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Abstract. The most common reason for plan repair are the violation of a plan’s
temporal constraints. Air Traffic Control is an example of an area in which viola-
tions of the plan’s temporal constraints is rather a rule than an exception. In such
domains there is a need for identifying the underlying causes of the constraint
violations in order to improve plan repairs and to anticipate future constraint vi-
olations. This paper presents a model for identifying the causes of the temporal
constraint violations.

1 Introduction

Violation of a plan’s temporal constraints is one of the most common problems dur-
ing plan execution. In air traffic control, for instance, violation of a plan’s temporal
constraints is rather a rule than an exception requiring constant adaptions of aircraft’s
plans. Common causes are problems in luggage handling, security issues, no-shows of
passengers, unforseen changes in the weather conditions, and so on and so forth. In
order to repair plans, accurate information about the cause of the problem is important.
It enables planners to come up with better plan repairs, thereby avoiding fire fighting
tactics. This requires that we not only identify primary cause, that is, failing plan step(s)
causing constraint violations, but also the secondary cause, that is, failing equipment,
unforseen changes in the environment and malfunctioning agents that are responsible
for plan step failures.

In order to make a diagnosis of temporal constraint violations, we need a model of
a plan’s temporal execution. In this paper we will investigate the use of discrete event
systems (DES) [1] for this purpose. Section 3 discusses how discrete event systems can
be adapted for this purpose, and Sect. 4 discusses how the resulting model of a plan can
be used to make predictions. Section 5 defines plan-execution diagnosis for temporal
constraint violations. We will argue that diagnosis of temporal constraint violations
differs from standard diagnosis using DESs [2,3,4]. Section 6 presents a small example
and Sect. 7 concludes the paper. First, to place our approach into perspective, we discuss
some some related work.
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2 Related Work

In this section we briefly discuss some other approaches to plan diagnosis and subse-
quently some approaches to diagnosis using discrete event systems.

Plan Diagnosis. There are several papers addressing different aspects of plan diagnosis.
These papers discuss diagnosis of the planning agent [5], diagnosis of a plan consisting
of a hierarchy of behaviors [6,7], diagnosis of the execution of a single task of a plan
[8,9], and diagnosis of plans consisting of several plan steps (task) [10,11,12,13,14].
None of the papers, however, address the violation of a plan’s temporal constraints.
This also holds for the approach of de Jonge et al. [15,16], which is closely related
to the approach proposed in this paper. de Jonge et al. apply discrete event systems to
describe linear plans of individual agents. However, temporal aspects of the agents’ plan
cannot be modeled. The agents’ plans may interact through constraints over the states
of plan steps (representing for instance resource constraints). Diagnosis is subsequently
applied to identify disruption events causing constraint violations. If disruption events
are observable future constraint violations can be predicted and diagnosis is used to
propose repair events to avoid these future constraint violations. This paper extends the
approach of de Jonge et al. by enabling diagnosis of temporal constraint violations.

Discrete Event Systems. Discrete Event Systems (DES) are a modeling method of real
world systems based on finite state machines (FSM) [1]. In a DES a finite set of states
describes at some abstraction level the state of a real world system. State changes are
caused by events and a transition function specifies the changes triggered by the events.
The events are usually observable control events. However, unobservable failure events
mays also cause state changes. Diagnosis of a DES aims at identifying the unobserved
failure events based on a trace of observable events [2]. Essentially, this is a form of
abductive diagnosis. Note that the trace of observable events depends on the state of the
system and the transition function. Therefore, a DES is sometimes viewed as a machine
accepting a language of observable and unobservable events.

To model a system, usually one starts modeling individual components using Dis-
crete Event Systems. Interactions between the components are described by exchang-
ing events between the components. For diagnosis, these DESs may be combined into
a global DES [17]. More recently, methods for diagnosing coupled DESs without first
creating a global DES have been proposed [3,4].

3 Modeling Plan Execution

This section formalizes the description of the plan execution to be diagnosed.

The Environment. In a domain such as air traffic control, the environment has an im-
portant influence on the intended execution of a plan. Unforseen changes in the state
of the environment such as snow on runways or strong headwinds, may influence the
temporal execution of a plan. In order to identify this type of influences using diagnosis,
we first need to model them.
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The deviations in the strength of the aircraft’s headwind is a continuous function over
time. Obviously, we will never have enough information to identify this function in our
diagnostic process. Therefore, we should abstract from the continuous function and
use abstract values such as strong-tailwind, tailwind, no-wind, headwind and strong-
headwind instead. These values hold for certain time intervals. Hence, we define the
environment by a set of objects Oenv where with each object o ∈ Oenv a finite set of
possible states So is associated.

A state change of one object may cause a state change in another object. For instance
heavy snowfall may influence the state of the runway on an airport. If a state change of,
for instance, the weather immediately influences the state of the runway, Discrete Event
Systems (DES) [1] would be an obvious choice to describe the causal dependencies
between objects. However, heavy snow fall does not immediately causes the closure of
a runway. Therefore, we introduce Discrete Event Systems that can generate an event
after an object has been in a certain state for some period of time. Using such a time
delayed event we may change the state of the runway after it has been snowing for
a specified period of time. Unfortunately, this does not solve the problem completely.
How long it will have to snow before snowfall changes the state of the runway, may
depend on the condition of the runway such as the presence of salt, and on other events
such as snow removal activities. Therefore, in this example the time delayed event must
be generated by runway and not by the weather. Figure 1 gives an illustration.

good snowfall

clean/open snow buildup closedsnow buildup

runway cleaning

good

Events

Runway

Weather

Delayed Events

Fig. 1. An application of delayed events

Note that the event generated by the weather causes the state change of the runway
from ‘clean/open’ to ‘snow buildup’. The event ‘runway cleaning’ indicating the re-
moval of snow from the runway, causes a state change from ‘snow buildup’ to ‘snow
buildup’. The latter event may seem odd. The effect of a reflexive state transition is that
all timers of the time delayed events are reset. Also note that in a more refined model
one may also distinguish levels of snow that have been buildup on the runway.

Summarizing the above, an environment object o ∈ Oenv is modeled as a Discrete
Event System in which output events can be generated after the object o has been in
some state for some specified period of time. This is described by rules of the form:

(So × (R × R) ⇒ Eout
o × 2O)

These rules specify the state to which the rule applies and the time the object must be
in this state. Note that for the latter we use an interval [tmin, tmax] ⊆ (R × R). The
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reason for using a time interval is the following. Since an object’s state in the model
is an abstract representation of the actual state, we cannot know exactly how long the
object must be in a state before the event will occur. We can model this uncertainty
using intervals.

Also note that these rules specify the output event that is generated and a set of ob-
jects Odes ⊆ O to which the event is sent. The set of objects O contains the environment
objects as well as objects for describing plan steps, equipment and agents.

Plans. Since the execution of a step (action) of a plan may depend on the state of the
environment objects and since the state of environment objects may change during the
execution, we cannot use a representation in which plan steps are treated as atoms.
Therefore, most representations are not suited for our purpose. What we need is a rep-
resentation that enables us to state that a plan step finishes too late because it started too
late or because a delay occurred during execution as a result of unforseen changes in
the environment. Hence, we should be able to assign states to plan steps and these states
may change during the execution of a plan step. This suggests that we should also use
Discrete Event Systems to model plan steps [16]. We therefore introduce a special set
of objects Oplan to represent plan steps. Figure 2 gives an illustration.

p1
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A (partial) plan
with 3 plan steps
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e1 e2

e’1 e’2

e3

s9

s8

e’3

e5e4

e1 e2

s7

e6

e’1 e’2

e’1 e’2

e1 e2

e’1 e’2

e’1 e’2

e1 e2

e5e4

e5e4 e”3

s1

s2

s3

s4

s5

State transitions
of plan step p3

States:
s0: inactive normal
s1: inactive delay buildup
s2: startup normal
s3: startup delay buildup
s4: startup delayed
s5: active normal
s6: active delay buildup
s7: active delayed
s8: finish normal
s9: finish delayed

Events generated:
e1: normal finish of p1
e’1: delayed finish of p1
e2: normal finish of p2
e’2: delayed finish of p2
e3,e’3,e”3:finishing of p3
e4, e5: environment changes
e6: delay buildup exceeds threshold

Fig. 2. Modeling a plan step

Summarizing the above, a plan step p is modeled as a Discrete Event System in
which the set of state Sp contains:

– a special initial state representing the expected initial situation before the start of
executing the plan step,
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– A set of inactive states representing environment changes that may influence the
execution of the plan step,

– a set of startup states representing (i) that some but not all preceding plan steps have
finished as well as how they have finished, and (ii) environment changes that may
influence the execution of the plan step,

– a set of active state representing how the plan step is executed, and
– a set of finish states of the plan step.

These special states are all disjunct. Note that no startup states are needed in a linear
plan.

Based on the state of a plan step p, at a certain time point an event must be generated
that brings the plan step into a finishing state. (One of the events e3, e

′
3, e

′′
3 in the ex-

ample of Fig. 2.) We therefore need rules for generating events based on the scheduled
finishing times and the current state of plan steps.

(S × (R × R) → Eout × 2O)

So, somewhere in the interval [tmin, tmax] ⊆ (R × R) an output event e ∈ Eout is
generated and is sent to the objects O ⊆ O. If the object is not in the state specified by
the rule during the interval [tmin, tmax], the rule will not generate an event. In this way
we can, for instance, specify the finish events of an plan step, as illustrated in Fig. 3.
Finally, if the object is in the state specified by a rule and subsequently changes to
another state during the interval specified by the rule, then the event is either generated
by this rule or is generated by another object or is an external event. In the latter two
cases the rule will not generate an event because the state of the object has changed.

normal normal

e2 e3

Plan step p normal

e1

normal
delayed finish: delayed

enormal-finish edelayed-finish

Rules:
t1, normal enormal-finish, {p}
t2, delayed edelayed-finish, {p}

t1 t2

Fig. 3. An application of time generated events

The Discrete Event System. Based on the above described requirements we can give a
specification of the objects we will use to describe plan executions by a group of agents
in some environment. We assume that the set of objects O can be partitions into plan
steps Oplan, agents Oag , equipment Oeq and environment objects Oenv . Each object
o ∈ O is described by a Discrete Event System [1].

Definition 1. An object o ∈ O is a Discrete Event System (So, so, E
in
o , Eout

o , τo, ρo)
where

– So is a set of states,
– so ∈ So is the initial state at time point 0,
– Ein

o is the set of events the object may react to,
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– Eout
o is the set of events the object may generate,

– τo is a set of state transition rules of the form (So × Ein
o → So), and

– ρo is a set consisting of duration generated event rules of the form:

((So × (R × R) ⇒ Eout
o × 2O))

and time generated event rules of the form:

(So × (R × R) → Eout
o × 2O).

Above we did not discuss agent and equipment objects explicitly. Equipment objects
do not differ much from environment objects. For equipment we distinguish a special
state ‘normal’ and possibly several states for describing malfunctions. Also for agents
we distinguish a state ‘normal’. Agents may also have several other health state as well
as states indicate beliefs about the environment, which might be incorrect.

Timed Events. To describe the (expected) occurrence of events, we introduce so called
timed events. A timed event is a couple (e, [t, t′]) where e ∈ E is an event and [t, t′] ⊆
(R × R) is a time interval in which e occurs. A set of timed events will be denoted
by: Π .

Constraints. A plan description normally consists of a set of plan steps with prece-
dence relations between the plan steps. We can distinguish two types of precedence
relation, namely those that describe the order of plan steps needed to guarantee the de-
sired effect of a plan and precedence relations that have been added to avoid resource
conflicts. Although all precedence relations can be modeled using the above described
events, we will use a different description for precedence relations that are added for
avoiding resource conflicts. When, for instance, an aircraft is delayed, it may be better
to change the planned landing sequence of aircraft so that other aircraft can still arrive
as scheduled. Therefore, we will model resource constraints separately as constraints
over the states of plan steps requiring the same resource. These constraints can be used
to specify for instance that a combination of plane a being delayed and plane b being
early is not allowed because both planes are scheduled on the same gate.

Definition 2. A constraint ctr over n objects (Soi , soi , E
in
oi

, Eout
oi

, τoi , ρoi) is a tuple:

〈o1, ..., on, AS〉

with AS ⊆ So1 × ... × Son , describing states of objects that are allowed at the same
time.

A set of constraints will be denoted by C.

Constraints can be observed to hold or to be violated during the execution of a plan.
Timed constraints are used to denote the time interval in which the constraint is ob-
served to hold or to be violated: (ctr, [t, t′]) and (¬ctr, [t, t′]), respectively, where
ctr ∈ C is a constraint and [t, t′] ⊆ (R × R) is a time interval in which ctr is ob-
served to hold or to be violated. A set of timed constraints will be denoted by C.

The Model. Using the discrete event systems introduced in this section and applying the
modeling method discussed, we can now build a model of possible ways of executing a
plan. To summarize, we have to:
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– describe the environment objects Oenv , their state transitions, their states at time
point 0, and the rules generating events;

– describe the states of each plan step Oplan, their state transitions, states of the plan
steps at time point 0, and, using information about the schedule of each plan step,
the rules generating (finishing) events;

– if necessary, also describe the equipment Oeq and the agents Oag; and
– describe the constraints C that must hold between states of different agents’ plan

steps.

Any model has a boundary of what is and what is not modeled. For instance, we may
model the state of the weather but not the processes that determine the changes of the
weather. Still, based on the weather forecasts we wish to be able to adapt state of the
weather object. External events can be used for this purpose. An external event is an
input event of an object that is not generated by some object; i.e., it is not an output event
of some object and there is no rule generating it. So, Eext =

⋃
o∈O Ein

o −
⋃

o∈O Eout
o .

The expected external timed-events are external events occurring within specific time
intervals. We use the set Πexp to denote expected external timed-event.

The objects O, the expected external timed-events Πexp and the constraints C gives
us the execution model M = (O, Πexp, C) with O = Oenv ∪ Oplan ∪ Oeq ∪ Oag .

4 Making Predictions

The model proposed in the previous section enables us to simulate, at an abstract level,
the normal and the abnormal execution of a plan. Deviations with observations made
enables us to formulate the diagnostic problem.

Simulation. An execution model (O, Π) consisting of objects O and external timed
events Π can be used to simulate a multi-agent plan execution starting from the initial
state of the plan at time point 0. The history of an object o ∈ O describes for each
object a sequence of timed events that generate state changes in the object o. Together
with each state change of o, the history also describes the timed events generated by the
rules of the object o during the current state of o.

Definition 3. Let o ∈ O be an object with DES (So, so, E
in
o , Eout

o , τo, ρo).
A history Ho of the object o ∈ O is a sequence of the form:

Ho = 〈 (e0, t0, s0, 〈(e0,0, t0,0, O
des
0,0 ), ..., (e0,m, t0,m0 , O

des
0,m0

)〉), ... ,

(en, tn, sn, 〈(en,0, tn,0, O
des
n,0 ), ..., (en,mn , tn,mn , Odes

n,mn
)〉) 〉

where

– e0 = nill, t0 = 0 and s0 = so;
– ti−1 < ti and (si−1, ei → si) ∈ τo for each 0 < i ≤ n;
– for each timed event (ei,j , ti,j) there is either a rule:

• (si, [t, t′] → ei,j , O
des
i,j ) ∈ ρo such that ti,j ∈ [t, t′] ∩ [ti, ti+1] �= ∅, or

• (si, [t, t′] ⇒ ei,j , O
des
i,j ) ∈ ρo such that ti,j ∈ [ti + t, ti + t′] ∩ [ti, ti+1] �= ∅

generating this timed event.
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The history of the whole model consists of the history of all the objects. Of course, the
history of the objects are not independent of each other. Every event that causes a state
transition of an object is an external event, or an event that is generated by a rule of a
possibly different object. Moreover, an event generated by a rule of an object must be
sent to every object in the corresponding set Odes.

Definition 4. A history H is the set of histories of all objects in O:

H = {Ho | o ∈ O}

where for each object o ∈ O and for each element

(ei, ti, si, 〈(ei,0, ti,0, O
des
i,0 ), ..., (ei,mi , ti,mi , O

des
i,mi

)〉) ∈ Ho,

(ei is generated) ei ∈ Eext, or there is a (ej , tj , sj, 〈..., (ej,k, tj,k, Odes
j,k ), ...〉) ∈ Ho′

such that ei = ej,k, ti = tj,k and o ∈ Odes
j,k , and

(ei,j is sent) for each (ei,j , ti,j , O
des
i,j ) and for each object o′ ∈ Odes

i,j , either ei,j is not
applicable in the state of o′ at ti,j , or there is a (ek, tk, sk, 〈...〉) ∈ Ho′ such that
ei,j = ek and ti,j = tk.

An event e is applicable in the state s of an object o iff (s, e → s′) ∈ τo.

Satisfiability and Consistency of Timed Constraints and Events. Since a history H
of the objects O specifies all the occurring events, we can check whether an (observed)
timed event (e, [t, t′]) is satisfied by the history H . That is, whether there exists an
object o ∈ O and a history of that object Ho such that (ej , tj , sj , 〈...〉) ∈ Ho, e = ej

and tj ∈ [t, t′]. Since we can view a history H as a possible description of the world
and since we can view a timed event (e, [t, t′]) as a proposition, we say that the history
satisfies the timed event: H |= (e, [t, t′]).

Similarly we can check whether the timed constraints (ctr, [t, t′]) and (¬ctr, [t, t′])
with ctr = 〈o1, ..., on, AS〉 ∈ C are satisfied by a history H , denoted by H |=
(ctr, [t, t′]) and H |= (¬ctr, [t, t′]), respectively. So, also the timed constraints are
viewed as propositions.

An execution model (O, Π) specifies a set of histories because of the uncertainty that
results from the use of time intervals. Some of the histories may satisfy a proposition ϕ;
i.e. a timed constraint or a timed event, while others do not. If the propositions describe
observations, then as long as there is one history H satisfying the propositions, there is
no conflict between the observations and the execution model (O, Π). In other words,
the observations are consistent with the execution model. If one or more observations are
inconsistent with the execution model (O, Π), we know that the current set of external
timed events Π needs revision. Diagnosis will give us a revised set of external events.

5 Diagnosis and Explanation

Some of the observed timed constraints C and some of the observed timed events Πobs

may not be consistent with the execution model M = (O, Πexp, C). These inconsis-
tencies indicate that the expected external events did not occur as specified by Πexp.1

1 We assume the absence of errors in the description of the objects O.
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Hence, we can formulate a plan execution diagnosis problem: (M, Πobs, Cobs). This sec-
tion defines a diagnosis and an explanation given a plan execution diagnosis problem.

Diagnosis. Diagnosis of plan execution differs from traditional diagnosis of discrete
event systems [2,3,4]. Traditional diagnosis of discrete event systems is abductive diag-
nosis. In abductive diagnosis, the model of the plan execution extended with a diagnosis
must satisfy all observed events and all constraints. As we saw in the previous section,
because of the uncertainty in the model of the plan execution, this requirement is too
strong. What we need is consistency-based diagnosis. Consistency-based diagnosis en-
ables us to identify the set of external timed events that resolve the inconsistencies be-
tween the execution model M , the observed timed events Πobs and the observed timed
constraints Cobs.

Definition 5. Let (M, Πobs, Cobs) be a plan execution diagnosis problem where M =
(O, Πexp, C) is a model of the intended plan execution. Moreover, let Δ with Δ ⊆
{(e, [t, t′]) | e ∈ Eext, 0 ≤ t ≤ t′} be a candidate diagnosis.

Δ is a diagnosis of a plan execution iff ((O, Δ), Πobs, Cobs) is consistent; i.e., there
is a history H for (O, Δ) such that H |= Πobs ∪ Cobs.

Preference Criteria. There may be several diagnoses Δ according to Definition 5. The
quality of these diagnoses need not be the same. Preference criteria are used to select
the subset of the diagnoses. Usually, the preference criteria select the most probable
diagnoses. A criterium that is often used for diagnoses is preferring diagnoses that min-
imize the difference with the normal state of affairs. In plan diagnosis this would be the
external timed events Πexp.

A difficulty in comparing Πexp and Δ is that there are transitions to the same state
s starting from different states that are triggered by different events. For instance, two
events causing a transition to a state representing strong winds, one from a state repre-
senting no wind and one from the state representing a light breeze. If the expected light
breeze did not occur, we should still be able to infer that the change to strong winds
did occur. Therefore we will restrict the external events to so called absolute events.
An absolute event causes a transition to a new state independent of the previous state
thereby simplifying comparison of external events.

Definition 6. An external event e ∈ Eext of an object o ∈ O is an absolute event iff for
every s, s′ ∈ So: τo(s, e) = τo(s′, e).

The use of absolute events enables us to determine the difference between the expected
timed events Πexp and a diagnosis Δ. The difference consists of two aspects, (i) the
unexpected timed events that occurred according to the diagnosis: Δ � Πexp, and (ii)
the expected timed events that did not occur according to the diagnosis: Πexp � Δ.
Here, the function � is defined as:

(X � Y ) = {(e, [t, t′]) ∈ X | ∀(e, [t′′, t′′′]) ∈ Y : [t, t′] ∩ [t′′, t′′′] = ∅}.

We prefer diagnoses Δ that minimize the differences with Πexp if the probability that
differences with Πexp occur is sufficiently small.
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Explanation. In our application domain of air traffic control one often claims that dur-
ing normal daily operation all relevant events, including the external events, are ob-
servable. This does not imply that no constraint violation will occur when agents ex-
ecute their plans. On the contrary, air traffic controllers are working around the clock
to avoid incidents. Clearly, if all external events that have occurred, are observed, then
{(e, [t, t′]) | (e, [t, t′]) ∈ Πobs, e ∈ Eext} is a diagnosis. However, such a diagnosis
does not give an adequate explanation of an observed constraint violation.

For the purpose of plan repair, distributing cost of a plan repair, improvements of
future plans, and so on and so forth, we would like to know which external events are
accountable of the observed constrain violation during some time interval. A diagnosis
does not provide this information. It only specifies the expected and unexpected external
events that occurred without linking them to a specific observed constraint violation. So,
given a diagnosis, an explanation of an observed constraint violation must specify the
presence of unexpected external timed events and the absence of expected timed events
causing the constraint violation.2

Determining an explanation for a constraint violation is not straight forward. To il-
lustrate this, consider the following example. An aircraft that has a delayed departure
may still arrive on time at its destination because of the absence of strong headwinds.
However, because no gate is available after landing, the aircraft has a delayed arrival re-
sulting in a constraint violation. The constraint violation could be explained by consid-
ering the external event causing the delayed departure while ignoring in the explanation
the absence of strong headwinds and the unavailability of a gate after landing. Clearly,
this is not a proper explanation of the delayed arrival because the plane landed on time.

How do we determine the external events that explain a proposition (an observed
timed event or an observed timed constraint)? First, observe that for every proposition,
there is a non-empty set of objects the history of which determine the satisfiability of
the proposition. Second, the use of absolute external events implies that we do not have
to consider any event changing the state of an object o that occurs before an absolute
external event e changing the state of o. We do have to consider every event e′ generated
by and event rule of an object o′ changing the state of o after e. We also have to consider
the absent absolute events that where expected to occur after e.

Definition 7. Let (M, Πobs, Cobs) be a plan diagnosis problem and let Δ be a diagno-
sis. Moreover, let ϕ = (ε, [tε, t′ε]) be a proposition for which we seek an explanation.
Finally, let us view an observation of a timed constraint as a timed event to which we
can extend precedence relation ≺H induced by a history H .

(X a, X p) with X p ⊆ (Δ � Πexp) and X a ⊆ (Πexp � Δ) is an explanation of ϕ iff

1. X p ∪(Πexp �X a) is a preferred diagnosis of the plan execution diagnosis problem
(M, {ϕ}),

2. for no (Yp, Ya) with Yp ⊆ (Δ � Πexp) and Ya ⊆ (Πexp � Δ):
X p ∪ Yp ∪ (Πexp − X a − Ya) is not a diagnosis of the plan execution diagnosis
problem (M, {ϕ}).

Note that X p denotes the unexpected external events are present in the diagnosis Δ, and
X a denotes the expected external events that absent in the diagnosis Δ. Also note that

2 Here, we use a pragmatic interpretation of the concept ‘causes’.
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the second requirement in the above definition is needed because of non-monotonicity
of explanations.

6 Example

This section illustrates the relevance of the model in our application domain, the field
of air traffic control, using a small example.

Flight KL1243 to DeGaulle Paris, which is docked at gate E11, is delayed because it
has to wait for passengers (the expected off-block event after which the aircraft is to taxi
to the runway does not occur at the planned time, but occurs 15 minutes later). After
further investigation it becomes apparent that the passengers that KL1243 is waiting for
are transfers from flight D845. Flight D845, from Heathrow London, was delayed due
to strong headwinds, and only just began de-boarding at gate D21.

KL1243

D845

delayed
take off

expected
off-block

delayed
off-block

expected
touchdown

delayed
touchdown

delayed
in-block

delayed
off-block

delayed
transfers

de-boarding boarding taxiing flying

boarding taxiing flying

de-boarding boardingflying taxiing

flying de-boarding boarding taxiingtaxiing

expected
in-block

Fig. 4. Example diagnosis

Figure 4 shows the model of the schedule for flights KL1243 and D845. As can
be seen, the expected in-block time of D845, which is the start of the de-boarding, was
expected before the off-block time of KL1243, but due to (unexpected) weather changes
has been delayed. This delay causes a delay in the boarding of KL1243, which is noted
by the delay in the occurrence of it’s off-block event.

Clearly, diagnosis identifies the explanation: ‘strong headwinds: London to Amster-
dam’. Note that this diagnosis can be used to predict that other flights from the same
direction will probably be delayed as well (until the weather changes).

7 Conclusion

Identifying causes of temporal constraint violations during plan execution is an impor-
tant issue in many domains, especially in our application domain of air traffic control.
Identifying causes of these constraint violations support plan repair and can help improv-
ing new plans. In this paper we have investigated whether a plan can be modeled using
Discrete Event Systems for the purpose of diagnosing cause of temporal constraint viola-
tions. We have shown that plan execution can be modeled using DESs and that a diagnosis
can be defined in terms of the presence or absence of external events. Such a diagnosis
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describes the unforseen state changes in agents executing the plan, equipment used to
execute the plan and the environment in which the plan is executed. Finally, we have
shown that explanations for individual constraint violations can be determined.

In future work we will investigate whether we can abstract from time information of
events and of event generation rules. Moreover, we will investigate efficient distributed
implementations of the model based on approaches proposed in [16] and [4].
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4. Pencolé, Y., Cordier, M.: A formal framework for the decentralised diagnosis of large scale
discrete event systems and its application to telecommunication networks. Artificial Intelli-
gence 164(1–2), 121–170 (2005)

5. Birnbaum, L., Collins, G., Freed, M., Krulwich, B.: Model-based diagnosis of planning fail-
ures. In: AAAI 90, pp. 318–323 (1990)

6. Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-agent
teams. In: IJCAI-03, pp. 370–375 (2003)

7. Kalech, M., Kaminka, G.A.: Diagnosing a team of agents: Scaling-up. In: AAMAS 2005,
pp. 249–255 (2005)

8. Carver, N., Lesser, V.: Domain monotonicity and the performance of local solutions strate-
gies for CDPS-based distributed sensor interpretation and distributed diagnosis. Autonomous
Agents and Multi-Agent Systems 6(1), 35–76 (2003)

9. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational structures. In:
Proc. 5th Int’l Conf. on Autonomous Agents, pp. 529–536. ACM Press, New York (2001)

10. de Jonge, F., Roos, N., Witteveen, C.: Primary and secondary plan diagnosis. In: DX’06. 17th

International Workshop on Principles of Diagnosis, pp. 133–140. Universidad de Valladolid
(2006)

11. Jonge, F., Roos, N., Witteveen, C.: Diagnosis of multi-agent plan execution. In: Fischer, K.,
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