
Temporal diagnosis of multi-agent plan execution
without an explicit representation of time1

Femke de Jonge Nico Roos Huib Aldewereld

Dept of Computer Science, Universiteit Maastricht
P.O.Box 616, NL-6200 MD Maastricht

{f.dejonge,roos,h.aldewereld}@micc.unimaas.nl

Abstract

The most common reason for plan repair are the violation of a plan’s temporal constraints. Air Traffic
Control is an example of an area in which violations of the plan’s temporal constraints is rather a rule than
an exception. In such domains there is a need for identifying the underlying causes of the constraint vio-
lations in order to improve plan repairs and to anticipate future constraint violations. This paper presents
a model for identifying the causes of the temporal constraint violations using coupled Discrete Event
Systems. We show that for temporal diagnosis we can use a model without explicit temporal information.

1 Introduction
Violation of a plan’s temporal constraints is one of the most common problems during plan execution. This
holds especially in the domain of air traffic control. In this domain common causes of temporal constraint
violations are problems in luggage handling, security issues, no-shows of passengers, unforseen changes in
the weather conditions, and so on and so forth.

In order to repair plans, accurate information about the cause of the problem is important. It enables
planners to come up with better plan repairs, thereby avoiding fire fighting tactics. This requires that we
not only identify the primary cause, that is, failing plan step(s) causing constraint violations, but also the
secondary cause, that is, failing equipment, unforseen changes in the environment and malfunctioning agents
that are responsible for plan step failures.

In a recent paper the authors have proposed coupled Discrete Event System (DES) based on timed
automatons to enable diagnosis of temporal constraint violations [6]. The use of timed automaton enables
the generation of events if a DES is in a state for a specified period of time or if a DES is in a state at
a specified time point. Although this approach makes it possible to accurately describe the normal and
abnormal execution of a plan for the purpose of diagnosis, it has two important drawbacks. First, uncertainty
with respect to the time at which events occur complicates the diagnosis problem. Second, existing methods
for distributed diagnosis of coupled DESs cannot be used [1, 13].

In this paper we re-examine the model proposed in [6] and we propose to abstract from the specific
time information. The abstraction will enable the application of currently available diagnosis techniques to
diagnosis of temporal constraint violations during plan execution.

The remainder of the paper is organized as follows. Section 3 discusses how discrete event systems
can be for modeling plan execution. Section 4 defines plan-execution diagnosis of temporal constraint
violations and defines an explanation for constraint violations with respect to a diagnosis. Section 5 presents
an example and Section 6 concludes the paper. First, to place our approach into perspective, we discuss
some some related work.

1This research is supported by the Technology Foundation STW, applied science division of NWO and the technology programme
of the Ministry of Economic Affairs (the Netherlands). Project DIT5780: Distributed Model Based Diagnosis and Repair.



2 Related work
In this section we briefly discuss some other approaches to plan diagnosis and subsequently some approaches
to diagnosis using discrete event systems.
Plan diagnosis Birnbaum et al. [2] apply Model-Based Diagnosis (MBD) to planning agents relating health
states of agents to outcomes of their planning activities. They do not take into account abnormalities that can
be attributed to plan steps in a plan as a separate source of errors. In contrast to their approach, we assume
that the plan is error free and focus on causes of plan execution failures.

Kalech and Kaminka [11, 12] apply social diagnosis in order to find the cause of an anomalous plan
execution. They consider hierarchical plans consisting of so-called behaviors. Such plans do not prescribe
a (partial) execution order on a set of actions. Instead, based on its observations, beliefs and role, each agent
chooses the appropriate behavior to be executed. Each behavior in turn may consist of primitive actions
to be executed, or of a set of other behaviors to choose from. Social diagnosis then addresses the issue of
determining what went wrong in the joint execution of such a plan by identifying the disagreeing agents and
the causes for their selection of incompatible behaviors (e.g., belief disagreement, communication errors).

Carver and Lesser [3], and Horling et al. [10] also apply diagnosis to (multi-agent) plans. Their research
concentrates on the use of a causal model that can help an agent to refine its initial diagnosis of a failing
component (called a task) of a plan. As a consequence of using such a causal model, the agent would be able
to generate a new, situation-specific, plan that is better suited to pursue its goal. Their approach to diagnosis
concentrates on specifying the exact causes of the failing of one single component (task) of a plan. Diagnosis
is based on observations of a component without taking into account the consequences of failures of such
a component with respect to the remaining plan. In our approach, instead, we are interested in methods to
detect plan execution failures considering the whole plan.

Witteveen and Roos [18, 14, 15] show how classical MBD can be applied to plan execution. Their
method is especially suited to identify failing plan steps based on two or more partial observations of a plan
execution. They show that an important class of diagnoses, namely minimal maximal-informative diagnoses,
can be identified in polynomial time. de Jonge et al. [9, 8] extended the approach of Witteveen and Roos
introducing discrete event systems to model the unforeseen changes of state variables representing plan
steps, agents, equipment and objects in the environment. Although many types of plan execution failures
can be identified, violations of temporal constraints cannot.

de Jonge et al. [5, 7] present an approach to plan diagnosis closely related to the approach proposed in this
paper. de Jonge et al. apply discrete event systems to describe linear plans of individual agents. However,
temporal aspects of the agents’ plan cannot be modeled. The agents’ plans may interact through constraints
over the states of plan steps (representing for instance resource constraints). Diagnosis is subsequently
applied to identify disruption events causing constraint violations. If disruption events are observable, future
constraint violations can be predicted and diagnosis is used to propose repair events to avoid these future
constraint violations. This paper extends the approach of de Jonge et al. by enabling diagnosis of temporal
constraint violations.
Discrete Event Systems Discrete Event Systems are a modeling method of real-world systems based on
finite state machines (FSM) [4]. In a DES a finite set of states describes at some abstraction level the state
of a real world system. State changes are caused by events and a transition function specifies the changes
triggered by the events. The events are usually observable control events. However, unobservable failure
events mays also cause state changes. Diagnosis of a DES aims at identifying the unobserved failure events
based on a trace of observable events [16]. Essentially, this is a form of abductive diagnosis. Note that the
trace of observable events depends on the state of the system and the transition function. Therefore, a DES
is sometimes viewed as a machine accepting a language of observable and unobservable events.

In order to create a DES modeling a system, the finite state machines modeling individual components
have to be combined into a global finite state machine [17]. Unfortunately the number of states of the global
model grows exponentially in the number of components, making it infeasible for modeling large systems.
Therefore, in recent work, instead of a single finite state machine, multiple finite state machines that interact
by exchanging events have been proposed. Here, a state transition of a FSM may may trigger new events
causing state transitions of other FSMs. Methods for diagnosing these DESs have been proposed in the
literature [1, 13].



3 Modeling plan execution
This section formalizes the description of the plan execution to be diagnosed. First, we specify the DES that
forms the basic component for modeling plan execution and the sequences of events that drive the system of
coupled DESs. Subsequently, we specify how a plan and its environment are modeled using DESs.
The Discrete Event System We assume a set of objects O which can be partitioned into plan steps Oplan,
agents Oag , equipment Oeq , environment objects Oenv and constraint objects Oconstr. Each object o ∈ O
is described by a Discrete Event System [4]. Unlike the DES specified in [6] which is based on timed au-
tomaton, this DES is based on a standard finite state machine. Note that we will make a distinction between
events and event types. We introduce this distinction in order to explicit distinguish different occurrences of
the same “event”.

Definition 1 An object o ∈ O is a Discrete Event System (So, so, E
in
o , Eout

o , τo) where

• So is a set of states,

• so ∈ So is the initial state,

• Ein
o is the set of event types the object may react to,

• Eout
o is the set of event types the object may generate, and

• τo is a set of state transition rules that are instances of (So × Ein
o ∪ {-} × Eout

o × So). Here, ‘-’ is a

reserved event type symbol denoting the absence of an event. A rule in τo will be denoted by s
[ε/ε′]−→ s′

where s ∈ So is the state before the transition, s′ ∈ So is the resulting state, ε ∈ Ein
o denotes that an

event of type ε triggers the transition, and ε′ ∈ Eout
o denotes that an event of type ε′ is generated by

the transition.

Events and event types We make a distinction between events and event types in order distinguish different
occurrences of the same “event”. For instance, during a day at an airport there can be several ‘no-show’
events, some of which may cause a delayed departure of a plane. In order to identify the specific instance of
the ‘no-show’ events that cause a delayed departure, we make a distinction between an event type ε and an
event e which is a specific instance of the event type: type(e) = ε.

Because of the distinction we make between event types and events, we can order the latter. We use
e < e′ to denote that an event e causally occurs before an event e′. The adjective ‘causally’ denotes there
must also be a causal dependence between the two events.

The order in which events occur is important for making diagnoses. Although some approaches assume
that only the order of the events on individual DESs (the objects) can be known [13], here we will not make
this assumption. Because of the time scale in air traffic control and because clocks can be synchronized
through for instance GPS, we assume a total order of events, which we denote by the temporal ordering
relation < over events. We will use a sequences of events Π = 〈e1, ..., en〉 to describe a set of events
ordered with respect to <. Clearly, ei < ej iff i < j. We use Π = {e1, ..., en} to denote the set of
events used to construct the sequence Π, and Π � E denotes the restriction of the sequence Π to those
events occurring in the set E. The subsequence relation Π v Π′ is defined as Π being the sequence we
get by eliminating events from Π′: Π v Π′ iff Π = (Π′ � Π). Moreover, Π − Π′ denotes the removal of
the subsequence (Π′ � Π) from Π, and Π t Π′ denotes the creation of a sequence respecting < such that
Π v (Π tΠ′), Π′ v (Π tΠ′) and (Π ∪Π′) = (Π tΠ′).

Any model has a boundary of what is and what is not modeled. For instance, we may model the state
of the weather but not the processes that determine the changes of the weather. Still, based on the weather
forecasts we wish to be able to adapt the state of the weather object. External events can be used for this
purpose. An external event is an input event of an object that is not generated by some object; i.e., it is not
an output event of some object and there is no rule generating it. So, the set of corresponding event types is
defined as:

Eext =
⋃

o∈O
Ein

o −
⋃

o∈O
Eout

o

Unlike some formalizations of DESs, we do not explicitly partition the set of event types Eo = Ein
o ∪

Eout
o of an object into observable and unobservable events. In the intended application domain, observability

of an event may depend on the circumstances.



The environment In a domain such as air traffic control, the environment has an important influence on the
intended execution of a plan. Unforseen changes in the state of the environment such as snow on runways or
strong headwinds, may influence the temporal execution of a plan. In order to identify this type of influences
using diagnosis we first need to model them.

The deviations in the strength of the aircraft’s headwind is a continuous function over time. Obviously,
we will never have enough information to identify this function in our diagnostic process. Therefore, we
should abstract from the continuous function and use abstract values such as strong-tailwind, tailwind, no-
wind, headwind and strong-headwind instead. These values hold for certain time intervals. Hence, we define
the environment by a set of objects Oenv where with each object o ∈ Oenv a finite set of possible states So

is associated.
A state change of one object may cause a state change in another object. For instance heavy snowfall may

influence the state of the runway on an airport. If a state change of, for instance, the weather immediately
influences the state of the runway, coupled Discrete Event Systems (DES) would be an obvious choice to
describe the causal dependencies between objects. However, heavy snow fall does not immediately cause
the closure of a runway. Therefore, an event should be generated after an object has been in a certain state
for some period of time. Using such a ‘time delayed’ event we may change the state of the runway after it
has been snowing for a specified period of time. Time delayed events do not solve the problem completely.
How long it will have to snow before snowfall changes the state of the runway, may depend on the condition
of the runway such as the presence of salt, and on other events such as snow removal activities. Therefore,
in this example the time delayed event must be generated by runway and not by the weather. Figure 1 gives
an illustration.

good snowfall

clean/open snow buildup closedsnow buildup

runway cleaning

good

Events

Runway

Weather

Delayed Events

Figure 1: An application of delayed events

Note that the event generated by the weather causes the state change of the runway from ‘clean/open’
to ‘snow buildup’. The event ‘runway cleaning’ indicating the removal of snow from the runway, causes
a state change from ‘snow buildup’ to ‘snow buildup’. It implies that the runway cleaning event resets the
timer for the period snow is building up on the runway.

In [6], we specified an interval in which the event causing a transition to the state ‘closed’ should occur.
Abstracting from the time at which an event should occur enables us to describe the state transition of the
runway by:

snow buildup
[-/closing]−→ closed

This transition indicates that the state of the runway may change from ‘snow buildup’ to ‘closed’ without
any event causing the transition. During the transition a ‘closing’ event is generated. This event may be used
by other DESs and may be used to observe the state change of the runway.
Plans Since the execution of a step (action) of a plan may depend on the state of the environment objects
and since the state of environment objects may change during the execution, we cannot use a representation
in which plan steps are treated as atoms. Therefore most representations are not suited for our purpose.
What we need is a representation that enables us to state that a plan step finishes too late because it started
too late or because a delay occurred during execution as a result of unforseen changes in the environment.
Hence, we should be able to assign states to plan steps and these states may change during the execution of
a plan step. This suggests that we should also use Discrete Event Systems to model plan steps [7]. We will
therefore use a special set of objects Oplan to represent plan steps. Figure 2 illustrates a DES model of a
plan step p ∈ Oplan, consisting of:

• a special initial state representing the expected initial situation before the execution of the plan step,

• a set of inactive states representing the environment changes that may influence the execution of the
plan step,



• a set startup states representing (i) that some but not all preceding plan steps have finished as well as
how they have finished, and (ii) the environment changes that may influence the execution of the plan
step,

• a set of active states representing how the plan step is executed, and

• a set of finish states of the plan step.

Note that no startup states are needed in a linear plan.

p1

p2

p3

A (partial) plan
with 3 plan steps

s0

s6

s9

s8

[ε4/-]

s7

[-/ε6]

s1

s2

s3

s4

s5

[ε5/-]

[ε1∨ε2/-]

[ε’1∨ε’2/-] [ε’1∨ε’2/-]

[ε’1∨ε’2/-]

[ε’1∨ε’2/-]

[ε1∨ε2/-]

[ε1∨ε2/-] [ε1∨ε2/-]

[ε’1∨ε’2/-]
[ε4/-] [ε5/-][ε4/-] [ε5/-]

[-/ε3]

[-/ε’’3]

[-/ε’3]

State transitions
of plan step p3

States:
s0: inactive normal
s1: inactive delay buildup
s2: startup normal
s3: startup delay buildup
s4: startup delayed
s5: active normal
s6: active delay buildup
s7: active delayed
s8: finish normal
s9: finish delayed

Events:
ε1: normal finish of p1

ε’1: delayed finish of p1

ε2: normal finish of p2

ε’2: delayed finish of p2

ε3, ε’3, ε”3: finishing of p3

ε4, ε5: environment changes
ε6: delay buildup exceeds threshold

Figure 2: Modeling a plan step of a plan.

Based on the state of a plan step p, at a certain time point a transition from an active state to a finish
state must occur. This transition depends on the time a plan step has been in a certain active state. Since
we abstract from time information, no event is needed to trigger the transition. Hence we can formulate the
following transition rules for the finite state machine in figure2.

s5
[-/ε3]−→ s8, s6

[-/ε′′
3 ]−→ s8, s7

[-/ε′
3]−→ s9

Note that the events of type ε3, ε′3, ε
′′
3 are generated in order to signal the end of the plan step. They can for

instance be used to activate the next plan step of the plan. Also note that these transitions may only occur
after all occurrences of the events of types ε4, ε5 and ε6. Approaches for diagnosis of DESs (e.g. [1, 13])
can handle this issue.
Constraints A plan description normally consists of a set of plan steps with precedence relations between
the plan steps. We can distinguish two types of precedence relations, namely those that describe the order
of plan steps needed to guarantee the desired effect of a plan and precedence relations that have been added
to avoid resource conflicts. Although all precedence relations can be modeled using the above described
events, we will use a different description for precedence relations that are added for avoiding resource
conflicts. When, for instance, an aircraft is delayed, it may be better to change the planned landing sequence
of aircraft so that other aircraft can still arrive as scheduled. Therefore, we will model resource constraints
separately as constraints over the states of plan steps requiring the same resource. These constraints can
be used to specify for instance that a combination of plane a being delayed and plane b being early is not
allowed because both planes are scheduled on the same gate.

Constraints specify combinations of states of objects that are (dis)allowed. Violation of some constraints
is a reason for diagnosis. Since approaches for distributed diagnosis of coupled DESs determine diagnoses
that explain observed events, we should model each constraint by a DES that generates a constraint violation
event when a disallowed combination of states of other DESs occurs. By using the events that are generated
by the state transitions of an object, the DES of the object o ∈ Ocstr representing the constraint can generate
events indicating a constraint violations.



The model Using the discrete event systems introduced in this section and applying the modeling method
discussed, we can now build a model of the possible ways of executing a plan. To this model, we add a set
of expected external events. These events specify how the environment is expected to evolve. For instance,
describing the expected weather changes.

To summarize, we have to:

• describe the environment objectsOenv , their state transitions, their states at time point 0, and the rules
generating events;

• describe the states of each plan stepOplan, their state transitions, states of the plan steps at time point
0, and, using information about the schedule of each plan step, the rules generating (finishing) events.

• if necessary, also describe the equipment Oeq and the agents Oag; and

• describe the constraints Ocstr that must hold between states of different agents’ plan steps;

• describe the set of expected external event sequences Πexp.

This gives us the execution model M = (O,Πexp) with O = Oenv ∪ Oplan ∪ Oeq ∪ Oag ∪ Ocstr.

4 Diagnosis & explanation
A diagnosis of a plan execution is defined as well as an explanation of observed constraint violations.
Diagnosis The goal of diagnosis given a plan diagnosis problem (M,Πobs) consisting of the execution
model M = (O,Πexp) and a sequence of observed events (including constraint violations), is to identify
the external events that explain the observed events Πobs. Note that, in the literature, one often aims at a
unique identification of failure events [16]. However, the described techniques can also provide multiple
explanations in the absence of observations leading to a unique diagnosis.

Definition 2 Let (M,Πobs) be a plan diagnosis problem and letM = (O,Πexp) be a model of the intended
plan execution. Moreover, let a sequence of external event ∆ be a candidate diagnosis.

∆ is a diagnosis of a plan execution diagnosis problem iff there exists a sequence Π specifying the
execution history of the coupled DESs such that ∆ = Π � Eext, Πobs v Π and (Πexp � Π) v ∆.

Preference criteria There may be several diagnoses ∆ according to definition 2. The quality of these
diagnoses need not be the same. Preference criteria are used to select a subset of the diagnoses, usually, the
most probable diagnoses. A criterium that is often used for diagnoses is preferring diagnoses that minimize
the difference with the normal state of affairs. In plan diagnosis this would be the difference with the
expected external events sequence Πexp.

The difference between Πexp and a diagnosis ∆ consists of two aspects, (i) the unexpected events that
occurred according to the diagnosis, and (ii) the expected timed events that did not occur according to the
diagnosis. Assuming that the a priori probability that ∆ differs from Πexp is sufficiently small, we prefer
diagnoses ∆ that minimize the differences between ∆ and Πexp.

A difficulty in comparing Πexp and ∆ is that there are transitions to the same state s starting from
different initial states triggered by event of different types. For instance, two event types for a transition
to a state representing strong winds, one if there was no wind and one if there was a light breeze. If the
expected light breeze did not occur, we should still be able to infer that the change to strong winds did
occur. Therefore we will restrict the external events to so called absolute events. An absolute event causes a
transition to a new state independent of the previous state thereby simplifying comparison of external events.

Definition 3 An external event type ε ∈ Eext of an object o ∈ O is an absolute event iff

for every s
[ε/ε′]−→ s′′, s′

[ε/ε′′]−→ s∗ ∈ τ : ε′ = ε′′ and s′′ = s∗.

Explanation In our application domain of air traffic control one often claims that during normal daily
operation all relevant events, including the external events, are observable. This does not imply that no
constraint violation will occur when agents execute their plans. On the contrary, air traffic controllers are
working around the clock to avoid incidents. Clearly, if all external events that have occurred, are observed,
then ∆ = Πobs � Eext is a diagnosis. However, such a diagnosis does not give an adequate explanation of
an observed constraint violation.



For the purpose of plan repair, distributing cost of a plan repair, improvements of future plans, and so
on and so forth, we would like to know which external events are accountable of the observed constraint
violations. A diagnosis does not provide this information. A diagnosis specifies the external events that
explain the observed events. From such a diagnosis we can determine the unexpected external events that
occurred and the expected external events that did not occur without linking the presence or absence of
specific events to specific constraint violations. A specific constraint violation is caused by the presence
or absence of specific external events. For instance, the absence of expected tail wind can be the cause of
a plane’s late arrival. An explanation identifies these unexpected external events as well as unexpectedly
absent external events causing the constraint violation.2

Determining an explanation for a constraint violation is not straight forward because deriving a constraint
violation from external events is a non-monotonic process. To illustrate this, consider an aircraft that has a
delayed departure, but still arrives on time at its destination because of strong tail winds. However, because
no gate is available after landing, the aircraft has a delayed arrival resulting in a constraint violation. The
constraint violation could be explained by considering the external event causing the delayed departure while
ignoring in the explanation the external events causing the tail wind and the unavailability of a gate after
landing. Clearly, this is not a proper explanation of the delayed arrival because the plane landed on time.
Also a set containing all external events that influences the schedule of the aircraft does not give a proper
explanation. The only events that give a proper explanation of the constraint violation in this example are
those causing the unavailability of a gate.

How do we determine the external events that explain an event e generated by a constraint object; i.e.,
the events causing a constraint violation? First, observe that an explanation must enable us to generate the
event e to be explained. Since an explanation consists of unexpected external events that occurred and of
expected external events that did not occur, the result of removing the latter events from the sequence of
expected events Πexp and subsequently adding the former events to it, must enable us to predict the event e
to be explained. As was illustrated by the example above, we must also ensure that every larger explanation
also enables us to predict the event e.

Definition 4 Let M = (O,Πexp) be a model of the plan execution and let ∆ be a diagnosis. Moreover, let
e be an observed event for which we seek an explanation and let 〈e〉 represent the corresponding sequence
of observations.

An explanation is a couple (Xp, Xa) with Xp v (∆−Πexp) and Xa v (Πexp −∆) such that:

• Υ = (Πexp −Xa) tXp is a diagnosis of the sequence of observations: 〈e〉;

• for no (Yp,Ya) with Xp v Y p v (∆−Πexp) and Xa v Y a v (Πexp 	∆):
Ξ = (Πexp − Y a) t Y p is not a diagnosis of the sequence of observations: 〈e〉.

Note that in the above definition, the first item gives an ‘argument’ for (Xp, Xa) being an explanation while
the second item states that there is no counter-argument.

5 Example
This section illustrates the relevance of the model in our application domain, the field of air traffic control,
using a small example.

At Schiphol airport, flight KL1243 to DeGaulle Paris, which is docked at gate E11, is delayed because it
has to wait for passengers (the expected off-block event after which the aircraft is to taxi to the runway does
not occur at the planned time, but occurs 15 minutes later). After further investigation it becomes apparent
that the passengers that KL1243 is waiting for are transfers from flight D845. Flight D845, from Heathrow
London, was delayed due to strong headwinds, and only just began de-boarding at gate D21.

Figure 3 shows the model of the schedule for flights KL1243 and D845. As can be seen, the expected
in-block time of D845, which is the start of the de-boarding, was expected before the off-block time of
KL1243, but due to (unexpected) weather changes has been delayed. This delay causes a longer boarding
time of KL1243, which is noted by the delay in the occurrence of it’s off-block event.

Clearly, the diagnosis will contain the explanation: ‘strong head winds: London to Amsterdam’. Note
that this diagnosis can be used to predict that other flights from the same direction will probably be delayed
as well (until the weather changes).

2Here, we use a pragmatic interpretation of the concept ‘causes’.



KL1243

D845

delayed
take off

expected
off-block

delayed
off-block

expected 
touchdown

delayed
touchdown

delayed
in-block

delayed
off-block

delayed
transfers

de-boarding boarding taxiing flying

boarding taxiing flying

de-boarding boardingflying taxiing

flying de-boarding boarding taxiingtaxiing

expected
in-block

Figure 3: Example diagnosis.

6 Conclusion
Identifying causes of temporal constraint violations is an important problem in our application domain of
air traffic control as well as many other domains. Information about the causes may support plan repair and
can help improving new plans. In this paper we have investigated whether we can model a plan execution
for the purpose of diagnosis using a Discrete Event Systems without considering explicit time information.
We have shown that a diagnosis of temporal constraint violations can be made using such a model and that
causes of individual constraint violations can be identified.

Future work will focuses on efficient distributed implementations of the model. We will investigate
extensions of the approaches proposed in [7] and in [13].

References
[1] P. Baroni, G. Lamperti, P. Poglianob, and M. Zanella. Diagnosis of large active systems. Artificial Intelligence, (110):135–183,

1999.

[2] L. Birnbaum, G. Collins, M. Freed, and B. Krulwich. Model-based diagnosis of planning failures. In AAAI 90, pages 318–323,
1990.

[3] N. Carver and V. Lesser. Domain monotonicity and the performance of local solutions strategies for cdps-based distributed sensor
interpretation and distributed diagnosis. Autonomous Agents and Multi-Agent Systems, 6(1):35–76, 2003.

[4] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic Publishers, 1999.

[5] F. de Jonge and N. Roos. Plan-execution health repair in a multi-agent system. In PlanSIG 2004, 2004.

[6] F. de Jonge, N. Roos, and H. Aldewereld. Using DESs for temporal diagnosis of multi-agent plan execution. In MATES 2007,
2007.

[7] F. de Jonge, N. Roos, and H. van den Herik. Keeping plan execution healthy. In Multi-Agent Systems and Applications IV:
CEEMAS 2005, LNCS 3690, pages 377–387, 2005.

[8] F. de Jonge, N. Roos, and C. Witteveen. Diagnosis of multi-agent plan execution. In Multiagent System Technologies: MATES
2006, LNCS 4196, pages 86–97, 2006.

[9] F. de Jonge, N. Roos, and C. Witteveen. Primary and secondary plan diagnosis. In The International Workshop on Principles of
Diagnosis, DX-06, 2006.

[10] B. Horling, B. Benyo, and V. Lesser. Using Self-Diagnosis to Adapt Organizational Structures. In Proceedings of the 5th
International Conference on Autonomous Agents, pages 529–536. ACM Press, 2001.

[11] M. Kalech and G. A. Kaminka. On the design of social diagnosis algorithms for multi-agent teams. In IJCAI-03, pages 370–375,
2003.

[12] M. Kalech and G. A. Kaminka. Diagnosing a team of agents: Scaling-up. In AAMAS 2005, pages 249–255, 2005.

[13] Y. Pencolé and M. Cordier. A formal framework for the decentralised diagnosis of large scale discrete event systems and its
application to telecommunication networks. Artificial Intelligence, 164:121–170, 2005.

[14] N. Roos and C. Witteveen. Diagnosis of plans and agents. In Multi-Agent Systems and Applications IV: CEEMAS 2005, LNCS
3690, pages 357–366, 2005.

[15] N. Roos and C. Witteveen. Models and methods for plan diagnosis. In Formal Approaches to Multi-Agent Systems (FAMAS’06),
2006.

[16] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosibility of discrete event systems. IEEE
Transactions on Automatic Control, 40:1555–1575, 1995.

[17] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure diagnosis using discrete event models.
IEEE Transactions on Control Systems Technology, 4:105–124, 1996.

[18] C. Witteveen, N. Roos, R. van der Krogt, and M. de Weerdt. Diagnosis of single and multi-agent plans. In AAMAS 2005, pages
805–812, 2005.


