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Abstract. Failures in plan execution can be attributed to errors in the execution
of plan steps or violations of the plan structure. The structure of a plan prescribes
which actions have to be performed and which precedence constraints between
them have to be respected. Especially in multi-agent environments violations of
plan structure might easily occur as the consequence of synchronization errors.
While in previous work we have concentrated on the first type of failures, in
this paper we introduce the idea of diagnosing plan structure violations. Using a
formal framework for plan diagnosis, we describe how Model-Based Diagnosis
can applied to identify these violations of plan structure specifications and we
analyze their computational complexity.
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1 Introduction

Plan diagnosis deals with the identification of errors occurring during the execution of a
plan. In previous work, we have presented methods for identifying such errors as failed
executions of plan steps in multi-agent plans [1,2], equipment failures and malfunction-
ing agents causing the execution of plan steps to fail [3,4], and methods for assigning
responsibility to agents in case plan execution failed [4]. In all these papers, however,
we tacitly assumed that during plan execution the plan structure is not violated, i.e., all
plan steps as specified in the plan are executed (correctly or incorrectly) and the order
in which they are executed does not violate any precedence constraint.

In reality, however, violations of the plan structure may easily occur and might result
in plan failure. For instance, consider a plan for loading a truck that has to visit several
places to deliver cargo. Often, such a plan contains a specific ordering of loading actions
guaranteeing that items are loaded in such a way that they can be unloaded in an efficient
way. If, however, the structure of such a loading plan is violated, upon the delivery
location it may force to unload other items in order to get the right item that must be
unloaded, causing unnecessary delay and even violation of time constraints. Another
example would be a plan for loading a ship that ensures a correct weight distribution by
carefully ordering the items that have to be loaded. In this case, an incorrectly loaded
ship may even disturb the stability of the ship in rough seas causing a total transport
plan failure.
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Multi-agent systems are particularly susceptible to such violations of plan structure
occurring as a consequence of synchronization problems between agents. In such a
multi-agent system a joint plan has to be executed by several agents each perform-
ing a subset of actions. Correct execution of the plan requires synchronization of their
activities. Often, planning agents need not use special synchronization actions to syn-
chronize their activities during plan-execution. Instead, synchronization is achieved by
relying on specific starting times of actions specified in the plan itself or by relying on
observations that indicate the completion of tasks performed by other agents. If, how-
ever, the execution of some crucial action is delayed or if observation errors lead to
incorrect beliefs about the state of the world, violations of precedence constraints may
easily occur. Also other failures of plan structure, as omitting or duplicating plan steps,
might easily occur in multi-agent environments. For example, suppose that the set of
plan steps to be executed by an agent overlaps with the set of plan steps to be executed
by another agent. The first agent that is able to perform such a plan step will do so,
enabling the other agent to skip the plan step. In such cases, without special synchro-
nization actions, an agent might erroneously conclude that an action has already been
performed (or not performed) by the other agent, taking the wrong action and causing
the plan to fail. In any case, plan diagnosis should be able to identify such violations if
they occur during the execution of a plan.

Remark. Identifying violations of precedence constraints is closely related to diagnosis
of coordination errors. Kalech and Kaminka [5] apply classical model-based diagno-
sis [6,7] to identify coordination errors between reactive agents. Each reactive agent
executes some behavior that may need to be coordinated with other agents. The coordi-
nation must ensure that certain constraints on behaviors are satisfied. Violation of these
constraints implies that some agents behave abnormally in the sense that they fail to
coordinate their behaviors.

The main difference with the work of Kalech and Kaminka is that here we have
a (traditional non-behavior-based) plan in which coordination errors lead to violations
of the plan’s structure. Diagnosing plan structure violations also differs from other ap-
proaches to plan diagnosis proposed in the literature: [8,9,10,11,12,2,4].

In this paper, we extend the framework for plan diagnosis as described in [1,2]. In this
model the state of the world is modeled by set of variables (objects) the values of which
are changed by plan steps executed. This representation makes it possible to apply clas-
sical Model-Based Diagnosis (MBD) [6]) to identify anomalies in the execution of the
plan. To simplify the presentation of diagnosis of violations of precedence constraints,
we do not used the extension of the above mentioned model1 presented in [3,4].

The remainder of this paper is organized as follows: Section 2 introduces the basic
framework for plan-based diagnosis. Section 3 extends plan diagnosis to enable diag-
nosis of plan structure failures and Sect. 4 concludes the paper.

1 In this extension we showed how our plan diagnosis approach can be conceived as a Discrete
Event System (DES) [13,14,15,16]) of which the state is changed by unknown events causing
anomalies in the plan execution. The here presented extensions of the former model that enable
diagnosis of violations with respect to the structure of the plan can easily be incorporated in
the latter, more elaborate, model.
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2 Plans and Plan Execution

Before we discuss the idea of diagnosing plan structure failures, we start with a brief
introduction to plan-based diagnosis.

2.1 Plans as Systems

We consider plan-based diagnosis as a simple extension of the model-based diagnosis
approach, where the model is not a description of an underlying physical system but a
plan of one or more agents. By executing the plan we change a part of the world.

To keep representational issues as simple as possible, we assume that for the planning
problem at hand, the world can be simply described by a set Var = {v1, v2, . . . , vn} of
variables and their respective value domains Di. A state of the world σ then is a value
assignment σ : V ar →

⋃n
i=1 Di to the variables. We will denote such a state simply

by an element of D1 × D2 × . . . × Dn, i.e. an n-tuple of values.
We also introduce a partial state as an element π ∈ Di1 × Di2 × . . . × Dik

, where
1 ≤ k ≤ n and 1 ≤ i1 < . . . < ik ≤ n. We use V ar(π) to denote the set of
variables {vi1 , vi2 , . . . , vik

} ⊆ Var specified in such a partial state π. The value σ(vj)
of variable vj ∈ V ar(π) will be denoted by π(vj). The value of a variable vj ∈ Var
not occurring in a partial state π is said to be undefined (or unpredictable) in π, denoted
by ⊥. Including ⊥ in every value domain Di allows us to consider every partial state π
as an element of D1 × D2 × . . . × Dn.

An important notion in plan diagnosis is the notion of compatibility between partial
states. Two states π and π′ are said to be compatible, denoted by π ≈ π′, if there is no
essential disagreement about the values assigned to variables in the two states and they
could be extended to the same complete state. That is,

π ≈ π′ if ∀v ∈ V ar [(π(v) = ⊥) ∨ (π′(v) = ⊥) ∨ (π′(v) = π(v))].

Actions, Plan Operators and Plan Steps. In the preceding section we used the term
‘actions’ in a rather informal way. From now on we will distinguish plan operators and
plan steps, which are both covered by the term ‘actions’.

A plan operator refers to a description of an action in a plan. In our model, plan
operators are functions mapping partial states to partial states. More exactly, a plan
operator o is a function that replaces the values in its range ranV ar(o) ⊆ Var by other
values (dependent upon the values of the variables in its domain domV ar(o) ⊆ V ar).
Hence, every plan operator o can be modeled as a (partial) function fo : Di1 × . . . ×
Dik

→ Dj1 × . . . × Djl
, where 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . <

jl ≤ n. Note that the set of variables in a plan operator’s range ranV ar(o) may differ
from the variables in its domain domV ar(o). This property ensures that most planning
formalisms, such as STRIPS, can be modeled using our plan operators. Also note that
if a variable occurs in a plan operator’s range but not in its domain, its value will be set
by the application of the plan operator independently of its previous value.

A plan operator o may be used at several places in a plan. A specific occurrence s
of o is called a plan step mapping a specific partial state into another partial state. A
plan step s as an occurrence of o then describes a specific function application of the
function fo at a specific place in the plan. Therefore, given a set O of plan operators,
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we consider a set S = inst(O) of instances of plan operators in O, called the set of
plan steps. A plan step will be denoted by a small roman letter si. We use type(s) to
denote plan operator o of which the plan step s is an instance: s ∈ inst(o). Moreover,
we use domV ar(s) for domV ar(type(s)) and ranV ar(s) for ranV ar(type(s)).

Example 1. Figure 1(a) depicts two states σ0 and σ1 (the white boxes) each character-
ized by the values of four variables v1, v2, v3 and v4. The partial states π0 and π1 (the
gray boxes) characterize a subset of values in a (complete) state. The plan steps s1 and
s2 are instances of the plan operators o1 and o2, respectively. Plan operators are used to
model state changes. The domain of the plan operator o1 is the subset {v1, v2}, denoted
by the arrows pointing to s1. The range of o1 is the subset {v1}, which is denoted by
the arrow pointing from s1. Finally, the dashed arrow denotes that the value of variable
v2 is not changed by the plan step s1 causing the state change.

v1 v2 v3

1

v4

s2

0

s1

1

0

(a) Plan operators, states and
partial states

s1 s2

3

s3 s4

s5 s6

2

1

0

v1 v2 v3 v4

(b) Plans and plan steps

Fig. 1. Plans, plan states and plan steps

Plans and Plan Execution. An executable plan is a tuple P = 〈O, S, ≺〉 where S ⊆
Inst(O) is a set of plan steps occurring in O and (S, ≺) is a partial order. The partial
order relation ≺ specifies an execution relation between these instances: for each s ∈ S
it holds that s is executed immediately after all plan steps s′ such that s′ ≺ s have been
finished. We will denote the transitive reduction2 of ≺ by .

Without loss of generality, we assume that every plan step s ∈ S takes one unit of
time to execute and the execution of the first plan step starts at time t = 0. Using this
assumption and the definition of the execution ordering ≺, the time t at which a plan
step s will be executed is uniquely determined: Let depthP (s) be the depth of plan
step s in plan P = 〈O, S, ≺〉. Here, depthP (s) = 0 if {s′ ∈ S |s′  s} = ∅ and
depthP (s) = 1 + max{depthP (s′) | s′  s}, else. 3 Then the time ts at which the
plan step s is executed is ts = depthP (s) and s will be completed at time ts + 1. Let

2 So � is the smallest subrelation of ≺ such that the transitive closure �+ of � equals ≺.
3 If the context is clear, we often will omit the subscript P .
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Pt denote the set of plan steps s with depthP (s) = t, let P>t =
⋃

t′>t Pt′ , P<t =
⋃

t′<t Pt′ and finally, let P[t,t′] =
⋃t′

k=t Pk.

Example 2. Figure 1(b) illustrates a plan with precedence relations: s1  s3, s2  s4,
s4  s5 and s4  s6. In this plan, the depth of s1 and s2 is 0, the depth of s3 and
s4 is 1, and the depth of s5 and s6 is 2. Therefore, P0 = {s1, s2}, P1 = {s3, s4} and
P2 = {s5, s6}.

Given a state σ at some time t and the set Pt of plan steps to be executed at time t we
want to be sure that the next state σ′ at time t + 1 is uniquely defined. If Pt contains
two plan steps s and s′ with overlapping ranges, i.e., if ranV ar(s) ∩ ranV ar(s′) �= ∅,
the final result of a variable v occurring in this intersection is not uniquely defined in
σ′. We therefore assume the following condition to hold:

Determinism. If P is a plan and s, s′ are plan steps in P such that ranV ar(s) ∩
ranV ar(s′) �= ∅ then depthP (s) �= depthP (s′).

It is not difficult to see that Determinism guarantees that a future plan state can be
defined uniquely given a plan, the current time t and a partial state at time t.

2.2 Qualifications

As we already noted in the introduction, several types of failure can be distinguished:
the execution of a plan step might fail, a plan step might be omitted, a plan step might be
executed more than once (duplicated) or the precedence order between plan steps might
be violated. If such a failure occurs, we say that a plan step is qualified as failed, missing
or duplicated, or a precedence constraint is qualified as violated. Below we specify these
qualifications in detail. In the next subsection we specify their consequence for plan
execution. This will enable us to diagnose such failures.

Failing Plan Steps. The correct execution of a plan step may fail either because of
an inherent malfunctioning, or because of a malfunctioning of an agent responsible for
executing the action, or because of unknown external circumstances. In all these cases,
we model the effects of a failed execution of a plan-operator by introducing a set of
health modes Hs for each plan step s ∈ S. This set Hs contains at least the normal
mode nor, the mode ab indicating the most general abnormal behavior, and possibly
several other specific fault modes. The most general abnormal behavior of plan operator
o is specified by the function fab

o , where fab
o (di1 , di2 , . . . , dik

) = (⊥, ⊥, . . . , ⊥) for
every partial state (di1 , di2 , . . . , dik

) ∈ dom(fo).4 To keep the discussion simple, we
distinguish only the health modes nor and ab.

We will use the set of plan steps F ⊆ S to denote the plan steps that are qualified
as abnormal (failed). The behavior of each plan step s ∈ F is specified by the function
fab

o where s ∈ inst(o). The plan steps S − F are qualified as normal and the behavior
of the of each plan step s ∈ (S − F ) is specified by the function fnor

o .

Omitted and Duplicated Plan Steps. At first sight it may seem that omitted (miss-
ing) and duplicated plan steps could be treated as special cases of failing plan steps.

4 This definition implies that the behavior of abnormal actions is essentially unpredictable.
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For example, an omitted plan step s ∈ inst(o) could be qualified as omitted by as-
suming a special health mode omit such that fomit

o equals the identity function, while
a plan step could be qualified as duplicated by assuming a health mode dup such that
fdup

o = fnor ◦ fnor. The problem with this solution is that the execution of an omitted
plan step still would take time and duplicating a plan steps would not increase execu-
tion time. Therefore, instead of assigning health modes, we propose another approach,
where duplicated and omitted plan steps are indicated as the result of an explicit plan
transformation. We specify this transformation using a special set D indicating the set
of plan steps duplicated and M denoting the set of plan steps omitted (missing). The
existing plan P then is transformed into a new plan PM,D reflecting the omitted and
duplicated plan steps. This plan PM,D = 〈O, S(M,D), ≺(M,D)〉 consists of the set of
plan steps S(M,D) = S − M ∪ {sdup | s ∈ D}, and the set of precedence constraints
≺(M,D)= ≺ −{(s, s′), (s′, s) | s ∈ M} ∪ {(s, sdup), (sdup, s

′) | s ∈ D, (s, s′) ∈≺}.
Here, the idea is that the duplicating plan step sdup will be executed immediately
after the original plan step s. Moreover, sdup and s have the same behavior, since
type(s) = type(sdup).

Precedence Constraint Violations. A precedence violation occurs if a plan P specifies
that some plan step s′ is dependent upon a plan step s (i.e. (s, s′) ∈ ≺) and the execution
order of s and s′ is reversed.5 Instances of  ⊆ ≺ that are reversed are denoted by the
set C. We have to take care that C is a closed set of violations. For example, if s ≺ s′,
s′ ≺ s′′ then a violation of s ≺ s′′ not only implies that (s, s′′) ∈ C, but also that
(s′, s′′) ∈ C.6 The plan PC = (O, S, ≺ † C) is plan transformation from P where
≺ † C is the updated set of precedence constraints generated by ≺ and the set of
violations C: ≺ † C = (≺ − C) ∪ {(s, s′) | (s′, s) ∈ C}.

Total Qualification. Having defined the plan steps that are qualifies as failed F , as
missing M and as duplicated D, and the constraints that are qualified as violated by
C, we define a total qualification of plan failures as: Q = (F, M, D, C) and we denote
a plan P with these qualifications by PQ = 〈O, S, ≺, Q〉. We keep in mind, however,
that such a plan PQ also implicitly defines a (complex) transformation of the original
plan P .

2.3 Plan Execution

In general, a plan P executed in a given initial state π0 will induce a sequence of states
π0, π1, . . . , πk , where πt+1 is generated from πt by applying the set of plan steps Pt

to σt. To define this relation between partial states at different time points we denote a
partial state π at a given time t by a tuple, also called a timed state, denoted by (π, t).

5 Strictly speaking, a violation of s ≺ s′ could also imply that s and s′ are executed concur-
rently. Such a violation, however, leads to unpredictable outcomes because the determinism
requirement is violated. This implies that we cannot distinguish between unplanned concur-
rent execution of plan steps and plan step execution failures. Therefore, this type of constraint
violations will not be distinguished explicitly.

6 In general, if (s, s′′) ∈ C then for all s′ ∈ S such that s ≺ s′ ≺ s′′ it holds that (s′, s′′) ∈ C.
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This execution relation will be defined incrementally. We will start with a plan where
the only failures that are allowed are plan step failures. Then the relation for plans with
plan structure failures is defined by reducing them to the first case.

Execution of Failing Plan Steps. First, let us assume that M , D and C are empty sets,
that is, we have a plan P(F,∅,∅,∅). We will first specify how the derivability relation
can be specified taking into account the set F of plan steps that might have failed [2].

We define the execution of a plan step as follows:

Definition 1. We say that (π′, t + 1) is (directly) generated by execution of the F -
qualified plan P(F,∅,∅,∅) from (π, t), abbreviated by (π, t) →(F,∅,∅,∅);P (π′, t + 1),
iff for every v ∈ V ar the following conditions hold:

1. if v �∈ ranV ar(Pt) then π′(v) = π(v);
Here, ranV ar(Pt) is a shorthand for the union of the sets ranV ar(s) with s ∈ Pt.

2. if v ∈ ranV ar(s) for some plan step s ∈ Pt − F enabled in π (i.e., domV ar(s) ⊆
V ar(π)), then π′(v) = fnor

o (π)(v);
3. else π′(v) = ⊥.

Omitted and Duplicated Plan Steps. We now extend the direct derivability relation
→(F,∅,∅,∅);P for normal and failing plan steps with missing and duplicated plan steps.
As was pointed out in the previous subsection, the idea is that missing and duplicated
plan steps transform the original plan P into an new plan P ′. Hence, the direct deriv-
ability relation of the original plan P with qualification (F, M, D, ∅) can be simply
defined as follows:

Definition 2. The timed state (π′, t + 1) is (directly) generated from (π, t) by execu-
tion of the plan P = 〈O, S, ≺〉 given the qualification (F, M, D, ∅), abbreviated by
(π, t) →(F,M,D,∅,);P (π′, t + 1), iff (π′, t + 1) is (directly) generated from (π, t) by

execution of the plan F -qualified plan PM,D
(F,∅,∅,∅) = 〈O, S(M,D), ≺(M,D)〉.

That is, (π, t) →(F,M,D,∅,);P (π′, t + 1) iff (π, t) →(F,∅,∅,∅);P M,D (π′, t + 1)

Precedence Constraint Violations. Finally, we extend the direct derivability relation
with a non empty set of violated precedence constraints. Constraint violations also mod-
ify the original plan P by eliminating constraints and by adding the reverse of the elim-
inated constraints. Hence, we define the execution relation analogous to the previous
case:

Definition 3. The timed state (π′, t+1) is (directly) generated from (π, t) by execution
of the plan P = 〈O, S, ≺〉 given the qualification Q = (F, M, D, C), abbreviated by
(π, t) →(F,M,D,C);P (π′, t + 1), iff (π′, t + 1) is (directly) generated from (π, t) by
execution of the plan PM,D,C = 〈O, S(M,D), (≺ † C)(M,D)〉 given the qualification
(F, ∅, ∅, ∅).

That is, (π, t) →(F,M,D,C);P (π′, t + 1) iff (π, t) →(F,∅,∅,∅);P M,D,C (π′, t + 1).

General Derivability. We extend the direct derivability relation to a general derivability
relation in a straightforward way:
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Definition 4. For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indi-
rectly) generated by execution of PQ from (π, t), denoted by (π, t) →∗

Q;P (π′, t′), iff
the following conditions hold:

1. if t = t′ then π′ = π;
2. if t′ = t + 1 then (π, t) →Q;P (π′, t′);
3. if t′ > t + 1 then there must exist a unique state (π′′, t′ − 1) such that (π, t) →∗

Q;P
(π′′, t′ − 1) and (π′′, t′ − 1) →Q;P (π′, t′).

Note that (π, t) →∗
(∅,∅,∅,∅);P (π′, t′) denotes the normal execution of a normal plan

P∅. Such a normal plan execution will also be denoted by (π, t) →∗
P (π′, t′).

3 Plan Diagnosis

In our framework, a diagnosis is a qualification that resolves conflicts between the ob-
served and predicted values of variables. To establish plan diagnosis in our framework
we need to make observations. Our framework provides a natural candidate for repre-
senting such observations: an observation obs(t) at time t can easily be represented by
a timed state (π, t). Note that this implies that we do not require observations to specify
a complete state. Suppose that during the execution of a plan P we have an observation
obs(t) = (π, t) and an observation obs(t′) = (π′, t′) at some later time t′ > t ≥ 0.
We would like to use these observations to infer a qualification Q = (F, D, M, C) for
the plan. First, assuming a normal execution of P , we can predict the partial state of the
world at a time point t′ given the observation obs(t): if all plan steps behave normally,
no plan steps are omitted or duplicated and no constraint is violated, we predict the
timed state (π′

∅
, t′) such that obs(t)→∗

(∅,∅,∅,∅);P (π′
∅

, t′).
Such a prediction has to be compared with the actual observation obs(t′) = (π′, t′)

made at time t′. It is easy to see if the predicted state and the observed state match: in
that case we should be able to find a state σ such that both the observed state π′ and the
predicted state π′

∅
are contained in σ, that is, π′ � σ and π′

∅
� σ. Hence, π′

∅
and π′

are compatible states, i.e. π′ ≈ π′
∅

holds.
If this is not the case, the execution of some plan steps must have gone wrong, some

plan steps might have been omitted or duplicated, or some precedence constraint might
have been violated. Therefore, we have to determine a qualification Q = (F, M, D, C)
such that the predicted state π′

Q derived using Q is compatible with π′. Hence, we
have the following straight-forward extension of the diagnosis concept in MBD to plan
diagnosis (cf. [6]):

Definition 5. Let P = 〈O, S, ≺〉 be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P ) and let obs(t)→∗

Q;P (π′
Q, t′) be a deriva-

tion using the qualification Q.
Then Q is said to be a qualification diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ ≈ π′

Q.

It is easy to show that such a diagnosis can always be proven to exist if for every variable
v there exists at least some plan step s and some time t ≤ t′′ ≤ t′ such that s ∈ Pt′′

and v ∈ ranV ar(s).
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Example 3. Consider the plan depicted in Fig. 2.a. Let obs(0) = (π0, 0), obs(3) =
(π′

3, 3) and let π′
3 be equal to π3 except that there is a deviation in the value of v1, v2

and v4 at time t = 3 (as indicated by the black dots).
Suppose that changing the execution order of plan steps s4 and s7 enables us to cor-

rectly predict the value of variable v4, and omitting plan step s6 enables us to predict the
value of variable v2. Then Q = ({s5}, {s6}, ∅, {(s7, s4)}) is a qualification diagnosis
as depicted in Fig. 2.b.

3 3

s4

s5 s7s6

s4

s5

s7

s6

t=3 t=3

1

3

1

3

2

v1 v2 v3 v4

2

t=1

t=2

s2

0t=0

s3

s1

a b
v1 v2 v3 v4

t=1

t=2

s2

0

s3

s1

t=0

Fig. 2. Plan execution before and after a qualification diagnosis together with an observation
deviating from the expected observation, as indicated by the black dot

3.1 Identifying Diagnoses

Let the size ||Q|| of a qualitative diagnosis Q = (F, D, M, C) be equal to the sum of
the cardinalities of the sets involved, i.e. ||Q|| = |F | + |D| + |M | + |C|. Intuitively,
we should aim at finding diagnoses of minimum size. In general, finding such minimum
diagnoses is an NP-hard problem, and it turns out that the same holds for plan diagnosis,
too, even if we restrict our attention to the diagnosis of failing plan steps. In this section,
therefore, we will restrict our attention to the complexity of finding pure F , D, M or C
diagnoses.

Identifying F -diagnoses. Identifying an arbitrary F -diagnosis is trivial: qualify ev-
ery plan step as abnormal. This will constitute a diagnosis. Finding a subset-minimal
F -diagnosis is also easy, but finding a minimum (cardinality-minimal) F -diagnosis is
NP-hard [17].7

Minimizing the size of a diagnosis, however, is only one option in finding a suitable
diagnosis. It is usually preferred if the normal health state of a plan step is more likely
than an abnormal one. Another criterion that is useful is the information content of a
diagnosis. We say that a qualification diagnosis Q is more informative than another one

7 It is not difficult to show that for every qualification diagnosis of size m there exists an F -
diagnosis (where every component except the F -component is empty) with size less than or
equal to m, explaining the same set of observations.
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Q′ iff V ar(π′
Q′ ) ⊂ V ar(π′

Q), where obs(t)→∗
Q;P (π′

Q, t′). A diagnosis Q is maximally
informative (maxi-diagnosis) if no diagnosis Q′ is more informative than Q.8 Likewise,
we can define a minimal maximal informative diagnosis (mini-maxi diagnosis):

Definition 6. Let 〈P, obs(t), obs(t′)〉 be a diagnostic problem with observations
obs(t) = (π, t) and obs(t′) = (π′, t′), and let obs(t)→∗

Q;P (π′
Q, t′), given a qualifica-

tion Q. Then Q is said to be a maximally informative diagnosis of 〈P, obs(t), obs(t′)〉
iff (i) π′ ≈ π′

Q, and (ii) V ar(πQ) is maximal among all diagnoses.
Q is said to be a minimal maximally informative diagnosis (mini-maxi diagnosis) iff

the qualification Q is a minimal diagnosis among the maximally informative diagnoses.

Mini-maxi diagnoses should be preferred if it is unlikely that a faulty plan step produces
correct results. Quite surprisingly, as we have shown in a recent paper (see [17]), mini-
maxi diagnoses can be found in polynomial time (polynomial in the size of the plan).

The following example gives an illustration:

Example 4. Reconsider the plan depicted in Fig. 2.a. If we only consider failing plan
steps, then there are seven qualifications that are minimal diagnoses according to Def-
inition 5. Among these seven diagnoses Q = ({s2}, ∅, ∅, ∅) is a minimum diagnosis,
and Q′ = ({s3, s7}∅, ∅, ∅) is a mini-maxi diagnosis. Let π′

Q denote the state derived
at time t = 3 by using Q as a qualification. Then V ar(π′

Q) = ∅, V ar(π′
Q′ ) = {v3}.

Consider a diagnosis Q of a plan with observations. Suppose that the qualification Q
only consists of missing or duplicated actions and of violated constraints; i.e., Q =
(∅, M, D, C). Then all plan steps are executed normally and the set of variables for
which known values are predicted is maximal. Moreover, since the qualification Q is a
diagnosis, these predicted values are compatible with the observations. Since coinciden-
tal compatibility of values is unlikely, this diagnosis must be preferred to any diagnosis
in which less known values are predicted. Only plan steps that are qualified as failed
reduce the predicted set of variables with known values. Hence, we can determine the
missing and duplicated plan steps and the violated constraints by preferring mini-maxi
diagnoses.

Example 5. Reconsider the plan depicted in Fig. 2.a. Suppose that changing the exe-
cution order of plan steps s4 and s7 enables us to correctly predict the value of vari-
able v4, and omitting plan step s6 enables us to predict the value of variable v2. Then
Q = ({s5}, {s6}, ∅, {(s7, s4)}) is a qualification diagnosis. Figure 2.b depicts this di-
agnosis. Let π′

Q denote the state derived at time t = 3 by using the diagnosis Q. Then
the set of correctly predicted variables given this diagnosis is: V ar(π′

Q) = {v2, v3, v4}.

Identifying Omitted and Duplicated Plan Steps. A plan step omitting diagnosis (M-
diagnosis) and a plan step duplicating diagnosis (D-diagnosis) are defined by qualifi-
cation diagnoses Q = (∅, M, ∅, ∅) and Q = (∅, ∅, D, ∅), respectively. It is easy to
see that both M- and D-diagnosis are maximal informative diagnoses. They are both, in
general, hard to compute:

8 Note that a maximal informative diagnosis is also maximum informative diagnosis. Q is a
maximum informative diagnosis if for no diagnosis Q′: |V ar(πQ′)| > |V ar(πQ)|.
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Proposition 1. Let P = 〈O, S, ≺〉 be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P ). Deciding whether an M-diagnosis exists
as well as deciding whether a D-diagnosis exist is NP-hard.

Proof. Easy reduction of KNAPSACK to an M- and to a D-diagnosis problem.9

Identifying Constraint Diagnoses. A constraint diagnosis is a qualification diagno-
sis Q = (∅, ∅, ∅, C). It is easy to see that every constraint diagnosis is a maximal
informative diagnosis. It turns out that also these maxi-diagnoses are hard to compute:

Proposition 2. Let P = 〈O, S, ≺〉 be a plan with observations obs(t) = (π, t) and
obs(t′) = (π′, t′), where t < t′ ≤ depth(P ). Deciding whether a constraint diagnosis
Q exists is NP-hard.

Proof. Reduction of TSP to a C-diagnosis problem.11

3.2 Approximations

The above results are of course rather disappointing. However, assuming that the omit-
ted or duplicated plan steps and constraint violations occur in unrelated parts of a plan
(or occur only once), diagnoses can be determined efficiently. Given a diagnostic prob-
lem 〈P, obs(t), obs(t′)〉 with observations obs(t) = (π, t) and obs(t′) = (π′, t′), for
each observed variable v ∈ V ar(π′) at time point t′ we can determine the set of plan
steps and the set of precedence constraints on the value of the variable v at time point t′

depends. Let Depsteps(v, t′) ⊆ S and Depconstr(v, t′) ⊆ be the set of plan steps and
the set of precedence constraints between pairs of plan steps, respectively, on which the
value of the variable v at time point t′ depends. The dependency sets Depsteps(v, t′)
of the observed variables in V ar(π′) can be used to determine mini-maxi diagnoses in
polynomial time.

A missing or duplicated plan step can also be determined using the dependency sets
Depsteps(v, t′). For each dependency set Depsteps(v, t′) of an observed variable v ∈
V ar(π′) of which the predicted value π′

∅
(v) is incompatible with the observed value

π′(v), we can perform the following tests. Check for every plan step s ∈
Depsteps(v, t′) whether omitting s or duplicating s enables us to predict compatible
values for every observed variable v′ ∈ V ar(π′) such that s ∈ Depsteps

P M,D (v′, t′). Here
PM,D denotes either the modified plan P {s},∅ or the modified plan P ∅,{s} depending
on whether we check for the omission or duplication of the plan step s. Similarly we
can use the constraints s  s′ ∈ Depconstr(v, t′) to check for constraint violations.

Note that a group of agents can efficiently determine the dependency sets
Depsteps(v, t′) and Depconstr(v, t′). A multi-agent protocol for determining depen-
dency sets in general diagnostic problems has been presented in [19].

4 Conclusion and Further Work

We have extended previous work on plan diagnosis in order to incorporate the identi-
fication of violations of the plan structure. This extension is particularly important for

9 The proof is omitted due to lack of space. It can be found in [18].
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multi-agent plan execution where such constraint violations can easily be caused by
coordination errors. We have pointed out that, like maximally informative diagnosis of
failing actions, constraint diagnosis and diagnosis of missing plan steps and duplicated
plan steps also try to establish a maximally informative explanation of the observations
made. Unlike a maximally informative diagnosis, however, identifying these M-, D- and
C-diagnoses turns out to be an NP-hard problem. A heuristic that enables an efficient
search for constraint diagnoses in some restricted cases has been presented.

In future work we intend to take the diagnosis one step further: By looking at the
constraint violations an agent is responsible for, we may identify a pattern that indicates
a flaw in the behavior of the agent.
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