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Abstract. We adapt the Model-Based Diagnosis framework to perform (agent-
based) plan diagnosis. In plan diagnosis, the system to be diagnosed is a plan, con-
sisting of a partially ordered set of instances of actions, together with its executing
agent. The execution of a plan can be monitored by making partial observations
of the results of actions. Like in standard model-based diagnosis, observed devia-
tions from the expected outcomes are explained qualifying some action instances
that occur in the plan as behaving abnormally. Unlike in standard model-based
diagnosis, however, in plan diagnosis we cannot assume that actions fail indepen-
dently. We focus on two sources of dependencies between failures: dependencies
that arise as a result of a malfunction of the executing agent, and dependencies
that arise because of dependencies between action instances occurring in a plan.
Therefore, we introduce causal rules that relate health states of the agent and
health states of actions to abnormalities of other action instances. These rules en-
able us to introduce causal set and causal effect diagnoses that use the underlying
causes of plan failing to explain deviations and to predict future anomalies in the
execution of actions.

1 Introduction

In Model-Based Diagnosis (MBD) a model of a system consisting of components, their
interrelations and their behavior is used to establish why the system is malfunctioning.
Plans resemble such system specifications in the sense that plans also consist of com-
ponents (action specifications), their interrelations and a specification of the (correct)
behavior of each action. Based on this analogy, the aim of this paper is to adapt and
extend a classical Model-Based Diagnosis (MBD) approach to the diagnosis of plans.

To this end, we will first formally model a plan consisting of a partially ordered set
of actions as a system to be diagnosed, and subsequently we will describe how a diag-
nosis can be established usingpartial observationsof a plan in progress. Distinguishing
between normal and abnormal execution of actions in a plan, we will introduce sets of



actions qualified as abnormal to explain the deviations between expected plan states
and observed plan states. Hence, in this approach, a plan diagnosis is just a set of ab-
normal actions that is able to explain the deviations observed. Although plan diagnosis
conceived in this way is a rather straightforward application of MBD to plans, we do
need to introduce new criteria for selecting acceptable plan diagnoses: First of all, while
in standard MBD usually subset-minimal diagnoses, or within themminimum (cardi-
nality) diagnoses, are preferred, we also prefermaximum informativediagnoses. The
latter type of diagnosis maximizes the exact similarity between predicted and observed
plan states. Although maximum informative diagnoses are always subset minimal, they
are not necessarily of minimum cardinality. More differences between MBD and plan
diagnosis appear if we take a more detailed look into the reasons for choosing mini-
mal diagnoses. The idea of establishing a minimal diagnosis in MBD is governed by
the principle ofminimal change: explain the abnormalities in the behavior observed by
changing the qualification from normal to abnormal for as few system components as
necessary. Using this principle is intuitively acceptable if the components qualified as
abnormal are failingindependently. However, as soon asdependenciesexist between
such components, the choice for minimal diagnoses cannot be justified. As we will ar-
gue, the existence of dependencies between failing actions in a plan is often the rule
instead of an exception. Therefore, we will refine the concept of a plan diagnosis by
introducing the concept of acausal diagnosis. To establish such a causal diagnosis, we
consider both the executing agent and its plan as constituting the system to be diagnosed
and we explicitly relate health states of the executing agent and subsets of (abnormally
qualified) actions to the abnormality of other actions in the form of causal rules. These
rules enable us to replace a set of dependent failing actions (e.g. a plan diagnosis) by a
set of unrelatedcausesof the original diagnosis. This independent and usually smaller
set of causes constitutes a causal diagnosis, consisting of a health state of an agent and
an independent (possibly empty) set of failing actions. Such a causal diagnosis always
generates a cover of a minimal diagnosis. More importantly, such causal diagnoses can
also be used to predict failings of actions that have to be executed in the plan and thereby
also can be used to assess the consequences of such failures for goal realizability.

This paper is organized as follows. Section 2 introduces the preliminaries of plan-
based diagnosis, while Section 3 formalizes plan-based diagnosis. Section 4 extends the
formalization to determining the agent’s health state. Finally, we briefly discuss some
computational aspects of (causal) plan diagnosis. In Section 6, we place our approach
into perspective by discussing some related approaches to plan diagnosis. and Section
7 concludes the paper.

2 Preliminaries

Model based Diagnosis In Model-Based Diagnosis (MBD) [4, 5, 12] a systemS
is modeled as consisting of a setComp of components and their relations, for each
componentc ∈ Comp a setHc of health modesis distinguished and for each health
modehc ∈ Hc of each componentc a specific (input-output) behavior ofc is specified.
Given some input toS, its output is defined if the health mode of each component
c ∈ Comp is known. The diagnostic engine is triggered whenever, under the assumption



that all components are functioning normally, there is a discrepancy between the output
as predicted from the input observations, and the actually observed output. The result of
MBD is a suitable assignment of health modes to the components, called adiagnosis,
such that the actually observed output isconsistentwith this health mode qualification
or can beexplainedby this qualification. Usually, in a diagnosis one requires the number
of components qualified as abnormally to be minimized.

States and Partial States We consider plan-based diagnosis as a simple extension
of the model-based diagnosis where the model is not a description of an underlying
system but aplanof an agent. Before we discuss plans, we introduce a simplified state-
based view on the world, assuming that for the planning problem at hand, the world can
be simply described by a setVar = {v1, v2, . . . , vn} of variables and their respective
value domainsDi. A state of the worldσ then is a value assignmentσ(vi) = di ∈ Di

to the variables. We will denote a state simply by an element ofD1×D2× . . .×Dn, i.e.
ann-tuple of values. It will not always be possible to give a complete state description.
Therefore, we introduce apartial stateas an elementπ ∈ Di1 × Di2 × . . . × Dik

,
where1 ≤ k ≤ n and1 ≤ i1 < . . . < ik ≤ n. We useV ar(π) to denote the set of
variables{vi1 , vi2 , . . . , vik

} ⊆ Var specified in such a stateπ. The valuedj of variable
vj ∈ V ar(π) in π will be denoted byπ(j). The value of a variablevj ∈ Var not
occurring in a partial stateπ is said to beunknown(or unpredictable) inπ, denoted by
⊥. Including⊥ in every value domainDi allows us to consider every partial stateπ as
an element ofD1 ×D2 × . . .×Dn.

Partial states can be ordered with respect to their information content: Given values
d andd′, we say thatd ≤ d′ holds iff d = ⊥ or d = d′. The containment relationv
between partial states is the point-wise extension of≤ : π is said to be contained in
π′, denoted byπ v π′, iff ∀j[π(j) ≤ π(j′)]. Given a subset of variablesV ⊆ Var ,
two partial statesπ, π′ are said to beV -equivalent, denoted byπ =V π′, if for every
vj ∈ V , π(j) = π′(j). We define the partial stateπ restricted to a given setV , denoted
by π �V , as the stateπ′ v π such thatV ar(π′) = V ∩ V ar(π).

An important notion for diagnosis is the notion ofcompatibility between partial
states. Intuitively, two statesπ andπ′ are said to be compatible if there is no essential
disagreement about the values assigned to variables in the two states. That is, for every
j eitherπ(j) = π′(j) or at least one of the valuesπ(j) andπ′(j) is undefined. So we
defineπ andπ′ to be compatible, denoted byπ ≈ π′, iff ∀j[π(j) ≤ π′(j) or π′(j) ≤
π(j)]. As an easy consequence we have, using the notion ofV -equivalent states,π ≈ π′

iff π =V ar(π)∩V ar(π′) π′. Finally, if π andπ′ are compatible states they can bemerged
into thev-least stateπ t π′ containing them both:π t π′(j) = max≤{π(j), π′(j)}.
Goals An (elementary) goalg of an agent specifies a set of partial states an agent
wants to bring about using a plan. Here, we specify each such a goalg as a constraint,
that is a relation over some productDi1 × . . .×Dik

of domains.
We say that a goalg is satisfied by a partial stateπ, denoted byπ |= g, if the

relationg contains at least one tuple(di1 , di2 , . . . , dik
) such that(di1 , di2 , . . . dik

) v π.
We assume each agent to have a setG of such elementary goalsg ∈ G. We useπ |= G
to denote that all goals inG hold inπ, i.e. for allg ∈ G, π |= g.

Actions and action schemes An action schemeor plan operatorα is represented as
a function that replaces the values of a subsetVα ⊆ Var by other values, dependent



upon the values of another setV ′
α ⊇ Vα of variables. Hence, every action schemeα

can be modeled as a (partial) functionfα : Di1 × . . . × Dik
→ Dj1 × . . . × Djl

,
where1 ≤ i1 < . . . < ik ≤ n and{j1, . . . , jl} ⊆ {i1, . . . , ik}. The variables whose
value domains occur indom(fα) will be denoted bydomV ar(α) = {vi1 , . . . , vik

}
and, likewiseranV ar(α) = {vj1 , . . . , vjl

}. Note that it is required thatranV ar(α) ⊆
domV ar(α). This functional specificationfα constitutes thenormal behavior of the
action scheme, denoted byfnor

α .

Example 1.Figure 1 depicts two statesσ0 andσ1 (the white boxes) each characterized
by the values of four variablesv1, v2, v3 andv4. The partial statesπ0 andπ1 (the gray
boxes) characterize a subset of values in a (complete) state. Action schemes are used to
model state changes. The domain of the action schemeα is the subset{v1, v2}, which
are denoted by the arrows pointing toα. The range ofα is the subset{v1}, which is
denoted by the arrow pointing fromα. Finally, the dashed arrow denotes that the value
of variablev2 is not changed by operator(s) causing the state change.

a1

π0

π1

v1 v2 v3 v4

Fig. 1.Plan operators & states.

The correct execution of an action may fail either because of an inherent malfunctioning
or because of a malfunctioning of an agent responsible for executing the action, or
because of unknown external circumstances. In all these cases we would like to model
the effects of executing such failed actions. Therefore, we introduce a set ofhealth
modesMα for each action schemeα. This setMα contains at least the normal mode
nor, the modeab indicating the most general abnormal behavior, and possibly several
other specific fault modes. The most general abnormal behavior of actionα is specified
by the functionfab

α , wherefab
α (di1 , di2 , . . . , dik

) = (⊥,⊥, . . . ,⊥) for every partial
state(di1 , di2 , . . . , dik

) ∈ dom(fα).4 To keep the discussion simple, in the sequel we
distinguish only the health modesnor andab.

Given a setA of action schemes, we will need to consider a setA ⊆ inst(A) of
instancesof actions inA. Such instances will be denoted by small roman lettersai. If
type(ai) = α ∈ A, such an instanceai is said to be oftypeα. If the context permits
we will use “actions” and “instances of actions” interchangeably.

4 This definition implies that the behavior of abnormal actions is essentially unpredictable.



Plans A plan is a tupleP = 〈A, A, <〉 whereA ⊆ Inst(A) is a set of instances
of actions occurring inA and (A,<) is a partial order. The partial order relation<
specifies a precedence relation between these instances:a < a′ implies that the instance
a must finish before the instancea′ may start. We will denote thetransitive reduction
of < by�, i.e.,� is the smallest subrelation of< such that the transitive closure�+

of � equals<.
We assume that if in a planP two action instancesa anda′ are independent, in prin-

ciple they may be executed concurrently. This means that the dependency relation< at
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assume< to satisfy the followingconcurrency requirement:

If ranV ar(a) ∩ domV ar(a′) 6= ∅ thena < a′ or a′ < a.5

That is, for concurrent instances, domains and ranges do not overlap.

Example 2.Figure 2 gives an illustration of a plan. Arrows relate the variables an action
uses as inputs and the variables it produces as its outputs to the action itself. In this
plan, the dependency relation is specified asa1 � a3, a2 � a4, a4 � a5, a4 � a6

anda1 � a5. Note that the last dependency has to be included becausea5 changes the
value ofv2 needed bya1. The actiona1 shows that not every variable occurring in the

π3

a1 a2

a3 a4

a5 a6

π2

π1

π0

v1 v2 v3 v4

Fig. 2. Plans and action instances. Each state characterizes the values of four variablesv1, v2, v3

andv4. States are changed by application of action instances

domain of an action need to be affected by the action. The actionsa5 anda6 illustrate
that concurrent actions may have overlapping domains.

5 Note that sinceranV ar(a) ⊆ domV ar(a), this requirement excludes overlapping ranges of
concurrent actions, but domains of concurrent actions are allowed to overlap as long as the
values of the variables in the overlapping domains are not affected by the actions.



3 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instancea a health modema ∈ {nor, ab} can
be assigned and the result is called aqualifiedplan. In establishing which part of the
plan fails, we are only interested in those actions qualifies as abnormal. Therefore, we
define a qualified versionPQ of a planP = 〈A, A, <〉 as a tuplePQ = 〈A, A, <,Q〉,
whereQ ⊆ A is the subset of instances of actions qualified as abnormal (and therefore,
A−Q the subset of actions qualified as normal).

Since a qualificationQ corresponds to assigning the health modeab to every action
in Q and sincefab

a (di1 , di2 , . . . , dik
) = (⊥,⊥, . . . ,⊥) for every actiona ∈ Q with

type(a) = α, the results of anomalously executed actions are unpredictable. Note that
a “normal” planP corresponds to the qualified planP∅ and furthermore that in our
context “undefined” is considered to be equivalent to “unpredictable”.

3.1 Qualified Plan execution

For simplicity, when a planP is executed, we will assume that every action takes a unit
of time to execute. We are allowed to observe the execution of a planP at discrete times
t = 0, 1, 2, . . . , k wherek is the depth of the plan, i.e., the longest<-chain of actions
occurring inP . Let depthP (a) be the depth of actiona in planP = 〈A, A, <〉. Here,
depthP (a) = 0 if {a′ |a′ � a} = ∅ anddepthP (a) = 1 + max{depthP (a′) | a′ �
a}, else. If the context is clear, we often will omit the subscriptP . We assume that the
plan starts to be executed at timet = 0 and that concurrency is fully exploited, i.e., if
depthP (a) = k, then execution ofa has been completed at timet = k + 1. Thus, all
actionsa with depthP (a) = 0 are completed at timet = 1 and every actiona with
depthP (a) = k will be started at timek and will be completed at timek + 1. Note that
thanks to the above specified concurrency requirement, concurrent execution of actions
having the same depth leads to a well-defined result.

Let Pt denote the set of actionsa with depthP (a) = t, let P>t =
⋃

t′>t Pt′ , P<t =⋃
t′<t Pt′ andP[t,t′] =

⋃t′

k=t Pk. Execution ofP on a given initial stateσ0 will induce a
sequence of statesσ0, σ1, . . . , σk, whereσt+1 is generated fromσt by applying the set
of actionsPt to σt. Instead, however, of assuming total states and total state transitions,
we define the (predicted) effect of the execution of planP on a given (partial) stateπ at
time t ≥ 0, denoted by(π, t).

We say that(π′, t + 1) is (directly) generated by execution ofPQ from (π, t), ab-
breviated by(π, t) →Q;P (π′, t + 1), iff the following conditions hold:

1. π′ �ranV ar(a) = fnor
a (π �domV ar(a)) for eacha ∈ Pt−Q such thatdomV ar(a) ⊆

V ar(π), that is, the consequences of all actionsa enabled inπ can be predicted and
occur inπ′.6

2. V ar(π′) ∩ ranV ar(a) = ∅ for eacha ∈ Q ∩ Pt, since the result of executing an
abnormal action cannot be predicted (even if such an action is enabled inπ);

6 An actiona is enabled in a stateπ if domV ar(a) ⊆ V ar(π).
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Fig. 3.Plan execution with abnormal actions

3. V ar(π′) ∩ ranV ar(a) = ∅ for eacha ∈ Pt with domV ar(a) 6⊆ V ar(π), that
is, even if an actiona is enabled in (the complete state)σt, if a is not enabled in
π v σt, the result is not predictable and therefore does not occur inπ′, since it
is not possible to predict the consequences of actions that depend on values not
defined inπ.

4. π′(i) = π(i) for eachvi 6∈ ranV ar(Pt), that is, the value of any variable not occur-
ring in the range of an action inPt should remain unchanged. Here,ranV ar(Pt) is
a shorthand for the union of the setsranV ar(a) with a ∈ Pt.

For arbitrary values oft ≤ t′ we say that(π′, t′) is (directly or indirectly) generated
by execution ofPQ from (π, t), denoted by(π, t) →∗

Q;P (π′, t′), iff the following
conditions hold:

1. if t = t′ thenπ′ = π;
2. if t′ = t + 1 then(π, t) →Q;P (π′, t′);
3. if t′ > t + 1 then there must exists some state(π′′, t′ − 1) such that(π, t) →∗

Q;P

(π′′, t′ − 1) and(π′′, t′ − 1) →Q;P (π′, t′).

Note that(π, t) →∗
∅;P (π′, t′) denotes the normal execution of a normal planP∅.

Such a normal plan execution will also be denoted by(π, t) →∗
P (π′, t′).

Example 3.Figure 3 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose actiona3 is abnormal and generates a result that is unpredictable (⊥).
Given the qualificationQ = {a3} and the partially observed stateπ0 at time pointt = 0,
we predict the partial statesπi as indicated in Figure 3, where(π0, t0) →∗

Q;P (πi, ti)
for i = 1, 2, 3. Note that since the value ofv1 and ofv5 cannot be predicted at time
t = 2, the result of actiona6 and of actiona8 cannot be predicted andπ3 contains only
the value ofv3.



3.2 Diagnosis

Suppose now that we have a (partial) observationobs(t) = (π, t) of the state of the
world at timet and an observationobs(t′) = (π′, t′) at timet′ > t ≥ 0 during the exe-
cution of the planP . We would like to use these observations to infer the health states of
the actions occurring inP . Assuming a normal execution ofP , we can (partially) pre-
dict the state of the world at a time pointt′ given the observationobs(t): if all actions
behave normally, we predict a partial stateπ′∅ at timet′ such thatobs(t)→∗

P (π′∅, t′).
There does not need to be a strict correspondence between the variablespredicted

at timet′ and the variablesobserved at timet′. That is,V ar(π′) andV ar(π′∅) need
not to be identical sets. This means that to check whether the predicted state matches
the observed state at timet′, we have to verify whether the variables occurring in both
V ar(π′) and V ar(π′∅) have identical values, that is whetherπ′(j) = π′∅(j) holds
for all vj ∈ V ar(π′) ∩ V ar(π′∅). Therefore, these states match exactly if they are
compatible i.e.π′ ≈ π′∅ holds.7

If this is not the case, the execution of some action instances must have gone wrong
and we have to determine a qualificationQ such that the predicted stateπ′Q derived
usingQ is compatible withπ′. Hence, we have the following straight-forward extension
of the diagnosis concept in MBD to plan diagnosis (cf. [5]):

Definition 1. Let P = 〈A, A, <〉 be a plan with observationsobs(t) = (π, t) and
obs(t′) = (π′, t′), wheret < t′ ≤ depth(P ) and letobs(t)→∗

Q;P (π′Q, t′) be a deriva-
tion assuming a qualificationQ.

ThenQ is said to be aplan diagnosisof 〈P, obs(t), obs(t′)〉 iff π′ ≈ π′Q.

Example 4.Consider again Figure 3 and suppose that we did not know that action
a3 was abnormal and that we observedobs(0) = ((d1, d2, d3, d4), 0) andobs(3) =
((d′1, d

′
3, d

′
5), 3). Using the normal plan derivation relation starting withobs(0) we will

predict a stateπ′∅ at timet = 3 whereπ′∅ = (d′′1 , d′′2 , d′′3). If everything is ok, the values
of the variables predicted as well as observed at timet = 3 should correspond, i.e. we
should haved′j = d′′j for j = 1, 3. If, for example, onlyd′1 would differ fromd′′1 , then
we could qualifya6 as abnormal, since then the predicted state at timet = 3 using
Q = {a6} would beπ′Q = (d′′3) and this partial state agrees with the predicted state on
the value ofv3.

Note that for all variables inV ar(π′) ∩ V ar(π′Q), the qualificationQ provides an
explanationfor the observationπ′ made at time pointt′. Hence, for these variables
the qualification provides anabductive diagnosis[4] for the normal observations. For
all observed variables inV ar(π′) − V ar(π′Q), no value can be predicted given the
qualificationQ. Hence, by declaring them to be unpredictable, possible conflicts with
respect to these variables if a normal execution of all actions is assumed, are resolved.
This corresponds with the idea of aconsistency-based diagnosis[12].

The following observation shows that we might easily trivialize plan diagnoses:

Observation 1 If Q ⊂ A is a plan diagnosis of〈P, obs(t), obs(t′)〉, then every superset
Q′ ⊇ Q is also a plan diagnosis and in particularA is always a plan diagnosis.

7 See the definition in the preliminaries.



The reason is that(i) Q′ ⊇ Q impliesπ′Q′ v π′Q whereπ′Q′ andπ′Q are the predicted
states using the qualificationsQ andQ′, respectively and(ii) π′Q ≈ π′ andπ′Q′ v π′Q,
using the definition of≈, immediately imply thatπ′Q′ ≈ π′, i.e.,Q′ is a diagnosis as
well. Since in particularA ⊇ Q for every qualificationQ, A is a diagnosis whenever
there has been found any diagnosis.

Clearly then, the smaller a diagnosis is, the more values it will predict that are also
actually observed in the resulting plan state. This, like in MBD, is a reason for us to
prefersubset-minimaldiagnoses and especiallyminimumdiagnoses among the set of
minimal diagnoses.

But there is a caveat: a minimum diagnosis only minimizes the number of abnormal
actions to explain deviations; as important however for a diagnosis might be itsinfor-
mation content, i.e. the exactness it provides in predicting the values of the variables
occurring in the observed stateπ′. This means that besidesminimizingthe cardinality
of abnormalities another criterion could bemaximizingthe exactness of the similarity
by maximizing |V ar(π′) ∩ V ar(π′Q)| i.e. maximizing the number of variables hav-
ing the same value in the predicted state and the observed state. Therefore, besides a
minimum diagnosis we also define the notion of amaximum informative diagnosis:

Definition 2. Given plan observations〈P, (π, t), (π′, t′)〉, a qualificationQ is said to
be aminimum plan diagnosisif for every plan diagnosisQ′ it holds that|Q| ≤ |Q′|.

Q is said to be amaximum informative plan-diagnosisiff for all plan diagnosesQ∗,
it holds that|V ar(π′) ∩ V ar(π′Q)| ≥ |V ar(π′) ∩ V ar(π′Q∗)|.

Note that for every maximum informative diagnosisQ we haveV ar(π′)∩V ar(π′Q) ⊆
V ar(π′)∩V ar(π′∅), whereobs(t)→∗

∅;P (π′∅, t′) is the partial state derivation assuming
anormal planexecution.

Also note that every maximum informative diagnosis is a minimal diagnosis. So
both minimum plan diagnoses and maximum informative plan diagnoses are the result
of different criteria for selecting minimal diagnoses, as the following example shows:

Example 5.To illustrate the difference between minimum plan diagnosis and maximum
informative diagnosis, consider again the plan execution depicted in Figure 3. Given
obs(0) andobs(3) and a deviation in the value ofv2 at time t = 3, there are three
possible minimum diagnoses:D1 = {a1}, D2 = {a3} andD3 = {a6}. D2 andD3 are
also maximum-informative diagnoses.

4 Causes of plan-execution failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of
a plan execution and the predicted effects. The reason is that often in a plan instances
of actions do not fail independently. For example, suppose that we have a plan for car-
rying luggage from a depot to a number of waiting planes. Such a plan might contain
several instances of a drive action pertaining to the same carrier controlled by an agent.
Suppose that an instanceai of some drive action (type)α behaves abnormally because



of malfunctioning of the carrier. Then it is reasonable to assume that other instances
aj of the same drive action that occur in the planafter ai can be predicted to behave
abnormally, too. Another possibility is that a number of instances of actions is related
to the malfunctioning of anagentexecuting several actions in the plan. For example, in
the luggage example, the carrier is controlled by a driving agent. If this agent itself is
not functioning well, all driving actions as well as loading and unloading actions might
be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being ab-
normal implies that other instances of actions must be qualified a being abnormal, too.
Minimum and information-maximum diagnosis do not take into account these depen-
dencies between action failures. Therefore, we must take into consideration the under-
lying causesof a plan-execution failure.

4.1 Causal Rules

To be able to include a malfunctioning of an executing agent as a possible cause, we will
consider a plan together with its executing agent as the system to be diagnosed. Here, an
agent will be simply represented by a setH of specific health states. To identify causes
of action failures, we use a setR of causal rulesin combination with plan diagnosis. A
causal rule is a rule that can appear in the following forms:

– (α1, α2, . . . , αk) → αk+1, wherek ≥ 1 and fori = 1, 2 . . . , k + 1, αi ∈ A are
action types. This type of rule relates the occurrence of a set of failed actions to the
occurrence of a failed action implied by them. The intuitive meaning of these rules
is that if during plan execution there are, fori = 1, . . . , k, action instancesai of
type αi that have been qualified as abnormal up to timet, then it is inferred that
from time t + 1 on all instances of actions of typeαk+1 will behave abnormally,
too.

– (h;α1, α2, . . . , αk) → αk+1, wherek ≥ 0, h ∈ H is a health state(h 6= nor)
of the plan executing agent and, fori = 1, 2 . . . , k + 1, αi ∈ A are action types.
This type of rule relates the occurrence of an agent abnormalityh and a set of action
abnormalities occurring at timet to the inference of a failed action at timet+1. The
intuitive meaning of such a rule is that if during plan execution at some timet′ ≤
t + 1 the agent operates in some abnormal health statesh and, fori = 1, 2, . . . , k,
there are action instancesai of typeαi that have been qualified as abnormal up to
timet, then it is inferred that from timet+1 on all instances of actions of typeαk+1

that occur in the plan will behave abnormally, too.8 If k = 0, this rule establishes a
health state as a single cause for action failure.

The intuitive idea behind a causal diagnosis is to be able to explain a given plan
diagnosisQ by a (usually smaller) set of qualifications (causes)Q′ together with some
health stateh of the agent established at timet using the set of causal rulesR. Using

8 We allow abnormal health states to be detected at the same time that abnormal action conse-
quences are generated.



such a pair consisting of a health state and a qualification should enable us to generate,
using the rules inR, a set containingQ.

To define the effect of applyingR to a set of (unique) instances of actions occurring
in a plan, we first construct the setinst(R) of instance of actions with respect to given
planP = 〈A, A, <〉 as follows:

– For every ruler of the form(α1, α2, . . . , αk) → αk+1 ∈ R, inst(R) contains an
instance(ai1 , ai2 , . . . , aik

) → aik+1 of r whenever there exists at ≥ 0 such that
{ai1 , ai2 , . . . , aik

} ⊆ P≤t andaik+1 ∈ P>t.
– For every ruler of the form(h;α1, α2, . . . , αk) → αk+1 ∈ R, inst(R) contains

the instances(h; ai1 , ai2 , . . . , aik
) → aik+1 , whenever there exists at ≥ 0 such

that{ai1 , ai2 , . . . , aik
} ⊆ P≤t andaik+1 ∈ P>t.

For eachr ∈ inst(R), let ante(r) denote the antecedent ofr andhd(r) denote the
head ofr. Furthermore, letAb ⊆ {h} be a set containing an abnormal agent health state
h or be equal to the empty set (signifying a normal state of the agent) and letQ ⊆ A
be a qualification of instances of actions. We can now define a causal consequence of a
qualificationQ and a health stateAb usingR as follows:

Definition 3. An instancea ∈ A is a causal consequence of a qualificationQ ⊂ A and
the health stateAb using the causal rulesR if

1. a ∈ Q or
2. there exists a ruler ∈ inst(R) such that(i) for eachai ∈ ante(r) eitherai is a

causal consequence ofQ or ai ∈ Ab, and(ii) a = hd(r).

The set of causal consequences ofQ usingR andAb is denoted byCR,Ab(Q).

We have a simple characterization of the set of causal consequencesCR,Ab(Q) of a
qualificationQ and a health stateAb using a set of causal rulesR:

Observation 2 CR,Ab(Q) = CnA(inst(R) ∪Q ∪Ab).

Here,CnA(X) restricts the setCn(X) of classical consequences of a set of proposi-
tions X to the consequences occurring inA. To avoid cumbersome notation, we will
omit the subscriptsR andAb from the operatorC and useC(Q) to denote the set of
consequences of a qualificationQ using a health stateAb and a set of causal rulesR.
We say that a qualificationQ is closedunder the set of rulesR and an agent health state
Ab if Q = C(Q), i.e,Q is saturated under application of the rulesR.

Proposition 1. The operatorC satisfies the following properties:

1. (inclusion): for everyQ ⊆ A, Q ⊆ C(Q)
2. (idempotency): for everyQ ⊆ A, C(Q) = C(C(Q))
3. (monotony): ifQ ⊆ Q′ ⊆ A thenC(Q) ⊆ C(Q′)

Proof. Note thatC(Q) = Cn(inst(R)∪Q∪Ab)∩A. Hence, monotony and inclusion
follow immediately as a consequence of the monotony and inclusion ofCn. Monotony
and inclusion implyC(Q) ⊆ C(C(Q)). To prove the reverse inclusion, letCn∗(Q) =
Cn(instr(R) ∪Q ∪Ab). Then by inclusion and idempotency ofCn we have
C(C(Q)) = Cn∗(C(Q)) ∩A ⊆ Cn∗(Cn∗(Q)) ∩A = Cn∗(Q) ∩A = C(Q). �



Thanks to Proposition 1 we conclude that every qualification can be easily extended
to a closed setC(Q) of qualifications. Due to the presence of causal rules, we require
every diagnosisQ to be closed under the application of rules, that is in the sequel we
restrict diagnoses to closed setsQ = C(Q).

We define a causal diagnosis as a qualificationQ such that its set of consequences
C(Q) constitutes a diagnosis:

Definition 4. Let P = 〈A, A, <〉 be a plan,R a set of causal rules and letobs(t)
andobs(t′) be two observations witht < t′. Then a qualificationQ ⊆ A is a causal
diagnosis of(P, obs(t), obs(t′)) if C(Q) ∩ P[t;t′] is a diagnosis of(P, obs(t), obs(t′)).

Like we defined a minimum diagnosis, we now define two kinds of minimum causal
diagnoses: a minimum causalsetdiagnosis and a minimum causaleffectdiagnosis:

Definition 5. Let P = 〈A, A, <〉 be a plan andobs(t) andobs(t′) with t < t′ be two
observations.

1. A minimum causal set diagnosisis a causal diagnosisQ such that|Q| ≤ |Q′| for
every causal diagnosisQ′ of P ;

2. A minimum causal effect diagnosisis a causal diagnosisQ such that|C(Q)| ≤
|C(Q′)| for every causal diagnosisQ′.

Maximum informative causal set and maximum informative causal effect diagnoses are
defined completely analogous to the previous definitions using standard diagnosis.

The relationships between the different diagnostic concepts we have distinguished
is partially summarized in the following proposition:

Proposition 2. LetP = 〈A, A, <〉 be a plan andobs(t) andobs(t′) with t < t′ be two
observations.

1. |Q| ≤ |Q′| for every minimum causal set diagnosisQ and minimum closed diag-
nosisQ′ of P ;

2. |Q| ≤ |Q′| for every minimum causal effect diagnosisQ and minimum closed
diagnosisQ′ of P

Proof. Both properties follow immediately from the definitions and the inclusion prop-
erty ofC. �

4.2 Causal diagnoses and Prediction

Except for playing a role in establishing causalexplanationsof observations, (causal)
diagnoses also can play a significant role in thepredictionof future results (states) of
the plan or even the attainability of the goals of the plan. First of all, we should realize
that a diagnosis can be used to enhance observed state information as follows: Suppose
thatQ is a causal diagnosis of a planP based on the observationsobs(t) andobs(t′)
for somet < t′, let obs(t) →∗

C(Q);P (π′Q, t′) and letobs(t′) = (π′, t′). SinceC(Q) is
a diagnosis,π′ andπ′Q are compatible states. Hence, we can combine the information
contained in both partial states by merging them into a new partial stateπ′t = π′Q t π′.



This latter state can be seen as the partial state that can be obtained by direct observation
at timet′ as well as by making use of previous observations at timet and diagnostic
information.

In the same way, we can use this information and the causal consequencesC(Q) to
derive a prediction of the partial states derivable at a timet′′ > t′:

Definition 6. LetQ be a causal diagnosis of a planP based on the observations(π, t)
and (π′, t′) wheret < t′. Furthermore, letobs(t)→∗

C(Q);P (π′Q, t′) and letobs(t′) =
(π′, t′). Then, for some timet′′ > t′, (π′′, t′′) is the partial state predicted usingQ and
the observations if(π′Q t π′, t′)→∗

C(Q);P (π′′, t′′).

In particular, if t′′ = depth(P ), i.e., the plan has been executed completely, we can
predict the values of some variables that will result from executingP and we can check
which goalsg ∈ G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which goalsg ∈ G it holds thatτ |= g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.

4.3 Complexity issues

It is well-known that the diagnosis problem is computationally intractable. The decision
forms of both consistency-based and abductive based diagnosis are NP-hard ([2]). It is
easy to see that standard plan diagnosis has the same order of complexity. Concerning
(minimal) causal diagnoses, we can show that they are not more complex than estab-
lishing plan diagnoses if the latter problem is NP-hard. The reason is that in every case
the verification ofQ′ being a causal diagnosis is as difficult as verifying a plan diag-
nosis under the assumption that the setinstP (R) is polynomially bounded in the size
||P || of the planP .9 Also note that subset minimality (under a set of rulesinst(R) of a
set of causes can be checked in polynomial time.

5 Related research

In this section we briefly discuss some other approaches to plan diagnosis. Like we use
MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBD toplan-
ning agentsrelating health states of agents tooutcomesof their planning activities, but
not taking into account faults that can be attributed to actions occurring in a plan as a
separate source of errors. However, instead of focusing upon the relationship between
agent properties and outcomes of plan executions, we take a more detailed approach,
distinguishing two separate sources of errors (actions and properties of the executing
agents) and focusing upon the detection of anomalies during the plan execution. This
enables us to predict the outcomes of a plan on beforehand instead of using them only
as observations.

9 The reason is that computing consequences of Horn-theories can be achieved in a time linear
in the size ofinstP (R).



de Jonge et al. [6] propose another approach that directly applies model-based diag-
nosis to plan execution. Their paper focuses on agents each having an individual plan,
and where conflicts between these plans may arise (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountable forfuture
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [9, 10] applysocial diagnosisin order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors. Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors). This approach might complement our ap-
proach when conflicts not only arise as the consequence of faulty actions, but also as
the consequence of different selections of sub-plans in a joint plan.

Lesser et al. [3, 8] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use of acausal modelthat can help an agent to refine its initial diagnosis
of a failingcomponent(called atask) of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. While their approach in its ultimate intentions (establishing
anomalies in order to find a suitable plan repair) comes close to our approach, their
approach to diagnosis concentrates on specifying the exact causes of the failing of one
singlecomponent(task) of a plan. Diagnosis is based on observations of a component
without taking into account the consequences of failures of such a component w.r.t. the
remaining plan. In our approach, instead, we are interested in applying MBD-inspired
methods todetectplan failures. Such failures are based on observations during plan ex-
ecution and may concern individual components of the plan, but also agent properties.
Furthermore, we do not only concentrate on failing components themselves, but also on
the consequences of these failures for the future execution of plan elements.

6 Conclusion

We have adapted model-based agent diagnosis to the diagnosis of plans and we have
pointed out some differences with the classical approaches to diagnosis. We distin-
guished two types of diagnosis: minimum plan diagnosis and maximum informative
diagnosis to identify (i) minimum sets of anomalously executed actions and (ii ) max-
imum informative (w.r.t. to predicting the observations) sets of anomalously executed
actions. Assuming that a plan is carried out by a single agent, anomalously executed
action can be correlated if the anomaly is caused by some malfunctions in the agent.
Therefore, (iii ) causal diagnoses have been introduced and we have extended the diag-
nostic theory enabling the prediction of future failure of actions.

Current work can be extended in several ways. We mention two possible exten-
sions: First of all, we could improve the diagnostic model of the executing agent. The



causal diagnoses are based on the assumption that the agent enters an abnormal state
at some time point and stays in that state until the agent is repaired. In our future work
we wish to extend the model such that the agent might evolve through several abnormal
states. The resulting model will be related diagnosis in Discrete Event Systems [7, 11].
Moreover, we intend to investigate plan repair in the context of the agent’s current (ab-
normal) state. Secondly, we would like to extend the diagnostic model with sequential
observations and iterative diagnoses. Here, we would like to consider the possibilities
of diagnosing a plan if more than two subsequent observations are made, the best way
to detect errors in such cases and the construction of enhanced prediction methods.
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