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Abstract

We consider the problem of finding a commonly agreed
upon diagnosis for errors observed in a system monitored
by a number of different expert agents. Each agent is as-
sumed to have its own specialized (expert) view on the sys-
tem and collectively, the agents have to agree on one or
more diagnoses based on their views. Reaching an agree-
ment is complicated by the two factors: (i) different spe-
cialisms need not distinguish the same fault modes of a com-
ponent and (ii) knowledge of different specialisms need not
be correct in some cases. This paper analyzes these prob-
lems and presents protocols that enable the agents to deal
with these issues.

1. Introduction

A traditional diagnostic tool can be viewed as a single
diagnostic agenthaving a model of the whole system to
be diagnosed. In some applications, however, such a sin-
gle agent approach is infeasible or at least undesirable. For
example, the integration of knowledge into one model of
the system is infeasible if the system is too large, too dy-
namic or distributed over different legal entities. Integration
is undesirable if it concerns the combination of knowledge
from different fields of expertise. In this latter case, where
knowledge is called to besemantically distributed1 [6], it
would be better to introduce specialized agents communi-
cating about anomalies detected.

The introduction of specialized (expert) agents imme-
diately raises the problem how to reach an agreement on
the cause of observed anomalies. As was pointed out in

1 Besides a semantic knowledge distributed, we also distinguish aspa-
tial knowledge distribution: knowledge of system behavior is dis-
tributed over the agents according to the spatial distribution of the sys-
tem’s components. The latter has been discussed in [13].

[12], assuming a fixed maximum number of broken com-
ponents, there exists a polynomial time protocol for reach-
ing an agreement between the agents in case of a semantic
knowledge distribution. This protocol is rather straight for-
ward. A more difficult situation arises if the knowledge of
some agents isincompletein the sense that the agents have
no behavioral knowledge about some fault modes, or if the
knowledge of some agents isincorrect in the sense that the
agents have incompatible knowledge about the behaviors of
components. In this paper, we will address both issues.

RemarkWe do not consider formulations based on Dis-
crete Event Systems [3, 10]. These formulations emphasize
more the the dynamical aspects of failure events on an ab-
stract level. We neither consider diagnosing disagreements,
plan-failure, organizational problems and misbehavior in a
group of collaborating agents [4, 7, 8].

This paper is organized as follows. Section 2 specifies
the diagnostic setting, which is extended to multi-agent di-
agnosis in section 3. Section 4 introduces a protocol for de-
termining the global diagnoses on which all agent can agree.
Section 5 addresses the probability of the derived diagnoses
and section 6 evaluates in a series of experiments whether
the most probable diagnoses will contain the correct diag-
nosis. Section 7 concludes the paper.

2. The diagnostic setting

A system to be diagnosed is a tupleS =
(C, M, Id, Sd,Ctx,Obs) where C is a set of compo-
nents,M = {Mc | c ∈ C} is a specification of possible be-
havior modes per component,Id is a set of identifiersp
of connection points between components,Sd is the sys-
tem description,Ctx is a specification of input values of the
system that are determined outside the system by the envi-
ronment andObs is a set of observed values of the system.
A component inC has a normal modenor ∈ Mc, one gen-
eral fault modeab ∈ Mc and possibly several specific fault



modes. We assume that all components havein- andout-
puts.2

The system descriptionSd = Str ∪ Beh consists of a
structural descriptionStr and a behavioral descriptionBeh
of the components. The structural descriptionStr consists
of instances of the formp = in(x, c) or p = out(x, c)
wherex is an in- or an output identification of a compo-
nent c and p ∈ Id is a connection point identifier3. Of
course, a connection pointp ∈ Id is connected to at most
one output of some component; i.e. ifp = out(x, c) and
p = out(y, c′), thenx = y andc = c′. A connection point
has a value, which is determined by the output of a com-
ponent or a system input. The functionvalue(p) denotes
the value of the connection point. The set of input connec-
tion pointsIdin ⊂ Id is defined asIdin = {p ∈ Id | ∀x, c :
(p = out(x, c)) 6∈ Str}.

The setBeh =
⋃

c∈C Behc specifies a behavior for
each componentc ∈ C. The behavior descriptionBehc of
a component specifies the component’s behavior for each
modem in Mc as an implication of the formmode(c,m) →
Φ4 where the predicatemode(c,m) is used to denote the
modem ∈ Mc of a componentc. The formulaΦ describes
the component’s behaviour given its modem ∈ Mc. In the
special case thatm = ab, the behavioral description does
not specify a specific behavior, i.e.,mode(c, ab) → > is
the behavioral description for the general fault mode.

The setCtx describes the values of system inputsIdin

that are determined by the environment. HenceCtx con-
sists of instances of the formvalue(p) = v wherep ∈ Idin

is a connection point andv is a value.
Finally, let Idobs ⊆ Id be the set of connection points

that are observed by the diagnostic agent. LikeCtx, the
set Obs describes thevaluesof those connection points
and consists of instances of the formvalue(p) = v where
p ∈ Idobs andv is a value.

A candidate diagnosisis a setD of instances of the pred-
icatemode(, ) such that for every componentc ∈ C there is
exactly one mode inm ∈ Mc such thatmode(c, m) ∈ D.
A diagnosisis defined as follows:

Definition 1 LetS = (C,M, Id, Sd, Ctx,Obs) be the sys-
tem to be diagnosed and let|∼ to denote the possibly lim-
ited reasoning capabilities of a diagnostic system.5 More-
over, letObscon, Obsabd ⊆ Obs be subsets of observations

2 This assumption is not valid in every system. We can, however, trans-
form most systems to a system consisting components with only in-
puts and outputs (see for instance [5]).

3 A connection between components is modeled byconnection point
that is shared by one or more inputs and an output. Note that a physi-
cal connection should be modeled by component.

4 Note that we may use a single description for a class of components.
Instances of this description must imply the form of description give
here.

5 I.e {ϕ | Σ |∼ ϕ} ⊆ {ϕ | Σ |− ϕ}.

and letD be a candidate diagnosis. ThenD is a diagno-
sis forS iff

D ∪ Sd ∪ Ctx |∼ ∧
ϕ∈Obsabd ϕ and

D ∪ Sd ∪ Ctx ∪Obscon 6|∼⊥.

Remark In the literature two types of diagnoses are distin-
guished:consistency based[9, 11] andabductive[1] diag-
nosis. Both can be combined into one more general diag-
nostic definition [2]. This latter definition is used here.

3. Multi-agent diagnosis

A (knowledge) distribution of a systemS over a setA of
k agents{Ai}k

i=1 induces a division ofS into k subsystems
Si. In the case of asemanticalknowledge distribution, each
agentAi diagnosesS from a differentperspectiveSi onS.
Here, we define such a perspectiveSi on S as a subsystem
Si = (C, M, Id, Sdi, Ctx, Obsi, Ini) of S that is related to
S as follows:

The componentsC are known to all agents but the sys-
tem descriptionSdi = Stri ∪ Behi may differ from one
agent to the other.

The connections between components may only be rele-
vant from specific perspectives; e.g. connection for electri-
cal signals and connection for conducting heat. We there-
fore defineStri as the subset of instancesp = in(x, c) and
p = out(x, c) that occur inStr where the value ofp falls in
the perspectivei. Of course,Str =

⋃k
i=1 Stri.

Distributing the structural descriptionStr of S over the
agents implies that also the observationsObs must be dis-
tributed over the agents. Even if agents consider the same
connections, it may be necessary to distribute the obser-
vations since agents may look from different perspectives
to the value of a connection. For instance, an electrical
signal can be divided in an DC-component and an AC-
component thereby creating different perspectives. Hence,
with each perspectivei there corresponds a set of obser-
vationsObsi whereObs ≡ ∧k

i=1 Obsi and for each per-
spectivei and each(value(p) = v) ∈ Obsi, there is a
p = out(x, c) ∈ Stri.6

The setBehi specifies the behaviour from the perspec-
tive of agenti and each componentc ∈ C has a specific be-
haviormode(c,m) → Φi ∈ Behc,i for each behavior mode
m ∈ Mc. These behaviours are related to the components
total behaviourBehc as follows: If mode(c,m) → Φi ∈
Behc,i for i ∈ {1, ..., k} and ifBehc = mode(c, m) → Φ,
thenΦ ≡ (

∧k
i=1 Φi). That is, for the normal mode and for

each fault mode, the complete behavioral descriptionΦ is
equivalent to the conjunction of the behavioral descriptions
given in each perspective.

6 Note that the introduction of different perspectives implies that con-
nection point can have different values but no more than one for each
perspective.



Though agents need not know the connections that fall
outside there perspective, the values of a component’s in-
puts that are determined by such a connection may be rele-
vant to predict the behavior given a modem from a perspec-
tive i. E.g. the temperature of the environment of a compo-
nent may be relevant for its electrical behavior. Other agents
must provide the agentAi with the values of these inputs.
Therefore, we add the setIni that denote the connection
points the (input) values of which are provided by other
agents.

The diagnosis of one agentEach agentAi in the multi-
agent system must be able to make a diagnosis of the sub-
systemSi = (C, M, Id, Sdi, Ctx, Obsi, Ini). This can be
viewed a single agent diagnosis if values of the inputs and
outputs of the subsystem are known. We use the setVi to de-
note value assignmentsvalue(p) = v, with p ∈ Ini, to the
inputs. Hence,Vi is the local context of the subsystemSi

that is determined by the outputs of other subsystems. The
following definition is a simple extension of Definition 1 to
handle a diagnosis of a subsystemSi.

Definition 2 Let Si = (C, M, Id, Sdi, Ctx, Obsi, Ini) be
a subsystem from the perspective of agentAi. Let Obscon

i ,
Obsabd

i ⊆ Obsi be subsets of the observations, and letVi be
a description of the values of the (input) connection points
Ini. Finally, letDi be a candidate diagnosis ofSi. ThenDi

is a diagnosis forSi iff

Di ∪ Sdi ∪ Ctx ∪ Vi |∼
∧

ϕ∈Obsabd
i

ϕ and

Di ∪ Sdi ∪ Ctx ∪ Vi ∪Obscon
i 6|∼⊥.

The diagnosis of multiple agentsIf there is a need for using
multiple diagnostic agents, an important question is whether
we loose information using a multi agent approach with
respect to a single agent approach. To answer this ques-
tions we assumethere are no principal conflicts between
the knowledge of the different agents; i.e. there always ex-
ists a diagnosisD such that:D ∪ Sd ∪ Cxt ∪ Obs is con-
sistent. We need this assumption because single agent diag-
nosis requires consistent knowledge.

Proposition 1 7 LetS1, ..., Sk be the subsystems generated
by the perspectives onS, let D be a single agent diagnosis
of S, and letVi = {(value(p) = v) | p ∈ Ini, D ∪ Sd ∪
Ctx |∼ (value(p) = v)} be the local context inSi.

ThenD is a diagnosis ofSi.

Proposition 2 Let S1, ..., Sk be the subsystems generated
by the perspectives onS.

Then,D is a single-agent diagnosis ifD diagnosis of ev-
ery subsystemSi given the local contexVi = {(value(p) =
v) | p ∈ Ini, Dj ∪ Sdj ∪ Ctx ∪ Vj |∼ (value(p) = v)}.

7 The proofs are omitted because of lack of space.

The above propositions show that multi-agent diagnosis
is possible. Note, however, that given a global candidate di-
agnosisD, predicting the values of all connection points is
an NP-Hard problem [12]. When knowledge of the system
is semantically distributed over the agents, often there are
only a few connection points between the subsystems man-
aged by different agents. Moreover, if the connections be-
tween subsystems do not form cycles, the distribution of
knowledge over the agents does not contribute significantly
to the time complexity of predicting the system’s behavior
given a diagnosis. Since usually, there are not many connec-
tions between different behavioral aspects of the system, in
the remainder of this paper, we will assume that the predic-
tion of the system’s behavior is not an issue.

A single agent approach is based on the implicit assump-
tion that an agent has complete and consistent knowledge of
a component’s behavior given its known behavioral modes.
Without this assumption, a single agent cannot make a diag-
nosis using Definition 1. However, when knowledge is se-
mantically distributed, this assumption need not be valid.
Therefore, we must study the consequences of incomplete
and incorrect knowledge on establishing a global diagno-
sis.

3.1. Agents with incomplete knowledge

When agents look at different aspects of a component,
they may not have the same detailed knowledge for every
aspect. Concerning the electrical aspects of an integrated
circuit for instance, an agent may distinguish many special-
ized fault modes for which knowledge concerning the ther-
modynamic aspects of the circuit is lacking. Hence, for a
componentc an agentAi may only have behavioral knowl-
edge forsomeof the component’s fault modesMc,i ⊆ Mc.

The lack of knowledge about a component’s behavior
for some fault modes raises a problem: the agents may not
be able to reach an agreement. To overcome this problem
an agentAi may justassumea behavior for each behav-
ior mode m ∈ (Mc − Mc,i). But then the problem is,
which behaviors can validly be assumed? If the behavior
of a less specific fault mode would be known, this behav-
ior may be used. Since a set of behavior modesMc,i always
contains the least specific fault modeab for which no behav-
ior is known, we may assume the existence of a hierarchy of
modes ordered with respect to specificity. We call such a hi-
erarchy anabstraction hierarchy. For an example, see fig-
ure 1

Definition 3 Let c ∈ C be a component andMc its set
of behavior modes. An abstraction hierarchy onMc is a
strict partial order(Mc,Â), where the intuitive meaning of
m Â m′ m, m′ ∈ Mc is that m is more specific thanm′

and whereab is the unique least specific element in the hi-
erarchy, i.e. for allm ∈ Mc − {ab}: m Â ab.



Figure 1. An abstraction hierarchy.

Intuitively, a more specific mode implies a more specific
description of the behavior of the component. Moreover,
more specific modes should be mutually exclusive. There-
fore, the following requirements must hold.
For everym,m′ ∈ Mc,i: if m Â m′, mode(c,m) → Φ ∈
Behc,i andmode(c,m′) → Φ′ ∈ Behc,i, thenΦ |= Φ′.
For every m,m′,m′′ ∈ Mc if m′ Â m, m′′ Â m,
mode(c,m′) → Φ′ ∈ Behc,i, mode(c,m′′) → Φ′′ ∈
Behc,i, thenΦ′, Φ′′ |−⊥.

Definition 4 Let Φi,nor be the normal behavior from the
perspectivei of a componentc

An abstraction hierarchy iscompleteiff for each a fault
modem0 that is not a most specific fault mode, there is a
set of fault modesm1, ...,m` such thatmj Â m0 for j ≥ 1,
mode(c,mj) → Φi,j ∈ Behc,i and|− Φi,0 ↔ (Φi,1 ∨ ...∨
Φi,`).

The abstraction hierarchy on the fault modes defines a
similar abstraction hierarchy on the diagnoses.

Definition 5 LetD, D′ be two candidate diagnoses.D is at
least as specific asD′, D º D′, iff for everymode(c,m) ∈
D there is amode(c,m′) ∈ D′ such thatm º m′.

Note that agents that wish to give a best possible explana-
tion for the observed anomalies, should focus on the most
specific diagnoses. Whether the agents only determine the
most specific diagnoses depends on the type of diagnosis
they use; i.e. consistency based or abductive based:

Proposition 3 Pure abductive diagnosis may not produces
less specific diagnoses.

Pure consistency based diagnosis returns every less spe-
cific diagnosis.

Proposition 4 Let S1, ..., Sk be the subsystems that make
up the systemS and let the abstraction hierarchy of fault
modes be complete. Moreover, letD be a most specific di-
agnosis ofS.

Then there exists a set of most specific diag-
nosesD1, ..., Dk for, respectivelyS1, . . . Sk, such that
D =

⋃k
i=1 Di.

The behavioral descriptionBehc,i of a componentc with
respect to a perspective of agentAi might be incomplete

w.r.t. some fault modes, i.e. there might not be a behavior
specification for each fault mode inMc. In order for the
agent to establish a global diagnosis, therefore these miss-
ing behaviors have to be added. The following assumption
serves this purpose.

Assumption A fault modem of a componentc for which
an agentAi has no behavioral specification, is assumed to
have the same behavior as the most specific modem′ ∈
Mc,i with m Â m′ for which a behavior is known.

The purpose of this assumption is to extend the behav-
ioral description, making the behavioral knowledge of ev-
ery fault mode of every component complete for all aspects.
Hence, the results of propositions 1 and 2 apply.

3.2. Agents with incorrect knowledge

Agents lacking knowledge about behavior modes is not
the only problem that may arise in a multi-agent system.
Knowledge of agents about the components’ behaviors may
in some situation be incorrect. As a result, agents need not
agree on the components that can be broken and if they
do agree on the components that are broken, they need not
agree on the fault modes of the broken components.

A robust multi agent system should be able to handle sit-
uations in which agents do not agree on global diagnoses.
One possibility to overcome these problems proposed by
Schroeder and Wagner [14] is the use of voting. However, if
agents look from different perspectives at the system, vot-
ing offers no solution. Moreover, voting requires the com-
munication of all local diagnoses of all agents. The num-
ber of these diagnoses may be exponential in the number of
components.

The abstraction hierarchy on the fault modes also makes
it possible to handle problems that arise because agent have
incorrect knowledge about a components behavior. Given a
completeabstraction hierarchy of fault modes agents must
be able to agree on one or more most specific diagnoses
When we are unable to reach an agreement on a most spe-
cific diagnosis, they should be able to agree on a less spe-
cific diagnosis. Such an agreement is always possible since
m Â ab for every behavior modem ∈ Mc. If m is the most
specific fault mode of a componentc on which the agents
agree, there must be a diagnosisD with mode(c,m) ∈ D
andD is a consistency-based diagnosis of the subsystemSi

managed by agentAi.
We can identify the presents of incorrect knowledge by

the absent of a most specific diagnosis if the abstraction hi-
erarchy is complete. This does not imply that the knowl-
edge is correct if agents agree on a most specific diagnoses
in all circumstances.



Proposition 5 Let S1, ..., Sk be the subsystems that make
up the systemS and let the abstraction hierarchy of behav-
ior modes be complete.

The knowledge of an agent about the behavior of a com-
ponent is incorrect if for some contextCxt and some set of
observationsObs no most specific diagnosis exits on which
all agents agree.

4. A protocol for diagnostic agreement

The agents may determine a global diagnosis by first de-
termining all fault modesMc =

⋃m
i=1 Mc,i as well as the

abstraction hierarchyÂ on Mc for each componentc, and
second exchanging their local diagnoses. The first step is
straight forward and will not be discussed here because of
space limitations. The second step is more problematic. The
number of diagnoses to be exchanged between the agents
can be quite high and can be exponential in the number of
component is the worst case. In order to control the com-
plexity, agents should focus on numerical minimum, inclu-
sion minimal or probable diagnoses.

Since a locally diagnosis need not be a global diagno-
sis, the agent proposing the diagnosis needs to receive feed-
back when a proposed diagnosis is rejected by other agents.
Subsequently, the agent can generate a new diagnosis tak-
ing into account the diagnoses that have been rejected.

The generation of new diagnoses can be improved if
agents supply the reasons for rejecting a proposed diagno-
sis. When agentA1 proposes a partial diagnosisD1, agents
A2, ..., Ak might reject the diagnosis because some (com-
bination of) modes is inconsistent with its observations. For
i = 2, . . . k, letRi ⊆ D1 be such (a combination of) modes.
Then forRi it should hold thatRi is a smallest subset ofD1

such that:Ri ∪Sdi ∪Ctx∪ Vi ∪Obsi |∼⊥ for 2 ≤ i ≤ k.
Note that an agentAi might determine more than one

smallest subsetRi. If SRi is the set of all smallest subsets
Ri, agentA1 can use this informationTR =

⋃
2≤i≤k SRi

as a set of constraints in its search for a next diagnosis. It
may not select a new diagnosisD′

1 containing anyRi ∈ TR
as a subset.

The protocol in figure 2 shows how the agents may pro-
ceed. To gain robustness, eventually, always one of the
agents takes the initiative to establishes the global diag-
noses. In the protocol, the agent that takes the initiative is
agentA1.

5. Probable diagnoses

The protocol proposed in the previous section deter-
mines a more abstract diagnosis in case the agents cannot
agree on a most specific diagnosis. In this way agents can
reach an agreement even if the knowledge of some agent
predicts the wrong behavior given the current context and

Agent Action
A1 TR :=∅;
A1 finished := false;
A1 while not finished do
A1 generate the next most specific local

diagnosisD1 of S1 such that for
noR ∈ TR: R ⊆ D1;

A1 finished := not diagnosisfound;
A1 while diagnosisfound, fori := 2 to k do
A1 send ‘proposeD1’ to Ai;
Ai receive ‘proposeD1’ from A1;
Ai determine a most specific local diagnosis

Di of Si such thatD1 º Di;
Ai if a diagnosisDi exists then;
Ai send ‘acceptDi’ to A1;
Ai else
Ai send ‘rejectSRi’ to A1;
Ai end;
A1 if received ‘acceptDi’ from Ai then
A1 D1 := Di;
A1 else if received ‘rejectSRi’ from Ai then
A1 TR := TR ∪ SRi;
A1 diagnosisfound := false;
A1 end;
A1 end;
A1 if diagnosisfound then
A1 storeD1;
A1 end;
A1 end;

Figure 2. Establishing global diagnoses

current observations. What we would like to know is how
this affects the probability of a diagnoses, especially if the
knowledge of some agents is incorrect given the current
context and current observations.

What to measureBefore applying probabilities measures,
it is important to first determine what exactly we wish to
measure. First of all we wish to know which components
are broken. Therefore, we should determine the probabil-
ity that some componentsB ⊆ C are broken while oth-
ers C − B are not. Hence, if∆(Obs) is the set of diag-
noses given the agents’ observationsObs, we should deter-
mine the probability of the diagnoses∆(B, Obs) = {D ∈
∆(Obs) | B = {c ∈ C | mode(c, nor) 6∈ D}}. Let LB =
{mode(c, nor) | c ∈ C − B} ∪ {mode(c, ab) | c ∈ B}
the least specific diagnosis in which the componentsB are
broken. Then∆(B,Obs) 6= ∅ iff LB ∈ ∆(B, Obs) iff:
LB ∈ ∆(Obs). Therefore it suffices to determine the prob-
ability P (LB | Obs) for everyLB ∈ ∆(Obs).

The number of diagnosesLB ∈ ∆(Obs) can be expo-
nential in the number of componentsC. Fortunately, we



can reduce this number. Since the a priori probability that
a component is not broken is in general much greater than
the probability that it is broken, it suffices to determine the
probabilities of the least specificsubset-minimaldiagnoses.
If the fault probabilities are very small, we may restrict our-
selves to the diagnoses of minimum cardinality.

A priori probabilities To determine the probability of diag-
noses, we assume that fault probabilities are known for ev-
ery fault mode of every component. Ifspec(m) = {n | n Â
m, ∀` Â m : n 6Â `} denotes the set of fault mode that di-
rectly refines a fault modem, then the following properties
hold.

• For every behavior modem ∈ Mc of a componentc,
spec(m) is a set of mutual exclusive fault modes.

• If the abstraction hierarchy of behavior modes for a
componentc is complete, then for everym ∈ Mc:

P (c,m) =
∑

n∈spec(m) P (c, n),

and if it is incomplete , then for everym ∈ Mc:

P (c,m) ≥ ∑
n∈spec(m) P (c, n).

From the probabilities of fault modes, the a priori prob-
abilities of diagnoses can be derived. Given a diagnosesD,

P (D) =
∏

mode(c,m)∈D P (c,m).

For the probabilities of diagnoses similar properties as
above hold. Letspec(D) = {D′ | D′ Â D,∀D′′ Â D :
D′ 6Â D′′} be the set of diagnoses that directly special-
izeD. Then we have:

• For every candidate diagnosisD, spec(D) is a set of
mutual exclusive diagnoses.

• If the abstraction hierarchy of behavior modes is com-
plete for every component inC, then for every can-
didate diagnosisD and for every set of observations
Obs:

P (D | Obs) =
∑

D′∈spec(D) P (D′ | Obs),

and if it is incomplete, then for every candidate diag-
nosisD and for every set of observationsObs:

P (D | Obs) ≥ ∑
D′∈spec(D) P (D′ | Obs).

A posterior probabilitiesDeriving the a posterior proba-
bility of a diagnosis is more complicated, since the set of
diagnoses given the agents’ observations need not be mu-
tually exclusive; ifD is a diagnosis, then so isD′ with
D Â D′ . In deriving the probability measure, we will first
assume that the knowledge of the agents is correct. Hence,
we must first determine the a priori probability of a diagno-
sis D ∈ ∆(Obs) knowing that every more specific candi-
date diagnosisD′ Â D with D′ 6∈ ∆(Obs) is no diagno-
sis. We will useΓ(D,∆(Obs)) to denote this event. Then
we have:

P (Γ(D, ∆(Obs))) = P (D)−∑
D′∈spec(D) P (D′)

+
∑

D′∈spec(D)−∆(Obs) P (Γ(D′, ∆(Obs)))

Note that in a complete hierarchyP (D) −∑
D′∈spec(D) P (D′) = 0 if D is not a most specific

diagnosis.
The a posterior probability of a diagnosisD given the

agents’ observationsObs can now be determined by nor-
malizing the a priori probabilitiesP (Γ(D, ∆(Obs))) of
D ∈ ∆(Obs).

P (D | Obs) =
P (Γ(D, ∆(Obs)))∑

LB∈∆(Obs),B⊆C P (Γ(LB , ∆(Obs)))

Note that for everyD Â LB , D ∈ ∆(Obs) implies
LB ∈ ∆(Obs). Also note that the denominator summates
over an exponential number of subsetsB ⊆ C. If the fault
probabilities are sufficiently small, we can ignore all non
numerical minimum subsets.

Till now the agentsA = {Ai}k
i=1 were assumed to have

perfect knowledge of the system in their area of expertise.
Without this assumption, we must take into consideration
that local diagnoses may be incorrect because of incorrect
knowledge about the behaviour of subsystems. Hence, ifD
is the correct diagnosis,D need not be among the local di-
agnoses of some agents. The agents will, however, agree
on the least specific diagnosisLB ≺ D. Without taking
into consideration the probability that behavioral descrip-
tions are incorrect, however, the a posterior probability of
LB is 0 if the abstraction hierarchy is complete.

If D is a most specific diagnosis supported by a sub-
setA(D) ⊂ A of the agents, there must be errors in the be-
havioral descriptions used by the agentsA−A(D). There-
fore, given the local diagnoses∆1(Obs1), ..., ∆k(Obsk)
of the agents, we must determine the probability of
P (Γ(D, ∆1(Obs1), ..., ∆k(Obsk))) by also taking into ac-
count the probabilityP (sup(D) | Obs) that the agents
A(D) are correct in supporting the diagnosisD while
the agents inA − A(D) are wrong in not support-
ing D.

P (Γ(D, ∆1(Obs1), ..., ∆k(Obsk))) =
(P (D)−∑

D′∈spec(D) P (D′)) · P (sup(D) | Obs)
+

∑
D′∈spec(D) P (Γ(D′,∆1(Obs1), ..., ∆k(Obsk)))

Since an agent’s knowledge describes for each mode of
a component its behavior, the probability that an agent is
correct in supporting the diagnosisD or wrong in not sup-
portingD, depends on the number of components on which
the agent (dis)agrees withD. To determine this probabil-
ity, we need to know the minimal number of components
on which an agent disagrees withD. This number follows
from the most specific diagnosesD′ that resolves the dis-
agreement withD. The setagree(D, ∆i(Obsi)) = {D′ ∈
∆i(Obsi) | D º D′, for noD′′ ∈ ∆i(Obsi):D º D′′ Â



D′} specifics these diagnoses. For each diagnosisD′ ∈
agree(D, ∆i(Obsi)), agentAi agrees onmode(c,m) ∈ D
if mode(c,m) ∈ D ∩ D′ and disagrees ifmode(c,m) ∈
D − D′. If agentAi disagrees onmode(c, m) ∈ D, then
P (fault(c,m)) denotes the probability that a fault in de-
scription of the behavior of a componentc with behavior
modem leads to an incorrect prediction of the component’s
behavior. Hence,

P (sup(D) | Obs) =
∏k

i=1 P (supi(D) | Obsi) and

P (supi(D) | Obsi) =
∑

D′∈agree(D,∆i(Obsi))(∏
mode(c,m)∈D−D′ P (fault(c,m)) ·
∏

mode(c,m)∈D∩D′(1− P (fault(c,m)))
)

Selecting leaf diagnosesAfter determining the a posterior
probabilities of the diagnosesLB ∈ ∆(Obs) the agents
know which components are likely to be broken. Next, it
is important to determine the most probable leaf diagnoses
D Â LB . These diagnoses are important if components are
not to be replaced but will be repaired. Here two issues play
a role. First, agents can agree on several most specific di-
agnoses. In that case there is uncertainty about the correct
one and agent can simply choose the most probable one.
Second, agents may not agree on a most specific diagno-
sis. Hence the knowledge about the components’ behaviors
of some agent must be incorrect ifLB is a correct diagno-
sis. Since the above described a posterior probabilities of
diagnoses take into account the agents supporting a diagno-
sis, again the agents can simply choose the most probable
most specific diagnosisD Â LB .

If there are more than two most specific diagnoses, the
most probable one can be less probable the sum of the prob-
abilities of the other most specific diagnoses. Hence choos-
ing the most probable most specific diagnosis need not the
best choice. Instead, the agents should choose the most spe-
cific diagnosisD Â LB for which there holds:

P (D | Obs)
P (LB | Obs)

> θ > 0.5

whereθ is some threshold value.

6. Experiments

In a series of experiments, we have evaluated how well
the proposed approach is in determining the cause of a
problem. Here, knowing the components that are broken,
i.e. determine the least-specific diagnoses, is the first and
most important step. Since no behavior is specified for the
modeab, the correct least-specific diagnosis will always
be among the agent’s diagnoses. An important question
is, however, whether the correct8 least-specific diagnosis

is among the most probable least-specific diagnoses, espe-
cially if for some agents the description of a component’s
behavior is not free of errors.

To answer the question, 80000 systems were randomly
generated and were diagnosed by three agents. We used
three agents since this is the smallest number to make one
leaf diagnosis significantly more probable if one of the
agents disagrees with the others, while using more agents
would have simplified the diagnostic problem.9 Each gener-
ated system consisted of 40 components. Each component
had one output and two inputs. An input was either cor-
rected to one of the four system inputs or to an output of a
randomly chosen component. The system was generated in
such a way that it contained no cycles.

The normal behavior of a component was a modulon
adder for each to the three perspectives. Besides, a com-
ponent had faulty behaviors, namelyab and two specific
faulty behaviorsf1 andf2. The corresponding abstraction
hierarchy is shown in figure 3. In both fault modesf1 and
f2 a fault value was added modulon the output of the
component. These faults values were randomly chosen for
each combination of a component, a fault mode and an
agent. Finally, for every componentc, the same value was
used for the probabilities of the fault modesP (c, f1) and
P (c, f2) as well as the probabilities that the specified be-
havior of a behavior mode is incorrectP (fault(c, f1)) and
P (fault(c, f2)).10

Figure 3. The hierarchy in the experiments.

To create a diagnostic problem, in each generated sys-
tem one component was chosen to be the broken compo-
nent and one of the fault modef1 or f2 was selected for the
component. In one of the three perspectives, however, the
component behaved according to the other fault mode, i.e.
the knowledge of the agent using this perspective was in-
correct in the current situation.

Whether the least specificcorrectdiagnosis is among the
most probable diagnoses, mainly depends on the number of
observation points and the number of values in- or output
can have. We therefore varied these numbers in the experi-

8 Thecorrect diagnosis is the one that we used to create the faulty be-
havior of the system.

9 Different perspectives provide more information.
10 If the probability value is small enough, the actual value becomes ir-

relevant.



Figure 4. Distinguishability.

ments. To create the most difficult problems, the agents all
used the same randomly chosen observation points. Figure
4 shows the percentage of problems in which the correct di-
agnosis is among the most probable diagnoses and figure 5
shows the average number of most probable diagnoses.

Figure 5. Probable diagnoses.

7. Conclusion

In this paper, we analyzed the problem of multi-agent
diagnosis when knowledge is semantically distributed over
the agents. Especially the case that the agents’ knowledge
concerning the faulty behavior of some components, is in-
correct has been considered. A solution based on an abstrac-
tion hierarchy on the behavior modes has been proposed
and a protocol for determining the global diagnoses with
a minimal number of broken components has been given.

Moreover, probabilistic correctness measures for diagnoses
have been derived for the case that the agents’ knowledge
is correct and the case that the agents’ knowledge is not
always correct. These measure enable the agents to iden-
tify the most probable diagnoses. Finally, we investigated
whether the most probable diagnoses may contain the cor-
rect diagnoses if one of the agent’s knowledge contains er-
rors. The results show that if the components have enough
(> 6) output values this will be the case.
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