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Abstract

This paper analyzes the use of a multi-agent System for Model-Based Diagnosis.
In alarge dynamical system, it is often infeasible or even impossible to maintain a
model of the whole system. Instead, several incomplete models of the system have to
be used to detect possible faults. These models may also be physically distributed.

A Multi-Agent System of diagnostic agents may offer solutions for establishing a
global diagnosis. If we use a separate agent for each incomplete model of the system,
establishing a globa diagnosis becomes a problem of cooperation and negotiation
between the diagnostic agents. This raises the question whether ‘a set of diagnostic
agents, each having an incomplete model of the system, can (efficiently) determine
the same global diagnosis as an ideal single diagnostic agent having the combined
knowledge of the diagnostic agents?’.

1 Introduction

A traditional diagnostic tool can be viewed as a single diagnostic agent having a model
of the whole system to be diagnosed. There are, however, several reasons why such
a single agent approach may be inappropriate. First of all, if the system is physically
distributed and large, there may be not enough time to compute a diagnosis centrally and
to communicate all observations. Secondly, if the structure of the system is dynamic,
it may change too fast to maintain an accurate global model of the system over time.
Finally, sometimes the existence of an overall model is simply undesirable. For example,
if the system is distributed over different legal entities, one entity does not wish other
entities to have a detailed model of its part of the system. Examples of such systems are
modern telecommunication networks, dynamic configuration of robotic systems such as
AGV driving in a platoon, and so on. For such systems, a distributed approach of multiple
diagnostic agents might offer a solution.

An important question is of course whether a set of diagnostic agents can (efficiently)
determine the same global diagnosis as an ideal single diagnostic agent having the com-
bined knowledge of the diagnostic agents?

To investigate this problem we distinguish two ways in which the model (knowledge)
is distributed over the agents (cf. [4]): (1) spatially distributed: knowledge of system be-
havior is distributed over the agents according the spatial distribution of the system’s com-
ponents, and (2) semantically distributed: knowledge of system behavior is distributed
over the agents according to the type of knowledge, e.g. a separate model of the electrical



and of the thermodynamical behavior of the system. We will not consider approaches in
which all agent use the same model [9] in order to gain fault-tolerant behavior.

The way the knowledge is distributed turns out to have significant repercussion on
multi-agent diagnosis.*

This paper is organized as follows. Section 2 specifies the diagnostic problem and
Section 3 gives the standard diagnostic definitions. Section 4 discusses multi-agent diag-
nosis. Section 5 concludes the paper.

2 Thediagnostic setting

A system to be diagnosed is a tuple S = (C, M, Id, Sd, Ctz,Obs) where C is a set
of components, M = {M, | ¢ € C} is a specification of possible fault modes per
component, Id is a set of identifiers of connection points between components, Sd is the
system description, C'tz is a specification of input values of the system that are determined
outside the system by the environment and Obs is a set of observed values of the system.
A component in C' has a normal mode nor € M., one general fault mode ab € M, and
possibly several specific fault modes.

We assume that all components have in- and outputs and that every in- and output
only has one value type; e.g.: current, voltage, temperature, and so on. This assumption
is not valid in every system. We cannot say, for instance, that a resistor has an input and
an output. Without the assumption, the behavioral description of a component constraints
the values of certain types the connection points of a component may take. Determining
the behavior of a system requires solving a distributed (non-linear) constraint satisfaction
problem when using this kind of behavioral descriptions for components. Solving such a
problem can be hard when the knowledge is distributed over several agents.

Note that we can transform the behavioral description of a component into an equiv-
alent description in which the component has only in- and outputs, for instance, by using
Bond Graphs [3]. In the resulting description, one physical connection point may be
represented by several in- and outputs.

The system description Sd = Str U Beh consists of a structural description Str
and a behavioral description for each component Beh = J,..- Beh.. The structural
description Str consists of instances of the form p = in(z,c) and p = out(zx, c) where
2 is an in- or an output of a component ¢ and p € Id is a connection point identifier. Of
course, a connection point p € Id has at most one output. The function type(p) will be
used to denote the value type of a connection point p € Id.

The set Beh, specifies a behavior for each (fault) mode in M. of a component ¢,
possibly with the exception of ab € M.. In this specification, the predicate mode(c, m)
is used to denote the mode m € M, of a component ¢. For each instance of mode(, ),
Beh, specifies a behavioral description of the form: mode(c, m) — ® where m € M,.?
The expression ® describes the component’s behaviour given its mode m € M..

The set Cta describes the values of connection points that are determined by the
environment. It consists of instances of the form value(p) = v where p € Id is a

1Although we distinguish spatially and semantically distributed models, combinations are also possible.
2Note that we may use a single description for a class of components. Instances of this description must
imply the form of description give here.



connections point and v is a value.

Finally, the set Obs describes the values of connection points that are observed (mea-
sured) by the diagnostic agent. It also consists of instances of the form value(p) = v
where p € Id is a connection point and v is a value.

A candidate diagnosis is an assignment of modes that might explain the observed
behavior of a system. The candidate diagnosis is a set D of instances of the predicate
mode(, ) such that for every component ¢ € C there is exactly one mode inm € M. such
that mode(c, m) € D. A diagnosis is a candidate diagnosis that explains the observed
behaviour of a system S = (C, M, Sd, Ctz, Obs) according to our diagnostic definition,
to be discussed in the next section.

Note that there can be more than one diagnosis, only one of which gives the correct
explanation. The latter is called the final diagnosis.

3 Single agent diagnosis

In this section we present some well-known concepts in model-based diagnosis. It will
be called single agent diagnosis since it assumes that a single agent, having complete
knowledge of the system, S = (C, M, Sd, Ctx, Obs), suffices to make a diagnosis.

The diagnostic definition Given a system S = (C, M, Sd, C'tz, Obs), a diagnosis can
be made. In the literature two types of diagnoses are distinguished: consistency based
[6, 7] and abductive [1] diagnosis. Both can be combined into one more general diagnostic
definition [2]. This definition will be used here:

Definition 1 Let S = (C, M, Sd, Ctz,Obs) be the system to be diagnosed. Let Obscon,
Obsapa € Obs be two subsets of the observations and let D be a candidate diagnosis.
Then D is a diagnosis for S iff
DU SdU Ctx |~ /\w€Obsabd pand D U SdU Ctx U Obscon L.
Note that we use the symbol |~ to denote the possibly limited reasoning capabilities
of a diagnostic system. l.e {¢ | X~ ¢} C {p | Z |- ¢}

If Obs,pqa = 9, then we have a pure consistency-based diagnosis, and if Obs¢on = @,
we have a pure abductive diagnosis. Note that an abductive diagnosis is stronger than
consistency-based diagnosis since the former also requires: D U SdU Ctz U & [~ L.

Besides pure consistency based and abductive diagnosis, there is another interest-
ing special case. In the absence of fault models, usually consistency based diagnosis is
used since we cannot explain abnormal observations; i.e. the observations that do not
correspond with the predicted values in case of no component failures. We can improve
consistency based diagnosis if we also allow for abductive diagnosis [8]. In the absence of
fault models, we can only give an explanation for the normal observations Obs y; i.e. the
observations that correspond with the predicted values in case of no component failures.
This additional information can help us to reduce the number of candidate diagnoses, es-
pecially if it is safe to assume that the effects of one fault cannot be compensated by the
effects of other faults.



The number of diagnoses Potentially, there can be an exponential number of diag-
noses. Even for relatively small systems, listing all these diagnoses can be infeasible. Ina
well designed system it is unlikely that the many components fail at the same time (unless
there is a cascade of failures). So, it is safe to assume that only a minimal number of
components is broken. Hence, we can order the diagnoses with respect to the number of
broken components. We can look for either diagnoses with a minimum number or with a
subset-minimal number of broken components. Here we choose the latter.

Definition 2 Let D and D’ be two diagnoses. D is less than D', D < D', iff {c |
mode(c,ab) € D} C {c | mode(c,ab) € D'}. A diagnosis D is minimal iff for no
diagnosis D' it holds that D’ < D.

Minimal diagnoses have a property that enable them to characterize a whole set of
diagnoses [5, 7]. This property turns out to be useful if we need to combine the diagnoses
made by several agents:

Proposition 1 Suppose that for each component ¢ € C' there are exactly two modes, nor
and ab, and let D < D’ be two candidate diagnoses. Then D’ is a pure consistency based
diagnosis of a system if D is.

This is a nice result since it enables us to characterize an exponential number of di-
agnoses. Especially if the number of faults is bounded by a constant or of the order
O(log(|C|)), the number of minimal diagnoses is polynomial in |C'.

Partial diagnoses are another way to avoid listing an exponential number of diagnoses.
In a partial diagnosis the mode of some of the components ¢ € C is left undefined.?

Definition 3 Let D' be some candidate diagnosis. Then D C D’ is a partial diagnosis.

We are of course interested in the smallest set, with respect to C, of components
such that the corresponding partial diagnoses characterize a set of diagnoses. This partial
diagnosis is called a kernel diagnosis [5].

Definition 4 D is a kernel diagnosis of a system iff (1) D is a partial diagnosis such that
every candidate diagnosis D’ O D is a diagnosis of the system, and (2) for no partial
diagnosis D" C D the first item holds.

Definition 5 D is an abductive kernel diagnosis iff D is a minimal partial diagnosis such
that: DU SdU Ctz |~ A\ cops.., oA

Definition 6 D is a consistency based kernel diagnosis if and only if D is a minimal
partial diagnosis such that: D U Sd U Ctz U Obscop L0

We can derive the kernel diagnoses for consistency based diagnosis with abductive
explanation of normal observations from the two types of kernel diagnoses defined above.

30ur definition of a partial diagnosis differs from the definition given in [5].

“Note that all mode descriptions in D have the normal mode if Obs,q = Obsy. Also note that there is
only one kernel diagnosis if none of the components behaves like a switch [8].

SNote that without fault models all mode descriptions in D have the abnormal mode.



Proposition 2 Let D" be an abductive kernel diagnosis and let D°" be a consistency
based kernel diagnosis of a system. Then, D = D9 U D" is a kernel diagnosis that
characterizes consistency based diagnosis with abductive explanation of normal obser-
vations if D is a partial diagnosis.®

Proposition 3 Let D be a kernel diagnosis that characterizes consistency based diagno-
sis with abductive explanation of normal observations.

Then D®? = {mode(c,nor) | mode(c,nor) € D} is an abductive partial diagnosis
and D™ = {mode(c, ab) | mode(c,ab) € D} is a consistency based kernel diagnosis.

4 Multi-agent diagnosis

Suppose that instead of one diagnostic agent, we have two or more diagnostic agents.
What can we say about the ability of this group of agents to make a diagnosis. We will
only consider cases in which we have two diagnostic agents since any case in which we
have n > 2 diagnostic agents is a trivial extension. We assume that both agents, A; and
As, have partial knowledge about the system. Let C = C; U Cs, let Sd = Sdy | Sda
and let Obs = Obs; | Obs,. We also assume that each agent knows the connections
with the other agent. An agent may have to ask / tell the values of these connection points
from / to another agent. We divide the connection points between subsystems into inputs
In; ={p e Id| {p = in(z,c),p = out(y,c')} C Str,c € C;,¢ ¢ C;} and outputs
Out; = {p € Id | {p = out(z,c),p = in(y,c')} C Str,c € C;,c ¢ C;} of the
subsystems. Hence, S; = (C;, M, Id, Sd;,Ctzx,Obs;, In;, Out;) is a subsystem to be
diagnosed. A candidate diagnosis of the subsystem S; is denoted by D;.

Definition 7 Let S; = (C;, M, 1d, Sd;, Ctx,Obs;, In;, Out;) is a subsystem to be di-
agnosed. Let Obscon, Obsana € Obs; be two subsets of the observations, and let V; be
a (partial) descriptions of the values of the connection points In; . Finally, let D; be a
candidate diagnosis. Then D; is a diagnosis for .S; iff

D;USd; UCtz UV }N AwEObsabd (%2 and D; USd; UCtxUV; UObscon l7<#J_.

Given multiple diagnostic agents, an important question is how the diagnoses of the
agents relate to the diagnoses of a single agent that has complete knowledge of the system
description and the observations. When addressing this question we assume throughout
the paper that there are no conflicts between the knowledge of the different agents. That
is, there is a diagnosis D such that: D U Sd U Czt U Obs is consistent.

Proposition 4 Let A; and A, be two diagnostic agents each having partial knowledge of
the system; i.e. Sy and S,. Moreover, let D be a single agent diagnosis of S.

Then for some (partial) descriptions V; and V- of the values of the connection points
Iny respectively Ins, D1 = {mode(c, s) | ¢ € Cy,mode(c, s) € D} is adiagnosis of Sy
and Dy = {mode(c, s) | ¢ € Ca, mode(c, s) € D} is a diagnosis of .S,.

6That is, D is a partial diagnosis if there are no mode conflicts; i.e. for no ¢ € C: mode(c,nor),
mode(c, ab) € D.



Proposition 5 Let A; and A, be diagnostic agents with partial knowledge S; respec-
tively S,. Moreover, let D; be a diagnosis of S; determined by agent A; given some
partial description V; of the values of In; .

Then, D = Dy U D is a single-agent diagnosis if D is a candidate diagnosis and if
D; USd;UCtz UV |~ /\wevj o for every j # i.

Note that the above propositions show that multi-agent diagnosis is possible. In particular,
Proposition 5 offers the possibility to establish global diagnoses by information exchange
between agents

The complexity of determining a global diagnosis depends on the organization of the
multi-agent system. First, knowledge of the system can be distributed in different ways
over the agents. We will consider two extreme cases, knowledge that is either semantically
of spatially distributed. Second, it makes an important difference whether agents use fault
models of the behavior of components. Third, the dependencies between the knowledge
distributions plays an important role. The dependencies determine whether agents have
to exchange information to make a ‘local’ diagnosis.

Analysis

Dependent descriptions Before agents can establish a global diagnosis they first have
to establish a local diagnosis using the knowledge of their part of the system. An important
issue is whether they can do this independently of each other.

Dependencies arise because different models of the system are interconnected. By
definition, such connections are present when knowledge is spatially distributed. When
knowledge is semantically distributed, independence is possible, e.g., if an electrical and
a thermodynamical description of the system is used. If, however, the heat of a (bro-
ken) component influences the electrical characteristics of the nearby components, we no
longer have independence.

We can enforce independence by observing the values of all connection points be-
tween different descriptions of the system; i.e. the values of In;. In large systems this
may not be feasible. Hence, agents have to exchange predicted values of connection
points for every candidate diagnosis they consider. This may cause large communication
overhead since the number of candidate diagnoses is exponential.

Another problem is that the connection between subsystems may form cycles. Hence,
predicting the behaviour of the system given a candidate diagnosis may require going
through many cycles, causing large communication overhead.

Theorem 1 Given a global candidate diagnosis D, predicting the values of all connec-
tion point is an NP-Hard problem.

Semantically distributed knowledge If knowledge is semantically distributed, each
agents looks at different aspects of the whole system. We will first consider the situation
in which agents have no fault models, and in which the knowledge of the agents is inde-
pendent. The latter implies that either there are no connections, In; = &, between the
different descriptions of the system or all connection points of the connections between
S and S, are observed.

If we only apply consistency based diagnosis we can derive the following result.



Proposition 6 Let the diagnostic agents A; and A, be organized as described above and
let Dy, D, respectively their diagnoses. Then, D = {mode(c,nor) | mode(c,nor) €
Dy, mode(c,nor) € Dy} U {mode(c, ab) | mode(c,ab) € Dy or mode(c,ab) € D2} is
a single agent diagnosis.

Note that if both D, and D are minimal diagnoses, D need not be a minimal diagnosis.

As in the single agent approach, we can improve consistency based diagnosis if we
also allow for abductive explanation of normal observations [8]. The results of Proposi-
tions 2 and 3 can be extended to multi-agent diagnosis.

Proposition 7 Let the diagnostic agents A; and A, be organized as described above, let
Db and D$% be their abductive kernel diagnoses and D§°™ and D™ their consistency
based kernel diagnoses. Then, D = DU D§%4 U D™ U Dse™ is a single-agent kernel
diagnosis if D is a partial diagnosis.

Note that if both D, and D- are kernel diagnoses, D need not be a kernel diagnosis.

Proposition 4 implies together with propositions 6 respectively 7 that all minimal /
kernel diagnoses can be determined in polynomial time if the number of minimal / kernel
diagnoses of each subsystem is polynomial bounded in |C]|.

Proposition 8 There exists a protocol” that determines all global minimal / kernel diag-
noses with a time complexity that is quadratic in the maximum of the number of minimal
/ kernel diagnoses of a subsystem.

In some areas, it is important to know the type of fault that has occurred. In medical
diagnosis for instance, we do not only need to know the component that is failing but also
what is causing it to fail. In this area we usually do not replace a component but instead
try to eliminate the cause of the malfunction. Hence, fault models are required.

Allowing for fault models complicates the process of combining the candidate di-
agnoses of several agents. The reason for this is that, given an ordering of candidate
diagnoses D; < Dy < D3 < Dy, Dy and D3 can be diagnoses while D, and D, are
not. Hence, we can no longer characterize an exponential number of diagnoses using a
polynomial number of minimal or kernel diagnoses. Exchanging all (kernel) diagnoses
between the agents is, in general, infeasible.

Proposition 9 There exists a protocol that determines the numerical minimal diagnoses
inO(t) < O((n-m)*) time where n = |C|, m = max.cc | M.|, k is the number of broken
components in a numerical minimal diagnosis and ¢ is the number of local diagnoses with
no more than k& broken components of some subsystem.

Spatially distributed knowledge If agents use fault models, they have to exchange
information about the values of connection points in between subsystems for every candi-
date diagnosis they consider. The agents can reduce the amount of information exchange
by ignoring the fault models. Agents may reduce the amount of information exchange
even further if they may assume default values for these connection points. In both cases,

"Due to space limitations, we cannot present a protocol here.



we can only apply consistency based diagnosis or consistency based diagnosis with ab-
ductive explanation of normal observations.

Inputs of an agent’s part of the system that are determined by other agents, can be
incorrect. Therefore, agents must assume the correctness of these inputs and must be able
to withdraw these assumptions during diagnostic reasoning. When an agent no longer
assumes that an input is correct, it must pass on this information to the agent whose part
of the system determines the input. For every candidate diagnosis an agent considers,
it must provide this kind of feedback to the other agent(s). Since connections between
subsystem may form loops, finding a minimal diagnosis can be hard.

To see how difficult finding a minimal diagnosis may be, view each subsystem as a
variable and each candidate diagnosis of a subsystem as a domain value of this variable.
Then finding a minimal diagnosis can be seen as a Constraint Optimization Problem.

Theorem 2 Even if the agents have a polynomial algorithm for determining a local min-
imal diagnosis, determining a global minimal diagnosis is still an NP-Hard problem.

5 Conclusion

Multi-agent diagnosis is possible but not always feasible. If diagnostic knowledge is se-
mantically distributed, the usage of fault models may result in exchanging an exponential
amount of information in order to establish a global diagnosis. If, however, the number
of broken components is limited, then there exists a protocol that determines a global
minimal / kernel diagnosis in polynomial time.

If diagnostic knowledge is spatially distributed, the amount of information exchange
depends on whether the agents exchange predicted values. Circular dependencies between
the information required by different agents may cause a lot of information exchange.
Moreover, even without fault models, finding a global minimal diagnosis is an NP-Hard
problem. Hence, future research should focus on efficient approximation protocols.
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