (7%, t})}).

Multi-agent plan-diagnosis An important question is whether the combined diagnoses
of the individual agents lead to the same set of global diagnoses of the wholE pldre
following two propositions show that this is the case.

Proposition 3 Let the qualification be a plan-diagnosis ofP, Beh, obs(t), obs(t')).
Moreover, let(n?, 1), ..., (7%, t;) be the (predicted) values of the obje@$r®i) C
rano(a;) MUy e, o, <ar domo(a') with a; € I; andt < depthp(a;) < t', and let



(1%, ), ..., (%, 1}) be the (predicted) values of the obje€t$r®i) C domo(a}) N
Uareasjar<ar Tano(a’) witha’; € O; andt < depthp(a}) <t

Then the qualificatio); = Q N A; is a plan-diagnosis of
(P, Beh, {obs(t), (7%, t1), ..., (x% , t;)}, {obs(t'), (2%, £,), .., (7%, t})}).

Proposition 4 Let the qualificatior®; be a plan-diagnosis of
(P, Beh, {obs(t), (w1, t1), ..., (7%, tx)}, {obs(t'), (7%, £,), .., (% £))})

witha; € I;, t < depthp(a;) <t', a; € 0; andt < depthp(a'j) <t.
Then the qualification) = | J; Q; is a plan-diagnosis of P, Beh, obs(t), obs(t')) iff

o (1%, t1), ..., (m%, ;) are the (predicted) values of the obje€ir®) C rano(a;)N
Uareasja;<a domol(a’) witha; € I; andt < depthp(a;) < t'; and

o (1%,t}), ..., (n%,1) are the (predicted) values of the obje€tér’ ) C domo (a);)N

, rano(a’) witha’; € O; andt < depthp(a}) <t'.

Ua’EAi \a’<<aj
To determine a global plan diagnosis without any agent having complete knowledge
of the multi-agent plan or even the global diagnosis itself, the protocol presented in [5]
can be applied. This protocol enables agents to efficiently determine a diagnosis. The
communication overhead of the protocol is linear in the product the number of agents and

of the number of action determining the observed object at tir&. [5]).

4 Conclusion

We have presented a new object-oriented model for describing multi-agent plans con-
sisting of (related) instances of actions. This model enables agents to find causes for
discrepancies between the predicted and observed effects of a plan-execution by apply-
ing techniques developed for multi-agent model-based diagnosis. Moreover, we have
extended the diagnostic theory enabling the prediction of future failure of actions.
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