Diagnosis of plan execution and the executing agent
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Abstract. We adapt the Model-Based Diagnosis framework to perform (agent-
based) plan diagnosis. In plan diagnosis, the system to be diagnosed is a plan, con-
sisting of a partially ordered set of instances of actions, together with its executing
agent. The execution of a plan can be monitored by making partial observations
of the results of actions. Like in standard model-based diagnosis, observed devia-
tions from the expected outcomes are explained qualifying some action instances
that occur in the plan as behaving abnormally. Unlike in standard model-based
diagnosis, however, in plan diagnosis we cannot assume that actions fail indepen-
dently. We focus on two sources of dependencies between failures: dependencies
that arise as a result of a malfunction of the executing agent, and dependencies
that arise because of dependencies between action instances occurring in a plan.
Therefore, we introduce causal rules that relate health states of the agent and
health states of actions to abnormalities of other action instances. These rules en-
able us to introduce causal set and causal effect diagnoses that use the underlying
causes of plan failing to explain deviations and to predict future anomalies in the
execution of actions.

1 Introduction

In Model-Based Diagnosis (MBD) a model of a system consisting of components, their
interrelations and their behavior is used to establish why the system is malfunctioning.
Plans resemble such system specifications in the sense that plans also consist of com-
ponents (action specifications), their interrelations and a specification of the (correct)
behavior of each action. Based on this analogy, the aim of this paper is to adapt and
extend a classical Model-Based Diagnosis (MBD) approach to the diagnosis of plans.
To this end, we will first formally model a plan consisting of a partially ordered set
of actions as a system to be diagnosed, and subsequently we will describe how a diag-
nosis can be established usipaytial observation®f a plan in progress. Distinguishing
between normal and abnormal execution of actions in a plan, we will introduce sets of



actions qualified as abnormal to explain the deviations between expected plan states
and observed plan states. Hence, in this approach, a plan diagnosis is just a set of ab-
normal actions that is able to explain the deviations observed. Although plan diagnosis
conceived in this way is a rather straightforward application of MBD to plans, we do
need to introduce new criteria for selecting acceptable plan diagnoses: First of all, while
in standard MBD usually subset-minimal diagnoses, or within the&mmum (cardi-

nality) diagnoses, are preferred, we also prefeximum informativeliagnoses. The

latter type of diagnosis maximizes the exact similarity between predicted and observed
plan states. Although maximum informative diagnoses are always subset minimal, they
are not necessarily of minimum cardinality. More differences between MBD and plan
diagnosis appear if we take a more detailed look into the reasons for choosing mini-
mal diagnoses. The idea of establishing a minimal diagnosis in MBD is governed by
the principle ofminimal changeexplain the abnormalities in the behavior observed by
changing the qualification from normal to abnormal for as few system components as
necessary. Using this principle is intuitively acceptable if the components qualified as
abnormal are failingndependentlyHowever, as soon adependenciesxist between

such components, the choice for minimal diagnoses cannot be justified. As we will ar-
gue, the existence of dependencies between failing actions in a plan is often the rule
instead of an exception. Therefore, we will refine the concept of a plan diagnosis by
introducing the concept of eausal diagnosisTo establish such a causal diagnosis, we
consider both the executing agent and its plan as constituting the system to be diagnosed
and we explicitly relate health states of the executing agent and subsets of (abnormally
qualified) actions to the abnormality of other actions in the form of causal rules. These
rules enable us to replace a set of dependent failing actions (e.g. a plan diagnosis) by a
set of unrelated¢ausesof the original diagnosis. This independent and usually smaller
set of causes constitutes a causal diagnosis, consisting of a health state of an agent and
an independent (possibly empty) set of failing actions. Such a causal diagnosis always
generates a cover of a minimal diagnosis. More importantly, such causal diagnoses can
also be used to predict failings of actions that have to be executed in the plan and thereby
also can be used to assess the consequences of such failures for goal realizability.

This paper is organized as follows. Section 2 introduces the preliminaries of plan-
based diagnosis, while Section 3 formalizes plan-based diagnosis. Section 4 extends the
formalization to determining the agent’s health state. Finally, we briefly discuss some
computational aspects of (causal) plan diagnosis. In Section 6, we place our approach
into perspective by discussing some related approaches to plan diagnosis. and Section
7 concludes the paper.

2 Preliminaries

Model based Diagnosis In Model-Based Diagnosis (MBD) [4,5,12] a systefn

is modeled as consisting of a s€bmp of components and their relations, for each
component € Comp a setH, of health modess distinguished and for each health
modeh. € H. of each componenta specific (input-output) behavior efis specified.
Given some input td5, its output is defined if the health mode of each component
¢ € Comp is known. The diagnostic engine is triggered whenever, under the assumption



that all components are functioning normally, there is a discrepancy between the output
as predicted from the input observations, and the actually observed output. The result of
MBD is a suitable assignment of health modes to the components, caliedrzosis

such that the actually observed outputissistentvith this health mode qualification

or can beexplainedby this qualification. Usually, in a diagnosis one requires the number
of components qualified as abnormally to be minimized.

States and Partial States We consider plan-based diagnosis as a simple extension
of the model-based diagnosis where the model is not a description of an underlying
system but glan of an agent. Before we discuss plans, we introduce a simplified state-
based view on the world, assuming that for the planning problem at hand, the world can
be simply described by a séur = {v1,vs,...,v,} of variables and their respective
value domaindD;. A state of the worldr then is a value assignmemtv;) = d; € D;

to the variables. We will denote a state simply by an elemeftof Dy x ... x D, i.e.
ann-tuple of values. It will not always be possible to give a complete state description.
Therefore, we introduce partial stateas an element € D;, x D;, x ... x D,,,
wherel < k <nandl <i; < ... < i < n.We useVar(r) to denote the set of
variables{v;,, vi,, ..., v;, } C Var specified in such a state The valued; of variable

v; € Var(m) in = will be denoted byr(j). The value of a variable; € Var not
occurring in a partial state is said to beunknown(or unpredictable) inr, denoted by

L. Including L in every value domaitD; allows us to consider every partial stat@s
anelementoD; x Dy x ... x D,.

Partial states can be ordered with respect to their information content: Given values
d andd’, we say that! < d’ holds iffd = 1L ord = d’. The containment relatiol
between partial states is the point-wise extensiorcaofr is said to be contained in
7', denoted byr C =/, iff Vj[r(j) < w(j')]. Given a subset of variablds C Var,
two partial statesr, 7’ are said to bd -equivalent denoted byr =y «/, if for every
v; € V,n(j) = 7'(j). We define the partial staterestricted to a given sét, denoted
by 7 [V, as the state’ C = such thatVar(7') = V N Var(n).

An important notion for diagnosis is the notion cbmpatibility between partial
states. Intuitively, two states and=’ are said to be compatible if there is no essential
disagreement about the values assigned to variables in the two states. That is, for every
j eitherw(j) = «'(j) or at least one of the valueg;j) and~«’(j) is undefined. So we
definer and~’ to be compatible, denoted by~ ', iff Vj[x(j) < 7'(j) or 7'(j) <
7(j)]. As an easy consequence we have, using the notibheduivalent states; ~ =’
iff T =var(r)nvaer(x) 7. Finally, if 7 andn’ are compatible states they canrberged
into theC-least stater LI 7’ containing them bothr U 7/(j) = maz<{n(j), 7' (4)}.

Goals An (elementary) goay of an agent specifies a set of partial states an agent
wants to bring about using a plan. Here, we specify each such a@aash constraint,
that is a relation over some produdt, x ... x D;, of domains.

We say that a gogj is satisfied by a partial state, denoted byr = g, if the
relationg contains at least one tuplé;, , d;,, ..., d;, ) such tha(d;, ,d;,,...d; ) C .
We assume each agent to have agef such elementary goalse G. We user = G
to denote that all goals i hold inr, i.e. forallg € G, 7w | g.

Actions and action schemes An action schemer plan operator is represented as
a function that replaces the values of a suligetC Var by other values, dependent



upon the values of another séf O V,, of variables. Hence, every action scheme
can be modeled as a (partial) functign : D;, x ... x D;, — Dj, x ... x Dy,
wherel < i < ... < i <nand{ji,...,5n} C {i1,...,ix}. The variables whose
value domains occur idom(f,) will be denoted bydomy,.(a) = {vi,,...,vi.}
and, likewiserany o, (a) = {vj,,...,v; }. Note that it is required thatany ., (a) C
domy (). This functional specificatiorf,, constitutes thenormal behavior of the
action scheme, denoted Bj°".

Example 1.Figure 1 depicts two states) ando; (the white boxes) each characterized

by the values of four variables, vo, v3 andwvy. The partial states, andr, (the gray

boxes) characterize a subset of values in a (complete) state. Action schemes are used to
model state changes. The domain of the action scheiahe subsefv;,vs}, which

are denoted by the arrows pointingdo The range ofx is the subsefwv; }, which is
denoted by the arrow pointing from Finally, the dashed arrow denotes that the value

of variablev, is not changed by operator(s) causing the state change. ]
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Fig. 1. Plan operators & states.

The correct execution of an action may fail either because of an inherent malfunctioning
or because of a malfunctioning of an agent responsible for executing the action, or
because of unknown external circumstances. In all these cases we would like to model
the effects of executing such failed actions. Therefore, we introduce a $etatih
modes)M,, for each action scheme. This setM,, contains at least the normal mode
nor, the modeub indicating the most general abnormal behavior, and possibly several
other specific fault modes. The most general abnormal behavior of act®specified

by the functionfst, where f**(d;,,d,,,...,d;,) = (L, L,..., L) for every partial
state(d;,, d;,, .. .,d;,) € dom(f,).* To keep the discussion simple, in the sequel we
distinguish only the health modesr andab.

Given a setA of action schemes, we will need to consider a4e€ inst(A) of
instancef actions inA. Such instances will be denoted by small roman lettgrsf
type(a;) = a € A, such an instance; is said to be otype. If the context permits
we will use “actions” and “instances of actions” interchangeably.

4 This definition implies that the behavior of abnormal actions is essentially unpredictable.



Plans A plan is a tupleP = (A, A, <) whereA C Inst(A) is a set of instances
of actions occurring ind and (A4, <) is a partial order. The partial order relatien
specifies a precedence relation between these instanees: implies that the instance
a must finish before the instaneg may start. We will denote theansitive reduction
of < by «, i.e.,< is the smallest subrelation ef such that the transitive closure™
of « equals<.

We assume that if in a plaR two action instances anda’ are independent, in prin-
ciple they may be executed concurrently. This means that the dependency relation
least should capture all resource dependencies that would prohibit concurrent execution
of actions. Therefore, we assumeo satisfy the followingconcurrency requirement

If rany q-(a) N domy,,(a') # @ thena < o’ ora’ < a.

That is, for concurrent instances, domains and ranges do not overlap.

Example 2.Figure 2 gives an illustration of a plan. Arrows relate the variables an action
uses as inputs and the variables it produces as its outputs to the action itself. In this
plan, the dependency relation is specifiediasg ag, as < a4, a4 K a5, a4 K ag

anda; < as. Note that the last dependency has to be included beegusd®anges the
value ofvs needed by:;. The actionz; shows that not every variable occurring in the
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Fig. 2. Plans and action instances. Each state characterizes the values of four vaiiakiess
andv,. States are changed by application of action instances

domain of an action need to be affected by the action. The aciipasdag illustrate
that concurrent actions may have overlapping domains. ]

5 Note that since-anyva,(a) C domya.(a), this requirement excludes overlapping ranges of
concurrent actions, but domains of concurrent actions are allowed to overlap as long as the
values of the variables in the overlapping domains are not affected by the actions.



3 Standard Plan Diagnosis

Let us assume, for the moment, that each action instance can be viewed as an indepen-
dent component of a plan. To each action instanaéealth moden, € {nor, ab} can
be assigned and the result is calledualified plan. In establishing which part of the
plan fails, we are only interested in those actions qualifies as abnormal. Therefore, we
define a qualified versioR, of a planP = (4, A, <) as atuplePp = (4, A4, <,Q),
where@ C A is the subset of instances of actions qualified as abnormal (and therefore,
A — @ the subset of actions qualified as normal).

Since a qualificatior) corresponds to assigning the health mabtléo every action
in Q and sincef®(d;,,di,,...,d;,) = (L, L,..., L) for every actiona € Q with
type(a) = «, the results of anomalously executed actions are unpredictable. Note that
a “normal” plan P corresponds to the qualified pldfy and furthermore that in our
context “undefined” is considered to be equivalent to “unpredictable”.

3.1 Qualified Plan execution

For simplicity, when a pla® is executed, we will assume that every action takes a unit
of time to execute. We are allowed to observe the execution of afpltrdiscrete times
t=0,1,2,...,k wherek is the depth of the plan, i.e., the longestchain of actions
occurring inP. Let depthp(a) be the depth of action in plan P = (A, A, <). Here,
depthp(a) = 0if {d’ |a’ < a} = @ anddepthp(a) = 1+ maz{depthp(a’) | '’ <
a}, else. If the context is clear, we often will omit the subsciptWe assume that the
plan starts to be executed at time= 0 and that concurrency is fully exploited, i.e., if
depthp(a) = k, then execution ofi has been completed at time= k + 1. Thus, all
actionsa with depthp(a) = 0 are completed at timeé = 1 and every actiom with
depthp(a) = k will be started at timé: and will be completed at timke + 1. Note that
thanks to the above specified concurrency requirement, concurrent execution of actions
having the same depth leads to a well-defined result.

Let P, denote the set of actionswith depthp(a) = t,let Psy = U, -, Pr, P<¢ =

Uy i P andPy ) = UZ/:t Py. Execution ofP on a given initial state, will induce a
sequence of states, o1, . .., o, Whereo; ;1 is generated frora; by applying the set
of actionsP; to 0. Instead, however, of assuming total states and total state transitions,
we define the (predicted) effect of the execution of pfaan a given (partial) state at
timet > 0, denoted by(r, t).

We say tha(#’,t + 1) is (directly) generated by execution 8%, from (r,t), ab-
breviated by(w,t) —¢.p (7', ¢ + 1), iff the following conditions hold:

1. 7' [ranye-(a) = f2°7 (7 [ domya.(a)) foreachn € P,—@Q such thatlomy ., (a) C
Var(r), thatis, the consequences of all actiarenabled inr can be predicted and
occur inz’ .8

2. Var(s") Nrany.-(a) = @ for eacha € Q N P;, since the result of executing an

abnormal action cannot be predicted (even if such an action is enabtgd in

5 An actiona is enabled in a state if domy .. (a) C Var(m).
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Fig. 3. Plan execution with abnormal actions

3. Var(n') N rany,.-(a) = @ for eacha € P, with domyo,-(a) € Var(w), that
is, even if an actior is enabled in (the complete statg), if a is not enabled in
m C oy, the result is not predictable and therefore does not occuf,isince it
is not possible to predict the consequences of actions that depend on values not
defined inr.
4. 7' (i) = 7 (i) for eachv; & rany..(P;), thatis, the value of any variable not occur-
ring in the range of an action iR, should remain unchanged. Hereny ... (P;) is
a shorthand for the union of the setgy ,-(a) with a € P;.

For arbitrary values of < ¢’ we say tha{=’, ¢') is (directly or indirectly) generated
by execution of % from (7,t), denoted by(r,t) —7.p (n',t), iff the following
conditions hold:

1. ift =t thenn’ = m;

2. ift' =t+1then(n,t) —q.p (7',1');

3. ift' > ¢ + 1 then there must exists some stéte/, ¢’ — 1) such thai(w,t) —7,. »
(7"t = 1)and(n”,t' — 1) —q.p (7', 1').

Note that(r,t) —%.p (',t') denotes the normal execution of a normal pian
Such a normal plan execution will also be denotedbyt) —% (7', ).

Example 3.Figure 3 gives an illustration of an execution of a plan with abnormal ac-
tions. Suppose actiofi; is abnormal and generates a result that is unpredictable (
Given the qualificatiod) = {a3} and the partially observed statgat time pointt = 0,

we predict the partial states as indicated in Figure 3, whefe, to) —0.p (73, 1)

for i = 1,2,3. Note that since the value @f and ofvs cannot be predicted at time

t = 2, the result of actiog and of actiomg cannot be predicted and contains only

the value ofvs. [ |



3.2 Diagnosis

Suppose now that we have a (partial) observatibs(t) = (w,t) of the state of the
world at timet and an observatioobs(t') = (#’, ') attimet’ > ¢ > 0 during the exe-
cution of the planP. We would like to use these observations to infer the health states of
the actions occurring i?. Assuming a normal execution &f, we can (partially) pre-

dict the state of the world at a time poititgiven the observationbs(t): if all actions
behave normally, we predict a partial statg at timet’ such thabbs(t)—% (75, t').

There does not need to be a strict correspondence between the vapiablieted
at timet’ and the variablesbserved at time’. That is,Var(7") andVar(ny) need
not to be identical sets. This means that to check whether the predicted state matches
the observed state at tintg we have to verify whether the variables occurring in both
Var(n') andVar(r)) have identical values, that is whethef(j) = =, (j) holds
for all v; € Var(n') N Var(ny). Therefore, these states match exactly if they are
compatible i.ex’ ~ 7/, holds’

If this is not the case, the execution of some action instances must have gone wrong
and we have to determine a qualificatiQnsuch that the predicted statv\fg2 derived
using@ is compatible withr’. Hence, we have the following straight-forward extension
of the diagnosis concept in MBD to plan diagnosis (cf. [5]):

Definition 1. Let P = (A, A, <) be a plan with observationsbs(t) = (m,t) and
obs(t') = (n',t'), wheret < t' < depth(P) and letobs(t)—{,. p(m,,t') be a deriva-
tion assuming a qualificatio®.

ThenQ is said to be glan diagnosief (P, obs(t), obs(t')) iff n’ ~ 7.

Example 4.Consider again Figure 3 and suppose that we did not know that action
as was abnormal and that we observgd(0) = ((d1,ds,ds,dy),0) andobs(3) =
((dy,ds,dy), 3). Using the normal plan derivation relation starting witfs(0) we will
predict a stater, attimet = 3 whereny, = (df, dj, d4). If everything is ok, the values

of the variables predicted as well as observed at time3 should correspond, i.e. we
should havel; = d/ for j = 1,3. If, for example, onlyd; would differ fromd, then

we could qualifyag as abnormal, since then the predicted state at time 3 using

Q = {ac} would berg, = (d3) and this partial state agrees with the predicted state on
the value ofvs. [ |

Note that for all variables i ar(7') N Var(wg), the qualificationy provides an
explanationfor the observatiorr’ made at time point’. Hence, for these variables
the qualification provides aabductive diagnosif4] for the normal observations. For
all observed variables iWar(r') — Var(mg), no value can be predicted given the
qualification@. Hence, by declaring them to be unpredictable, possible conflicts with
respect to these variables if a normal execution of all actions is assumed, are resolved.
This corresponds with the idea otansistency-based diagno§i®].

The following observation shows that we might easily trivialize plan diagnoses:

Observation 1 If Q C Ais aplan diagnosis ofP, obs(t), obs(t')), then every superset
Q' D Q is also a plan diagnosis and in particulat is always a plan diagnosis.

7 See the definition in the preliminaries.



The reasonis thdt) Q' 2 Q implieswy,, C 7, whererg,, andr, are the predicted
states using the qualificatioggandq’, respectively andii) m,, ~ 7’ andmg,, T m,
using the definition ofs, immediately imply thabr’Q, ~ 7', i.e.,@Q’ is a diagnosis as
well. Since in particulaid O @ for every qualification?, A is a diagnosis whenever
there has been found any diagnosis.

Clearly then, the smaller a diagnosis is, the more values it will predict that are also
actually observed in the resulting plan state. This, like in MBD, is a reason for us to
prefer subset-minimatliagnoses and especialtyinimumdiagnoses among the set of
minimal diagnoses.

But there is a caveat: a minimum diagnosis only minimizes the number of abnormal
actions to explain deviations; as important however for a diagnosis might inéaits
mation contenti.e. the exactness it provides in predicting the values of the variables
occurring in the observed staté. This means that besidesinimizingthe cardinality
of abnormalities another criterion could beaximizingthe exactness of the similarity
by maximizing|Var(r') N Var(ng)| i.e. maximizing the number of variables hav-
ing the same value in the predicted state and the observed state. Therefore, besides a
minimum diagnosis we also define the notion shaximum informative diagnosis

Definition 2. Given plan observation&P, (, t), (7, t')), a qualification@ is said to
be aminimum plan diagnosis for every plan diagnosi€)’ it holds that|Q| < |Q’|.

Q is said to be anaximum informative plan-diagnosi§for all plan diagnoses)*,
itholds that|Var(7') N Var(rg)| > [Var(x') N Var(rg.)|.

Note that for every maximum informative diagno§isve haveV ar (7')N\Var(rg,) C
Var(r')NVar(rg), whereobs(t)—7,. p (75, t') is the partial state derivation assuming
anormal planexecution.

Also note that every maximum informative diagnosis is a minimal diagnosis. So
both minimum plan diagnoses and maximum informative plan diagnoses are the result
of different criteria for selecting minimal diagnoses, as the following example shows:

Example 5.To illustrate the difference between minimum plan diagnosis and maximum
informative diagnosis, consider again the plan execution depicted in Figure 3. Given
obs(0) andobs(3) and a deviation in the value of, at timet = 3, there are three
possible minimum diagnoseB; = {a1}, D2 = {a3} andDs = {as}. D2 and D5 are

also maximume-informative diagnoses. ]

4 Causes of plan-execution failures

Unlike in classical MBD, minimum diagnosis and maximum-informative diagnosis
need not provide the best explanation for the differences between observed effects of
a plan execution and the predicted effects. The reason is that often in a plan instances
of actions do not fail independently. For example, suppose that we have a plan for car-
rying luggage from a depot to a number of waiting planes. Such a plan might contain
several instances of a drive action pertaining to the same carrier controlled by an agent.
Suppose that an instanagof some drive action (type) behaves abnormally because



of malfunctioning of the carrier. Then it is reasonable to assume that other instances
a; of the same drive action that occur in the pkter a; can be predicted to behave
abnormally, too. Another possibility is that a number of instances of actions is related
to the malfunctioning of aagentexecuting several actions in the plan. For example, in
the luggage example, the carrier is controlled by a driving agent. If this agent itself is
not functioning well, all driving actions as well as loading and unloading actions might
be affected.

Such dependencies between action instances and between agent health states and
action instances imply that sometimes qualifying an instance of an action as being ab-
normal implies that other instances of actions must be qualified a being abnormal, too.
Minimum and information-maximum diagnosis do not take into account these depen-
dencies between action failures. Therefore, we must take into consideration the under-
lying cause®f a plan-execution failure.

4.1 Causal Rules

To be able to include a malfunctioning of an executing agent as a possible cause, we will
consider a plan together with its executing agent as the system to be diagnosed. Here, an
agent will be simply represented by a ¢&bf specific health states. To identify causes

of action failures, we use a sAtof causal rulesn combination with plan diagnosis. A
causal rule is a rule that can appear in the following forms:

- (a1,Q9,...,ar) — ars1, Wherek > landfori = 1,2... )k + 1, a; € Aare
action types. This type of rule relates the occurrence of a set of failed actions to the
occurrence of a failed action implied by them. The intuitive meaning of these rules
is that if during plan execution there are, foe= 1,...,k, action instancea; of
type «; that have been qualified as abnormal up to timthen it is inferred that
from timet¢ + 1 on all instances of actions of type,; will behave abnormally,
too.

— (hjar, a9, ...,a5) — agt1, Wherek > 0, h € H is a health statéh # nor)
of the plan executing agent and, foe= 1,2....k + 1, a; € A are action types.
This type of rule relates the occurrence of an agent abnorntedihd a set of action
abnormalities occurring at timeo the inference of a failed action at time 1. The
intuitive meaning of such a rule is that if during plan execution at some tirge
t + 1 the agent operates in some abnormal health statesl, fori = 1,2,... k,
there are action instances of type «; that have been qualified as abnormal up to
timet, then itis inferred that from time+1 on all instances of actions of tyjpe. .1
that occur in the plan will behave abnormally, tot.x = 0, this rule establishes a
health state as a single cause for action failure.

The intuitive idea behind a causal diagnosis is to be able to explain a given plan
diagnosigy by a (usually smaller) set of qualifications (caus@sjogether with some
health stateh of the agent established at timeising the set of causal rulds Using

8 We allow abnormal health states to be detected at the same time that abnormal action conse-
qguences are generated.



such a pair consisting of a health state and a qualification should enable us to generate,
using the rules iRk, a set containingy.

To define the effect of applying to a set of (unique) instances of actions occurring
in a plan, we first construct the setst(R) of instance of actions with respect to given
planP = (A, A, <) as follows:

— For every ruler of the form(ay, as, ..., ar) — ars1 € R, inst(R) contains an
instance(a;, , as,, - - -, a;, ) — ag,,, Of r whenever there existsta> 0 such that
{ail,aiz, ey aik} - Pgt andaik“ S P>t.

— For every ruler of the form(h; a1, s, ..., a) — ar+1 € R, inst(R) contains
the instancesh; a;, , ai,, ..., a;) — a;,,,, whenever there existsta> 0 such
that{amam ey aik} - Pgt andaik“ S P>t.

For eachr € inst(R), letante(r) denote the antecedentofndhd(r) denote the
head ofr. Furthermore, letlb C {h} be a set containing an abnormal agent health state
h or be equal to the empty set (signifying a normal state of the agent) agd detA
be a qualification of instances of actions. We can now define a causal consequence of a
gualification@ and a health statdb usingR as follows:

Definition 3. Aninstance: € A is a causal consequence of a qualificat@nc A and
the health statelb using the causal ruleg if

l.aeQor
2. there exists a rule € inst(R) such that(i) for eacha; € ante(r) eithera; is a
causal consequence @for a; € Ab, and(ii) a = hd(r).

The set of causal consequenceg)aising R and Ab is denoted by’r 45(Q).

We have a simple characterization of the set of causal consequépces() of a
qualification@ and a health statdb using a set of causal rulés

Observation 2 Cr, 45(Q) = Cna(inst(R) U Q U Ab).

Here,Cn 4 (X) restricts the se€'n(X) of classical consequences of a set of proposi-
tions X to the consequences occurringAn To avoid cumbersome notation, we will
omit the subscriptsz and Ab from the operato” and useC(Q) to denote the set of
consequences of a qualificatiGhusing a health statdb and a set of causal rulds.

We say that a qualificatio is closedunder the set of ruleB and an agent health state
Abif Q = C(Q), i.e,Q is saturated under application of the rufes

Proposition 1. The operatoiC satisfies the following properties:

1. (inclusion): foreven@ C A, Q C C(Q)
2. (idempotency): for ever® C A, C(Q) = C(C(Q))
3. (monotony): il C Q' C AthenC(Q) C C(Q")

Proof. Note thatC'(Q) = Cn(inst(R)UQ U Ab) N A. Hence, monotony and inclusion
follow immediately as a consequence of the monotony and inclusiémoMonotony
and inclusion implyC'(Q) C C(C(Q)). To prove the reverse inclusion, €h*(Q) =
Cn(instr(R) U QU Ab). Then by inclusion and idempotency ©f: we have

C(CQ) =Cn*(C(Q)NA C Cn*(Cn*(Q))NA=Cn"(Q)NA=C(Q). O



Thanks to Proposition 1 we conclude that every qualification can be easily extended
to a closed sef’(Q) of qualifications. Due to the presence of causal rules, we require
every diagnosis) to be closed under the application of rules, that is in the sequel we
restrict diagnoses to closed séls= C(Q).

We define a causal diagnosis as a qualificagipsuch that its set of consequences
C(Q) constitutes a diagnosis:

Definition 4. Let P = (A, A, <) be a plan,R a set of causal rules and lebs(t)
andobs(t') be two observations with < t'. Then a qualificatior C A is a causal
diagnosis of P, obs(t), obs(t")) if C(Q) N P, is a diagnosis of P, obs(t), obs(t')).

Like we defined a minimum diagnosis, we now define two kinds of minimum causal
diagnoses: a minimum causdtdiagnosis and a minimum causdfectdiagnosis:

Definition 5. Let P = (A, A, <) be a plan anthbs(t) andobs(t') with ¢ < ¢’ be two
observations.

1. Aminimum causal set diagnodsa causal diagnosi§) such that@| < |Q’| for
every causal diagnosi@’ of P;

2. Aminimum causal effect diagnosis a causal diagnosig) such that|C'(Q)| <
|C(Q")| for every causal diagnosig’.

Maximum informative causal set and maximum informative causal effect diagnoses are
defined completely analogous to the previous definitions using standard diagnosis.

The relationships between the different diagnostic concepts we have distinguished
is partially summarized in the following proposition:

Proposition 2. Let P = (A, A, <) be a plan antbs(t) andobs(t') witht < ¢’ be two
observations.

1. |Q| < |Q'| for every minimum causal set diagnoglsand minimum closed diag-
nosisQ’ of P;

2. 1Q| < |Q'| for every minimum causal effect diagnog)sand minimum closed
diagnosis)’ of P

Proof. Both properties follow immediately from the definitions and the inclusion prop-
erty of C. O

4.2 Causal diagnoses and Prediction

Except for playing a role in establishing causaplanationof observations, (causal)
diagnoses also can play a significant role in piredictionof future results (states) of

the plan or even the attainability of the goals of the plan. First of all, we should realize
that a diagnosis can be used to enhance observed state information as follows: Suppose
that @ is a causal diagnosis of a pldhbased on the observationss(t) andobs(t’)

for somet < t/, let obs(t) = Q)P (mg,t') and letobs(t') = (7,t'). SinceC(Q) is

a diagnosiss’ andy, are compatible states. Hence, we can combine the information
contained in both partial states by merging them into a new partialstate 7, L 7'.



This latter state can be seen as the partial state that can be obtained by direct observation
at timet’ as well as by making use of previous observations at tiraed diagnostic
information.

In the same way, we can use this information and the causal conseqU&ige®
derive a prediction of the partial states derivable at a tifne ¢':

Definition 6. Let@ be a causal diagnosis of a plah based on the observatiofs, ¢)
and (7', ¢') wheret < t'. Furthermore, letobs(t)—¢, o). p (¢, ') and letobs(t’) =
(7', t'). Then, for some tim& > ¢/, (", t") is the partial state predicted using and
the observations ifrg, L 7, t/)—’*C(Q);p(W”’ t").

In particular, ift” = depth(P), i.e., the plan has been executed completely, we can
predict the values of some variables that will result from execuliregnd we can check
which goalsg € G will still be achieved by the execution of the plan, based on our
current knowledge. That is, we can check for which ggadsG it holds thatr = g. So
causal diagnosis might also help in evaluating which goals will be affected by failing
actions.

4.3 Complexity issues

Itis well-known that the diagnosis problem is computationally intractable. The decision
forms of both consistency-based and abductive based diagnosis are NP-hard ([2]). Itis
easy to see that standard plan diagnosis has the same order of complexity. Concerning
(minimal) causal diagnoses, we can show that they are not more complex than estab-
lishing plan diagnoses if the latter problem is NP-hard. The reason is that in every case
the verification ofQQ’ being a causal diagnosis is as difficult as verifying a plan diag-
nosis under the assumption that the et »(R) is polynomially bounded in the size

|| P|| of the planP.® Also note that subset minimality (under a set of rulest(R) of a

set of causes can be checked in polynomial time.

5 Related research

In this section we briefly discuss some other approaches to plan diagnosis. Like we use
MBD as a starting point to plan diagnosis, Birnbaum et al. [1] apply MBDpltn-

ning agentgelating health states of agentsaotcome®f their planning activities, but

not taking into account faults that can be attributed to actions occurring in a plan as a
separate source of errors. However, instead of focusing upon the relationship between
agent properties and outcomes of plan executions, we take a more detailed approach,
distinguishing two separate sources of errors (actions and properties of the executing
agents) and focusing upon the detection of anomalies during the plan execution. This
enables us to predict the outcomes of a plan on beforehand instead of using them only
as observations.

% The reason is that computing consequences of Horn-theories can be achieved in a time linear
in the size ofinstp(R).



de Jonge et al. [6] propose another approach that directly applies model-based diag-
nosis to plan execution. Their paper focuses on agents each having an individual plan,
and where conflicts between these plans may arise (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that are accountdhtefer
conflicts. The authors, however, do not take into account dependencies between health
modes of actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [9, 10] applgocial diagnosign order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors). This approach might complement our ap-
proach when conflicts not only arise as the consequence of faulty actions, but also as
the consequence of different selections of sub-plans in a joint plan.

Lesser et al. [3, 8] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use otausal modethat can help an agent to refine its initial diagnosis
of a failingcomponenfcalled atask of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. While their approach in its ultimate intentions (establishing
anomalies in order to find a suitable plan repair) comes close to our approach, their
approach to diagnosis concentrates on specifying the exact causes of the failing of one
singlecomponen({task) of a plan. Diagnosis is based on observations of a component
without taking into account the consequences of failures of such a component w.r.t. the
remaining plan. In our approach, instead, we are interested in applying MBD-inspired
methods taletectplan failures. Such failures are based on observations during plan ex-
ecution and may concern individual components of the plan, but also agent properties.
Furthermore, we do not only concentrate on failing components themselves, but also on
the consequences of these failures for the future execution of plan elements.

6 Conclusion

We have adapted model-based agent diagnosis to the diagnosis of plans and we have
pointed out some differences with the classical approaches to diagnosis. We distin-
guished two types of diagnosis: minimum plan diagnosis and maximum informative
diagnosis to identifyij minimum sets of anomalously executed actions ardr{ax-
imum informative (w.r.t. to predicting the observations) sets of anomalously executed
actions. Assuming that a plan is carried out by a single agent, anomalously executed
action can be correlated if the anomaly is caused by some malfunctions in the agent.
Therefore, i{i ) causal diagnoses have been introduced and we have extended the diag-
nostic theory enabling the prediction of future failure of actions.

Current work can be extended in several ways. We mention two possible exten-
sions: First of all, we could improve the diagnostic model of the executing agent. The



causal diagnoses are based on the assumption that the agent enters an abnormal state
at some time point and stays in that state until the agent is repaired. In our future work
we wish to extend the model such that the agent might evolve through several abnormal
states. The resulting model will be related diagnosis in Discrete Event Systems [7, 11].
Moreover, we intend to investigate plan repair in the context of the agent’s current (ab-
normal) state. Secondly, we would like to extend the diagnostic model with sequential
observations and iterative diagnoses. Here, we would like to consider the possibilities

of diagnosing a plan if more than two subsequent observations are made, the best way
to detect errors in such cases and the construction of enhanced prediction methods.
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