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Abstract. We discuss the application of Model-Based Diagnosis in (agent-based)
planning. Here, a plan together with its executing agent is considered as a system
to be diagnosed. It is assumed that the execution of a plan can be monitored by
making partial observations of the results of actions. These observations are used
to explain the observed deviations from the plan by qualifying some action in-
stances that occur in the plan as behaving abnormally. Unlike in standard model-
based diagnosis, however, in plan diagnosis we cannot assume that actions fail
independently. We focus on two sources of dependencies between failures: such
failings may occur as the result of malfunctioning of the executing agent or may
be caused by dependencies between action instances occurring in a plan. There-
fore, we introduce causal rules that relate health states of the agent and health
states of actions to abnormalities of other action instances. These rules enable us
to determine the underlying causes of plan failing and to predict future anomalies
in the execution of actions.

1 Introduction

The well-known quote:”No plan survives its first contact with the enemy”should re-
mind us thatdiagnosisconstitutes an unavoidable part of the plan execution process.3

Since there is a huge number of potential factors that might influence, or even prevent,
correct plan execution, it is not surprising that current approaches to plan diagnosis are
rather diverse.

The aim of this paper is to adapt and extend a classical Model-Based Diagnosis
(MBD) approach to the diagnosis of plans. To this end, first we will show how a plan
consisting of a partially ordered set of actions can be viewed as a system to be di-
agnosed and how a diagnosis can be established usingpartial observationsof a plan
in progress. Distinguishing between normal and abnormal execution of actions in a
plan, we then introduce sets of actions qualified as abnormal to explain the deviations
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between expected plan states and observed plan states. Hence, in this approach, a plan
diagnosis is just a set of abnormal actions that is able to explain the deviations observed.
Although plan diagnosis conceived in this way is a rather straightforward application
of MBD to plans, we do need to introduce new criteria for selecting acceptable plan
diagnoses: First of all, while in standard MBD usually subset-minimal diagnoses, or
within themminimum (cardinality)diagnoses, are preferred, we also prefermaximum
informativediagnoses. The latter type of diagnosis maximizes the exact similarity be-
tween predicted and observed plan states. Although maximum informative diagnoses
are always subset minimal, they are not necessarily of minimum cardinality. More dif-
ferences between MBD and plan diagnosis appear if we take a detailed look into the
reasons for choosing minimal diagnoses. The idea of establishing a minimal diagnosis
in MBD is governed by the principle ofminimal change: explain the abnormalities in
the behavior observed by changing the qualification from normal to abnormal for as
few system components as necessary. Using this principle is intuitively acceptable if
the components qualified as abnormal are failingindependently. However, as soon as
dependenciesexist between such components, the choice for minimal diagnoses cannot
be justified. As we will argue, the existence of dependencies between failing actions in
a plan is often the rule instead of an exception. Therefore, we will refine the concept of
a plan diagnosis by introducing the concept of acausal diagnosis. To establish such a
causal diagnosis, we consider both the executing agent and its plan as constituting the
system to be diagnosed and we explicitly relate health states of the executing agent and
subsets of (abnormally qualified) actions to the abnormality of other actions in the form
of causal rules. These rules enable us to replace a set of dependent failing actions (e.g. a
plan diagnosis) by a set of unrelatedcausesof the original diagnosis. This independent
and usually smaller set of causes constitutes a causal diagnosis, consisting of a health
state of an agent and an independent (possibly empty) set of failing actions. Such a
causal diagnosis always generates a cover of a minimal diagnosis. More importantly,
such causal diagnoses can also be used to predict failings of actions that have to be
executed in the plan and thereby also can be used to assess the consequences of such
failures for goal realizability.

This paper is organized as follows. First of all, in the next section, we place our
approach into perspective by discussing some related approaches to plan diagnosis.
Section 3 introduces the preliminaries of plan-based diagnosis, while Section 4 for-
malizes plan-based diagnosis. Section 5 extends the formalization to determining the
agent’s health state. Finally, we briefly discuss some computational aspects of (causal)
plan diagnosis.

2 Related research

In this section we briefly discuss some other approaches to plan diagnosis. Like we use
MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBD toplan-
ning agentsrelating health states of agents tooutcomesof their planning activities, but
not taking into account faults that can be attributed to actions occurring in a plan as a
separate source of errors. However, instead of focusing upon the relationship between
agent properties and outcomes of plan executions, we take a more detailed approach,



distinguishing two separate sources of errors (actions and properties of the executing
agents) and focusing upon the detection of anomalies during the plan execution. This
enables us to predict the outcomes of a plan on beforehand instead of using them only
as observations.

Another approach that directly applies model-based diagnosis to plan execution has
been proposed in [6]. Here, the authors focus on agents each having an individual plan,
and where conflicts between these plans may arise (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountable forfuture
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [10, 11] applysocial diagnosisin order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors. Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors). This approach might complement our ap-
proach when conflicts not only arise as the consequence of faulty actions, but also as
the consequence of different selections of sub-plans in a joint plan.

Lesser et al. [3, 9] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use of acausal modelthat can help an agent to refine its initial diagnosis
of a failingcomponent(called atask) of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. While their approach in its ultimate intentions (establishing
anomalies in order to find a suitable plan repair) comes close to our approach, their
approach to diagnosis concentrates on specifying the exact causes of the failing of one
singlecomponent(task) of a plan. Diagnosis is based on observations of a component
without taking into account the consequences of failures of such a component w.r.t. the
remaining plan. In our approach, instead, we are interested in applying MBD-inspired
methods todetectplan failures. Such failures are based on observations during plan ex-
ecution and may concern individual components of the plan, but also agent properties.
Furthermore, we do not only concentrate on failing components themselves, but also on
the consequences of these failures for the future execution of plan elements.

3 Preliminaries

3.1 Model based Diagnosis

In Model-Based Diagnosis (MBD) [4, 5, 13] a systemS is modeled as consisting of a
setComp of components and their relations, for each componentc ∈ Comp a setHc

of health modesis distinguished and for each health modehc ∈ Hc of each component
c a specific (input-output) behavior ofc is specified. Given some input toS, its output
is defined if the health mode of each componentc ∈ Comp is known. The diagnostic



engine is triggered whenever, under the assumption that all components are functioning
normally, there is a discrepancy between the output as predicted from the input obser-
vations, and the actually observed output. The result of MBD is a suitable assignment
of health modes to the components, called adiagnosis, such that the actually observed
output isconsistentwith this health mode qualification or can beexplainedby this
qualification. Usually, in a diagnosis one requires the number of components qualified
as abnormally to be minimized.

3.2 States

We consider plan-based diagnosis as a simple extension of model-based diagnosis where
the model is not a description of an underlying system but aplan of an agent. Before
we discuss plans, we discuss ourobject-or resource-basedview on the world, assum-
ing that for the planning problem at hand, the world can be simply described by a set
Obj = {o1, o2, . . . , on} of objects, their respectivevalue domainsSi and their (current)
valuessi ∈ Si.4 A state of the worldσ then is an element ofS1×S2× . . .×Sn. It will
not always be possible to give a complete state description. Therefore, we introduce a
partial stateas an elementπ ∈ Si1 × Si2 × . . . × Sik

, where1 ≤ k ≤ n and1 ≤
i1 < . . . < ik ≤ n. We useO(π) to denote the set of objects{oi1 , oi2 , . . . , oik

} ⊆ Obj
specified in such a stateπ. The valuesj of objectoj ∈ O(π) in π will be denoted by
π(j). The value of an objectoj ∈ Obj not occurring in a partial stateπ is said to be
unknown (or unpredictable) inπ, denoted by⊥. Partial states can be ordered with re-
spect to their information content:π is said to be contained inπ′, denoted byπ v π′, iff
O(π) ⊆ O(π′) andπ′(j) = π(j) for everyoj ∈ O(π). We say that two partial statesπ,
π′ areequivalentmodulo a set of objectsO, denoted byπ =O π′, if for everyoj ∈ O,
π(j) = π′(j). Finally, we define the partial stateπ restricted to a given setO, denoted
by π �O, as the stateπ′ v π such thatO(π′) = O ∩O(π).

3.3 Goals

An (elementary) goalg of an agent specifies a set of states an agent wants to bring about
using a plan. Here, we specify each such a goalg as a constraint, that is a relation over
some productSi1 × . . .× Sik

of domains.
We say that a goalg is satisfied by a partial stateπ, denoted byπ |= g, if the

relationg contains at least one tuple(vi1 , vi2 , . . . , vik
) such that(vi1 , vi2 , . . . vik

) v π.
We assume each agent to have a setG of such elementary goalsg ∈ G. We useπ |= G
to denote that all goals inG hold inπ, i.e. for allg ∈ G, π |= g.

3.4 Actions and action schemes

An action schemeor plan operatorα is represented as a function that replaces the values
of a subsetOα ⊆ Obj by other values, dependent upon the values of another setO′

α ⊇
Oα of objects. Hence, every action schemeα can be modeled as a (partial) function
fα : Si1 × . . . × Sik

→ Sj1 × . . . × Sjl
, where1 ≤ i1 < . . . < ik ≤ n and

4 In contrast to the conventional approach to state-based planning, cf. [8].



{j1, . . . , jl} ⊆ {i1, . . . , ik}. The objects whose value domains occur indom(fα) will
be denoted bydomO(α) = {oi1 , . . . , oik

} and, likewiseranO(α) = {oj1 , . . . , ojl
}.

Note that it is required thatranO(α) ⊆ domO(α). This functional specificationfα

constitutes thenormalbehavior of the action scheme, denoted byfnor
α .

Example 1.Figure 1 depicts two statesσ0 andσ1 (the white boxes) each characterized
by the values of four objectso1, o2, o3 ando4. The partial statesπ0 andπ1 (the gray
boxes) characterize a subset of values in a (complete) state. Action schemes are used to
model state changes. The domain of the action schemeα is the subset{o1, o2}, which
are denoted by the arrows pointing toα. The range ofα is the subset{o1}, which is
denoted by the arrow pointing fromα. Finally, the dashed arrow denotes that the value
of objecto2 is not changed by operator(s) causing the state change.

α

π0

π1

o1 o2 o3 o4

σ1

σ0

Fig. 1.Plan operators & states.

The correct execution of an action may fail either because of an inherent malfunc-
tioning or because of a malfunctioning of an agent responsible for executing the ac-
tion, or because of unknown external circumstances. In all these cases we would like
to model the effects of executing such failed actions. Therefore, we introduce a set of
health modesMα for each action schemeα. This setMα contains at least the normal
modenor, the modeab indicating the most general abnormal behavior, and possibly
several other specific fault modes. The most general abnormal behavior of actionα is
specified by the functionfab

α , wherefab
α (si1 , si2 , . . . , sik

) = (⊥,⊥, . . . ,⊥) for ev-
ery partial state(si1 , si2 , . . . , sik

) ∈ dom(fα).5 To keep the discussion simple, in the
sequel we distinguish only the health modesnor andab.

Given a setA of action schemes, we will need to consider a setA ⊆ inst(A) of
instancesof actions inA. Such instances will be denoted by small roman lettersai. If
type(ai) = α ∈ A, such an instanceai is said to be oftypeα. If the context permits
we will use “actions” and “instances of actions” interchangeably.

5 This definition implies that the behavior of abnormal actions is essentially unpredictable.



3.5 Plans

A plan is a tupleP = 〈A, A, <〉 whereA ⊆ Inst(A) is a set of instances of actions
occurring inA and (A,<) is a partial order. The partial order relation< specifies a
precedence relation between these instances:a < a′ implies that the instancea must
finish before the instancea′ may start. We will denote thetransitive reductionof < by
�, i.e.,� is the smallest subrelation of< such that the transitive closure�+ of �
equals<.

We assume that if in a planP two action instancesa anda′ are independent, in prin-
ciple they may be executed concurrently. This means that the dependency relation< at
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assume< to satisfy the followingconcurrency requirement:

If ranO(a) ∩ domO(a′) 6= ∅ thena < a′ or a′ < a.6

That is, for concurrent instances, domains and ranges do not overlap.

Example 2.Figure 2 gives an illustration of a plan. Arrows relate the objects an action
uses as inputs and the objects it produces as its outputs to the action itself. In this plan,
the dependency relation is specified asa1 � a3, a2 � a4, a4 � a5, a4 � a6 and
a1 � a5. Note that the last dependency has to be included becausea5 changes the
value ofo2 needed bya1. The actiona1 shows that not every object occurring in the
domain of an action need to be affected by the action. The actionsa5 anda6 illustrate
that concurrent actions may have overlapping domains.

4 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instancea a health modema ∈ {nor, ab} can
be assigned and the result is called aqualifiedplan. In establishing which part of the
plan fails, we are only interested in those actions qualifies as abnormal. Therefore, we
define a qualified versionPQ of a planP = 〈A, A, <〉 as a tuplePQ = 〈A, A, <,Q〉,
whereQ ⊆ A is the subset of instances of actions qualified as abnormal (and therefore,
A−Q the subset of actions qualified as normal).

Since a qualificationQ corresponds to assigning the health modeab to every action
in Q and sincefab

a (si1 , si2 , . . . , sik
) = (⊥,⊥, . . . ,⊥) for every actiona ∈ Q with

type(a) = α, the results of anomalously executed actions are unpredictable. Note that
a “normal” planP corresponds to the qualified planP∅ and furthermore that in our
context “undefined” is considered to be equivalent to “unpredictable”.

4.1 Qualified Plan execution

For simplicity, when a planP is executed, we will assume that every action takes a unit
of time to execute. We are allowed to observe the execution of a planP at discrete times

6 Note that sinceranO(a) ⊆ domO(a), this requirement excludes overlapping ranges of con-
current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.



Fig. 2. Plans and action instances. Each state characterizes the values of four objectso1, o2, o3

ando4. States are changed by application of action instances

t = 0, 1, 2, . . . , k wherek is the depth of the plan, i.e., the longest<-chain of actions
occurring inP . Let depthP (a) be the depth of actiona in planP = 〈A, A, <〉.7 We
assume that the plan starts to be executed at timet = 0 and that concurrency is fully
exploited, i.e., ifdepthP (a) = k, then execution ofa has been completed at time
t = k + 1. Thus, all actionsa with depthP (a) = 0 are completed at timet = 1 and
every actiona with depthP (a) = k will be started at timek and will be completed at
timek+1. Note that thanks to the above specified concurrency requirement, concurrent
execution of actions having the same depth leads to a well-defined result.

Let Pt denote the set of actionsa with depthP (a) = t, let P>t =
⋃

t′>t Pt′ , P<t =⋃
t′<t Pt′ andP[t,t′] =

⋃t′

k=t Pk. Execution ofP on a given initial stateσ0 will induce a
sequence of statesσ0, σ1, . . . , σk, whereσt+1 is generated fromσt by applying the set
of actionsPt to σt. Instead, however, of assuming total states and total state transitions,
we define the (predicted) effect of the execution of planP on a given (partial) stateπ at
time t ≥ 0, denoted by(π, t).

We say that(π′, t + 1) is (directly) generated by execution ofPQ from (π, t), ab-
breviated by(π, t) →Q;P (π′, t + 1), iff the following conditions hold:

1. π′ � ranO(a) = fnor
a (π � domO(a)) for eacha ∈ Pt − Q such thatdomO(a) ⊆

O(π), that is, the consequences of all actionsa enabled inπ can be predicted and
occur inπ′.8

7 Here,depthP (a) = 0 if {a′ |a′ � a} = ∅ anddepthP (a) = 1 + max{depthP (a′) | a′ �
a}, else. If the context is clear, we often will omit the subscriptP .

8 An actiona is enabled in a stateπ if domO(a) ⊆ O(π).



Fig. 3.Plan execution with abnormal actions

2. O(π′) ∩ ranO(a) = ∅ for eacha ∈ Q ∩ Pt, since the result of executing an
abnormal action cannot be predicted (even if such an action is enabled inπ);

3. O(π′) ∩ ranO(a) = ∅ for eacha ∈ Pt with domO(a) 6⊆ O(π), that is, even if
an actiona is enabled in (the complete state)σt, if a is not enabled inπ v σt, the
result is not predictable and therefore does not occur inπ′, since it is not possible
to predict the consequences of actions that depend on values not defined inπ.

4. π′(i) = π(i) for eachoi 6∈ ranO(Pt), that is, the value of any object not occurring
in the range of an action inPt should remain unchanged. Here,ranO(Pt) is a
shorthand for the union of the setsranO(a) with a ∈ Pt.

For arbitrary values oft ≤ t′ we say that(π′, t′) is (directly or indirectly) generated
by execution ofPQ from (π, t), denoted by(π, t) →∗

Q;P (π′, t′), iff the following
conditions hold:

1. if t = t′ thenπ′ = π;
2. if t′ = t + 1 then(π, t) →Q;P (π′, t′);
3. if t′ > t + 1 then there must exists some state(π′′, t′ − 1) such that(π, t) →∗

Q;P

(π′′, t′ − 1) and(π′′, t′ − 1) →Q;P (π′, t′).

Note that(π, t) →∗
∅;P (π′, t′) denotes the normal execution of a normal planP∅.

Such a normal plan execution will also be denoted by(π, t) →∗
P (π′, t′).

Example 3.Figure 3 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose actiona3 is abnormal and generates a result that is unpredictable (⊥).
Given the qualificationQ = {a3} and the partially observed stateπ0 at time pointt = 0,
we predict the partial statesπi as indicated in Figure 3, where(π0, t0) →∗

Q;P (πi, ti)
for i = 1, 2, 3. Note that since the value ofo1 and ofo5 cannot be predicted at time



t = 2, the result of actiona6 and of actiona8 cannot be predicted andπ3 contains only
the value ofo3.

4.2 Diagnosis

Suppose now that we have a (partial) observationobs(t) = (π, t) of the state of the
world at timet and an observationobs(t′) = (π′, t′) at timet′ > t ≥ 0 during the exe-
cution of the planP . We would like to use these observations to infer the health states of
the actions occurring inP . Assuming a normal execution ofP , we can (partially) pre-
dict the state of the world at a time pointt′ given the observationobs(t): if all actions
behave normally, we predict a partial stateπ′∅ at timet′ such thatobs(t)→∗

P (π′∅, t′).
Since we do not require observations to be made systematically,O(π′) and O(π′∅)
might only partially overlap. Therefore, if this assumption holds, the values of the ob-
jects that occur in both the predicted state and the observed state at timet′ should match,
i.e, we should have

π′ =O(π′)∩O(π′
∅) π′∅.

If this is not the case, the execution of some action instances must have gone wrong and
we have to determine a qualificationQ such that the predicted state derived usingQ
agrees withπ′. This is nothing else then a straight-forward extension of the diagnosis
concept in MBD to plan diagnosis (cf. [5]):

Definition 1. Let P = 〈A, A, <〉be a plan with observationsobs(t) = (π, t) and
obs(t′) = (π′, t′), wheret < t′ ≤ depth(P ) and letobs(t)→∗

Q;P (π′Q, t′) be a deriva-
tion assuming a qualificationQ. ThenQ is said to be aplan diagnosisof 〈P, obs(t), obs(t′)〉
iff π′ =O(π′)∩O(π′

Q) π′Q.

So in a plan diagnosisQ the observed partial state (π′) at timet′ and the predicted
state (π′Q) assuming the qualificationQ at timet′ agree upon the values of all objects
occurring in both states.

Example 4.Consider again Figure 3 and suppose that we did not know that action
a3 was abnormal and that we observedobs(0) = ((s1, s2, s3, s4), 0) and obs(3) =
(s′1, s

′
3, s

′
5), 3). Using the normal plan derivation relation starting withobs(0) we will

predict a stateπ′∅ at timet = 3 whereπ′∅ = (s′′1 , s′′2 , s′′3). If everything is ok, the values
of the objects predicted as well as observed at timet = 3 should correspond, i.e. we
should haves′j = s′′j for j = 1, 3. If, for example, onlys′1 would differ froms′′1 , then
we could qualifya6 as abnormal, since then the predicted state at timet = 3 using
Q = {a6} would beπ′Q = (s′′3) and this partial state agrees with the predicted state on
the value ofo3.

Note that for all objects inO(π′)∩O(π′Q), the qualificationQ provides anexplana-
tion for the observationπ′ made at time pointt′. Hence, for these objects the qualifica-
tion provides anabductive diagnosis[4] for the normal observations. For all observed
objects inO(π′)−O(π′Q), no value can be predicted given the qualificationQ. Hence,
by declaring them to be unpredictable, possible conflicts with respect to these objects
if a normal execution of all actions is assumed, are resolved. This corresponds with the
idea of aconsistency-based diagnosis[13].



If Q is a plan diagnosis of〈P, obs(t), obs(t′)〉, then every supersetQ′ ⊇ Q is also
a plan diagnosis, since in that case we haveπ′Q′ v π′Q and thereforeπ′ =O(π′)∩O(π′

Q)

π′Q implies π′ =O(π′)∩O(π′
Q′ )

π′Q′ . Clearly then, the smaller a diagnosis is, the more
values it will predict that are also actually observed in the resulting plan state. This,
like in MBD, is a reason for us to preferminimumdiagnoses among the set of minimal
diagnoses.

But there is a caveat: a minimum diagnosis only minimizes abnormalities to ex-
plain deviations; as important however for a diagnosis might be itsinformation content,
i.e. the exactness it provides in predicting the values of the variables occurring in the
observed stateπ′. This means that besidesminimizingthe cardinality of abnormalities
another criterion could bemaximizingthe exactness of the similarity by maximizing
|O(π′) ∩O(π′Q)| i.e. maximizing the number of variables having the same value in the
predicted state and the observed state. Therefore, besides a minimum diagnosis we also
define the notion of amaximum informative diagnosis:

Definition 2. Given plan observations〈P, (π, t), (π′, t′)〉, a qualificationQ is said to
be aminimum plan diagnosisif for every plan diagnosisQ′ it holds that|Q| ≤ |Q′|.

Q is said to be amaximum informative plan-diagnosisiff for all plan diagnosesQ∗,
it holds that|O(π′) ∩O(π′Q)| ≥ |O(π′) ∩O(π′Q∗)|.

Note that for every maximum informative diagnosisQ we haveO(π′) ∩ O(π′Q) ⊆
O(π′) ∩ O(π′∅), whereobs(t)→∗

∅;P (π′∅, t′) is the partial state derivation assuming a
normal planexecution.

Also note that every maximum informative diagnosis is a minimal diagnosis. So
both minimum plan diagnoses and maximum informative plan diagnoses are the result
of different criteria for selecting minimal diagnoses, as the following example shows:

Example 5.To illustrate the difference between minimum plan diagnosis en maximum
informative diagnosis, consider again the plan execution depicted in Figure 3. Given
obs(0) andobs(3) and a deviation in the value ofo2 at time t = 3, there are three
possible minimum diagnoses:D1 = {a1}, D2 = {a3} andD3 = {a6}. D2 andD3 are
also maximum-informative diagnoses.

5 Causes of plan-execution failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of
a plan execution and the predicted effects. The reason is that often in a plan instances
of actions do not fail independently. For example, suppose that we have a plan for car-
rying luggage from a depot to a number of waiting planes. Such a plan might contain
several instances of a drive action pertaining to the same carrier controlled by an agent.
Suppose that an instanceai of some drive action (type)α behaves abnormally because
of malfunctioning of the carrier. Then it is reasonable to assume that other instances
aj of the same drive action that occur in the planafter ai can be predicted to behave
abnormally, too. Another possibility is that a number of instances of actions is related
the malfunctioning of anagentexecuting several actions in the plan. For example, in



the luggage example, the carrier is controlled is by a driving agent. If this agent itself is
not functioning well, all driving actions as well as loading and unloading actions might
be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being ab-
normal implies that other instances of actions must be qualified a being abnormal, too.
Minimum and information-maximum diagnosis do not take into account these depen-
dencies between action failures. Therefore, we must take into consideration the under-
lying causesof a plan-execution failure.

5.1 Causal Rules

To be able to include a malfunctioning of an executing agent as a possible cause, we will
consider a plan together with its executing agent as the system to be diagnosed. Here, an
agent will be simply represented by a setH of specific health states. To identify causes
of action failures, we use a setR of causal rulesin combination with plan diagnosis. A
causal rule is a rule that can appear in the following forms:

– (α1, α2, . . . , αk) → αk+1, wherek ≥ 1 and, fori = 1, 2 . . . , k + 1, αi ∈ A are
action types. This type of rule relates the occurrence of a set of failed actions to the
occurrence of a failed action implied by them. The intuitive meaning of these rules
is that if during plan execution there are, fori = 1, . . . , k, action instancesai of
type αi that have been qualified as abnormal up to timet, then it is inferred that
from time t + 1 on all instances of actions of typeαk+1 will behave abnormally,
too.

– (h;α1, α2, . . . , αk) → αk+1, wherek ≥ 0, h ∈ H is a health state(h 6= nor)
of the plan executing agent and, fori = 1, 2 . . . , k + 1, αi ∈ A are action types.
This type of rule relates the occurrence of an agent abnormalityh and a set of action
abnormalities occurring at timet to the inference of a failed action at timet+1. The
intuitive meaning of such a rule is that if during plan execution at some timet′ ≤
t + 1 the agent operates in some abnormal health statesh and, fori = 1, 2, . . . , k,
there are action instancesai of typeαi that have been qualified as abnormal up to
timet, then it is inferred that from timet+1 on all instances of actions of typeαk+1

that occur in the plan will behave abnormally, too.9 If k = 0, this rule establishes a
health state as a single cause for action failure.

The intuitive idea behind a causal diagnosis is to be able to explain a given plan
diagnosisQ by a (usually smaller) set of qualifications (causes)Q′ together with some
health stateh of the agent established at timet using the set of causal rulesR. Using
such a pair consisting of a health state and a qualification should enable us to generate,
using the rules inR, a set containingQ.

To define the effect of applyingR to a set of (unique) instances of actions occurring
in a plan, we first construct the setinst(R) of instance of actions with respect to given
planP = 〈A, A, <〉 as follows:

9 We allow abnormal health states to be detected at the same time that abnormal action conse-
quences are generated.



– For every ruler of the form(α1, α2, . . . , αk) → αk+1 ∈ R, inst(R) contains an
instance(ai1 , ai2 , . . . , aik

) → aik+1 of r whenever there exists at ≥ 0 such that
{ai1 , ai2 , . . . , aik

} ⊆ P≤t andaik+1 ∈ P>t.
– For every ruler of the form(h;α1, α2, . . . , αk) → αk+1 ∈ R, inst(R) contains

the instances(h; ai1 , ai2 , . . . , aik
) → aik+1 , whenever there exists at ≥ 0 such

that{ai1 , ai2 , . . . , aik
} ⊆ P≤t andaik+1 ∈ P>t.

For eachr ∈ inst(R), let ante(r) denote the antecedent ofr andhd(r) denote the
head ofr. Furthermore, letAb ⊆ {h} be a set containing an abnormal agent health state
h or be equal to the empty set (signifying a normal state of the agent) and letQ ⊆ A
be a qualification of instances of actions. We can now define a causal consequence of a
qualificationQ and a health stateAb usingR as follows:

Definition 3. An instancea ∈ A is a causal consequence of a qualificationQ ⊂ A and
the health stateAb using the causal rulesR if

1. a ∈ Q or
2. there exists a ruler ∈ inst(R) such that

(a) for eachai ∈ ante(r) eitherai is a causal consequence ofQ or ai ∈ Ab, and
(b) a = hd(r).

The set of causal consequences ofQ usingR andAb is denoted byCR,Ab(Q).

We have a simple characterization of the set of causal consequencesCR,Ab(Q) of a
qualificationQ and a health stateAb using a set of causal rulesR:

Observation 1 CR,Ab(Q) = CnA(inst(R) ∪Q ∪Ab).

Here,CnA(X) restricts the set of the set of classical consequences of a set of proposi-
tionsX to the setLit(A). To avoid cumbersome notation, we will omit the subscripts
R andAb from the operatorC and useC(Q) to denote the set of consequences of a
qualificationQ using a health stateAb and a set of causal rulesR.

We say that a qualificationQ is closed under the set of rulesR and an agent health
stateAb if Q = C(Q), i.e,Q is saturated under application of the rulesR.

Proposition 1. The operatorC satisfies the following properties:

1. (inclusion): for everyQ ⊆ A, Q ⊆ C(Q)
2. (idempotency): for everyQ ⊆ A, C(Q) = C(C(Q))
3. (monotony): ifQ ⊆ Q′ ⊆ A thenC(Q) ⊆ C(Q′)

Proof. Note thatC(Q) = Cn(inst(R)∪Q∪Ab)∩A. Hence, monotony and inclusion
follow immediately as a consequence of the monotony and inclusion ofCn. Monotony
and inclusion implyC(Q) ⊆ C(C(Q)). To prove the reverse inclusion, letCn∗(Q) =
Cn(instr(R) ∪Q ∪Ab). Then by inclusion and idempotency ofCn we have

C(C(Q)) = Cn∗(C(Q)) ∩A ⊆ Cn∗(Cn∗(Q)) ∩A = Cn∗(Q) ∩A = C(Q)

�



Thanks to Proposition 1 we conclude that every qualification can be easily extended
to a closed setC(Q) of qualifications. Due to the presence of causal rules, we require
every diagnosisQ to be closed under the application of rules, that is, in the sequel we
restrict diagnoses to closed setsQ = C(Q).

Now we define a causal diagnosis as a qualificationQ such that its set of conse-
quencesC(Q) constitutes a diagnosis:

Definition 4. Let P = 〈A, A, <〉 be a plan,R a set of causal rules and letobs(t) and
obs(t′) be two observations witht < t′. Then a qualificationQ ⊆ A is a causalAb-
diagnosis of(P, obs(t), obs(t′)) if C(Q) ∩ P[t;t′] is a diagnosis of(P, obs(t), obs(t′)).

Like we defined a minimum diagnosis, we now define two kinds of minimum causal
diagnoses: a minimum causalsetdiagnosis and a minimum causaleffectdiagnosis:

Definition 5. Let P = 〈A, A, <〉 be a plan andobs(t) andobs(t′) with t < t′ be two
observations.

1. A minimum causal set diagnosisis a causal diagnosisQ such that|Q| ≤ |Q′| for
every causal diagnosisQ′ of P ;

2. A minimum causal effect diagnosisis a causal diagnosisQ such that|C(Q)| ≤
|C(Q′)| for every causal diagnosisQ′.

Maximum informative causal set and maximum informative causal effect diagnoses are
defined completely analogous to the previous definitions using standard diagnosis.

The relationships between the different diagnostic concepts we have distinguished
is partially summarized in the following proposition:

Proposition 2. LetP = 〈A, A, <〉 be a plan andobs(t) andobs(t′) with t < t′ be two
observations.

1. |Q| ≤ |Q′| for every minimum causal set diagnosisQ and minimum closed diag-
nosisQ′ of P ;

2. |Q| ≤ |Q′| for every minimum causal effect diagnosisQ and minimum closed
diagnosisQ′ of P

Proof. Both properties follow immediately from the definitions and the inclusion prop-
erty ofC. �

5.2 Causal diagnoses and Prediction

Except for playing a role in establishing causalexplanationsof observations, (causal)
diagnoses also can play a significant role in thepredictionof future results (states) of
the plan or even the attainability of the goals of the plan. First of all, we should realize
that a diagnosis can be used to enhance observed state information as follows: Suppose
thatQ is a causalAb-diagnosis of a planP based on the observationsobs(t) andobs(t′)
for somet < t′, let obs(t) →∗

C(Q);P (π′Q, t′) and letobs(t′) = (π′, t′). SinceC(Q)
is a diagnosis,π′ andπ′Q agree upon the values of all objects occurring in both states.
Therefore we can combine the information contained in both partial states by merging



them into a new partial stateπ′t = π′Q t π′. Here, the mergeπ1 t π2 of two partial
statesπ1 andπ2 is simply defined as the partial stateπ whereπj = πi

j iff πi
j is defined

for i = 1, 2 and undefined else.π′t can be seen as the partial state that can be obtained
by direct observation at timet and by making use of previous observations and plan
information.

In the same way, we can use this information and the causal consequencesC(Q) to
derive a prediction of the partial states derivable at timest′′ > t′:

Definition 6. Let Q is a causalAb-diagnosis of a planP based on the observations
(π, t) and(π′, t′) wheret < t′. Furthermore, letobs(t)→∗

C(Q);P (π′Q, t′) and letobs(t′) =
(π′, t′). Then, for some timet′′ > t′, (π′′, t′′) is the partial state predicted usingQ and
the observations if(π′Q t π′, t′)→∗

C(Q);P (π′′, t′′).

In particular, if t′′ = depth(P ), i.e., the plan has been executed completely, we can
predict the values of some objects that will result from executingP and we can check
which goalsg ∈ G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which goalsg ∈ G it holds thatτ |= g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.

5.3 Complexity and implementation issues

It is well-known that the diagnosis problem is computationally intractable. The decision
forms of both consistency-based and abductive based diagnosis are NP-hard ([2]). It is
easy to see that standard plan diagnosis has the same order of complexity. Concerning
(minimal) causal diagnoses, we can show that they are not more complex than estab-
lishing plan diagnoses if the latter problem is NP-hard. The reason is that in every case
the verification ofQ′ being anAb-causal diagnosis is as difficult as verifying a plan
diagnosis under the assumption that the setinstP (R) is polynomially bounded in the
size||P || of the planP .10 Also note that subset minimality (under a set of rulesinst(R)
of a set of causes can be checked in polynomial time.

The implementation of the diagnostic process is rather straight forward (see for
instance [13]). First, we have to predict the expected result of the plan keeping of the
actions involved in establishing the value of each object. Second, we determine which
of the predicted values conflict with observed values resulting in conflict sets. Third, we
have to solve a minimal hitting set problem given the conflict sets.

6 Conclusion

We have presented a new object-oriented model to specify plans and to apply techniques
developed for model-based agent diagnosis. We distinguished two types of diagnosis:
minimum plan diagnosis and maximum informative diagnosis to identify (i) minimum
sets of anomalously executed actions and (ii ) maximum informative (w.r.t. to predicting

10 The reason is that computing consequences of Horn-theories can be achieved in a time linear
in the size ofinstP (R).



the observations) sets of anomalously executed actions. Assuming that a plan is carried
out by a single agent, anomalously executed actions can be correlated if the anomaly is
caused by some malfunctions in the agent. Therefore, (iii ) causal diagnoses have been
introduced and we have extended the diagnostic theory enabling the prediction of future
failure of actions.

Current work can be extended in several ways. We mention two possible extensions:
First of all, we could improve the diagnostic model of the executing agent. The

causal diagnoses are based on the assumption that the agent enters an abnormal state
at some time point and stays in that state until the agent is repaired. In our future work
we wish to extend the model such that the agent might evolve through several abnormal
states. The resulting model will be related to diagnosis in Discrete Event Systems [7,
12]. Moreover, we intend to investigate plan repair in the context of the agent’s current
(abnormal) state.

Secondly, we would like to extend the diagnostic model with sequential observa-
tions and iterative diagnoses. Here, we would like to consider the possibilities of diag-
nosing a plan if more than two subsequent observations are made, the best way to detect
errors in such cases and the construction of enhanced prediction methods.
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