
Diagnosis of Plan Step Errors and
Plan Structure Violations

Cees Witteveen
Faculty EEMCS

Delft University of Technology
P.O.Box 5031

NL-2600 GA Delft
The Netherlands

C.Witteveen@tudelft.nl

Nico Roos
Dept. of Computer Science

Universiteit Maastricht
P.O.Box 616

NL-6200 MD Maastricht
The Netherlands

roos@cs.unimaas.nl

Adriaan ter Mors &
Xiaoyu Mao
Almende B.V.

Westerstraat 50
NL-3016 DJ Rotterdam

The Netherlands
{adriaan,xiaoyu}@almende.com

ABSTRACT
Failures in plan execution can be attributed to errors in the
execution of plan steps or violations of the plan structure.
While in previous work we have concentrated on the first
type of failures, in this paper we introduce the idea of di-
agnosing violations in the plan structure. The structure of
a plan prescribes which actions have to be performed and
which precedence constraints between them have to be re-
spected. Especially in multi-agent environments violations
of plan structure might easily occur as the consequence of
synchronization errors. Using a formal framework for plan
diagnosis, we show how Model-Based Diagnosis can applied
to identify these violations of plan structure specifications
and we analyze the computational complexity of the associ-
ated diagnostic problems.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Plan execution, formation, and generation; I.2.11 [Distribu-
ted Artificial Intelligence]: Coherence and coordination,
Intelligent agents, Multiagent Systems

General Terms
Performance, Reliability, Theory

Keywords
Model-Based Diagnosis, Plan execution, Planning

1. INTRODUCTION
Plan diagnosis deals with the identification of errors oc-

curring during the execution of a plan. In previous work,
we have presented methods for identifying such errors as
failed executions of plan steps in multi-agent plans [4, 6],
equipment failures and malfunctioning agents causing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 IFAAMAS .

execution of plan steps to fail [1, 2], and methods for assign-
ing responsibility to agents in case plan execution failed [1].
In all these papers, however, the tacit assumption was that
the plan structure itself is not violated, i.e., all plan steps
as specified in the plan have been executed and the order in
which they are executed did not violate any precedence con-
straint. In reality, however, violations of the plan structure
may easily occur. For instance, consider a plan for loading
a truck that has to visit several places to deliver cargo. To
guarantee an efficient unloading procedure, often the plan
requires a specific precedence order between the items to
be loaded. If such a loading order is violated, unloading
at an intermediate delivery location may require unloading
of other items besides the ones intended for this location,
causing unnecessary delay and even violation of time con-
straints. Another example would be a plan for loading a
ship that ensures a correct weight distribution by carefully
ordering the items that have to be loaded. In this case, an
incorrectly loaded ship may even disturb the stability of the
ship in rough seas causing a total transport plan failure.

Multi-agent systems are particularly susceptible to such
violations of plan structure. Often precedence constraints
between plan steps to be executed by different agents are en-
sured by synchronizing the agents involved. In many cases
such synchronization is achieved by relying on specific start-
ing times of actions specified in the plan itself or by relying
on observations that indicate the completion of tasks per-
formed by other agents. If, in such a case, the execution of
some crucial action is delayed or observation errors lead to
incorrect beliefs about the state of the world, violations of
precedence constraints may easily occur. Of course, other
plan structure failures such as omitting or duplicating plan
steps, can also easily occur in multi-agent environments as
a result of synchronization problems.

2. PLANS AND PLAN EXECUTION
Plans as Systems We consider plan-based diagnosis as
a simple extension of the model-based diagnosis approach,
where the model is not a description of an underlying phys-
ical system but a plan of an agent. By executing plans we
change a part of the world.

To keep representational issues as simple as possible, we
assume that for the planning problem at hand, the world
can be simply described by a set Var = {v1, v2, . . . , vn} of
variables and their respective value domains Di. A state of
the world σ then is a value assignment σ : V ar →

⋃n
i=1 Di



to the variables. We will denote such a state simply by an
element of D1 ×D2 × . . .×Dn, i.e. an n-tuple of values.

Therefore, we introduce a partial state as an element π ∈
Di1 × Di2 × . . . × Dik , where 1 ≤ k ≤ n and 1 ≤ i1 <
. . . < ik ≤ n. We use V ar(π) to denote the set of variables
{vi1 , vi2 , . . . , vik} ⊆ Var specified in such a partial state π.
The value σ(vj) of variable vj ∈ V ar(π) will be denoted by
π(vj). The value of a variable vj ∈ Var not occurring in
a partial state π is said to be undefined (or unpredictable)
in π, denoted by ⊥. Including ⊥ in every value domain Di

allows us to consider every partial state π as an element of
D1 ×D2 × . . .×Dn.

An important notion in plan diagnosis is the notion of
compatibility between partial states. Two states π and π′

are said to be compatible, denoted by π ≈ π′, if there is no
essential disagreement about the values assigned to variables
in the two states. That is, π ≈ π′ if ∀v ∈ V ar [π(v) =
⊥ ∨ π′(v) = ⊥ ∨ π′(v) = π(v)] A plan operator refers to
a description of an action in a plan. In our model, plan
operators are functions mapping partial states to partial
states. More exactly, a plan operator o is a function that
replaces the values in its range ranV ar(o) ⊆ Var by other
values (dependent upon the values of the variables in its
domain domV ar(o) ⊆ V ar). Hence, every plan operator
o can be modeled as a (partial) function fo : Di1 × . . . ×
Dik → Dj1 × . . . × Djl , where 1 ≤ i1 < . . . < ik ≤ n and
1 ≤ j1 < . . . < jl ≤ n.

A plan operator o may be used at several places in a plan.
A specific occurrence s of o is called a plan step mapping a
specific partial state into another partial state. A plan step
s as an occurrence of o then describes a specific function
application of the function fo at a specific place in the plan.
Therefore, given a set O of plan operators, we consider a set
S = inst(O) of instances of plan operators in O, called the
set of plan steps. A plan step will be denoted by a small
roman letter si.

Plans An executable plan is a tuple P = 〈O, S,≺〉 where
S ⊆ Inst(O) is a set of plan steps occurring in O and (S,≺)
is a partial order. The partial order relation ≺ specifies an
execution relation between plan steps: for each s ∈ S it
holds that s is executed immediately after all plan steps s′

such that s′ ≺ s have been finished. We will denote the
transitive reduction of ≺ by �.1

Without loss of generality, we assume that every plan step
s ∈ S takes one unit of time to execute and the execution of
the first plan step starts at time t = 0. Using this assump-
tion and the definition of the execution ordering ≺, the time
t at which a plan step s will be executed is uniquely deter-
mined: Let depthP (s) be the depth of plan step s in plan
P = 〈O, S,≺〉. Here, depthP (s) = 0 if {s′ ∈ S |s′ � s} = ∅
and depthP (s) = 1 + max{depthP (s′) | s′ � s}, else.2

Then the time ts at which the plan step s is executed is
ts = depthP (s) and s will be completed at time ts + 1. Let
Pt denote the set of plan steps s with depthP (s) = t, let
P>t =

⋃
t′>t Pt′ , P<t =

⋃
t′<t Pt′ and finally, let P[t,t′] =⋃t′

k=t Pk.

Qualifications The correct execution of a plan step may
fail either because of an inherent malfunctioning, or be-
cause of a malfunctioning of an agent responsible for exe-

1So � is the smallest subrelation of ≺ such that the transi-
tive closure �+ of � equals ≺.
2If the context is clear, we often will omit the subscript P .

cuting the action, or because of unknown external circum-
stances. In all these cases, we model the effects of a failed
execution of a plan-operator by introducing a set of health
modes Hs for each plan step s ∈ S. This set Hs con-
tains at least the normal mode nor, the mode ab indicating
the most general abnormal behavior, and possibly several
other specific fault modes. The most general abnormal be-
havior of action o is specified by the function fab

o , where
fab

o (di1 , di2 , . . . , dik ) = (⊥,⊥, . . . ,⊥) for every partial state
(di1 , di2 , . . . , dik ) ∈ dom(fo).

3 To keep the discussion sim-
ple, we distinguish only the health modes nor and ab. We
will use the set of plan steps F ⊆ S to denote the plan steps
that are qualified as abnormal (failed). The plan steps S−F
are therefore qualified as normal.

Missing and duplicated plan steps may at first sight be
treated as special cases of failing plan steps. However, the
execution of an omitted plan step still would take time and
duplicating plan steps would not increase execution time.
Therefore, we will qualify these plan steps using a special set
D indicating the set of plan steps duplicated and M denot-
ing the set of plan steps omitted. Instead of assigning health
modes, we use these sets to transform the existing plan P
into a new plan PM,D reflecting the omitted and duplicated
plan steps. The resulting plan PM,D = 〈O, S(M,D),≺(M,D)〉
thus obtained will consist of the set of plan steps S(M,D) =
S−M∪{sdup : s ∈ D}, and the set of precedence constraints
≺(M,D)= ≺ −{(s, s′), (s′, s) : s ∈ M} ∪ {(s, sdup), (sdup, s′) :
s ∈ D, (s, s′) ∈≺}. Here, the idea is that the duplicat-
ing plan step sdup will be executed immediately after the
original plan step s. Moreover, sdup and s have the same
behavior.

A precedence constraint violation occurs if a plan P spec-
ifies that some plan step s′ is dependent upon a plan step
s (i.e. (s, s′) ∈ ≺) and either s and s′ are executed concur-
rently or s is executed after s′ is executed. A violation of the
first type is considered to be an element of the set C= indi-
cating a concurrent execution of dependent plan steps and
C≺ indicates a stronger violation where the dependency is
reversed. Note that a violation often implies other violations
as well. For example, if s ≺ s′′ ≺ s′ and (s, s′) is violated
then it is clear that (s′′, s′) is violated as well.

We use such a specification of violations C = C= ∪ C≺
to compute an updated set of precedence constraints ≺ † C
generated by the original precedence order ≺ and the set of
violations C. That is, ≺ † C = (≺ − C) ∪ {(s, s′) : (s′, s) ∈
C≺}.

Having defined the failed plan steps F , the missing steps
M , the duplicated steps D, and the set C of violated con-
straints, we define a total qualification of plan failures as:
Q = (F, M, D, C) and we denote a plan P with these quali-
fications by PQ = 〈O, S,≺, Q〉.
Plan execution In general, a plan P executed in a given
initial state π0 will induce a sequence of states π0, π1, . . . , πk,
where πt+1 is generated from πt by applying the set of plan
steps Pt to σt. To define this relation between partial states
at different time points we denote a partial state π at a given
time t by a tuple, also called a timed state, denoted by (π, t).

The effect of executing a plan depends of course on the
qualification Q = (F, M, D, C). First, let us assume that
both C and D and M are empty sets, that is, we have a

3This definition implies that the behavior of abnormal ac-
tions is essentially unpredictable.



plan P(F,∅,∅,∅). We will first specify the derivability relation
specifying the effect of a plan execution only taking into
account the set F of plan steps that might have failed.

We define the execution of a plan step as follows:

Definition 1. We say that (π′, t + 1) is (directly) gen-
erated by execution of the F -qualified plan P(F,∅,∅,∅) from
(π, t), abbreviated by (π, t) →(F,∅,∅,∅);P (π′, t + 1), iff for
every v ∈ V ar the following conditions hold:

1. if v 6∈ ranV ar(Pt) then π′(v) = π(v);4

2. if v ∈ ranV ar(s) for some plan step s ∈ Pt−F enabled
in π, then π′(v) = fnor

o (π)(v);

3. else π′(v) = ⊥.

We now extend the direct derivability relation→(F,∅,∅,∅);P

to a full derivability relation →(F,M,D,C);P with missing and
duplicated plan steps, and constraint violations, as follows:

Definition 2. The timed state (π′, t+1) is (directly) gen-
erated from (π, t) by execution of P = 〈O, S,≺〉 under the
qualification Q = (F, M, D, C), abbreviated by
(π, t) →Q;P (π′, t + 1), iff (π, t) →(F,∅,∅,∅);P ′ (π′, t + 1)
where P ′ = 〈O, S(M,D), (≺ † C)(M,D)〉.

We extend the direct derivability relation to a general
derivability relation in a straightforward way:

Definition 3. For arbitrary values of t ≤ t′ we say that
(π′, t′) is (directly or indirectly) generated by execution of
P Q from (π, t), denoted by (π, t) →∗

Q;P (π′, t′), iff the fol-
lowing conditions hold:

1. if t = t′ then π′ = π;

2. if t′ = t + 1 then (π, t) →Q;P (π′, t′);

3. if t′ > t + 1 then there must exist a unique state
(π′′, t′ − 1) such that (π, t) →∗

Q;P (π′′, t′ − 1) and
(π′′, t′ − 1) →Q;P (π′, t′).

Note that (π, t) →∗
(∅,∅,∅,∅);P (π′, t′) denotes the normal

execution of a normal plan P∅.

3. PLAN DIAGNOSIS
In our framework, a diagnosis is a qualification that re-

solves conflicts between the observed and predicted values of
variables. To establish a plan diagnosis in our framework we
need to make observations. Our framework provides a nat-
ural candidate for representing such observations: an obser-
vation obs(t) at time t can easily be represented by a timed
state (π, t). Note that his implies that we do not require
observations to specify a complete state.

Suppose that during the execution of a plan P we have
an observation obs(t) = (π, t) and an observation obs(t′) =
(π′, t′) at some later time t′ > t ≥ 0. We would like to use
these observations to infer a qualification Q = (F, D, M, C)
for the plan. First, assuming a normal execution of P , we
can predict the partial state of the world at a time point t′

given the observation obs(t): if all plan steps behave nor-
mally, no plan steps are omitted or duplicated and no con-
straint is violated, we predict the timed state (π′∅, t′) such
that obs(t)→∗

(∅,∅,∅,∅);P (π′∅, t′).

4 Here, ranV ar(Pt) is a shorthand for
⋃

s∈Pt
ranV ar(s).

Such a prediction has to be compared with the actual
observation obs(t′) = (π′, t′) made at time t′. It is easy to
see if the predicted state and the observed state match, π′∅
and π′ are compatible states, i.e. π′ ≈ π′∅ holds.

If this is not the case, the execution of some plan steps
must have gone wrong, some plan steps might have been
omitted or duplicated, or some precedence constraint might
have been violated. Therefore, we have to determine a qual-
ification Q = (F, M, D, C) such that the predicted state π′Q
derived using Q is compatible with π′. Hence, we have the
following straight-forward extension of the diagnosis concept
in MBD to plan diagnosis (cf. [3]):

Definition 4. Let P = 〈O, S,≺〉 be a plan with observa-
tions obs(t) = (π, t) and obs(t′) = (π′, t′), where t < t′ ≤
depth(P ) and let obs(t)→∗

Q;P (π′Q, t′) be a derivation using
the qualification Q. Then Q is said to be a qualification
diagnosis of 〈P, obs(t), obs(t′)〉 iff π′ ≈ π′Q.

Finding diagnoses Since model-based diagnosis is an NP-
hard problem, it comes as no surprise that the same holds for
diagnosis of plan-execution. In [5], we have shown that diag-
nosis of failing plan steps can be determined in polynomial
time for the important sub-class of maximal-informative di-
agnoses.

The diagnosis of missing and duplicated plan steps and of
constraint violation all turn out to be NP-hard and we do
not have an important sub-class that can be determined in
polynomial time yet. However, we have developed polyno-
mial time heuristics for the general cases.

4. CONCLUSION AND FURTHER WORK
We have extended previous work on plan diagnosis in

order to incorporate the identification of violations of the
plan structure. This extension is particularly important for
multi-agent plan execution where such constraint violations
can easily be caused by coordination errors. Future work
will focus on developing heuristics that work for a larger
class of problems than our current heuristics, and on ex-
tending diagnosis in order to identify agents responsible for
plan execution failures.

5. REFERENCES
[1] F. de Jonge, N. Roos, and C. Witteveen. Diagnosis of

multi-agent plan execution. In Multiagent System
Technologies: MATES 2006, LNCS 4196, pages 86–97,
2006.

[2] F. de Jonge, N. Roos, and C. Witteveen. Primary and
secondary plan diagnosis. In The International
Workshop on Principles of Diagnosis, DX-06, 2006.

[3] R. Reiter. A theory of diagnosis from first principles.
Artificial Intelligence, 32:57–95, 1987.

[4] N. Roos and C. Witteveen. Diagnosis of plans and
agents. In Multi-Agent Systems and Applications IV:
CEEMAS 2005, LNCS 3690, pages 357–366, 2005.

[5] N. Roos and C. Witteveen. Models and methods for
plan diagnosis. In Formal Approaches to Multi-Agent
Systems (FAMAS’06), 2006.

[6] C. Witteveen, N. Roos, R. van der Krogt, and
M. de Weerdt. Diagnosis of single and multi-agent
plans. In AAMAS 2005, pages 805–812, 2005.


