Reaching diagnostic agreement in Multi-Agent Diagnosis
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Abstract [12], assuming a fixed maximum number of broken com-

ponents, there exists a polynomial time protocol for reach-

We consider the problem of finding a commonly agreed ing an agreement between the agents in case of a semantic
upon diagnosis for errors observed in a system monitored knowledge distribution. This protocol is rather straight for-
by a number of different expert agents. Each agent is as-ward. A more difficult situation arises if the knowledge of
sumed to have its own specialized (expert) view on the syssome agents imcompleten the sense that the agents have
tem and collectively, the agents have to agree on one orno behavioral knowledge about some fault modes, or if the
more diagnoses based on their views. Reaching an agreeknowledge of some agentsiigorrectin the sense that the
ment is complicated by the two factors: (i) different spe- agents have incompatible knowledge about the behaviors of
cialisms need not distinguish the same fault modes of a com<components. In this paper, we will address both issues.
ponent and (ii) knowledge of different specialisms need not RemarkWe do not consider formulations based on Dis-
be correct in some cases. This paper analyzes these proberete Event Systems [3, 10]. These formulations emphasize
lems and presents protocols that enable the agents to dealmore the the dynamical aspects of failure events on an ab-
with these issues. stract level. We neither consider diagnosing disagreements,

plan-failure, organizational problems and misbehavior in a
group of collaborating agents [4, 7, 8].
1 ducti This paper is organized as follows. Section 2 specifies

- Introduction the diagnostic setting, which is extended to multi-agent di-
. . . . , agnosis in section 3. Section 4 introduces a protocol for de-
A traditional diagnostic tool can be viewed as a single L ) )
diagnostic agentaving a model of the whole system to term!nlng the global diagnoses on which allagent canagree.

. Section 5 addresses the probability of the derived diagnoses

be diagnosed. In some applications, however, such a sin- . . . :
and section 6 evaluates in a series of experiments whether

gle agent approach is infeasible or at least undesirable. For . : ; :
example, the integration of knowledge into one model of the _most pFObab'e diagnoses will contain the correct diag-
the system is infeasible if the system is too large, too dy- nosis. Section 7 concludes the paper.

namic or distributed over different legal entities. Integration
is undesirable if it concerns the combination of knowledge
from different fields of expertise. In this latter case, where
knowledge is called to beemantically distributet[6], it

would be better to introduce specialized agents communi- A system to be diagnosed is a tuplé =
cating about anomalies detected. (C,M, 1d,Sd,Ctx,Obs) where C is a set of compo-

The introduction of specialized (expert) agents imme- NeNts.M = {M. | ¢ € C} is a specification of possible be-

diately raises the problem how to reach an agreement on'@vior modes per component] is a set of identifierp

the cause of observed anomalies. As was pointed out in®f connection points between componerfig, is the sys-
tem description('tx is a specification of input values of the

1 Besides a semantic knowledge distributed, we also distingusglaa system that are qetermmed outside the system by the envi-
tial knowledge distributionknowledge of system behavior is dis- ronment andbs is a set of observed values of the system.

tributed over the agents according to the spatial distribution of the sys- A component inC' has a normal modeor € M., one gen-
tem's components. The latter has been discussed in [13]. eral fault modexb € M, and possibly several specific fault

2. The diagnostic setting




modes. We assume that all components Haveand out-
puts?

The system descriptiofd = Str U Beh consists of a
structural descriptios'tr and a behavioral descriptidBeh
of the components. The structural descriptim consists
of instances of the formp = in(z,¢) or p = out(x,c)
wherez is an in- or an output identification of a compo-
nentc andp € Id is a connection point identifigr Of
course, a connection poipte Id is connected to at most
one output of some component; i.epif= out(x,c) and
p = out(y, ), thenz = y ande = ¢. A connection point
has a value, which is determined by the output of a com-
ponent or a system input. The functionlue(p) denotes
the value of the connection point. The set of input connec-
tion points/d™ C Idis defined agd™ = {p € Id | Vz,c:

(p = out(z,c)) & Str}.

The setBeh = |J.. Beh. specifies a behavior for
each component € C. The behavior descriptioBeh,. of
a component specifies the component’s behavior for eac
modem in M. as an implication of the formuode(c, m) —
®* where the predicateiode(c, m) is used to denote the
modem € M, of a component. The formula® describes
the component’s behaviour given its magec M.. In the
special case that: = ab, the behavioral description does
not specify a specific behavior, i.enode(c,ab) — T is
the behavioral description for the general fault mode.

The setCtz describes the values of system inpiitd®
that are determined by the environment. Hete: con-
sists of instances of the formulue(p) = v wherep € Id™
is a connection point andis a value.

Finally, let Id°® C Id be the set of connection points
that are observed by the diagnostic agent. Liker, the
set Obs describes thevaluesof those connection points
and consists of instances of the fotmlue(p) = v where
p € Id°*® andv is a value.

A candidate diagnosiss a setD of instances of the pred-
icaternode(, ) such that for every component C there is
exactly one mode im: € M, such thatnode(c,m) € D.

A diagnosiss defined as follows:

Definition 1 LetS = (C, M, Id, Sd, Ctx, Obs) be the sys-
tem to be diagnosed and Igt to denote the possibly lim-
ited reasoning capabilities of a diagnostic systeiore-
over, letObs", Obs**d C Obs be subsets of observations

2 This assumption is not valid in every system. We can, however, trans-
form most systems to a system consisting components with only in-
puts and outputs (see for instance [5]).

A connection between components is modeledcbginection point
that is shared by one or more inputs and an output. Note that a physi-
cal connection should be modeled by component.

Note that we may use a single description for a class of components.
Instances of this description must imply the form of description give
here.
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and let D be a candidate diagnosis. Thdn is a diagno-
sis for S iff

D U Sd U Ct]7 l’\‘ /\cpeObsabd (Y2 and
DU SdUCtax UObs®™ [L L.

Remark In the literature two types of diagnoses are distin-
guished:consistency basel@, 11] andabductive[l] diag-
nosis. Both can be combined into one more general diag-
nostic definition [2]. This latter definition is used here.

3. Multi-agent diagnosis

A (knowledge) distribution of a systesiover a setd of
k agents{ A, }¥_, induces a division of into k subsystems
S;. In the case of aemanticaknowledge distribution, each
agentA,; diagnosess from a differentperspectives; on S.
Here, we define such a perspectiveon S as a subsystem
S; = (C, M, Id, Sd;, Ctzx, Obs;, In;) of S thatis related to

HS as follows:

The component§’ are known to all agents but the sys-
tem descriptionSd; = Str; U Beh; may differ from one
agent to the other.

The connections between components may only be rele-
vant from specific perspectives; e.g. connection for electri-
cal signals and connection for conducting heat. We there-
fore defineStr; as the subset of instances= in(z, ¢) and
p = out(x, ¢) that occur inStr where the value of falls in
the perspective. Of course,Str = Ule Str;.

Distributing the structural descriptio$itr of S over the
agents implies that also the observatiahs must be dis-
tributed over the agents. Even if agents consider the same
connections, it may be necessary to distribute the obser-
vations since agents may look from different perspectives
to the value of a connection. For instance, an electrical
signal can be divided in an DC-component and an AC-
component thereby creating different perspectives. Hence,
with each perspectivé there corresponds a set of obser-
vationsObs; whereObs = /\f:1 Obs; and for each per-
spectivei and each(value(p) v) € Obs;, there is a
p = out(x,c) € Str;.b

The setBeh; specifies the behaviour from the perspec-
tive of agent and each componente C' has a specific be-
haviormode(c, m) — ®; € Beh, ; for each behavior mode
m € M,.. These behaviours are related to the components
total behaviourBeh,. as follows: If mode(c,m) — ®; €
Beh,; fori € {1,...,k} and if Beh. = mode(c, m) — ®,
then® = (/\f:1 ®,). That is, for the normal mode and for
each fault mode, the complete behavioral descripdiois
equivalent to the conjunction of the behavioral descriptions
given in each perspective.

6 Note that the introduction of different perspectives implies that con-
nection point can have different values but no more than one for each
perspective.



Though agents need not know the connections that fall The above propositions show that multi-agent diagnosis
outside there perspective, the values of a component’s in-is possible. Note, however, that given a global candidate di-
puts that are determined by such a connection may be releagnosisD, predicting the values of all connection points is
vant to predict the behavior given a maggrom a perspec-  an NP-Hard problem [12]. When knowledge of the system
tive 7. E.g. the temperature of the environment of a compo- is semantically distributed over the agents, often there are
nent may be relevant for its electrical behavior. Other agentsonly a few connection points between the subsystems man-
must provide the agemt; with the values of these inputs. aged by different agents. Moreover, if the connections be-
Therefore, we add the séh; that denote the connection tween subsystems do not form cycles, the distribution of
points the (input) values of which are provided by other knowledge over the agents does not contribute significantly
agents. to the time complexity of predicting the system’s behavior
given a diagnosis. Since usually, there are not many connec-

The diagnosis of one agetiach agent4; in the multi- 4 b giff behavioral fth :
agent system must be able to make a diagnosis of the subt—Ions etween different behavioral aspects of the system, in

systemS; — (C, M, Id, Sd;, Ctzx, Obs;, In;). This can be :_he refn:r?mdertof t’h|sbp|<';1pe_r, we Wl|t| assume that the predic-
viewed a single agent diagnosis if values of the inputs and ion ot the systém's behavior IS not an ISsue.

outputs of the subsystem are known. We use th&getde- " Atﬁmtgle agentt f;\lpproach :stbasegl on thet'mftc't alss(;Jmp-f
note value assignmentalue(p) = v, with p € In;, to the lon that an agent has complete and consistent knowledge o

inputs. HenceV, is the local context of the subsystesi a component’s behavior given its known behavioral modes.

that is determined by the outputs of other subsystems. TheWlthOUt this assumption, a single agent cannot make a diag-

following definition is a simple extension of Definition 1 to NOSIS using !:)efmltlon L. .However, vyhen knowledge is se-
handle a diagnosis of a subsyst&m mantically distributed, this assumption need not be valid.

Therefore, we must study the consequences of incomplete
Definition 2 LetS; = (C, M, Id, Sd;, Ctx,Obs;, In;) be and incorrect knowledge on establishing a global diagno-
a subsystem from the perspective of agéntLet Obss°", sis.
Obs?*d C Obs; be subsets of the observations, and/gbe
a description of the values of the (input) connection points 3.1. Agents with incomplete knowledge
In;. Finally, let D; be a candidate diagnosis 6f. ThenD,
is a diagnosis fors; iff When agents look at different aspects of a component,
they may not have the same detailed knowledge for every
D; U Sd; UCte UV v /\WEObsf‘;bd ¢ and aspect. Concerning the electrical aspects of an integrated
D; U Sd; UCtz U V; UObs{™ L 1. circuit for instance, an agent may distinguish many special-
ized fault modes for which knowledge concerning the ther-

. . . . o modynamic aspects of the circuit is lacking. Hence, for a
multiple diagnostic agents, an important question is whether .
component an agentd; may only have behavioral knowl-

we loose mfor.matlon using a multi agent approac'h with edge forsomeof the component's fault mode¥, ; C M.
respect to a single agent approach. To answer this ques- The lack of knowledge about a component’s behavior

tions we assuméhere are no principal conflicts between X .
. : for some fault modes raises a problem: the agents may not
the knowledge of the different agenitg. there always ex- .
be able to reach an agreement. To overcome this problem

ists a diagnosi® such that:D U Sd U Cxt U Obs is con- an agentd; may justassumea behavior for each behav-
sistent. We need this assumption because single agent diaq— ’ = _ .
nosis requires consistent knowledge or modem € (M. — Me.;). But then the problem is,
' which behaviors can validly be assumed? If the behavior
Proposition 1 7 Let Sy, ..., S be the subsystems generated ©f a less specific fault mode would be known, this behav-
by the perspectives of), let D be a single agent diagnosis i0r may be used. Since a set of behavior matigs always
of S, and letV; = {(value(p) =v) | p € In;, DU SdU contains the least specific fault madefor which no behav-
Ctz | (value(p) = v)} be the local context it$;. ior is known, we may assume the existence of a hierarchy of
ThenD is a diagnosis of;. modes ordered with respect to specificity. We call such a hi-

erarchy armabstraction hierarchyFor an example, see fig-
Proposition 2 Let Sy, ..., S, be the subsystems generated yre 1

by the perspectives ol o ,
Then,D is a single-agent diagnosis Iy diagnosis of ev- Deflnltlon_ 3letcc Cbea cor_nponfent and/, |ts_ set
ery subsysterf; given the local contek; = {(value(p) = of _behaw_or modes. An abstraction *."e“’?‘TChy o, IS a
v) | p € In;, D; USd; UCtx UV; |~ (value(p) = v)}. strict pa/rtlal orfjer(MC,_>), wherg the intuitive meaning of
m = m' m,m’ € M, is thatm is more specific tham’

and whereab is the unique least specific element in the hi-
erarchy, i.e. for allm € M. — {ab}: m > ab.

The diagnosis of multiple agent§there is a need for using

7 The proofs are omitted because of lack of space.
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Figure 1. An abstraction hierarchy.

Intuitively, a more specific mode implies a more specific
description of the behavior of the component. Moreover,

w.r.t. some fault modes, i.e. there might not be a behavior
specification for each fault mode i#.. In order for the
agent to establish a global diagnosis, therefore these miss-
ing behaviors have to be added. The following assumption
serves this purpose.

Assumption A fault modem of a component for which

an agent4; has no behavioral specification, is assumed to
have the same behavior as the most specific mote
M. ; withm = m/ for which a behavior is known.

The purpose of this assumption is to extend the behav-
ioral description, making the behavioral knowledge of ev-

more specific modes should be mutually exclusive. There-ery fault mode of every component complete for all aspects.

fore, the following requirements must hold.

For everym,m’ € M, ;: if m = m/, mode(¢c,m) — ® €
Beh,; andmode(c,m') — @' € Beh,;, then® = @'
For everym,m’,m"” € M. if m' = m, m" = m,
mode(c,m’) — ® € Beh.;, mode(c,m”) — @' €

Beh,;, then®’, @" |- 1.

Definition 4 Let ®; ,,,, be the normal behavior from the
perspectiveé of a component

An abstraction hierarchy isompleteiff for each a fault
modem, that is not a most specific fault mode, there is a
set of fault modes:y, ..., my such thain,; > mg for j > 1,
mode(c,m;) — ®, ; € Beh.,; and|— ®; ¢ < (®;1 V...V
D, 0).

Hence, the results of propositions 1 and 2 apply.

3.2. Agents with incorrect knowledge

Agents lacking knowledge about behavior modes is not
the only problem that may arise in a multi-agent system.
Knowledge of agents about the components’ behaviors may
in some situation be incorrect. As a result, agents need not
agree on the components that can be broken and if they
do agree on the components that are broken, they need not
agree on the fault modes of the broken components.

A robust multi agent system should be able to handle sit-
uations in which agents do not agree on global diagnoses.

The abstraction hierarchy on the fault modes defines ag o possibility to overcome these problems proposed by

similar abstraction hierarchy on the diagnoses.

Definition 5 LetD, D’ be two candidate diagnoseB.is at
least as specific aB’, D = D/, iff for everymode(c, m) €
D there is amode(c,m’) € D’ such thatn = m’.

Note that agents that wish to give a best possible explana

tion for the observed anomalies, should focus on the most
specific diagnoses. Whether the agents only determine the
most specific diagnoses depends on the type of diagnosié

they use; i.e. consistency based or abductive based:

Proposition 3 Pure abductive diagnosis may not produces
less specific diagnoses.

Schroeder and Wagner [14] is the use of voting. However, if
agents look from different perspectives at the system, vot-
ing offers no solution. Moreover, voting requires the com-
munication of all local diagnoses of all agents. The num-
ber of these diagnoses may be exponential in the number of

components.

The abstraction hierarchy on the fault modes also makes
t possible to handle problems that arise because agent have
incorrect knowledge about a components behavior. Given a
completeabstraction hierarchy of fault modes agents must
be able to agree on one or more most specific diagnoses
When we are unable to reach an agreement on a most spe-

Pure consistency based diagnosis returns every less speeific diagnosis, they should be able to agree on a less spe-

cific diagnosis.

Proposition 4 Let Sy, ..., S; be the subsystems that make
up the systen$ and let the abstraction hierarchy of fault
modes be complete. Moreover, Ietbe a most specific di-
agnosis ofS.

Then there exists a set of most specific diag-
noses Dy, ..., Dy, for, respectivelySy,...Sg, such that
D=U, D;.

The behavioral descriptioBeh, ; of a component with
respect to a perspective of agefit might be incomplete

cific diagnosis. Such an agreement is always possible since
m » ab for every behavior mode: € M,. If m is the most
specific fault mode of a componenton which the agents
agree, there must be a diagnosiswith mode(c, m) € D
andD is a consistency-based diagnosis of the subsystem
managed by agemt;.

We can identify the presents of incorrect knowledge by
the absent of a most specific diagnosis if the abstraction hi-
erarchy is complete. This does not imply that the knowl-
edge is correct if agents agree on a most specific diagnoses
in all circumstances.



Proposition 5 Let Sy, ..., S; be the subsystems that make
up the systens and let the abstraction hierarchy of behav- TR = o
ior modes be complete. _ .
. A finished := false;
The knowledge of an agent about the behavior of a com- . I
. X Aq while not finished do
ponent is incorrect if for some contextzt and some set of

Agent Action

: o . . : generate the next most specific local
observationgbs no most specific diagnosis exits on which diagnosisD, of S, such that for

all agents agree. noReTR RC Dy
A "
4. A protocol for diagnostic agreement A,

finished := not diagnosifound;
while diagnosisfound, fori := 2 to k do

send ‘proposeé);’ to A;;

Ay
The agents may determine a global diagnosis by first de- 4,
termining all fault modes\/, = Ul 1 M. ; as well as the A;
abstraction hierarchy- on M, for each component, and
second exchanging their local diagnoses. The first step isg,
straight forward and will not be discussed here because of4,
space limitations. The second step is more problematic. Theg,
number of diagnoses to be exchanged between the agentg,
can be quite high and can be exponential in the number of 4,

receive ‘propose),’ from Ay;

determine a most specific local diagnosis
D, of S; such thatD, = D;;

if a diagnosisD; exists then;
send ‘accepD;’ to Ay;

else
send ‘rejectSR;’ to Ay;

end;

component is the worst case. In order to control the com- 4,
plexity, agents should focus on numerical minimum, inclu- 4,
sion minimal or probable diagnoses. Ay

Since a locally diagnosis need not be a global diagno- 4,
sis, the agent proposing the diagnosis needs to receive feeds

if received ‘accepD;’ from A; then
Dy := Dy;

else if received ‘rejecf R;’ from A; then
TR =TRUSR;;
diagnosisfound := false;

back when a proposed diagnosis is rejected by other agentsy, end:

Subsequently, the agent can generate a new diagnosis takd, end:

ing into account the diagnoses that have been rejected. 4, if diagnosisfound then
The generation of new diagnoses can be improved if 4, storeDy;

agents supply the reasons for rejecting a proposed diagno-, end;

sis. When agentl; proposes a partial diagnosi, agents 4, end:
A,, ..., A, might reject the diagnosis because some (com-
bination of) modes is inconsistent with its observations. For
i1=2,...k,letR; C D, be such (a combination of) modes.
Then forR; it should hold thaf?; is a smallest subset @,
such thatR; U Sd; U Ctz UV; U Obs; v for2 <i < k. current observations. What we would like to know is how

Note that an agentl; might determine more than one this affects the probability of a diagnoses, especially if the
smallest subseR;. If SR; is the set of all smallest subsets knowledge of some agents is incorrect given the current
R;, agentA, can use this informatiof R = (J,,, SR context and current observations.

as a set of constraints in its search for a next diagnosis. Ityyhat to measureBefore applying probabilities measures,
may not select a new diagnodiy containing anyz; € 'R it is important to first determine what exactly we wish to
as a subset. measure. First of all we wish to know which components
The protocol in figure 2 shows how the agents may pro- are broken. Therefore, we should determine the probabil-
ceed. To gain robustness, eventually, always one of theity that some component8 C C are broken while oth-
agents takes the initiative to establishes the global diag-ers ' — B are not. Hence, i\ (Obs) is the set of diag-
noses. In the prOtOCOI, the agent that takes the initiative is noses given the agents’ Observatim’ we should deter-
agent4;. mine the probability of the diagnosés(B, Obs) = {D ¢
A(Obs) | B = {c € C | mode(c,nor) ¢ D}}. LetLp =
{mode(c,nor) | ¢ € C — B} U{mode(c,ab) | ¢ € B}
the least specific diagnosis in which the componédhtre
The protocol proposed in the previous section deter- broken. ThenA(B,Obs) # @ iff Lg € A(B,Obs) iff:
mines a more abstract diagnosis in case the agents canndig € A(Obs). Therefore it suffices to determine the prob-
agree on a most specific diagnosis. In this way agents carability P(Lp | Obs) for everyLp € A(Obs).
reach an agreement even if the knowledge of some agent The number of diagnosesg € A(Obs) can be expo-
predicts the wrong behavior given the current context and nential in the number of components. Fortunately, we

Figure 2. Establishing global diagnoses

5. Probable diagnoses



can reduce this number. Since the a priori probability that ~ P(T'(D, A(Obs))) = P(D) — ED,ESPSC(D) P(D")

a component is not broken is in general much greater than + ZD’Espec(D)—A(Obs) P(T(D', A(Obs)))

the probability that it is broken, it suffices to determine the . .

probabilities of the least specifsubset-minimatiagnoses. ~ Note  that in a  complete hierarchy P(D) —

If the fault probabilities are very small, we may restrict our- ZD’ES;DEC(D) P(D') = 0if D is not a most specific

selves to the diagnoses of minimum cardinality. diagnosis. _ N _ _
. . . o , The a posterior probability of a diagnosis given the
A priori probabilities To determine the probability of diag- agents’ observation&bs can now be determined by nor-

noses, we assume that fault probabilities are known for &V-malizing the a priori probabilities?(I'(D, A(Obs))) of

ery fault mode of every component.dfec(m) = {n | n >~ D € A(Obs)

m, Ve = m : n ¥ £} denotes the set of fault mode that di- '

rectly refines a fault mode:, then the following properties P(D | Obs) = P(I'(D, A(Obs)))

hold. > Lue(ons scc PT(Lp, A(0bs)))

e For every behavior moder € M. of a component,

spec(m) is a set of mutual exclusive fault modes. Note that for everyD - Lp, D € A(Obs) implies

] ) ) L € A(Obs). Also note that the denominator summates
o If the abstra_ctlon hierarchy of behavior modes for a 5 er an exponential number of subs&tsC C. If the fault
component is complete, then for everny. € M. probabilities are sufficiently small, we can ignore all non
P(c,m) = EnGspec(m) P(c,n), numerical minimum subsets.

Till now the agentsd = {A;}¥_, were assumed to have
perfect knowledge of the system in their area of expertise.
P(e,m) > 37, copecm) L€ ). Without this assumption, we must take into consideration
that local diagnoses may be incorrect because of incorrect
knowledge about the behaviour of subsystems. Hende, if
is the correct diagnosig) need not be among the local di-
P(D) = ILnode(e,men Plc;m). agnoses of some agents. The agents will, however, agree
on the least specific diagnosisy < D. Without taking
into consideration the probability that behavioral descrip-
tions are incorrect, however, the a posterior probability of
L is 0 if the abstraction hierarchy is complete.

If D is a most specific diagnosis supported by a sub-
e For every candidate diagnosis, spec(D) is a set of  setA(D) c A of the agents, there must be errors in the be-

mutual exclusive diagnoses. havioral descriptions used by the ageAts- A(D). There-

e Ifthe abstraction hierarchy of behavior modes is com- fore, given the local diagnoses, (Obs1), ..., Ax(Obsk)
plete for every component @i, then for every can-  Of the agents, we must determine the probability of
didate diagnosi) and for every set of observations P (I'(D, A1(Obsy), ..., A (Obsy))) by also taking into ac-

and if it is incomplete , then for every, € M.,:

From the probabilities of fault modes, the a priori prob-
abilities of diagnoses can be derived. Given a diagndses

For the probabilities of diagnoses similar properties as
above hold. Letspec(D) = {D’ | D’ -~ D,vD" = D :

D’ # D"} be the set of diagnoses that directly special-
ize D. Then we have:

Obs: count the probabilityP(sup(D) | Obs) that the agents
A(D) are correct in supporting the diagnosi while
P(D | Obs) = ZD/espec(D)P(D/ | Obs), the agents inA — A(D) are wrong in not support-
and if it is incomplete, then for every candidate diag- ing D.
nosisD and for every set of observation®s: P(I(D, Ay(Obsy), ..., A (Obsy))) =
P(D | Obs) > 3" prcypee(py P(D' | Obs). (P(D) = X prespee(py P(D")) - P(sup(D) | Obs)

!/
A posterior probabilitiesDeriving the a posterior proba- + X prespecpy P (D', A1(Obsy), ..., Ap(Obsy)))
bility of a diagnosis is more complicated, since the set of  Since an agent’s knowledge describes for each mode of
diagnoses given the agents’ observations need not be mua component its behavior, the probability that an agent is
tually exclusive; if D is a diagnosis, then so B’ with correct in supporting the diagnosi$ or wrong in not sup-
D = D’ . Inderiving the probability measure, we will first  porting D, depends on the number of components on which
assume that the knowledge of the agents is correct. Hencethe agent (dis)agrees witR. To determine this probabil-
we must first determine the a priori probability of a diagno- ity, we need to know the minimal number of components
sisD € A(Obs) knowing that every more specific candi- on which an agent disagrees with This number follows
date diagnosi®’ > D with D’ ¢ A(Obs) is no diagno- from the most specific diagnosé¥ that resolves the dis-
sis. We will usel'(D, A(Obs)) to denote this event. Then agreement wittD. The setagree(D, A;(Obs;)) = {D’ €
we have: A;(Obs;) | D = D', fornoD"” € A;(Obs;):D = D" »~



D’} specifics these diagnoses. For each diagnbgisc
agree(D, A;(Obs;)), agentA; agrees omnode(c,m) € D

if mode(c,m) € D N D’ and disagrees ifnode(c, m) €

D — D'. If agentA; disagrees omnode(c,m) € D, then
P(fault(c,m)) denotes the probability that a fault in de-
scription of the behavior of a componentvith behavior
modem leads to an incorrect prediction of the component’s
behavior. Hence,

P(sup(D) | Obs) = [T+, P(sup;(D) | Obs;) and
P(supi(D) | Obsi) = X precagree(D,a:(0bs:)
(Hmode(c,m)GDfD’ P(fa’U’Zt(Q ’I’I’L)) '
Hmode(c,m)EDﬁD’ (1 - P(fault(c, m))))

Selecting leaf diagnoseafter determining the a posterior
probabilities of the diagnosebg € A(Obs) the agents

know which components are likely to be broken. Next, it

is important to determine the most probable leaf diagnoses

D > Lp. These diagnoses are important if components are
not to be replaced but will be repaired. Here two issues play
a role. First, agents can agree on several most specific di

agnoses. In that case there is uncertainty about the correc
one and agent can simply choose the most probable one.

Second, agents may not agree on a most specific diagno

sis. Hence the knowledge about the components’ behavior%

of some agent must be incorrectlifz is a correct diagno-
sis. Since the above described a posterior probabilities of
diagnoses take into account the agents supporting a diagno-

is among the most probable least-specific diagnoses, espe-
cially if for some agents the description of a component’s
behavior is not free of errors.

To answer the question, 80000 systems were randomly
generated and were diagnosed by three agents. We used
three agents since this is the smallest number to make one
leaf diagnosis significantly more probable if one of the
agents disagrees with the others, while using more agents
would have simplified the diagnostic problér&ach gener-
ated system consisted of 40 components. Each component
had one output and two inputs. An input was either cor-
rected to one of the four system inputs or to an output of a
randomly chosen component. The system was generated in
such a way that it contained no cycles.

The normal behavior of a component was a modulo
adder for each to the three perspectives. Besides, a com-
ponent had faulty behaviors, namely and two specific
faulty behaviorsf; and f,. The corresponding abstraction
hierarchy is shown in figure 3. In both fault modgsand
fo a fault value was added modulo the output of the
component. These faults values were randomly chosen for
ach combination of a component, a fault mode and an
agent. Finally, for every componentthe same value was
used for the probabilities of the fault modéXc, f1) and
P(c, f2) as well as the probabilities that the specified be-
avior of a behavior mode is incorreB{ fault(c, f1)) and
P(fault(c, f5)).1°

sis, again the agents can simply choose the most probable
most specific diagnosi® > Lp.

If there are more than two most specific diagnoses, the
most probable one can be less probable the sum of the prob-
abilities of the other most specific diagnoses. Hence choos-
ing the most probable most specific diagnosis need not the
best choice. Instead, the agents should choose the most spe-

Figure 3. The hierarchy in the experiments.

cific diagnosisD > Lp for which there holds:

P(D | Obs)

LT S ps 05
P(Ly | Obs) "~

wheref is some threshold value.

6. Experiments

In a series of experiments, we have evaluated how well

To create a diagnostic problem, in each generated sys-
tem one component was chosen to be the broken compo-
nent and one of the fault modfg or f, was selected for the
component. In one of the three perspectives, however, the
component behaved according to the other fault mode, i.e.
the knowledge of the agent using this perspective was in-
correct in the current situation.

Whether the least specifiorrectdiagnosis is among the

the proposed approach is in determining the cause of amost probable diagnoses, mainly depends on the number of

problem. Here, knowing the components that are broken,

observation points and the number of values in- or output

i.e. determine the least-specific diagnoses, is the first andcan have. We therefore varied these numbers in the experi-

most important step. Since no behavior is specified for the
mode ab, the correct least-specific diagnosis will always
be among the agent’'s diagnoses. An important question
is, however, whether the corrédeast-specific diagnosis

8 Thecorrectdiagnosis is the one that we used to create the faulty be-
havior of the system.

Different perspectives provide more information.

If the probability value is small enough, the actual value becomes ir-
relevant.



Moreover, probabilistic correctness measures for diagnoses

‘igmﬁ have been derived for the case that the agents’ knowledge
’ Vo, ,{ is correct and the case that the agents’ knowledge is not

VAV QYN 4
A}!}'lfl‘gg-zrf‘ always correct. These measure enable the agents to iden-
J tify the most probable diagnoses. Finally, we investigated
whether the most probable diagnoses may contain the cor-
rect diagnoses if one of the agent’'s knowledge contains er-
rors. The results show that if the components have enough
(> 6) output values this will be the case.

Percentage
oo
w
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