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Abstract. We discuss the application of Model-Based Diagnosis in (agent-
based) planning. Here, a plan together with its executing agent is considered as a
system to be diagnosed. It is assumed that the execution of a plan can be moni-
tored by making partial observations of the results of actions. These observations
are used to explain the observed deviations from the plan by qualifying some
action instances that occur in the plan as behaving abnormally. Unlike in stan-
dard model-based diagnosis, however, in plan diagnosis we cannot assume that
actions fail independently. We focus on two sources of dependencies between
failures: such failings may occur as the result of malfunctioning of the executing
agent or may be caused by dependencies between action instances occurring in
a plan. Therefore, we introduce causal rules that relate health states of the agent
and health states of actions to abnormalities of other action instances. These rules
enable us to determine the underlying causes of plan failing and to predict future
anomalies in the execution of actions.

1 Introduction

The well-known quote: ”No plan survives its first contact with the enemy” should re-
mind us that diagnosis constitutes an unavoidable part of the plan execution process.1

Here, plan diagnosis might refer to quite different aspects of a failing plan in execution.
Since there is a huge number of potential factors that might influence, or even prevent,
correct plan execution, it is not surprising that current approaches to plan diagnosis are
rather diverse.

The aim of this paper is to adapt and extend a classical Model-Based Diagnosis
(MBD) approach to the diagnosis of plans. First, we will first show how a plan con-
sisting of a partially ordered set of actions can be viewed as a system to be diagnosed
by proposing an object oriented description of an action’s behavior. Given this view, a
diagnosis can be established using partial observations of a plan in progress.

Second, we introduce the concept of a causal diagnosis. Traditional MBD focuses
on minimal diagnosis based on the intuitively acceptable assumption that components
qualified as abnormal are failing independently from each other. However, as soon as
dependencies exist between such components, the choice for minimal diagnoses cannot

1 The quote is attributed to the Prussian Field Marshall Von Moltke.
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be justified. As we will argue, the existence of dependencies between failing actions in
a plan is often the rule instead of an exception.

Finally, we will introduce causal rules and causal diagnoses to predict future failings
of actions.

Related Work. We briefly discuss some other approaches to plan diagnosis. Similar to
our use of MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBD to
planning agents relating health states of agents to outcomes of their planning activities,
but they do not take into account faults that can be attributed to actions occurring in a
plan as a separate source of errors.

de Jonge et al. [5] propose another approach that directly applies model-based diag-
nosis to plan execution. Their paper focuses on agents each having an individual plan,
and where conflicts between these plans may arise (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountable for future
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [9,10] apply social diagnosis in order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors. Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors).

Lesser et al. [2,8] also apply diagnosis to (multi-agent) plans. Their research concen-
trates on the use of a causal model that can help an agent to refine its initial diagnosis
of a failing component (called a task) of a plan. While their approach in its ultimate
intentions comes close to our approach, their approach to diagnosis concentrates on
specifying the exact causes of the failing of one single component (tasks) of a plan.
Diagnosis is based on observations of a single component without taking into account
the consequences of failures of such a component w.r.t. the remaining plan.

Paper Outline. This paper is organized as follows. Section 2 introduces the preliminar-
ies of plan-based diagnosis, while Section 3 formalizes plan-based diagnosis. Section 4
extends the formalization to determining the agent’s health state. Section 5 concludes
the paper.

2 Preliminaries

Model Based Diagnosis. Classical Model-Based Diagnosis (MBD) [3,4,12] uses a
model of a system to identify causes of discrepancies between the observed behavior of
the system and the behavior predicted by the model. The model that is applied consists
of a set Comp of components, a set Mc of health modes for each component c ∈ Comp,
and a specification of a component’s behavior given a health mode. The result of MBD
is a suitable assignment of health modes to the components, called a diagnosis, such
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that the actually observed output is consistent with this health mode qualification or can
be explained by this qualification. Usually, in a diagnosis one requires the number of
components qualified as abnormal to be minimized.

States. We consider plan-based diagnosis as a simple extension of the model-based
diagnosis where the model is not a description of an underlying system but a plan of
an agent. Before we discuss plans, we discuss our object- or resource-based view on
the world, assuming that for the planning problem at hand, the world can be simply
described by a set Obj = {o1, o2, . . . , on} of objects, their respective value domains
Si and and their (current) values si ∈ Si.2 A state of the world σ then is an element of
S1 × S2 × . . . × Sn. It will not always be possible to give a complete state description.
Therefore, we introduce a partial state as an element π ∈ Si1 × Si2 × . . . × Sik

, where
1 ≤ k ≤ n and 1 ≤ i1 < . . . < ik ≤ n. We use O(π) to denote the set of objects
{oi1 , oi2 , . . . , oik

} ⊆ Obj specified in such a state π. The value sj of object oj ∈ O(π)
in π will be denoted by π(j). The value of an object oj ∈ Obj not occurring in a partial
state π is said to be unknown (or unpredictable) in π, denoted by ⊥. Partial states can be
ordered with respect to their information content: π is said to be contained in π′, denoted
by π � π′, iff O(π) ⊆ O(π′) and π′(j) = π(j) for every oj ∈ O(π). We say that two
partial states π, π′ are equivalent modulo a set of objects O, denoted by π =O π′, if for
every oj ∈ O, π(j) = π′(j). Finally, we define the partial state π restricted to a given
set O, denoted by π �O, as the state π′ � π such that O(π′) = O ∩ O(π).

Goals. An (elementary) goal g of an agent specifies a set of states an agent wants to
bring about using a plan. Here, we specify each such a goal g as a constraint, that is a
relation over some product Si1 × . . . × Sik

of domains.
We say that a goal g is satisfied by a partial state π, denoted by π |= g, if the

relation g contains at least one tuple (vi1 , vi2 , . . . , vik
) such that (vi1 , vi2 , . . . vik

) � π.
We assume each agent to have a set G of such elementary goals g ∈ G. We use π |= G
to denote that all goals in G hold in π, i.e. for all g ∈ G, π |= g.

Actions and Action Schemes. An action scheme or plan operator α is represented as
a function that replaces the values of a subset Oα ⊆ Obj by other values, dependent
upon the values of another set O′

α ⊇ Oα of objects. Hence, every action scheme α can
be modeled as a (partial) function fα : Si1 × . . . × Sik

→ Sj1 × . . . × Sjl
, where

1 ≤ i1 < . . . < ik ≤ n and {j1, . . . , jl} ⊆ {i1, . . . , ik}. The objects whose value
domains occur in dom(fα), the input resources of α, will be denoted by domO(α) =
{oi1 , . . . , oik

} and, likewise ranO(α) = {oj1 , . . . , ojl
} denotes the output resources

of α. Note that ranO(α) ⊆ domO(α). This functional specification fα constitutes the
normal behavior of the action scheme, denoted by fnor

α .
The correct execution of an action may fail either because of an inherent malfunc-

tioning or because of a malfunctioning of an agent responsible for executing the action,
or because of unknown external circumstances. In all these cases we would like to
model the effects of executing such failed actions. To keep the discussion simple, in
the sequel we only consider two health modes, the normal behavior mode: nor, and the

2 In contrast to the conventional approach to state-based planning, cf. [7].
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most general abnormal behavior mode: ab. The most general abnormal behavior of ac-
tion α is specified by the function fab

α , where fab
α (si1 , si2 , . . . , sik

) = (⊥, ⊥, . . . , ⊥).3

Given a set A of action schemes, we will need to consider a set A ⊆ inst(A) of
instances of actions in A. Such instances will be denoted by small roman letters ai.
If type(ai) = α ∈ A, ai is said to be of type α. If the context permits we will use
“actions” and “instances of actions” interchangeably.

Plans. A plan is a tuple P = 〈A, A, <〉 where A ⊆ Inst(A) is a set of instances
of actions occurring in A and (A, <) is a partial order. The partial order relation <
specifies a precedence relation between these instances: a < a′ implies that the instance
a must finish before the instance a′ may start. We will denote the transitive reduction
of < by �, i.e., � is the smallest subrelation of < such that the transitive closure �+

of � equals <.
We assume that if in a plan P two action instances a and a′ are independent, in prin-

ciple they may be executed concurrently. This means that the precedence relation < at
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assume < to satisfy the following concurrency requirement:

If ranO(a) ∩ domO(a′) �= ∅ then a < a′ or a′ < a.4

That is, for concurrent instances, domains and ranges do not overlap.

Example 1. Figure 1 gives an illustration of a plan. Arrows relate the objects an action
uses as inputs and produces as its outputs to the action itself. In this plan, the depen-
dency relation is specified as a1 � a3, a1 � a4, a2 � a4, a2 � a5, a4 � a7,
a5 � a8 and a4 � a6. Note that the last dependency has to be included because a6
changes the value of o2 needed by a4. The actions a4, a5 and a6 show that not every
object occurring in the domain of an action needs to be affected by the action.

3 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instance a a health mode ma ∈ {nor, ab} can
be assigned and the result is called a qualified plan. In establishing which part of the
plan fails, we are only interested in those actions qualified as abnormal. Therefore, we
define a qualified version PQ of a plan P = 〈A, A, <〉 as a tuple PQ = 〈A, A, <, Q〉,
where Q ⊆ A is the subset of instances of actions qualified as abnormal (and therefore,
A − Q the subset of actions qualified as normal).

Since a qualification Q corresponds to assigning the health mode ab to every action
in Q and since fab

a (si1 , si2 , . . . , sik
) = (⊥, ⊥, . . . , ⊥) for every action a ∈ Q with

type(a) = α, the results of anomalously executed actions are unpredictable.

Qualified Plan Execution. For simplicity, when a plan P is executed, we will assume
that every action takes a unit of time to execute. We are allowed to observe the execution

3 This definition implies that the behavior of abnormal actions is essentially unpredictable.
4 Note that since ranO(a) ⊆ domO(a), this requirement excludes overlapping ranges of con-

current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.
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Fig. 1. Plan execution with abnormal actions

of a plan P at discrete times t = 0, 1, 2, . . . , k where k is the depth of the plan, i.e.,
the longest <-chain of actions occurring in P . Let depthP (a) be the depth of action a
in plan P = 〈A, A, <〉.5 We assume that the plan starts to be executed at time t = 0
and that concurrency is fully exploited, i.e., if depthP (a) = k, then execution of a
has been completed at time t = k + 1. Thus, all actions a with depthP (a) = 0 are
completed at time t = 1 and every action a with depthP (a) = k will be started at
time k and will be completed at time k + 1. Note that thanks to the above specified
concurrency requirement, concurrent execution of actions having the same depth leads
to a well-defined result.

Let Pt denote the set of actions a with depthP (a) = t, let P>t =
⋃

t′>t Pt′ , P<t =
⋃

t′<t Pt′ and P[t,t′] =
⋃t′

k=t Pk. Execution of P on a given initial state σ0 will induce
a sequence of states σ0, σ1, . . . , σk, where σt+1 is generated from σt by applying the
set of actions Pt to σt. Generalizing to partial states and transitions from partial states,
we define the (predicted) effect of the execution of plan P on a given (partial) state π at
time t ≥ 0, denoted by (π, t).

We say that (π′, t + 1) is (directly) generated by execution of PQ from (π, t), ab-
breviated by (π, t) →Q;P (π′, t + 1), iff the following conditions hold:

1. π′ � ranO(a) = fnor
a (π � domO(a)) for each a ∈ Pt − Q such that domO(a) ⊆

O(π), that is, the consequences of all actions a enabled in π can be predicted and
occur in π′.6

5 Here, depthP (a) = 0 if {a′ |a′ � a} = ∅ and depthP (a) = 1 + max{depthP (a′) | a′ �
a}, else. If the context is clear, we often will omit the subscript P .

6 An action a is enabled in a state π if domO(a) ⊆ O(π).
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2. O(π′) ∩ ranO(a) = ∅ for each a ∈ Q ∩ Pt, since the result of executing an
abnormal action cannot be predicted (even if such an action is enabled in π);

3. O(π′) ∩ ranO(a) = ∅ for each a ∈ Pt with domO(a) �⊆ O(π), that is, even if
an action a is enabled in (the complete state) σt, if a is not enabled in π � σt, the
result is not predictable and therefore does not occur in π′, since it is not possible
to predict the consequences of actions that depend on values not defined in π.

4. π′(i) = π(i) for each oi �∈ ranO(Pt), that is, the value of any object not occurring
in the range of an action in Pt should remain unchanged. Here, ranO(Pt) is a
shorthand for the union of the sets ranO(a) with a ∈ Pt.

For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indirectly) generated
by execution of PQ from (π, t), denoted by (π, t) →∗

Q;P (π′, t′), iff the following
conditions hold:

1. if t = t′ then π′ = π;
2. if t′ ≥ t + 1 then (π, t) →Q;P (π′′, t + 1) and (π′′, t + 1) →∗

Q;P (π′, t′).

Note that (π, t) →∗
∅;P (π′, t′) denotes the normal execution of a normal plan P∅.

Example 2. Figure 1 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose action a3 is abnormal and generates a result that is unpredictable (⊥).
Given the qualification Q = {a3} and the partially observed state π0 at time point t = 0,
we predict the partial states πi as indicated in Figure 1, where (π0, t0) →∗

Q;P (πi, ti)
for i = 1, 2, 3. Note that since the value of o1 and of o5 cannot be predicted at time
t = 2, the result of action a6 and of action a8 cannot be predicted and π3 contains only
the value of o3.

Diagnosis. Suppose now that we have a (partial) observation obs(t) = (π, t) of the
state of the world at time t and an observation obs(t′) = (π′, t′) at time t′ > t ≥ 0
during the execution of the plan P . We would like to use these observations to infer
the health states of the actions occurring in P . Assuming a normal execution of P , we
can (partially) predict the state of the world at a time point t′ given the observation
obs(t): if all actions behave normally, we predict a partial state π′

∅
at time t′ such that

obs(t)→∗
P (π′

∅
, t′). Since we do not require observations to be made systematically,

O(π′) and O(π′
∅

) might only partially overlap. Therefore, if all actions are executed
normally, the values of the objects that occur in both the predicted state and the observed
state at time t′ should match, i.e, we should have

π′ =O(π′)∩O(π′
∅

) π′
∅

.

If this is not the case, the execution of some action instances must have gone wrong and
we have to determine a qualification Q such that the predicted state derived using Q
agrees with π′. This is nothing else then a straight-forward extension of the diagnosis
concept in MBD to plan diagnosis (cf. [4]):

Definition 1. Let P = 〈A, A, <〉be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P ) and let obs(t)→∗

Q;P (π′
Q, t′) be a deriva-

tion assuming a qualification Q.
Then Q is said to be a plan diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ =O(π′)∩O(π′

Q) π′
Q.
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So in a plan diagnosis Q the observed partial state (π′) at time t′ and the predicted
state (π′

Q) assuming the qualification Q at time t′ agree upon the values of all objects
occurring in both states.

Example 3. Consider again Figure 1 and suppose that we did not know that action
a3 was abnormal and that we observed obs(0) = ((s1, s2, s3, s4), 0) and obs(3) =
(s′1, s

′
3, s

′
5), 3). Using the normal plan derivation relation starting with obs(0) we will

predict a state π′
∅

at time t = 3 where π′
∅

= (s′′1 , s′′2 , s′′3 ). If everything is ok, the values
of the objects predicted as well as observed at time t = 3 should correspond, i.e. we
should have s′j = s′′j for j = 1, 3. If, for example, only s′1 would differ from s′′1 , then
we could qualify a6 as abnormal, since then the predicted state at time t = 3 using
Q = {a6} would be π′

Q = (s′′3) and this partial state agrees with the predicted state on
the value of o3.

Note that for all objects in O(π′)∩O(π′
Q), the qualification Q provides an explana-

tion for the observation π′ made at time point t′. Hence, for these objects the qualifica-
tion provides an abductive diagnosis [3] for the normal observations. For all observed
objects in O(π′) − O(π′

Q), no value can be predicted given the qualification Q. Hence,
by declaring them to be unpredictable, possible conflicts with respect to these objects
if a normal execution of all actions is assumed, are resolved. This corresponds with the
idea of a consistency-based diagnosis [12].

If Q is a plan diagnosis of 〈P, obs(t), obs(t′)〉, then every superset Q′ ⊇ Q is also
a plan diagnosis, since in that case we have π′

Q′ � π′
Q and therefore π′ =O(π′)∩O(π′

Q)

π′
Q implies π′ =O(π′)∩O(π′

Q′) π′
Q′ . Clearly then, the smaller a diagnosis is, the more

values it will predict that are also actually observed in the resulting plan state. This,
like in MBD, is a reason for us to prefer minimum diagnoses among the set of minimal
diagnoses.

But there is a caveat: a minimum diagnosis only minimizes abnormalities to ex-
plain deviations; as important however for a diagnosis might be its information content,
i.e. the exactness it provides in predicting the values of the variables occurring in the
observed state π′. This means that besides minimizing the cardinality of abnormalities
another criterion could be maximizing |O(π′) ∩ O(π′

Q)|.

Definition 2. Given plan observations 〈P, (π, t), (π′, t′)〉, a qualification Q is said to
be a minimum plan diagnosis if for every plan diagnosis Q′ it holds that |Q| ≤ |Q′|.

Q is said to be a maximum informative plan-diagnosis iff for all plan diagnoses Q∗,
it holds that |O(π′) ∩ O(π′

Q)| ≥ |O(π′) ∩ O(π′
Q∗ )|.

Note that every maximum informative diagnosis is a minimal diagnosis. So both
minimum plan diagnoses and maximum informative plan diagnoses are the result of
different criteria for selecting minimal diagnoses, as the following example shows:

Example 4. To illustrate the difference between minimum plan diagnosis and maximum
informative diagnosis, consider again the plan execution depicted in Figure 1. Given
obs(0) and obs(3) and a deviation in the value of o2 at time t = 3, there are three
possible minimum diagnoses: D1 = {a1}, D2 = {a3} and D3 = {a6}. D2 and D3 are
also maximum-informative diagnoses.
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4 Causes of Plan-Execution Failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of a
plan execution and the predicted effects. The reason is that often in a plan, instances of
actions do not fail independently. For example, suppose that we have a plan for carrying
luggage from a depot to a number of waiting planes. Such a plan might contain several
instances of a drive action pertaining to the same carrier controlled by an agent. Suppose
that an instance ai of some drive action (type) α behaves abnormally because of mal-
functioning of the carrier. Then it is reasonable to assume that other instances aj of the
same drive action that occur in the plan after ai can be predicted to behave abnormally,
too. Another possibility is that a number of instances of actions is related to the malfunc-
tioning of an agent executing several actions in the plan. For example, in the luggage
example, the carrier is controlled by a driving agent. If this agent itself is not functioning
well, all driving actions as well as loading and unloading actions might be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being
abnormal implies that other instances of actions must be qualified a being abnormal,
too. Minimum and information-maximum diagnosis do not take these dependencies
between action failures into account. Therefore, we must take into consideration the
underlying causes of a plan-execution failure.

Causal Rules. We consider a plan together with its executing agent as the system
to be diagnosed. An agent will be represented by a set H of specific health states.
To identify causes of action failures, we use a set R of causal rules in combination
with plan diagnosis. The intuitive idea behind causal rules is that the rules enables us to
predict failures of future actions given the agent’s health state and a set of failed actions.
A causal rule is a rule that can appear in the following forms:

(h; α1, α2, . . . , αk) → αk+1, where k ≥ 0, h ∈ H is a health state of the plan
executing agent and, for i = 1, 2 . . . , k + 1, αi ∈ A are action types. This
type of rule relates the occurrence of an agent health state h and a set of action
abnormalities occurring at time t to the inference of a failed action at time t+1.
If k = 0 and h �= nor, this rule establishes a health state as a single cause for
action failure.

To define the effect of applying R to a set of (unique) instances of actions occurring
in a plan, we first construct the set inst(R) of instance of actions with respect to given
plan P = 〈A, A, <〉as follows:

For every rule r of the form (h; α1, α2, . . . , αk) → αk+1 ∈ R, inst(R) con-
tains the instances (h; ai1 , ai2 , . . . , aik

) → aik+1 , whenever there exists a t ≥ 0
such that {ai1 , ai2 , . . . , aik

} ⊆ P≤t and aik+1 ∈ P>t.

Note that the failure of an action aik+1 only depends on ai1 , ai2 , . . . , aik
if the agent is

healthy: h = nor.
The intuitive idea behind a causal diagnosis is to be able to explain a given plan

diagnosis Q by a (usually smaller) set of qualifications (causes) Q′ together with some
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health state h of the agent established at time t using the set of causal rules R. Using
such a pair consisting of a health state and a qualification should enable us to generate,
using the rules in R, a set containing Q.

Definition 3. The set of a causal consequence CR,h(Q) of a qualification Q ⊂ A given
the health state h ∈ H and the causal rules R is defined as:

CR,h(Q) = CnA(inst(R) ∪ Q ∪ {h}).

Here, the instances of causal rules are interpreted as Horn clauses, Q and {h} as sets
of atoms, and Cn denotes the logical consequence operator.

To simplify the notation, we will omit the subscripts R and h from the operator C.
Now we define a causal diagnosis as a qualification Q such that its set of conse-

quences C(Q) constitutes a diagnosis:

Definition 4. Let P = 〈A, A, <〉 be a plan, R a set of causal rules and let obs(t)
and obs(t′) be two observations with t < t′. Then a qualification Q ⊆ A is a causal
diagnosis of (P, obs(t), obs(t′)) if C(Q) ∩ P[t;t′] is a diagnosis of (P, obs(t), obs(t′)).

Among the causal diagnoses, we distinguish minimum and maximum informative
causal diagnoses. Moreover, we distinguish closed set causal diagnoses; i.e. causal di-
agnoses Q such that C(Q) = Q.

Causal Diagnoses and Prediction. Except for playing a role in establishing causal
explanations of observations, (causal) diagnoses also can play a significant role in the
prediction of future results (states) of the plan or even the attainability of the goals of
the plan. First of all, we should realize that a diagnosis can be used to enhance observed
state information as follows: Suppose that Q is a causal diagnosis of a plan P based on
the observations obs(t) and obs(t′) for some t < t′, let obs(t) →∗

C(Q);P (π′
Q, t′) and

let obs(t′) = (π′, t′). Since C(Q) is a diagnosis, π′ and π′
Q agree upon the values of all

objects occurring in both states. Therefore we can combine the information contained
in both partial states by merging them into a new partial state π′

� = π′
Q � π′. Here, the

merge π1 � π2 of two partial states π1 and π2 is simply defined as the partial state π
where π(j) = πi(j) iff πi(j) is defined for i = 1, 2 and undefined else. π′� can be seen
as the partial state that can be obtained by direct observation at time t and indirectly by
making use of previous observations and plan information.

In the same way, we can use this information and the causal consequences C(Q) to
derive a prediction of the partial states derivable at times t′′ > t′:

Definition 5. Let Q is a causal diagnosis of a plan P based on the observations (π, t)
and (π′, t′) where t < t′. Furthermore, let obs(t)→∗

C(Q);P (π′
Q, t′) and let obs(t′) =

(π′, t′). Then, for some time t′′ > t′, (π′′, t′′) is the partial state predicted using Q and
the observations if (π′

Q � π′, t′)→∗
C(Q);P (π′′, t′′).

In particular, if t′′ = depth(P ), i.e., the plan has been executed completely, we can
predict the values of some objects that will result from executing P and we can check
which goals g ∈ G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which goals g ∈ G it holds that τ |= g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.
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5 Conclusion

We have presented a new object-oriented model to specify plans and to apply techniques
developed for model-based agent diagnosis. We distinguished two types of diagnosis:
minimum plan diagnosis and maximum informative diagnosis to identify (i) minimum
sets of anomalously executed actions and (ii) maximum informative (w.r.t. to predicting
the observations) sets of anomalously executed actions. Assuming that a plan is carried
out by a single agent, anomalously executed action can be correlated if the anomaly is
caused by some malfunctions in the agent. Therefore, (iii) causal diagnoses have been
introduced and we have extended the diagnostic theory enabling the prediction of future
failure of actions. We intend to extend our model along three lines. First, we wish to
extend the model such that the agent might evolve through several abnormal states. The
resulting model will be related to diagnosis in Discrete Event Systems [6,11]. Second,
we intend to investigate plan repair in the context of the agent’s current (abnormal)
state. Third, we would like to extend the diagnostic model with sequential observations
and iterative diagnoses.

References

1. L. Birnbaum, G. Collins, M. Freed, and B. Krulwich. Model-based diagnosis of planning
failures. In AAAI 90, pages 318–323, 1990.

2. N. Carver and V.R. Lesser. Domain monotonicity and the performance of local solutions
strategies for cdps-based distributed sensor interpretation and distributed diagnosis. Au-
tonomous Agents and Multi-Agent Systems, 6(1):35–76, 2003.

3. L. Console and P. Torasso. Hypothetical reasoning in causal models. International Journal
of Intelligence Systems, 5:83–124, 1990.

4. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7:133–141, 1991.

5. F. de Jonge and N. Roos. Plan-execution health repair in a multi-agent system. In PlanSIG
2004, 2004.

6. R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for failure
diagnosis of discrete-event systems. Journal of Discrete Event Dynamical Systems: Theory
and Application, 10:33–86, 2000.

7. R. E. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 5:189–208, 1971.

8. Bryan Horling, Brett Benyo, and Victor Lesser. Using Self-Diagnosis to Adapt Organiza-
tional Structures. In Proceedings of the 5th International Conference on Autonomous Agents,
pages 529–536. ACM Press, 2001.

9. M. Kalech and G. A. Kaminka. On the design of social diagnosis algorithms for multi-agent
teams. In IJCAI-03, pages 370–375, 2003.

10. M. Kalech and G. A. Kaminka. Diagnosing a team of agents: Scaling-up. In AAMAS 2004,
2004.
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