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Abstract. We consider a model-based diagnosis approach to the diagnosis of
plans. Here, a plan executed by some agent(s) is considered as a system to be di-
agnosed. We introduce a simple formal model of plans and plan execution where
it is assumed that the execution of a plan can be monitored by making partial
observations of plan states. These observations of plan states are used to compare
them with predicted states based on (normal) plan execution. Deviations between
observed and predicted states can be explained by qualifying some plan steps in
the plan as behaving abnormally. A diagnosis is a subset of plan steps qualified
as abnormal that can be used to restore the compatibility between the predicted
and the observed partial state. In contrast to model-based diagnosis, where mini-
mum and minimal diagnoses are preferred, we argue that in plan-based diagnosis
maximum informative diagnoses should be preferred. These are diagnoses that
make the strongest predictions with respect to partial states to be observed in
the future. We show that in contrast to minimum diagnoses, finding a (minimal)
maximum informative diagnosis can be achieved in polynomial time. Finally, we
show how we can deal with diagnosis of a plan if an arbitrary sequence of partial
observations is given.

1 Introduction

With a growing complexity of plans, the possibility that something goes wrong during
their execution increases correspondingly. No wonder then that more attention is paid
to the development of robust plans. One way to enhance robustness is to perform plan
diagnosis in order to identify the causes of failures, to predict future failures and, if
possible, to prevent failures to occur. Since there is a huge number of potential factors
that might prevent correct plan execution, it is not surprising that current approaches
to plan diagnosis are rather diverse. For example, a changing environment might be
such an important disturbing factor, preventing some parts of the plan to be executed by
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changing the preconditions of some instances of actions occurring in the plan. Another
important source of plan failures could be attributed to the agent(s) controlling the ac-
tions prescribed in the plan by being unable to perform some of the actions required
or accidently changing some of the preconditions of actions. In a broader, multi-agent
perspective, one could even concentrate on incompatibilities between different agents
involved in the execution of a joint plan as a major factor that could prevent parts of a
joint plan to be executed correctly.

The main goal of this paper is to specify a general framework for plan diagnosis
where, in principle, such general aspects of plan diagnosis could be dealt with. In de-
veloping such a framework it seems unavoidable to concentrate on some aspects of plan
diagnosis and to (temporarily) neglect others. In this paper, we decided to concentrate
on internal failure sources and leave external failure sources such as the environment,
failures of executing agents as in [1] or incompatibilities between agents as in [5, 6] for
future research. In particular, we will confine ourselves to the identification of failing
actions as the only source of plan failure. Our main motivation for this restriction is
that if the plan is correctly specified, errors in the plan execution process become man-
ifest in the incorrect behavior of one or more instances of actions!. Whether or not we
should be satisfied with the mere identification of one or more of such failing actions,
a diagnostic process that identifies a set of actions that can be shown to be responsible
for the abnormalities observed seems to be a useful analysis on its own. In a multi-
agent planning systems, for example, identification of such failing actions can be used
to identify incompatibilities between plans, to identify failing agents responsible for
executing plans or to identify incompatibilities between agents involved in the plans. In
the conclusion section we will elaborate on the potential extensions of the framework
to deal with these questions.

Concentrating on the identification of failing actions, one of the main goals of this
paper is to show how a plan consisting of a partially ordered set of instances of actions
can be viewed as a system to be diagnosed and how a diagnosis can be established
using partial observations of a plan in progress. Distinguishing between normal and
abnormal execution of actions in a plan, we then introduce a plan diagnosis as a set of
instances of actions qualified as abnormal to explain the deviations between expected
plan states and observed plan states.

Results The results obtained in this paper are threefold. First of all we present a for-
mal framework for plan diagnosis that enables us to define exactly how observations
of a plan in execution can be used to derive a plan diagnosis. We show that establish-
ing a plan diagnosis comes down to finding a subset of actions in a plan such that if
these actions are qualified as abnormal, the observed plan states are compatible with
predicted plan states. Secondly, after introducing minimal maximum informative diag-
noses (abbreviated as mini-maxi diagnoses) as a special kind of diagnoses that have
to be preferred above the well-known subset-minimal and minimum diagnoses known
from model-based diagnosis, we show that in contrast to minimum diagnoses, mini-
maxi diagnoses can be computed efficiently. Thirdly, we extend the framework to plan

! Of course, some of these actions might not be specified in the plan.



diagnosis based on iterative partial observations and we show how this case can be
reduced to establishing diagnoses with a simple pair of observations.”

Organization We first introduce a simple formal framework for representing states,
actions and plans. Then, in Section 3, we introduce the main concepts of plan-based
diagnosis and we discuss the idea of maximum informative diagnosis. In this section,
we also discuss an efficient algorithm to find minimal maximum informative diagnoses.
In Section 4, we extend our framework to diagnosis with a sequence of observations and
Section 5 concludes this paper with a brief outlook to future research. Due to lack of
space, all proofs of results have been omitted.

2 Preliminaries

We consider plan-based diagnosis as a simple extension of the model-based diagnosis
(MBD) approach [2, 3, 8], where the model is not a description of an underlying physi-
cal system but a plan of one or more agents. By executing plans we change a part of the
world. Therefore, before we discuss plans, we need to introduce a simple state-based
view on the world.

States We assume that for the planning problem at hand, the world can be described
by a set Var = {v1,vs,...,v,} of variables and their respective value domains D;.
A complete state of the world o then is a value assignment o : Var — (J;_; D; to
the variables. Slightly abusing terminology, we simply denote a complete state by an

n-tuple 0 = (o(v1),...,0(vy,)) € D1 X Dy X ... X D,. A partial state is an element
™€ Dijy x D, x...xD;,,wherel <k <nandl <4 < ... <i <n We
use Var(m) to denote the set of variables {v;,, v;,,...,v;, } C Var specified in such a

partial state 7. The value o (v;) of variable v; € Var(m) will be denoted by m(v; ). The
value of a variable v; € Var not occurring in a partial state 7 is said to be undefined
(or unpredictable) in w, denoted by _L. Including L in every value domain D); allows us
to consider every partial state 7 as an element of D1 x Do X ... x D,.

Partial states can be ordered with respect to their information content: Given values
d and d’, we say that d’ is at least as informative as d, abbreviated as d < d', iffd = L
or d = d'. The containment relation C between partial states is the point-wise extension
of < : 7 is said to be contained in 7/, denoted by = C 7', iff Vv € Var[r(v) < 7’(v)].

An important notion in plan diagnosis is the notion of compatibility between partial
states. Intuitively, two states 7 and 7’ are said to be compatible if there is no essential
disagreement about the values assigned to variables in the two states, i.e., in principle
they could characterize the same state of the world. More exactly, compatibility implies
that for every v € Var, either 7(v) = 7/(v) or at least one of the values 7(v) and 7’ (v)
is undefined:

Definition 1 (compatibility relation). Two partial states w and 7' are said to be com-
patible, denoted by m ~ 7', if Yv € Var[ w(v) < 7'(v) or n’'(v) < w(v) .

2 An earlier version of the framework has appeared in [9] without the discussion of maximum
informative diagnoses, algorithms and iterative observations.



If two partial states 71 and 75 are compatible, their information content can be fused to
obtain a new partial state 7 = m; LI w9 that contains them both: m = 7y U 72 holds iff
Vo € Var[r(v) = max<{m(v), 7' (v)}].

Actions, Plan operators and Plan Steps In the preceding sections we used to term
“actions” in a rather informal way. From now on, we make a distinction between ac-
tions, plan operators and plan steps. First of all, an action refers to an activity that
results in some change of the (current) state of the world, such as loading a vehicle
or assembling components. A plan operator refers to a description of such an action
in a plan. More exactly, a plan operator o is a function mapping partial states to par-
tial states by replacing the values of a subset V,, C Var by other values (dependent
upon the values of another set V. D V, of variables). Hence, every plan operator o
can be modeled as a (partial) function f, : D; x ... x D;, — Dj x ... x Dy,
where 1 < i3 < ... < i <nand {ji,...,51} C {i1,...,ix}. The variables whose
value domains occur in dom( f,) will be denoted by domy o (0) = {vi,,...,v;, } and,
likewise, ranyqr(0) = {vj,,...,v; }. It is required that ranyq,(0) C domyq,(0),
i.e., the function f, associated with a plan operator is range-restricted. This functional
specification f, constitutes the normal behavior of the plan operator o, also denoted by

f’flOT
o .

Example 1. Figure 1 depicts two states oy and o7 (the white boxes) each characterized
by the values of four variables v1, v, v3 and v4. The partial states mg and 71 (the gray
boxes) characterize a subset of variables in a (complete) state. Plan operators are used to
model state changes. The domain of the plan operator o is the subset {v1, v}, denoted
by the arrows pointing to o. The range of o is the subset {v; }, which is denoted by the
arrow pointing from o. Finally, the dashed arrow denotes that the value of variable vy is
not changed by operator causing the state change. |
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Fig. 1. Plan operators, states and partial states

A plan operator o may be used at several places in a plan. A specific occurrence
of o is called a plan step mapping a specific partial state into another partial state. A
plan step s as an occurrence of o then describes a specific function application of the
function specified by the operator o at a specific place in the plan. Therefore, given a
set O of plan operators, we consider a set S = inst(O) of instances of plan operators
in O, called the set of plan steps. A plan step will be denoted by a small roman letter
s;. The plan operator o the instance s; was instantiated from is denoted by op(s;). If
op(si) = o, the instance s; is said to be of type o.



Plans and Plan Execution A plan is a tuple P = (O, S, <) where S C Inst(O) is a
set of plan steps occurring in O and (S, <) is a partial order. The partial order relation
< specifies an execution relation between plan steps: for each s € S it holds that s is
executed immediately after all plan steps s’ such that s’ < s have been finished. We
will denote the transitive reduction of < by <, i.e., < is the smallest subrelation of <
such that the transitive closure < of < equals <.

Example 2. Figure 2 gives an illustration of a plan. Arrows relate the objects a plan
step uses as inputs and the objects it produces as its outputs to the plan step itself. In
this plan, the direct execution relation is specified as s; < s3, S2 <K sS4, 54 <K S5 and
S84 K Sg. |

Lo 9 9 o
o] [
E\/

nz(?

?
= (JAJ

H_

/1

O—»|

0 ‘

Fig. 2. Plans and plan steps. Each state characterizes the values of four variables v1, v2, vs and
vy4. States are changed by application of plan steps s; fort =1,2,...,6.

Without loss of generality, we assume that very plan step s € S takes a unit of time
to execute and the execution of the first plan step starts at time ¢ = 0. Using this
assumption and the definition of the execution relation <, the time ¢ at which a plan
step s will be executed is uniquely determined: Let depthp(s) be the depth of plan
step s in plan P = (O, S, <). * Then the time ¢, at which the plan step s is executed
is ts = depthp(s) and s will be completed at time ¢ + 1. Let P; denote the set of
plan steps s with depthp(s) = t, let Py = U, <, P, P<i = Uy, Pr and let

Py = Uj—y Pr-

Example 3. Consider again Figure 2. In this plan, the depth of s; and s, is 0, the depth
of s3 and s4 is 1, and the depth of s5 and sg is 2. Therefore, Py = {s1,s2}, P

{83,84} and P, = {55,56}. |
+

*Here, depthp(s) = 0if {s € S |§ <« s} = @ and depthp(s) = 1
maz{depthp(s’) | s < s}, else. If the context is clear, we omit the subscript P.



Given a state o at some time ¢ and the set P; of plan steps to be executed at time ¢ we
want to be sure that the next state o’ at time ¢ + 1 is uniquely defined. If P, contains
two plan steps s and s’ with overlapping ranges, i.e., if ranyq,(s) Nranyq-(s') # <,
the final result of a variable v occurring in this intersection is not uniquely defined in
o’. We therefore assume the following condition to hold:

Determinism:  If P is a plan and s, s’ are plan steps in P such that rany q-(s) N
ranyq.(s') # & then depthp(s) # depthp(s').

It is not difficult to see (and can be easily proven using the derivability relations to be
discussed) that Determinism guarantees that a future plan state can be defined uniquely
given a plan and a currently uniquely defined plan state.

2.1 Qualifications

The correct execution of a plan step may fail either because of an inherent malfunction-
ing or because of a malfunctioning of an agent responsible for executing the action, or
because of unknown external circumstances. In all these cases we would like to model
the effects of executing such failing plan operators. Therefore, we introduce a set of
health modes H for each plan step s. This set H contains at least the normal mode
nor, the mode ab indicating the most general abnormal behavior, and possibly several
other specific fault modes. The most general abnormal behavior of plan step s is speci-
fied by the function f9°, where f*(d;,,d;,, . ..,d;,) = (L, L,..., L) forevery partial
state (d;,, diy, ..., d;,) € dom(f,).* To keep the discussion simple, in the sequel we
distinguish only the health modes nor and ab.

Let us assume, for the moment, that each plan step can be viewed as an independent
component of a plan. To each plan step then s a health mode hs; € {nor,ab} can be
assigned and the result is called a qualified plan. In establishing which part of the plan
fails, we are only interested in those plan steps qualified as abnormal. Therefore, we
define a qualified version Py of a plan P = (O, S, <) as a tuple Py = (O, S, <,Q),
where () C S is the subset of plan steps qualified as abnormal (and therefore, S — @ is
the subset of plan steps qualified as normal).

Since a qualification @) corresponds to assigning the health mode ab to every plan
step in @ and since f2°(d;,,d;,,...,d;,) = (L, L,..., L) for every plan step s € Q
with type(s) = o, the results of anomalously behaving plan steps are unpredictable.
Note that a “normal” plan P corresponds to the qualified plan Py and that in our context
“undefined” is considered to be equivalent to “unpredictable”.

2.2 Derivability relations induced by plan execution

Note that P on a given initial state o will induce a sequence of states mg, 71, ..., Tk,
where 7y is generated from 7, by applying the set of plan steps P; to ;. To define
this relation between partial states at different time points we denote a partial state 7 at
a given time ¢ by a tuple, also called a timed state, denoted by (,t).

4 This definition implies that the behavior of abnormal steps is essentially unpredictable.



Let s be a plan step. We say that s is enabled in a state 7 if domy o,-(s) C Var(w).
Intuitively, we can predict the timed state (7', ¢ 4 1) using the timed state (7, ¢) and the
set P, of to be executed plan steps as follows:

1. whenever a variable v does not occur in the range of a plan step s € P, its value in
state 7’ is the same as its value in 7, i.e., 7(v) = 7’ (v);

2. if the variable v occurs in the range of a normally qualified plan step s that is
enabled in 7, then 7/ (v) = fI°" (7 (v));

3. in all other cases, there is not sufficient information to predict the value of 7/(v),
either because v occurs in the range of an abnormally qualified plan step s or v
occurs in the range of some plan step s € P; not enabled in 7.

Formally, this relation is defined as follows:

Definition 2. We say that (7't + 1) is (directly) generated by execution of the Q-
qualified plan Pg from (m,t), abbreviated by (m,t) —q.p (7',t + 1), iff for every
v € Var the following conditions hold:

L ifv & U,ep, ranvar(s) then w'(v) = m(v);
2. ifv € Usep, _granvar(s) then n'(v) = f3°7 (m)(v);
3. else 7' (v) = L.
It is easy to see that thanks to Determinism, the immediate derivability relation
—q.p is well-defined and deterministic:

Proposition 1. Let Pg be a qualified plan and let (w, t) a timed state. Then (7,t) —q.p
(7', t+ 1) and (m,t) —q.p (7", t + 1) implies 7" = x'.

We extend this direct derivability relation to a general derivability relation in a
straightforward way:

Definition 3. For arbitrary values of t < t' we say that (x',t') is (directly or indi-
rectly) generated by execution of Pg from (m,t), denoted by (m,t) —5.p (7',t), iff
the following conditions hold:
1. ift=tthenn’ = m;
2. ift' =t +1then (m,t) —q.p (7', t);
3. ift' >t + 1 then there must exists some state (7" ,t' — 1) such that (7,t) —§.p
(7"t — 1) and (7", t' — 1) —q.p (7', ).
Note that (7,t) —%.p (7',t') denotes the normal execution of a normal plan Pg.
Such a normal plan execution will also be denoted by (m,t) —7% (7', t').
Using these definitions, it is not difficult to show that for every 0 < t < k, the
timed state (7',t) where (7,0) —¢.p (7',) is uniquely defined if < satisfies the
Determinism requirement.

Example 4. Figure 3 gives an illustration of an execution of a plan with abnormal plan
steps. Suppose plan step ss is abnormal and generates a result that is unpredictable (_L).
Given the qualification () = {s3} and the partially observed state 7 at time point ¢ = 0,
we predict the partial states 7; as indicated in Figure 3, where (mo,t0) —¢.p (i, ti)
for i = 1,2, 3. Note that since the value of v; and of v5 cannot be predicted at time
t = 2, the result of plan step sg and of plan step sg cannot be predicted and 73 contains
only the value of vs. |
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Fig. 3. Plan execution with an abnormal plan step (s3)

3 Observations and Diagnoses

To establish plan diagnosis in our framework we need to make observations. Our frame-
work provides a natural candidate for representing such observations: an observation
obs(t) at time t is a timed state (7, t) where 7 is a partial state. This implies that we do
not require observations to specify a complete state. Suppose we have an observation
obs(t) = (m,t) and an observation obs(t') = (n/,¢') at some later time ¢’ > ¢ > 0
during the execution of the plan P. We would like to use these observations to infer the
health modes of the plan steps occurring in P. First, assuming a normal execution of
P, we can predict the partial state of the world at a time point ¢’ given the observation
obs(t): if all plan steps behave normally, we predict the timed state (7, t’) such that
0bs(t)— (7, t'). Such a prediction has to be compared with the actual observation
obs(t') = (n',t') made at time ¢'. It is easy to see whether the predicted state and the
observed state match: in that case we should be able to find a state o such that both the
observed state 7w’ and the predicted state 7, both are contained in o, that is, 7’ C ¢ and
7y C o. By definition of compatibility, such a 7" can only exist if 7, and 7’ are com-
patible states, i.e. if 7’ ~ 7, holds.’ If this is not the case, the execution of some plan
steps must have gone wrong and we have to determine a qualification () such that the
predicted state 7T’Q derived using () is compatible with 7’. Hence, we have the following
straight-forward extension of the diagnosis concept in MBD to plan diagnosis (cf. [3]):

Definition 4. Let P = (O, S, <) be a plan with observations obs(t) = (m,t) and
obs(t') = (n',t"), where t < t' < depth(P) and let 0bs(t)—¢,. p(7g,t') be a deriva-
tion using Pg. Then Q is said to be a plan diagnosis of (P, obs(t), obs(t')) iff 7' ~ mg,.

In order to be able to establish a diagnosis, we simply assume that for every variable

v there exists at least some plan step s and some time ¢ < ¢ < ¢’ such that s € Py
and v € rany g ($).

5 See the definition in the preliminaries.



Example 5. Consider again Figure 3 and suppose that we did not know that plan step
s3 was abnormal and that we observed obs(0) = ((dy,d2,ds,d4),0) and 0bs(3) =
((dy,dh, dk), 3). Using the normal plan derivation relation starting with obs(0) we will
predict a state 7, at time ¢ = 3 where 7, = (dY, d5, d4). If everything is ok, the values
of the variables predicted as well as observed at time ¢ = 3 should correspond, i.e. we
should have d;- = d;-’ for j = 1, 3. If, for example, only d} would differ from dY, then
we could qualify sg as abnormal, since then the predicted state at time ¢ = 3 using
@ = {s¢} would be m, = (d3) and this partial state agrees with the predicted state on
the value of vs. [ |

Remark 1. Note that for all variables in Var(7') N Var(mg,), the qualification @ pro-
vides an explanation for the observation ' made at time point ¢’. Hence, for these vari-
ables the qualification provides an abductive diagnosis [2]. For all observed variables
in Var(r') — Var(mg), no value can be predicted given the qualification Q). Hence, by
declaring them to be unpredictable, possible conflicts with respect to these variables if
a normal execution of all plan steps is assumed, are resolved. This corresponds with the
idea of a consistency-based diagnosis [8]. [ ]

3.1 Maximal informative diagnoses

On intuitive grounds, one would prefer, like in MBD, smaller diagnoses above larger
ones. One of the intuitions behind this preference is that, normally, we expect a plan to
deliver correct results. Any deviation from this normality assumption should be as small
as possible and we prefer a qualification that does not contain more actions qualified
as abnormal than necessary. This, like in MBD, would be an obvious reason to prefer
subset-minimal diagnoses and especially minimum diagnoses among the set of minimal
diagnoses. These notions can be easily defined in our framework as follows: Given plan
observations (P, (,t), (7', t')), a qualification () is said to be

1. a (subset) minimal plan diagnosis if for every plan diagnosis @’ such that Q' C @,
it holds that Q = Q’.
2. aminimum plan diagnosis if for every plan diagnosis @', it holds that |Q| < |Q’|.

Example 6. Consider the plan depicted in Figure 4. Suppose obs(0) = (mg,0) and
0bs(3) = (w},3) and 74 equals 73 except that there is a deviation in the value of vq at
time ¢ = 3 (as indicated by the black dot). Note that there are three possible minimal
diagnoses that are also minimum diagnoses : Q1 = {s1}, Q2 = {s3} and Q3 = {s¢}.
Let Wbi denote the state derived at time ¢ = 3 by using ); as a qualification. Then
Var(rg,) = @, Var(rg,) = {va,vs} and Var(mg, ) = {vs, va, vs}, so these partial
states predicted differ in their information content. [ ]

Example 6 shows that, in general, minimum or minimal diagnoses might consid-
erably differ in their predictive power. For example, if we take D as a diagnosis, the
values of all variables predicted at time ¢ = 3 will be undefined, while taking D3 as a
diagnosis, only v; and vs are undefined. Hence, it seems that minimality as the single
criterion to choose a suitable diagnosis is not sufficient. Intuitively, besides minimizing
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the number of abnormal plan steps, we would prefer those diagnoses () that gener-
ate a state 7, that minimizes the number of undefined values. We call such diagnoses
maximally informative diagnoses:

Definition 5 (maxi-diagnosis). Given plan observations (P, (7, t), (7', t')), a diagno-
sis @) is said to be a maximally informative plan diagnosis, abbreviated maxi-diagnosis,
if there exists no diagnosis Q)" such that Var(rg) C Var(mg).

Note that for a given state 7, Var () is the set of variables defined in 7.

Remark 2. Analogous to the distinction between minimal diagnoses and minimum di-
agnoses, we could introduce the notion of a maximum informative diagnosis as a di-
agnosis () for which there exists no diagnosis @)’ such that |Var(mg)| < |Var(mg:)|.
Unlike minimal and minimum diagnoses, however, it turns out that every maximally
informative diagnosis is also a maximum informative diagnosis, i.e., there is no dis-
tinction between the subset-maximal and the cardinality-maximal notions of informa-
tive diagnoses. In fact, we can show an even stronger result: given some plan ob-
servations (P, (m,t), (n’,t)), for every two maxi-diagnoses @ and ', it holds that
Var(rg) = Var(ng), i.e., they are equally informative in a strict sense.

Such maxi-diagnoses, however, are not always subset minimal diagnoses. By com-
bining the two criteria, however, we obtain a qualification that is able to achieve com-
patibility with the observations, being as exact in its predictions as possible, without
considering too many actions as behaving abnormally. We therefore define a minimal
maximally-informative diagnosis as follows:



Definition 6 (mini-maxi diagnosis). Given plan observations (P, (w,t), (7',t')), a di-
agnosis Q) is said to be a minimal maximally informative plan diagnosis, abbreviated as
mini-maxi diagnosis, if (i) Q) is a maxi-diagnosis and (ii) there exists no maxi-diagnosis
Q' such that Q' C Q.

3.2 Finding maxi-diagnoses

Finding minimum diagnoses is computationally hard, even in our simple framework.
Surprisingly, however, finding maxi-diagnoses and even finding mini-maxi-diagnoses
is tractable. We will first give an intuitive description of an efficient procedure to find
a (mini-) maxi diagnosis and then give a polynomial algorithm for finding a mini-maxi
diagnosis.

Suppose we have plan observations (P, (m,t), (7’,t)). To determine a maxi-diag-
nosis, we first determine the disagreement set Disg of all those variables whose values
are defined in both the observed state " and the predicted state 7/, at time ¢’ but differ:
Disg ={v e Var | [ry(v) # ' (v)A(7'(v) > L)A(ny(v) > L)]}. Next, we collect
all plan steps s at time ¢" — 1 such that there exists a variable v € rany4,(s) N Disg.
By the determinism requirement, two different plan steps s and s’ occurring in some set
P, cannot have a variable in common in their range, hence for every v € Disg there
is at most one plan step s, € Py_q such that v € rany,.(s). Then we remove all
variables v that occur in the range of the plan steps just selected from the disagreement
set. Fori = 2,3, ..., we iteratively select new plan steps at times ¢’ — having a variable
in their range that also occurs in the disagreement set and we remove these variables
until the disagreement set is empty. It is not difficult to see that this procedure generates
the set Quar = {Su | v € Disg} where s, is the latest plan step in the plan causing
the value v to occur in the disagreement set. It can be easily proven that Q4. is a
maxi-diagnosis.

In order to obtain a mini-maxi diagnosis, we have to refine this procedure slightly.
Firstly, let us introduce the notion of a scope of a plan step s. Intuitively, the scope of a
plan step s contains all plan steps s’ such that all variables v € rany,(s’) will become
undefined whenever s is qualified as abnormal. This scope scopep(s) is inductively
defined as follows: (i) s € scopep(s) and (ii) if there exist plan steps s’ and s” such that
depthp(s') < depthp(s”) and ranyq.(s") N domy o, (s") # & then s’ € scopep(s)
implies s” € scopep(s). Now, in the above procedure to generate a maxi-diagnosis, if
we simply add a set S; of new plan steps belonging to P;_; to the already selected set
of plan steps S, some of the plan steps s occurring in S; might contain variables v’ in
their scope that also occur in the domain of plan steps s’ € S already selected. That
implies scope(s) 2 scope(s’): hence, adding such a plan step s makes the inclusion
of the previously added plan steps s’ superfluous. Therefore, at each iteration step, we
remove such redundant plan steps s’ to obtain a mini-maxi diagnosis.

The following algorithm (see Algorithm 1 states an iterative procedure to obtain a
mini-maxi diagnosis @, qz:

Example 7. Consider again the plan execution depicted in Figure 4. Given obs(0) and
0bs(3) and a deviation in the value of s, at time ¢ = 3, we determine the disagreement
set Dis = {s2}. After selecting sg as a plan step to be included in the diagnosis, the
disagreement set is empty. Hence, D = {s¢} is a maxi-diagnosis. |



Algorithm 1 Algorithm to compute mini-maxi diagnoses

Require: plan observations (P, (,t), (7, t'))
Ensure: a mini-maxi informative diagnosis Qmaz
Let Disg = Disg and let Quae = 9
1:=0
while Disy # @ do
=1+ 1;
Si = {s € Py_;|3v € Diso[v € ranvar(s)]};
Qi := {5 € Qmaz | 35’ € Si[s € scope(s')]};
Qmam = (Qma:c - Qz) U Ss;
Diso = DZSO - USEQm,az ranvar (S)
end while
return Qaz

4 Diagnosing a sequence of observations

Until now we discussed the diagnosis of a plan P using (simple) plan observations: we
considered diagnoses based on two observations of P at different time points ¢ < ¢'.
Considering the plan P as a system to be diagnosed, there is a direct correspondence
between MBD and plan diagnosis: the observation obs(t) at the earliest time point cor-
responds to observing the inputs of the system, while the observations obs(t’) at the
latest time point corresponds to observing the outputs. Plan diagnosis, however is not
limited to making observations at two different points of time. For it may happen that
during the execution of a plan we are able to make a sequence of k > 2 observations at
some specific time points t1 < tg < ... < tg.

In this section we will adapt the definition of a plan diagnosis to such a sequence
of observations. We will first make a careful analysis of the adaptations to be made by
discussing a simple example.

Example 8. Consider the plan P as depicted in Figure 5 (a). There are three obser-
vations (7o, o), (m1,%1) and (72, t2). Using the observation (g, to) and assuming no
faulty plan steps, we predict the partial state (776’1, 1) at time ¢t = 1 as depicted in Fig-
ure 5 (b). Note that this predicted state is compatible with the observed state (7, ¢1).
Using the same observation (7o, to), we also predict an observed state (7(, 5, 2) at time
t = 2 where only the variables v; and v, are defined. Suppose that this prediction is
compatible with the observed state 7o at time ¢ = 2. The observation (71, ¢1) can also
be used to obtain information about the state of the plan at time ¢ = 2. In this case, how-
ever, using (71,t1) the empty partial state 77 , = (L, ..., L) is predicted. This state,
by definition, is compatible with any prediction or observation made at time ¢ = 2.
Therefore, we could conclude that the fusion 7(, 5 LI 7} 5 L 75 represents the total infor-
mation that can be derived from both observations at time ¢ = 2, assuming that the plan
is executed correctly and that the prediction 71'(’)72 is compatible with the observation 5.

However, in this way we did not use all the information available at time ¢t = 1
to make a prediction for the state of the plan at time ¢ = 2. For example, we are not
able to detect whether the value of v3 deviates from the prediction that can be made if
we systematically combine the predictions using both the observations 7y and 71. For



Fig. 5. A plan with a sequence of three observations (7o, 0), (7,1) and (72, 2) (a) and the predic-
tions (b) that can be derived using these observations.

example, since the predicted state 7(, ; and the observed state 7 are compatible, the
total state information available at time ¢ = 1 is the fused state 7 ; U 7. From this
latter state we are able to predict the partial state 7/ at time ¢t = 2 where Var(w)) =
{v1,v2,v3,v4} and therefore, we could detect whether 75 at variable vs is compatible
with this prediction. We conclude that we have to carefully combine all the derivations
made from previous observations with the current observed state information to make
predictions for the state of the plan at a future time.

To model the case where a sequence of k > 2 observations is made, we consider
aplan P = (O, S, <) with a sequence Obs = (0bs(t1), ..., 0bs(t;)) of observations
where obs(t;) = (m;,t;) fori =1,...,kand t; <ty < ... <ty < depth(P).

Let us first consider, given a plan P and such a sequence of observations Obs, the
constraints a diagnosis ) C S has to satisfy. Consider the first observation (71, t1).
From this observation we can make predictions 7} ; for all time points ¢;, with i > 1,
using the derivations

(m1,t1) =5, p ()45 t0)-

Clearly, since () is assumed to be a diagnosis of P using Obs, we should require
Wi,i ~m foralll <i<k.

Now consider the second time point ¢5. Note that the total state information avail-
able at time 5 consists of the observed partial state mo and the predicted partial state
) o compatible with it. Hence, the total information available at ¢, is represented by
the fused state 75 LI 7] 5. Using this fused state and the qualification @) we can make
predictions 7y ; for the partial states m; observed at ¢; for i > 2:

(m2 U 771,2a t2) _>*Q;P (Tré,ia t;)



Again, since @ is a diagnosis, all these predictions wéyi should be compatible with 7;
forall 2 < i <k, i.e., it should hold that 71"2’1- ~ m; forall 2 < i < k.

Proceeding inductively, assume that predictions 7T;L7i have been made using all in-
formation available at times ¢, where h = 1,2,...7 — 1. Then the predictions wgvj,
where j = i + 1,...k, can be obtained as follows: The total information available at
time ¢; is m; Uy ; U ... U7 _; ;. We can make predictions 7; ; for all times ¢; where
j=i+1,...,k using the derivations: (m; U} ; U... U _q;,t;) =5.p (7] ;1)

The representation of the total information available at time ¢; can be simplified,
since it turns out that 7r; L7} ; U... U7 ; = m; U ;. This can be seen as follows:

For 1 < h <i—1litholds that (m U7y, U...Um, 5. th) —5.p (Th 1, ti-1)
as well as (mp Uy, U U, g 0th) —06.p (7, 4, ). Since the derivability relation
is deterministic, (77, ;_;,ti—1) —q;p (7, ;»t;) must hold for b = 1,...,7 — 2, Since
wehaver, ; Cm i Um, U...Um, (U...Um o, jand (m_ Uy, 4 U
.oy ﬂ;fz’;il, tic1) —o.p (M, ti) it follows from the C-preserving properties of
the derivability relation that, for h = 1,...,i — 2, m}, , C 7r§_17i. Hence we obtain

m U, U, Um_y; = m Um_y,. Therefore, at time ¢; we only need to make a

prediction 7; ;,; for time #;, 1 using the derivation

(m; U 771/‘—1,iati) —>*Q;P (771{,1‘+1:ti+1)
This line of reasoning underlies the following definition of a diagnosis using a sequence
of observations:

Definition 7. Ler P = (O, S, <) be a plan with a sequence Obs = (obs(t;) =
(71,%1), ..., 0bs(ty) = (mg,tx)) of observations, where t1 < to < ... < t <
depth(P). Then the qualification Q C S is said to be a plan diagnosis of P using
Obs iff there exist partial states 7; ;| for 1 < i < k such that

1 (m,t1) =6, p (T 9, t2),
2. (mUmi_y5ti) =5.p (T i1, tiva) forevery 2 <i < k and
3.

3
ﬂgyiJrl ~ it forevery 1 <i < k.

By slightly changing this definition, we can make a closer connection between the
definition of a diagnosis based on a sequence of observations and the definition of a di-
agnosis based on a pair of observations. To this end, given the sequence of observations
Obs, the qualification () and Definition 7, we construct a new sequence of observations
(obs*(t1), . ..,0bs*(tx)) as follows:

1. obs*(t1) = obs(t1);
2. fori=2,...,k obs*(t;) = (m Umj,t;), where (7, ;) satisfies obs*(ti—1) —5.p
(77—;7 ti)'

Now we can establish the following connection between diagnosis based on a sequence
of observations and diagnosis based on a pair of observations:

Proposition 2. Q is a diagnosis of P using Obs = (0bs(t1), ..., o0bs(t)) iff for i =
1,...k — 1, Q is a diagnosis of the pair of observations (P, obs*(t;), 0bs(t;+1)).



Algorithm 2 Computing a mini-maxi diagnosis based on a sequence of observations

Require: a plan P with a sequence Obs of observations obs(t1) = (m1,t1),...,0bs(ts) =
(T, tr) where t1 < t2 < ... < tx < depth(P).
Ensure: a mini-maxi diagnosis Qmaz-
1: Find a mini-maxi diagnosis Qmaz,1 for (P, (m¢,,t1), (7, t2)) using Algorithm 1 and com-
pute the predicted state Tr;nw,l using Qmaz,1;
2. 1:=2;
3: while¢ < k£ do
4:  Find a mini-maxi diagnosis Qmaz,i for (P, (m¢; U ez is i), (e, 1, tiv1)) using Algo-
rithm 1 and compute the corresponding predicted state (T7,qz,i+1, ti+1) USING Qmaaz,i;
5: end while
6: return Qmaz = UJ; @maxz,i

It is not difficult to adapt the idea of mini-maxi diagnoses to a sequence of ob-
servations. To construct such a diagnosis 4z, it suffices to construct the separate
qualifications Qumaz,15 - - - » @maz,k as follows:

Note that this algorithm makes use of Proposition 2 to compute the resulting mini-
maxi diagnosis using an algorithm developed for diagnosis based on a pair of observa-
tions.

5 Conclusion

We have presented a simple formal framework to specify an executable plan and we
have defined the notion of a diagnosis using partial observations of a plan in execu-
tion. We based our analysis of plans and observations upon a model-based diagnosis
approach and considered a plan as a description of a system that can be observed and
can be used to make predictions about its (future) behavior.

Using this framework, we derived a definition for a plan diagnosis as a set of ab-
normally qualified plan steps that are able to derive a partial plan state compatible with
an observed partial plan state. In contrast to model-based diagnosis, where minimal and
minimum diagnoses are aimed for, we have shown that minimality in plan diagnosis
not always leads to the results we prefer. The reason is that making observations of
plans is not completely comparable to making observations of input-output behavior
of systems in model-based diagnosis. Often we make observations during plan execu-
tion and would like to make predictions of future outcomes of plan execution based on a
plan diagnosis established so far. That implies that predictions about future behavior are
as important as explanations of already observed behavior. In order to make powerful
predictions, we argued that we should therefore aim at maximal informative diagnoses.

We showed that in contrast to minimum diagnosis, a minimal maximum informa-
tive diagnosis can be found efficiently, although maximum informative diagnoses of
minimum size are difficult to compute.

Finally, we extended our approach to diagnosis with iterative observations, showing
that in such cases both the general definition of what constitutes a diagnosis as well
as the computation of maximum informative diagnoses can be reduced to their counter-



parts discussed for the simple case where only two successive observations are involved.

Current work can be extended in several ways. We mention three possible exten-
sions: First of all, we could improve our current notion of diagnosis by taking into
account the difference between plan operators and plan steps. In some cases it could be
useful to make a distinction between establishing diagnoses at the plan step level and
diagnoses at the plan operator level. For example, if instances of a driving action (i.e.
plan steps) pertain to a plan operator that refers to the use of one single vehicle and all
these instances are qualified as being abnormal, there is sufficient reason to believe that
the vehicle itself (the plan operator) is faulty. Such a distinction requires the inclusion
of causal rules linking different plan steps to each other. By means of such causal rules
the number of plan steps qualified as abnormal often can be significantly reduced. Sec-
ondly, going beyond plan operators, we could improve the diagnostic model to include
a model of the executing agent(s) that is involved in executing one or more plan steps.
In particular we need to consider cases where the agent might evolve through several
abnormal states. We suspect the resulting model to be related to diagnosis in Discrete
Event Systems [4,7]. Thirdly, we hope to extend our current approach by including
methods for plan repair in the context of the inferred agent’s current (abnormal) state.
Such methods especially seem to be useful in the context of iterative observations as
discussed in the final part of this paper.
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