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Abstract. We consider a model-based diagnosis approach to the
diagnosis of plans. Here, a plan executed by some agent(s) is con-
sidered as a system to be diagnosed. We introduce a simple formal
model of plans and plan execution where it is assumed that the ex-
ecution of a plan can be monitored by making partial observations
of plan states. These observations of plan states are used to com-
pare them with predicted states based on (normal) plan execution.
Deviations between observed and predicted states can be explained
by qualifying some plan steps in the plan as behaving abnormally.
A diagnosis is a subset of plan steps qualified as abnormal that can
be used to restore the compatibility between the predicted and the
observed partial state. In contrast to model-based diagnosis, where
minimum and minimal diagnoses are preferred, we argue that in
plan-based diagnosis maximum informative diagnoses should be pre-
ferred. These are diagnoses that make the strongest predictions with
respect to partial states to be observed in the future. We show that
in contrast to minimum diagnoses, finding a (minimal) maximum in-
formative diagnosis can be achieved in polynomial time. Finally, we
show how our approach can be extended in a simple way to deal with
diagnosis based on iterative timed observations.

1 Introduction

With an increasing complexity of plans, the possibility that some-
thing goes wrong during their execution increases correspondingly.
No wonder then that more attention is paid to the development of
robust plans. One way to enhance robustness is to perform plan di-
agnosis in order to identify the causes of failures, to predict future
failures and, if possible, to prevent failures to occur.

In this paper we will concentrate on internal failure sources and
leave external failure sources such as the environment, failures of
executing agents as in [1] or incompatibilities between agents as in
[9, 10] for future research. In particular, we will confine ourselves
to the identification of failing actions as the only source of plan fail-
ure.3 In a multi-agent planning systems, for example, identification
of such failing actions can be used to identify agents responsible for
executing these actions.

One of the main goals of this paper then is to show how a plan con-
sisting of a partially ordered set of instances of actions can be viewed
as a system to be diagnosed and how a diagnosis can be established
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3 If the plan is correctly specified, every error in the plan execution process
becomes manifest in the incorrect behavior of one or more instances of
actions occurring in the plan. Whether or not we should be satisfied with
the identification of one or more of such failing actions, a diagnostic process
that identifies a set of actions that can be shown to be responsible for the
abnormalities observed is a useful analysis on its own.

using partial observations of a plan in progress. Distinguishing be-
tween normal and abnormal execution of actions in a plan, we then
introduce a plan diagnosis as a set of instances of actions qualified as
abnormal to explain the deviations between expected plan states and
observed plan states. Although plan diagnosis conceived in this way
seems to be a rather straightforward application of MBD to plans,
we have to recognize some differences, too: First of all, we want to
deal with partial observations in time of a planning system. That is,
taking a plan in execution, in many applications it is simply not pos-
sible to observe all the effects of the actions occurring in the plan that
have to be executed at some time t. Therefore, we will have to deal
with partial observations of (the results of) plan execution at several
time steps. Secondly, in diagnoses of systems we usually distinguish
only input and output observations. Using the system description S
together with some normality assumptions, we can predict the output
from the input observation and compare the predicted output with the
observed output to establish a diagnosis. In plan diagnosis, this idea
of restricting observations to the start and the end of plan execution
would severely limit the fruitfulness of diagnosing plans: instead, we
would like to apply diagnosis using an arbitrary sequence of (partial)
observations in order to establish a diagnosis. Thirdly, while in stan-
dard MBD usually subset-minimal diagnoses, or within them min-
imum (cardinality) diagnoses, are preferred, we will show that this
focusing on minimality of diagnoses alone is not sufficient for plan
diagnosis. We would prefer diagnoses that maximize the similarity
between predicted and observed plan states. Such diagnoses we will
call maximum informative diagnoses.

In order to present a general approach to plan diagnosis and to
state results that are valid for planning systems in general, we do
not adhere to special planning formalisms. As the reader will notice,
this framework is general enough to cover the main features of well-
known planning formalisms like STRIPS [7].

Results The results obtained in this paper are threefold. First of
all we present a formal framework for plan diagnosis that enables
us to define exactly how observations of a plan in execution can be
used to derive a plan diagnosis. We show that establishing a plan di-
agnosis comes down to finding a subset of actions in a plan such
that if these actions are qualified as abnormal, the observed plan
states are compatible with predicted plan states. Secondly, after in-
troducing minimal maximum informative diagnoses (abbreviated as
mini-maxi diagnoses) as a special kind of diagnoses that have to be
preferred above the well-known subset-minimal and minimum diag-
noses known from model-based diagnosis, we show that in contrast
to minimum diagnoses, mini-maxi diagnoses can be computed effi-
ciently. Thirdly, we extend the framework to plan diagnosis based on
iterative partial observations and we show how this case can be re-
duced to establishing diagnoses with a simple pair of observations.4

4 An earlier version of the framework has appeared in [15] without the dis-
cussion of maximum informative diagnoses, algorithms and iterative obser-



Organization This paper is organized as follows. In the next sec-
tion, we place our approach into perspective by discussing some re-
lated approaches to plan diagnosis. Then we introduce a simple for-
mal framework for representing states, actions and plans. In Section
3, we introduce the main concepts of plan-based diagnosis, while
Section 4 formalizes plan-based diagnosis, introduces the idea of
maximum informative diagnosis. In this section, we also discuss an
efficient algorithm to find minimal maximum informative diagnoses.
In Section 6, we extend our framework to diagnosis with a sequence
of observations and Section 7 concludes this paper with a brief out-
look to future research. Note that due to lack of space, all proofs of
results have been omitted.

2 Related research

In this section we briefly discuss some other approaches to plan di-
agnosis we already alluded to in the introduction.

Birnbaum et al. [1] apply MBD to planning agents relating health
states of agents to outcomes of their planning activities. They do not
take into account abnormalities that can be attributed to actions in
a plan as a separate source of errors. In contrast to their approach,
we do not take into account abnormalities of the executing agents,
but exclusively focus upon the detection of abnormal actions in the
plan. As we already remarked above, we feel that such an approach
focusing upon actions as the immediate factors underlying abnormal
plan behavior should precede more elaborate failure analyses.

Another approach that directly applies model-based diagnosis to
plan execution has been proposed in De Jonge et al. [5]. Here, the
authors focus on agents each having an individual plan, and where
conflicts between these plans may arise (e.g. if they require the same
resource). Diagnosis is applied to determine those factors — not lim-
ited to actions — that are accountable for future conflicts.

Kalech and Kaminka [9, 10, 11, 12] apply social diagnosis in or-
der to find the cause of an anomalous plan execution. They consider
hierarchical plans consisting of so-called behaviors. Such plans do
not prescribe a (partial) execution order on a set of actions. Instead,
based on its observations and beliefs, each agent chooses the appro-
priate behavior to be executed. Each behavior in turn may consist
of primitive actions to be executed, or of a set of other behaviors
to choose from. Social diagnosis then addresses the issue of deter-
mining what went wrong in the joint execution of such a plan by
identifying the disagreeing agents and the causes for their selection
of incompatible behaviors (e.g., belief disagreement, communication
errors). This approach might complement our approach when con-
flicts not only arise as the consequence of faulty actions, but also as
the consequence of different selections of sub-plans in a joint plan.

Lesser et al. [2, 8] also apply diagnosis to (multi-agent) plans.
Their research concentrates on the use of a causal model that can
help an agent to refine its initial diagnosis of a failing component
(called a task) of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific,
plan that is better suited to pursue its goal. While their approach in its
ultimate intentions (establishing anomalies in order to find a suitable
plan repair) comes close to our approach, their approach to diagno-
sis concentrates on specifying the exact causes of the failing of one
single component (task) of a plan. Diagnosis is based on observa-
tions of a component without taking into account the consequences
of failures of such a component with respect to the remaining plan.
In our approach, instead, we are interested in applying MBD-inspired

vations.

methods to detect plan failures. Such failures are based on observa-
tions during plan execution and may concern individual components
of the plan. Furthermore, we do not only concentrate on identify-
ing failing components themselves, but also on the consequences of
these failures for the future execution of plan elements.

3 Preliminaries

3.1 Plans as Systems

We consider plan-based diagnosis as a simple extension of the
model-based diagnosis (MBD) approach [3, 4, 14], where the model
is not a description of an underlying physical system but a plan of
one or more agents. To keep this model simple and general, we will
keep the plan representation details minimal.

3.1.1 States

By executing plans we change a part of the world. Therefore, before
we discuss plans, we need to introduce a simple state-based view
on the world. We assume that for the planning problem at hand, the
world can be described by a set Var = {v1, v2, . . . , vn} of variables
and their respective value domains Di. A complete state of the world
σ then is a value assignment σ : V ar →

Sn
i=1 Di to the variables.

Slightly abusing terminology, we simply denote a complete state by
an n-tuple σ = (σ(v1), . . . , σ(vn)) ∈ D1×D2×. . .×Dn. A partial
state is an element π ∈ Di1 ×Di2 × . . .×Dik , where 1 ≤ k ≤ n
and 1 ≤ i1 < . . . < ik ≤ n. We use V ar(π) to denote the set
of variables {vi1 , vi2 , . . . , vik} ⊆ Var specified in such a partial
state π. The value σ(vj) of variable vj ∈ V ar(π) will be denoted
by π(vj). The value of a variable vj ∈ Var not occurring in a partial
state π is said to be undefined (or unpredictable) in π, denoted by⊥.
Including ⊥ in every value domain Di allows us to consider every
partial state π as an element of D1 ×D2 × . . .×Dn.

Partial states can be ordered with respect to their information con-
tent: Given values d and d′, we say that d′ is at least as informa-
tive as d, abbreviated as d ≤ d′, iff d = ⊥ or d = d′. The con-
tainment relation v between partial states is the point-wise exten-
sion of ≤ : π is said to be contained in π′, denoted by π v π′, iff
∀v ∈ V ar[π(v) ≤ π′(v)].

An important notion in plan diagnosis is the notion of compatibil-
ity between partial states. Intuitively, two states π and π′ are said to
be compatible if there is no essential disagreement about the values
assigned to variables in the two states, i.e., in principle they could
characterize the same state of the world. More exactly, compatibility
implies that for every v ∈ V ar, either π(v) = π′(v) or at least one
of the values π(v) and π′(v) is undefined:

Definition 1 (compatibility relation) Two partial states π and π′

are said to be compatible, denoted by π ≈ π′, if ∀v ∈ V ar[ π(v) ≤
π′(v) or π′(v) ≤ π(v) ].

If two partial states π1 and π2 are compatible, their information con-
tent can be fused to obtain a new partial state π = π1 t π2 that
contains them both: π = π1 t π2 holds iff ∀v ∈ V ar[π(v) =
max≤{π(v), π′(v)}].

3.1.2 Actions, Plan operators and Plan Steps

In the preceding sections we used to term “actions” in a rather in-
formal way. From now on, we make a distinction between actions,



plan operators and plan steps. First of all, an action refers to an ac-
tivity that results in some change of the (current) state of the world,
such as loading a vehicle or assembling components. A plan oper-
ator refers to a description of such an action in a plan. More ex-
actly, a plan operator o is a function mapping partial states to par-
tial states by replacing the values of a subset Vo ⊆ Var by other
values (dependent upon the values of another set V ′

o ⊇ Vo of vari-
ables). Hence, every plan operator o can be modeled as a (partial)
function fo : Di1 × . . . × Dik → Dj1 × . . . × Djl , where
1 ≤ i1 < . . . < ik ≤ n and {j1, . . . , jl} ⊆ {i1, . . . , ik}.
The variables whose value domains occur in dom(fo) will be de-
noted by domV ar(o) = {vi1 , . . . , vik} and, likewise, ranV ar(o) =
{vj1 , . . . , vjl}. It is required that ranV ar(o) ⊆ domV ar(o), i.e.,
the function fo associated with a plan operator is range-restricted.
This functional specification fo constitutes the normal behavior of
the plan operator o, also denoted by fnor

o .

Example Figure 1 depicts two states σ0 and σ1 (the white boxes)
each characterized by the values of four variables v1, v2, v3 and v4.
The partial states π0 and π1 (the gray boxes) characterize a subset of
variables in a (complete) state. Plan operators are used to model state
changes. The domain of the plan operator o is the subset {v1, v2},
denoted by the arrows pointing to o. The range of o is the subset
{v1}, which is denoted by the arrow pointing from o. Finally, the
dashed arrow denotes that the value of variable v2 is not changed by
operator causing the state change.

o

π0

π1

v1 v2 v3 v4

σ1

σ0

Figure 1. Plan operators, states and partial states

A plan operator o may be used at several places in a plan. A specific
occurrence of o is called a plan step mapping a specific partial state
into another partial state. A plan step s as an occurrence of o then
describes a specific function application of the function specified by
the operator o at a specific place in the plan. Therefore, given a set
O of plan operators, we consider a set S = inst(O) of instances of
plan operators in O, called the set of plan steps. A plan step will be
denoted by a small roman letter si. The plan operator o the instance
si was instantiated from is denoted by op(si). If op(si) = o, the
instance si is said to be of type o.

3.1.3 Plans and Plan Execution

A plan is a tuple P = 〈O, S, <〉 where S ⊆ Inst(O) is a set of
plan steps occurring in O and (S, <) is a partial order. The partial
order relation < specifies an execution relation between plan steps:
for each s ∈ S it holds that s is executed immediately after all plan
steps s′ such that s′ < s have been finished. We will denote the
transitive reduction of < by �, i.e., � is the smallest subrelation of
< such that the transitive closure �+ of � equals <.

Example Figure 3.1.3 gives an illustration of a plan. Arrows relate
the objects a plan step uses as inputs and the objects it produces as
its outputs to the plan step itself. In this plan, the direct execution
relation is specified as s1 � s3, s2 � s4, s4 � s5 and s4 � s6.

s1 s2

s4s3

s5 s6

v1 v2 v3 v4

π0

π1

π2

π3

Figure 2. Plans and plan steps. Each state characterizes the values of four
variables v1, v2, v3 and v4. States are changed by application of plan steps

si for i = 1, 2, . . . , 6.

Without loss of generality, we assume that very plan step s ∈ S
takes a unit of time to execute and the execution of the first plan
step starts at time t = 0. Using this assumption and the definition
of the execution relation <, the time t at which a plan step s will be
executed is uniquely determined: Let depthP (s) be the depth of plan
step s in plan P = 〈O, S, <〉. 5 Then the time ts at which the plan
step s is executed is ts = depthP (s) and s will be completed at time
ts + 1. Let Pt denote the set of plan steps s with depthP (s) = t, let
P>t =

S
t′>t Pt′ , P<t =

S
t′<t Pt′ and let P[t,t′] =

St′

k=t Pk.

Example Consider again Figure 3.1.3. In this plan, the depth of s1

and s2 is 0, the depth of s3 and s4 is 1, and the depth of s5 and s6 is
2. Therefore, P0 = {s1, s2}, P1 = {s3, s4} and P2 = {s5, s6}.

Given a state σ at some time t and the set Pt of plan steps to be exe-
cuted at time t we want to be sure that the next state σ′ at time t + 1
is uniquely defined. If Pt contains two plan steps s and s′ with over-
lapping ranges, i.e., if ranV ar(s)∩ranV ar(s

′) 6= ∅, the final result
of a variable v occurring in this intersection is not uniquely defined
in σ′. We therefore assume the following condition to hold:

Determinism: If P is a plan and s, s′ are plan steps in P such
that ranV ar(s)∩ ranV ar(s

′) 6= ∅ then depthP (s) 6= depthP (s′).

It is not difficult to see (and can be easily proven using the deriv-
ability relations to be discussed) that Determinism guarantees that a
future plan state can be defined uniquely given a plan and a currently
uniquely defined plan state.

5 Here, depthP (s) = 0 if {s′ ∈ S |s′ � s} = ∅ and depthP (s) =
1 + max{depthP (s′) | s′ � s}, else. If the context is clear, we omit the
subscript P .



3.2 Qualifications
The correct execution of a plan step may fail either because of an
inherent malfunctioning or because of a malfunctioning of an agent
responsible for executing the action, or because of unknown external
circumstances. In all these cases we would like to model the effects
of executing such failing plan operators. Therefore, we introduce a
set of health modes Hs for each plan step s. This set Hs contains at
least the normal mode nor, the mode ab indicating the most general
abnormal behavior, and possibly several other specific fault modes.
The most general abnormal behavior of plan step s is specified by
the function fab

s , where fab
s (di1 , di2 , . . . , dik ) = (⊥,⊥, . . . ,⊥) for

every partial state (di1 , di2 , . . . , dik ) ∈ dom(fo).6 To keep the dis-
cussion simple, in the sequel we distinguish only the health modes
nor and ab.

Let us assume, for the moment, that each plan step can be viewed
as an independent component of a plan. To each plan step then s a
health mode hs ∈ {nor, ab} can be assigned and the result is called
a qualified plan. In establishing which part of the plan fails, we are
only interested in those plan steps qualified as abnormal. Therefore,
we define a qualified version PQ of a plan P = 〈O, S, <〉 as a tuple
PQ = 〈O, S, <, Q〉, where Q ⊆ S is the subset of plan steps qual-
ified as abnormal (and therefore, S − Q is the subset of plan steps
qualified as normal).

Since a qualification Q corresponds to assigning the health mode
ab to every plan step in Q and since fab

s (di1 , di2 , . . . , dik ) =
(⊥,⊥, . . . ,⊥) for every plan step s ∈ Q with type(s) = o, the
results of anomalously behaving plan steps are unpredictable. Note
that a “normal” plan P corresponds to the qualified plan P∅ and that
in our context “undefined” is considered to be equivalent to “unpre-
dictable”.

3.3 Derivability relations induced by plan
execution

Note that P on a given initial state π0 will induce a sequence of states
π0, π1, . . . , πk, where πt+1 is generated from πt by applying the set
of plan steps Pt to σt. To define this relation between partial states at
different time points we denote a partial state π at a given time t by
a tuple, also called a timed state, denoted by (π, t).

Let s be a plan step. We say that s is enabled in a state π if
domV ar(s) ⊆ V ar(π). Intuitively, we can predict the timed state
(π′, t + 1) using the timed state (π, t) and the set Pt of to be exe-
cuted plan steps as follows:

1. whenever a variable v does not occur in the range of a plan step
s ∈ Pt, its value in state π′ is the same as its value in π, i.e.,
π(v) = π′(v);

2. if the variable v occurs in the range of a normally qualified plan
step s that is enabled in π, then π′(v) = fnor

s (π(v));
3. in all other cases, there is not sufficient information to predict the

value of π′(v), either because v occurs in the range of an abnor-
mally qualified plan step s or v occurs in the range of some plan
step s ∈ Pt not enabled in π.

Formally, this relation is defined as follows:

Definition 2 We say that (π′, t + 1) is (directly) generated by ex-
ecution of the Q-qualified plan PQ from (π, t), abbreviated by
(π, t) →Q;P (π′, t + 1), iff for every v ∈ V ar the following condi-
tions hold:
6 This definition implies that the behavior of abnormal steps is essentially

unpredictable.

1. if v 6∈
S

s∈Pt
ranV ar(s) then π′(v) = π(v);

2. if v ∈
S

s∈Pt−Q ranV ar(s) then π′(v) = fnor
s (π)(v);

3. else π′(v) = ⊥.

It is easy to see that thanks to Determinism, the immediate deriv-
ability relation →Q;P is well-defined and deterministic:

Proposition 1 Let PQ be a qualified plan and let (π, t) a timed state.
Then (π, t) →Q;P (π′, t + 1) and (π, t) →Q;P (π′′, t + 1) implies
π′′ = π′.

We extend this direct derivability relation to a general derivability
relation in a straightforward way:

Definition 3 For arbitrary values of t ≤ t′ we say that (π′, t′) is
(directly or indirectly) generated by execution of PQ from (π, t), de-
noted by (π, t) →∗

Q;P (π′, t′), iff the following conditions hold:

1. if t = t′ then π′ = π;
2. if t′ = t + 1 then (π, t) →Q;P (π′, t′);
3. if t′ > t + 1 then there must exists some state (π′′, t′ − 1) such

that (π, t) →∗
Q;P (π′′, t′ − 1) and (π′′, t′ − 1) →Q;P (π′, t′).

Note that (π, t) →∗
∅;P (π′, t′) denotes the normal execution of a

normal plan P∅. Such a normal plan execution will also be denoted
by (π, t) →∗

P (π′, t′).
Using these definitions, it is not difficult to show that for every

0 ≤ t ≤ k, the timed state (π′, t) where (π, 0) →∗
Q;P (π′, t) is

uniquely defined if < satisfies the Determinism requirement.

Example Figure 3 gives an illustration of an execution of a plan with
abnormal plan steps. Suppose plan step s3 is abnormal and generates
a result that is unpredictable (⊥). Given the qualification Q = {s3}
and the partially observed state π0 at time point t = 0, we predict
the partial states πi as indicated in Figure 3, where (π0, t0) →∗

Q;P

(πi, ti) for i = 1, 2, 3.

π3

s1 s2

s4s3

s6 s8

t=0

t=1

t=2

t=3

π0

π1

π2

v1 v2 v3 v4 v5

s5

s7

⊥ ⊥

⊥ ⊥ ⊥ ⊥

Figure 3. Plan execution with an abnormal plan step (s3).

Note that since the value of v1 and of v5 cannot be predicted at time
t = 2, the result of plan step s6 and of plan step s8 cannot be pre-
dicted and π3 contains only the value of v3.



4 Observations and Diagnoses
To establish plan diagnosis in our framework we need to make obser-
vations. Our framework provides a natural candidate for representing
such observations: an observation obs(t) at time t is a timed state
(π, t) where π is a partial state. This implies that we do not require
observations to specify a complete state. Suppose we have an obser-
vation obs(t) = (π, t) and an observation obs(t′) = (π′, t′) at some
later time t′ > t ≥ 0 during the execution of the plan P . We would
like to use these observations to infer the health modes of the plan
steps occurring in P . First, assuming a normal execution of P , we
can predict the partial state of the world at a time point t′ given the
observation obs(t): if all plan steps behave normally, we predict the
timed state (π′∅, t′) such that obs(t)→∗

P (π′∅, t′). Such a prediction
has to be compared with the actual observation obs(t′) = (π′, t′)
made at time t′. It is easy to see whether the predicted state and the
observed state match: in that case we should be able to find a state σ
such that both the observed state π′ and the predicted state π′∅ both
are contained in σ, that is, π′ v σ and π′∅ v σ. By definition of
compatibility, such a π′ can only exist if π′∅ and π′ are compatible
states, i.e. if π′ ≈ π′∅ holds.7 If this is not the case, the execution of
some plan steps must have gone wrong and we have to determine a
qualification Q such that the predicted state π′Q derived using Q is
compatible with π′. Hence, we have the following straight-forward
extension of the diagnosis concept in MBD to plan diagnosis (cf.
[4]):

Definition 4 Let P = 〈O, S, <〉 be a plan with observations
obs(t) = (π, t) and obs(t′) = (π′, t′), where t < t′ ≤ depth(P )
and let obs(t)→∗

Q;P (π′Q, t′) be a derivation using PQ. Then Q is
said to be a plan diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ ≈ π′Q.

In order to be able to establish a diagnosis, we simply assume that
for every variable v there exists at least some plan step s and some
time t ≤ t′′ ≤ t′ such that s ∈ Pt′′ and v ∈ ranV ar(s).

Example Consider again Figure 3 and suppose that we did not know
that plan step s3 was abnormal and that we observed obs(0) =
((d1, d2, d3, d4), 0) and obs(3) = ((d′1, d

′
3, d

′
5), 3). Using the nor-

mal plan derivation relation starting with obs(0) we will predict a
state π′∅ at time t = 3 where π′∅ = (d′′1 , d′′2 , d′′3 ). If everything is
ok, the values of the variables predicted as well as observed at time
t = 3 should correspond, i.e. we should have d′j = d′′j for j = 1, 3.
If, for example, only d′1 would differ from d′′1 , then we could qualify
s6 as abnormal, since then the predicted state at time t = 3 using
Q = {s6} would be π′Q = (d′′3 ) and this partial state agrees with the
predicted state on the value of v3.

Remark Note that for all variables in V ar(π′)∩V ar(π′Q), the qual-
ification Q provides an explanation for the observation π′ made
at time point t′. Hence, for these variables the qualification pro-
vides an abductive diagnosis [3]. For all observed variables in
V ar(π′) − V ar(π′Q), no value can be predicted given the quali-
fication Q. Hence, by declaring them to be unpredictable, possible
conflicts with respect to these variables if a normal execution of all
plan steps is assumed, are resolved. This corresponds with the idea
of a consistency-based diagnosis [14].

4.1 Maximal informative diagnoses
On intuitive grounds, one would prefer, like in MBD, smaller diag-
noses above larger ones. One of the intuitions behind this preference
7 See the definition in the preliminaries.

π3

s1 s2

s4s3

s6 s8

t=0

t=1
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t=3
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π1
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v1 v2 v3 v4 v5

s5
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π'3

Figure 4. Plan execution with an observation deviating from the expected
observation, as indicated by the black dot.

is that, normally, we expect a plan to deliver correct results. Any
deviation from this normality assumption should be as small as pos-
sible and we prefer a qualification that does not contain more actions
qualified as abnormal than necessary. This, like in MBD, would be
an obvious reason to prefer subset-minimal diagnoses and especially
minimum diagnoses among the set of minimal diagnoses. These no-
tions can be easily defined in our framework as follows: Given plan
observations 〈P, (π, t), (π′, t′)〉, a qualification Q is said to be

1. a (subset) minimal plan diagnosis if for every plan diagnosis Q′

such that Q′ ⊆ Q, it holds that Q = Q′.
2. a minimum plan diagnosis if for every plan diagnosis Q′, it holds

that |Q| ≤ |Q′|.

Example Consider the plan depicted in Figure 4. Suppose obs(0) =
(π0, 0) and obs(3) = (π′3, 3) and π′3 equals π3 except that there is a
deviation in the value of v2 at time t = 3 (as indicated by the black
dot). Note that there are three possible minimal diagnoses that are
also minimum diagnoses : Q1 = {s1}, Q2 = {s3} and Q3 = {s6}.
Let π′Qi

denote the state derived at time t = 3 by using Qi as a
qualification. Then V ar(π′Q1) = ∅, V ar(π′Q2) = {v4, v5} and
V ar(π′Q3) = {v3, v4, v5}, so these partial states predicted differ in
their information content.

Example 4.1 shows that, in general, minimum or minimal diag-
noses might considerably differ in their predictive power. For exam-
ple, if we take D1 as a diagnosis, the values of all variables predicted
at time t = 3 will be undefined, while taking D3 as a diagnosis, only
v1 and v2 are undefined. Hence, it seems that minimality as the single
criterion to choose a suitable diagnosis is not sufficient. Intuitively,
besides minimizing the number of abnormal plan steps, we would
prefer those diagnoses Q that generate a state π′Q that minimizes the
number of undefined values. We call such diagnoses maximally in-
formative diagnoses:

Definition 5 (maxi-diagnosis) Given plan observations
〈P, (π, t), (π′, t′)〉, a diagnosis Q is said to be a maximally



informative plan diagnosis, abbreviated maxi-diagnosis, if there
exists no diagnosis Q′ such that V ar(πQ) ⊂ V ar(πQ′).

Note that for a given state π, V ar(π) is the set of variables defined
in π.

Remark Analogous to the distinction between minimal diagnoses
and minimum diagnoses, we could introduce the notion of a max-
imum informative diagnosis as a diagnosis Q for which there ex-
ists no diagnosis Q′ such that |V ar(πQ)| < |V ar(πQ′)|. Unlike
minimal and minimum diagnoses, however, it turns out that every
maximally informative diagnosis is also a maximum informative di-
agnosis, i.e., there is no distinction between the subset-maximal en
the cardinality-maximal notions of informative diagnoses. In fact,
we can show an even stronger result: given some plan observations
〈P, (π, t), (π′, t′)〉, for every two maxi-diagnoses Q and Q′, it holds
that V ar(πQ) = V ar(πQ′), i.e., they are equally informative in a
strict sense.

Such maxi-diagnoses however, do not necessarily be subset min-
imal diagnoses. By combining the two criteria, however, we obtain
a qualification that is able to achieve compatibility with the observa-
tions, being as exact in its predictions as possible, without consider-
ing too many actions as behaving abnormally. We therefore define a
minimal maximally-informative diagnosis as follows:

Definition 6 (mini-maxi diagnosis) Given plan observations
〈P, (π, t), (π′, t′)〉, a diagnosis Q is said to be a minimal maximally
informative plan diagnosis, abbreviated as mini-maxi diagnosis, if
(i) Q is a maxi-diagnosis and (ii) there exists no maxi-diagnosis Q′

such that Q′ ⊂ Q.

4.2 Finding maxi-diagnoses
Finding minimum diagnoses is computationally hard, even in our
simple framework. Surprisingly, however, finding maxi-diagnoses
and even finding mini-maxi-diagnoses is tractable. We will first give
an intuitive description of an efficient procedure to find a (mini-)
maxi diagnosis and then give a polynomial algorithm for finding a
mini-maxi diagnosis.

Suppose we have plan observations 〈P, (π, t), (π′, t′)〉. To deter-
mine a maxi-diagnosis, we first determine the disagreement set Dis∅
of all those variables whose values are defined in both the observed
state π′ and the predicted state π′∅ at time t′ but differ:

Dis∅ = {v ∈ V ar | [π′∅(v) 6= π′(v)∧(π′(v) > ⊥)∧(π′∅(v) > ⊥)]}

Next, we collect all plan steps s at time t′ − 1 such that there
exists a variable v ∈ ranV ar(s) ∩ Dis∅. By the determinism
requirement, two different plan steps s and s′ occurring in some
set Pt cannot have a variable in common in their range, hence
for every v ∈ Dis∅ there is at most one plan step sv ∈ Pt′−1

such that v ∈ ranV ar(s). Then we remove all variables v that
occur in the range of the plan steps just selected from the disagree-
ment set. For i = 2, 3, . . ., we iteratively select new plan steps
at times t′ − i having a variable in their range that also occurs
in the disagreement set and we remove these variables until the
disagreement set is empty. It is not difficult to see that this procedure
generates the set Qmax = {sv | v ∈ Dis∅} where sv is the
latest plan step in the plan causing the value v to occur in the dis-
agreement set. It can be easily proven that Qmax is a maxi-diagnosis.

In order to obtain a mini-maxi diagnosis, we have to refine this
procedure slightly. Firstly, let us introduce the notion of a scope of
a plan step s. Intuitively, the scope of a plan step s contains all vari-
ables v that will become undefined sooner or later if s is qualified as
abnormal. The scope scope(s) is inductively defined as follows: (i)
ranV ar(s) ⊆ scope(s) and (ii) if ∃s′[scope(s)∩domV ar(s

′) 6= ∅
then scope(s′) ⊆ scope(s). Now, in the above procedure to generate
a maxi-diagnosis, if we simply add a set Si of new plan steps belong-
ing to Pt′−i to the already selected set of plan steps S, some of the
plan steps s occurring in Si might contain variables v′ in their scope
that also occur in the domain of plan steps s′ ∈ S already selected.
That implies scope(s) ⊇ scope(s′): hence, adding such a plan step
s makes the inclusion of the previously added plan steps s′ super-
fluous. Therefore, at each iteration step, we remove such redundant
plan steps s′ to obtain a mini-maxi diagnosis.

The following algorithm (see Algorithm 1 states an iterative pro-
cedure to obtain a mini-maxi diagnosis Qmax:

Algorithm 1 Algorithm to compute mini-maxi diagnoses
Require: plan observations 〈P, (π, t), (π′, t′)〉
Ensure: a mini-maxi informative diagnosis Qmax

Let Dis0 = Dis∅ and let Qmax = ∅;
i := 0
while Dis0 6= ∅ do

i := i + 1;
Si := {s ∈ Pt′−i | ∃v ∈ Dis0[v ∈ ranV ar(s)]};
Qi := {s ∈ Qmax | ∃s′ ∈ Si[s ∈ scope(s′)]};
Qmax := (Qmax −Qi) ∪ Si;
Dis0 := Dis0 −

S
s∈Qmax

ranV ar(s)
end while
return Qmax

Example Consider again the plan execution depicted in Figure 4.
Given obs(0) and obs(3) and a deviation in the value of s2 at time
t = 3, we determine the disagreement set Dis = {s2}. After select-
ing s6 as a plan step to be included in the diagnosis, the disagreement
set is empty. Hence, D = {s6} is a maxi-diagnosis.

5 Diagnosing a sequence of observations
Until now we discussed the diagnosis of a plan P using (simple) plan
observations: we considered diagnoses based on two observations of
P at different time points t < t′. Considering the plan P as a system
to be diagnosed, there is a direct correspondence between MBD and
plan diagnosis: the observation obs(t) at the earliest time point corre-
sponds to observing the inputs of the system, while the observations
obs(t′) at the latest time point corresponds to observing the outputs.
Plan diagnosis, however is not limited to making observations at two
different points of time. For it may happen that during the execution
of a plan we are able to make a sequence of k > 2 observations at
some specific time points t1 < t2 < . . . < tk.

In this section we will adapt the definition of a plan diagnosis to
such a sequence of observations. We will first make a careful analysis
of the adaptations to be made by discussing a simple example.

Example Consider the plan P as depicted in Figure 5 (a). There are
three observations (π0, t0), (π1, t1) and (π2, t2). Using the observa-
tion (π0, t0) and assuming no faulty plan steps, we predict the partial
state (π′0,1, 1) at time t = 1 as depicted in Figure 5 (b). Note that
this predicted state is compatible with the observed state (π1, t1).
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Figure 5. A plan with a sequence of three observations (π0, 0), (π,1) and
(π2, 2) (a) and the predictions (b) that can be derived using these

observations.

Using the same observation (π0, t0), we also predict an observed
state (π′0,2, 2) at time t = 2 where only the variables v1 and v2 are
defined. Let us suppose that this prediction is compatible with the
observed state π2 at time t = 2.

The observation (π1, t1) can also be used to obtain information about
the state of the plan at time t = 2. In this case, however, using
(π1, t1) the empty partial state π′1,2 = (⊥, . . . ,⊥) is predicted. This
state, by definition, is compatible with any prediction or observation
made at time t = 2. Therefore, we could conclude that the fusion
π′0,2 t π′1,2 t π2 represents the total information that can be derived
from both observations at time t = 2, assuming that the plan is ex-
ecuted correctly and that the prediction π′0,2 is compatible with the
observation π2.

However, in this way we did not use all the information available
at time t = 1 to make a prediction for the state of the plan at time
t = 2. For example, we are not able to detect whether the value of

v3 deviates from the prediction that can be made if we systematically
combine the predictions using both the observations π0 and π1. For
example, since the predicted state π′0,1 and the observed state π1 are
compatible, the total state information available at time t = 1 is the
fused state π′0,1 t π1. From this latter state we are able to predict the
partial state π′2 at time t = 2 where V ar(π′2) = {v1, v2, v3, v4} and
therefore, we could detect whether π2 at variable v3 is compatible
with this prediction. We conclude that we have to carefully combine
all the derivations made from previous observations with the current
observed state information to make predictions for the state of the
plan at a future time.

To model the case where a sequence of k > 2 observations is
made, we consider a plan P = 〈O, S, <〉 with a sequence Obs =
(obs(t1), . . . , obs(tk)) of observations where obs(ti) = (πi, ti) for
i = 1, . . . , k and t1 < t2 < ... < tk ≤ depth(P ).

Let us first consider, given a plan P and such a sequence of ob-
servations Obs, the constraints a diagnosis Q ⊆ S has to satisfy.
Consider the first observation (π1, t1). From this observation we can
make predictions π′1,i for all time points ti, with i > 1, using the
derivations

(π1, t1) →∗
Q;P (π′1,i, ti).

Clearly, since Q is assumed to be a diagnosis of P using Obs, we
should require π′1,i ≈ πi for all 1 < i ≤ k.

Now consider the second time point t2. Note that the total state
information available at time t2 consists of the observed partial state
π2 and the predicted partial state π′1,2 compatible with it. Hence,
the total information available at t2 is represented by the fused state
π2tπ′1,2. Using this fused state and the qualification Q we can make
predictions π′2,i for the partial states πi observed at ti for i > 2:

(π2 t π′1,2, t2) →∗
Q;P (π′2,i, ti)

Again, since Q is a diagnosis, all these predictions π′2,i should be
compatible with πi for all 2 < i ≤ k, i.e., it should hold that π′2,i ≈
πi for all 2 < i ≤ k.

Proceeding inductively, assume that predictions π′h,i have been
made using all information available at times th where h =
1, 2, . . . i − 1. Then the predictions π′i,j , where j = i + 1, . . . k,
can be obtained as follows: The total information available at time ti

is πitπ′1,it . . .tπ′i−1,i. We can make predictions π′i,j for all times
tj where j = i + 1, . . . , k using the derivations:

(πi t π′1,i t . . . t π′i−1,i, ti) →∗
Q;P (π′i,j , tj)

The representation of the total information available at time ti can
be simplified, since it turns out that πi t π′1,i t . . . t π′i−1,i = πi t
π′i−1,i. This can be seen as follows:

For 1 ≤ h < i− 1 it holds that

(πh t π′1,h t . . . t π′h−1,h, th) →∗
Q;P (π′h,i−1, ti−1)

as well as

(πh t π′1,h t . . . t π′h−1,h, th) →∗
Q;P (π′h,i, ti)

Since the derivability relation is deterministic, it therefore must hold
that for h = 1, . . . , i− 2,

(π′h,i−1, ti−1) →Q;P (π′h,i, ti) (1)

Since we have

π′h,i−1 v πi−1 t π′1,i−1 t . . . t π′h,i−1 t . . . t π′i−2,i−1 (2)



and

(πi−1 t π′1,i−1 t . . . t π′i−2,i−1, ti−1) →∗
Q;P (π′i−1,i, ti) (3)

it follows from equations 1, 2, 3 and v-preserving properties of the
derivability relation that, for h = 1, . . . , i− 2,

π′h,i v π′i−1,i.

Hence we obtain

πi t π′1,i t . . . t π′i−1,i = πi t π′i−1,i.

Therefore, at time ti we only need to make a prediction π′i,i+1 for
time ti+1 using the derivation

(πi t π′i−1,i, ti) →∗
Q;P (π′i,i+1, ti+1)

This line of reasoning underlies the following definition of a diagno-
sis using a sequence of observations:

Definition 7 Let P = 〈O, S, <〉 be a plan with a sequence Obs =
( obs(t1) = (π1, t1), ..., obs(tk) = (πk, tk) ) of observations, where
t1 < t2 < ... < tk ≤ depth(P ). Then the qualification Q ⊆ S is
said to be a plan diagnosis of P using Obs iff there exist partial
states π′i,i+1 for 1 ≤ i < k such that

1. (π1, t1) →∗
Q;P (π′1,2, t2),

2. (πi t π′i−1,i, ti) →∗
Q;P (π′i,i+1, ti+1) for every 2 ≤ i < k and

3. π′i,i+1 ≈ πi+1 for every 1 ≤ i < k.

By slightly changing this definition, we can make a closer con-
nection between the definition of a diagnosis based on a sequence
of observations and the definition of a diagnosis based on a pair of
observations. To this end, given the sequence of observations Obs,
the qualification Q and Definition 7, we construct a new sequence of
observations (obs∗(t1), . . . , obs

∗(tk)) as follows:

1. obs∗(t1) = obs(t1);
2. for i = 2, . . . , k, obs∗(ti) = (πi t π′i, ti), where (π′i, ti) satisfies

obs∗(ti−1) →∗
Q;P (π′i, ti).

Now we can establish the following connection between diagnosis
based on a sequence of observations and diagnosis based on a pair of
observations:

Proposition 2 Q is a diagnosis of P using Obs =
(obs(t1), . . . , obs(tk)) iff for i = 1, . . . k − 1, Q is a diagno-
sis of the pair of observations (P, obs∗(ti), obs(ti+1)).

It is not difficult to adapt the idea of mini-maxi diagnoses to a
sequence of observations. To construct such a diagnosis Qmax, it
suffices to construct the separate qualifications Qmax,1, . . . , Qmax,k

as follows:
Note that this algorithm makes use of Proposition 2 to compute

the resulting mini-maxi diagnosis using an algorithm developed for
diagnosis based on a pair of observations.

6 Conclusion
We have presented a simple formal framework to specify an exe-
cutable plan and we have defined the notion of a diagnosis using
partial observations of a plan in execution. We based our analysis of
plans and observations upon a model-based diagnosis approach and

Algorithm 2 Computing a mini-maxi diagnosis based on a sequence
of observations
Require: a plan P with a sequence Obs of observations obs(t1) =

(π1, t1), . . . , obs(tk) = (πk, tk) where t1 < t2 < . . . < tk ≤
depth(P ).

Ensure: a mini-maxi diagnosis Qmax.
1: Find a mini-maxi diagnosis Qmax,1 for (P, (πt1 , t1), (πt2 , t2))

using Algorithm 1 and compute the predicted state π′max,1 using
Qmax,1;

2: i := 2;
3: while i < k do
4: Find a mini-maxi diagnosis Qmax,i for (P, (πti t

π′max,i, ti), (πti+1 , ti+1)) using Algorithm 1 and com-
pute the corresponding predicted state (π′max,i+1, ti+1) using
Qmax,i;

5: end while
6: return Qmax :=

S
i Qmax,i

considered a plan as a description of a system that can be observed
and can be used to make predictions about its (future) behavior.

Using this framework, we derived a definition for a plan diagno-
sis as a set of abnormally qualified plan steps that are able to derive
a partial plan state compatible with an observed partial plan state.
In contrast to model-based diagnosis, where minimal and minimum
diagnoses are aimed for, we have shown that minimality in plan di-
agnosis not always leads to the results we prefer. The reason is that
making observations of plans is not completely comparable to mak-
ing observations of input-output behavior of systems in model-based
diagnosis. Often we make observations during plan execution and
would like to make predictions of future outcomes of plan execu-
tion based on a plan diagnosis established so far. That implies that
predictions about future behavior are as important as explanations
of already observed behavior. In order to make powerful predictions,
we argued that we should therefore aim at maximal informative di-
agnoses.

We showed that in contrast to minimum diagnosis, a minimal max-
imum informative diagnosis can be found efficiently, although max-
imum informative diagnoses of minimum size are difficult to com-
pute.

Finally, we extended our approach to diagnosis with iterative ob-
servations, showing that in such cases both the general definition of
what constitutes a diagnosis as well as the computation of maximum
informative diagnoses can be reduced to their counterparts discussed
for the simple case where only two successive observations are
involved.

Current work can be extended in several ways. We mention three
possible extensions:

First of all, we could improve our current notion of diagnosis by
taking into account the difference between plan operators and plan
steps. In some cases it could be useful to make a distinction between
establishing diagnoses at the plan step level and diagnoses at the plan
operator level. For example, if instances of a driving action (i.e. plan
steps) pertain to a plan operator that refers to the use of one single
vehicle and all these instances are qualified as being abnormal, there
is sufficient reason to believe that the vehicle itself (the plan operator)
is faulty. Such a distinction requires the inclusion of causal rules
linking different plan steps to each other. By means of such causal
rules the number of plan steps qualified as abnormal often can be
significantly reduced.



Secondly, going beyond plan operators, we could improve the di-
agnostic model to include a model of the executing agent(s) that is
involved in executing one or more plan steps. In particular we need to
consider cases where the agent might evolve through several abnor-
mal states. We suspect the resulting model to be related to diagnosis
in Discrete Event Systems [6, 13].

Thirdly, we hope to extend our current approach by including
methods for plan repair in the context of the inferred agent’s cur-
rent (abnormal) state. Such methods especially seem to be useful in
the context of iterative observations as discussed in the final part of
this paper.

As a final remark, thanks to an anonymous reviewer, we were
pointed out that there exist some analogies between our approach
to plan diagnosis and approaches to software debugging where the
underlying system is a piece of software that is modeled by a
dependency-based model such as e.g. [16]. Certainly, it would be
a fruitful idea to explore the possibilities for applying the ideas de-
veloped in this paper into the software debugging area.
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