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Abstract

Diagnosis of plan failures is an important subject
in both single- and multi-agent planning. Plan diag-
nosis may provide information that can improve the
way the plan failures are dealt with in three ways:
(i) it provides information necessary for the adjust-
ment of the current plan or for the development of
a new plan, i{) it can be used to point out which
equipment and/or agents should be repaired or ad-
justed so they will not further harm the plan execu-
tion, and {ii) it can identify the agents responsible
for plan execution failures.

We introduce two general types of plan diagnosis:
primary plan diagnosisdentifying the incorrect or
failed execution of actions, arskcondary plan di-
agnosisthat identifies the underlying causes of the
faulty actions. Furthermore, three special cases
of secondary diagnosis are distinguished, namely
equipment diagnosjsenvironment diagnosiand
agent diagnosis

Introduction

the equipment and the environment need also be the subject
of diagnosis.

To motivate the need for these different types of diagnosis
we distinguished, consider a very simple example in which a
pilot agent of an airplane participates in a larger multi-agent
system for the Air Traffic Control of an airport. Suppose that
the pilot agent is performing a landing procedure and that its
plan prescribes the deployment of the landing gear. Unfortu-
nately, the pilot was forced to make a belly landing. Clearly,
the plan execution has failed and we wish to apply diagnosis
to find out why. A first, but superficial, diagnosis will point
out that the agent’s action of deploying the landing gear has
failed and that the fault mode of this action is “landing gear
not locked”. We will denote this type of diagnosis@snary
plan diagnosisthis type of diagnosis focuses on set of fault
behaviors ofactionsthat explain the differences between the
expected and the observed plan execution.

Often, however, it is more interesting to determine the
causes behind such faulty action executions. In our exam-
ple, a faulty sensor may incorrectly indicate that the landing
gear is already extended and locked, which led the pilot agent
to the belief that the action was successfully executed. We
will denote the diagnosis of these underlying causeseas
ondary plan diagnosis Secondary diagnosis can be viewed

odlS @ diagnosis of the primary diagnosis. It informs us about
n{palfunctioning equipment, unexpected environment changes
(such as the weather) and faulty agents. As a special type of
secondary diagnosis, we are also able to determine the agents

In multi-agent planning research there is a tendency to d
with plans that become larger, more detailed and more co
plex. Clearly, as complexity grows, the vulnerability of plans

for failures will grow correspondingly. Taking appropriate fesponsiblefor the failed execution of some actions. In our

measures to such plan failures requires knowledge on the le. the pilot t miaht b ible. but iaht
causes. So it is important to be able to detect both the occu _xatrr?p e | € pio _ac{wn mig etrespon5| €, but so mig
rence of failures and to determine the causes of them. Ther&® 1€ &irp 'ar.1e mqm enapge agent. )
fore, we consider diagnosis as an integral part of the capabil-_I" our opinion, diagnosis in general, and secondary diagno-
ities of planning agents in single- and multi-agent systems. SIS in particular, enables the agents involved to make specific
In this paper we adapt and extend a classical Model-Basegdiustments to the system or the plan as to manage current
Diagnosis (MBD) approach to the diagnosis of plan execyPlan-execution failures and to avoid new plan-execution fail-
tion. The system to be diagnosed consists not only of th&l'es: These adjustments can be categorized with regard to
plan and its execution, but also of the equipment needed fdf'€ir benefits to the general system. First of all, diagnosis
the execution, the environment in which the plan is execute@©vides information on how the plan behaves during exe-
and the executing agents themselves. Therefore, the agen%’,t'on’ which might contribute to a failure-free (re)planning.
or example, we can imagine that the initial knowledge of
“This research is supported by the Technology Foundation STW)OW @ dynamic environment may influence the plan execution
applied science division of NWO and the technology programmes rather limited. Diagnosis may provide information that ex-
of the Ministry of Economic Affairs (the Netherlands). Project pands the knowledge about plan execution. Secondly, a sec-
DIT5780: Distributed Model Based Diagnosis and Repair. ondary diagnosis can point out which equipment used for the



plan execution was malfunctioning. Broken equipment therapply social diagnosisn order to find the cause of an anom-
can be fixed to improve future plan execution. Moreover, ifalous plan execution. They consider hierarchical plans con-
the amount of possible repairs is limited, diagnosis can indisisting of so-calledehaviors Such plans do not prescribe a
cate which repair has the most, positive, influence on futurépartial) execution order on a set of actions. Instead, based
plan execution. In this respect, agents can be viewed in then its observations and beliefs, each agent chooses the appro-
same way as equipment; agents too can malfunction, eithqriate behavior to be executed. Each behavior in turn may
because of incorrect beliefs of the agent, or because the agertnsist of primitive actions to be executed, or of a set of other
somehow died (crashed). Secondary diagnosis can also prbehaviors to choose from. Social diagnosis then addresses
vide the information necessary to recover and adjust agentie issue of determining what went wrong in the joint execu-
thereby contributing to a better plan execution. Hence, it cation of such a plan by identifying the disagreeing agents and
contribute to solving the well known qualification problem the causes for their selection of incompatible behaviors (e.g.,
[McCarthy, 1977. Finally, diagnosis can indicate the agents belief disagreement, communication errors). Although we do
responsible (accountable) for the failures in the plan execurot consider hierarchical plans of behaviors, social diagnosis
tion. This information is very interesting when evaluating theis related to the here proposed agent diagnosis.
system, and can also be used to divide costs of repairs and/orLesser et al.Carver and Lesser, 2003; Horliegal., 2001
changes in the plan amongst the agents. also apply diagnosis to (multi-agent) plans. Their research
To realize the benefits of plan-based diagnosis outlinedoncentrates on the use ofcausal modethat can help an
above, we introduce an object-oriented view to describe planagent to refine its initial diagnosis of a failingpmponent
execution. Based on this model primary and secondary diag¢alled atask of a plan. As a consequence of using such
nosis will be defined. The primary plan diagnosis more or les& causal model, the agent would be able to generate a new,
corresponds with the main aspects of diagnosis of plan execsituation-specific plan that is better suited to pursue its goal.
tion described by Witteveen and Rdagitteveeret al,, 2005;  While their approach in its ultimate intentions (establishing
Roos and Witteveen, 2005To enable us to apply secondary anomalies in order to find a suitable plan repair) comes close
plan diagnosis, we expand their model such that it is not onlyo our approach, their approach to diagnosis concentrates on
possible to analyze the plan execution process, but also trepecifying the exact causes of the failing of one sirggim-
role of the objects that influence the plan execution. The reponent(task) of a plan. Diagnosis is based on observations of
sulting model is specified in section 3 and consists of objecta component without taking into account the consequences
representing the plan and its execution, the equipment that isf failures of such a component w.r.t. the remaining plan. In
used for the plan execution, the environmental objects thabur approach, instead, we are interested in applying MBD-
are somehow involved in the plan, and the agent executinispired methods taletectplan failures. Such failures are
the plan. On this model, we can apply techniques inspiredased on observations during plan execution and may concern
by model-based diagnosis to find the primary diagnosis, agdividual components of the plan, but also agent properties.
described in subsection 4.1. The secondary diagnosis is pr&urthermore, we do not only concentrate on failing compo-
sented in subsection 4.2, while subsection 4.3 discusses timents themselves, but also on the consequences of these fail-
agent that are held responsible for the failed actions. But firstires for the future execution of plan elements.
of all, we will place our approach into perspective by dis- Witteveen et al[Witteveenet al, 2005; Roos and Wit-
cussing some approaches to plan diagnosis in the followingeveen, 200bshow how classical MBD can be applied to

section. plan execution. To illustrate the different aspects of diagnosis
discussed in the introduction, below we present an adapted
2 Related research and extended version of their formalization of plan diagnosis.

This formalization enables the handling of the approaches of

In this section we briefly discuss some other approaches tge Jonge et allde Jonge and Roos, 2004; de Jomgeal.,
plan diagnosis. 2004, Kalech and KaminkdKalech and Kaminka, 2003;

Birnbaum et al[Birnbaumet al, 1990 apply MBD to 2004, and Lesser et a[Carver and Lesser, 2003; Horling
planning agentgelating planning assumptions made by theet al,, 2001. The work of Birnbaum et a[Birnbaumet al.,
agents tamutcome®f their planning activities. However, they 199 is not covered by the proposed formalization since it
do not consider faults caused by execution failures as a sep#ecuses on the planning activity instead of on plan execution.
rate source of errors.

de Jonge et alde Jonge and Roos, 2004; de Joegal., . :
2004 present an approach that directly applies model—baseg Preliminaries
diagnosis to plan execution. Here, the authors focus on agen@bjects In [Witteveenet al, 2009 it was shown that by
each having an individual plan, and on the conflicts that mayising an object-oriented description of the world instead of
arise between these plans (e.g. if they require the same re-conventional state-based description, it becomes possible
source). Diagnosis is applied to determine those factors thab apply classical MBD to plan execution. Here, we will
are accountable fdutureconflicts. The authors, however, do take this approach one step further by also introducing ob-
not take into account dependencies between health modes jekcts for agents executing the plan and for the actions them-
actions and do not consider agents that collaborate to executelves. Hence, we assume a set of objéxtiat will be used
a common plan. to describe the plan, the agents, the equipment and the envi-

Kalech and KaminkgKalech and Kaminka, 2003; 20p4 ronment.



The objectsO are partitioned into classes or types. We O[r(0) < 7/(0) or 7'(0) < 7(0)]. As an easy consequence
distinguish four general classes, namefictions. A, agents  we have, using the notion df-equivalent statesy ~ =’ iff
Ag, equipment andenvironment objects/. T =o(mno(x) T - Finally, if 7 andn’ are compatible states,

they can bemergedinto the C-least stater LI 7’ containing

States and partial states Each object i € @ is assumed themboth¥o € O[r U=’ (0) = maz<{m(0), 7' (0)}].

to have a domai), of values. Thestateof the objectsD =

{o1,...,0,} at some time point is described by a tuples  Goals An (elementary) goaj of an agent specifies a set of
D,, x ... x D, ofvalues. In particular, the states', 09,  states an agent wants to bring about using a plan. Here, we
ot ando are used to denote the state of the action objectspecify each such a goalas a constraint, that is, a relation
A, the agent objectslg, the equipment objects and the  over some produdb;, x ... x D;, of domains. We say that a
environment objectd/, respectively. goalg is satisfied by a partial state denoted byr = g, if the

The stater of environment objectd/ describes the state relationg contains some tuple (partial sta(d)l iy dik)
of the agents’ environment at some point in time. These stateuch that(d;,,d;,,...d;,) = 7. We assume each agent
descriptions can be the location of an airplane or the availto have a se€, of such elementary goals € G,. We use
ability of a gate. 7 = G, to denote that all goals i6¥, hold in, i.e. for all

The states, 049 ando® of action, agent and equipment g ¢ G, 7 = g.
objects, respectively, describe thealth mode®f these ob-
jects for the purpose of diagnogileer and Williams, 1989;
Struss and Dressler, 1989%Ve assume that each of their cor-
responding domains contains at leaytlte valuenor to de-
note that the action, agent and equipment objects behave n
mally, and {i) the general fault modeb to denote that the ac-
tion, agent and equipment objects behave in an unknown a
possibly abnormal way. Moreover, the domains may contai
several more specific fault modes. For instance, the domai
of a ‘flight’ action may contain a fault mode indicating that
the flight is 20 minutes delayéld. f*: Dy X Dgyg X Dy, X ... X D¢, X Dy, X ... X Dy —

It will not always be possible to give a complete state de- I 1D ' ’

L ; . r X . X Do X Dy X oo X Dy
scription. Therefore, we introducepartial stateas an ele- ! k ™ ™
mentr € Do, X Do, X ... x D,, ,wherel <k <nand wherea € a C A is an action of typen, ag € Ag is
1< < ... <1, <|0O|. WeuseO(r) to denote the set the execution agents,...,e; € & are the required equip-
of objects{o;,, 0i,,...,0;,} C O specified in such astate  ment objectsp,...,n; € N are the required environment
The value of an objeet € O(r) in = will be denoted byr(o).  objects, and{e, ...,e;,n},....,n;} C {e1,...,e;,n1,...,n;}

The value of an objeet € O not occurring in a partial state  are equipment and environment objects that are changed by
is said to beunknown(or unpredictable) inr, denoted byl..  the actiona. Note that since the values of equipment ob-
Including L in every value domaitD; allows us to consider jects only indicate health modes of these objects we allow

Actions and action execution The setA of action objects,
also calledblan stepss partitioned into subclasses called
(ﬁgtion typesor plan operators Through the execution of a
Specific action objeai € A, the state of environment objects
and possibly also of equipmeéitobjects may change. We
escribe such changes of an action objeet.A by a (partial)
nction f¢ wherea is the type of the action (plan operator)
a is an instance of:

every partial state as an elementab; x D, x ... x Dp|.  for equipment objects in the range #t in order be able to
Partial states can be ordered with respect to their informadescribe repair and maintenance actions.
tion content: given valueg andd’, we say thatl < d’ holds To distinguish the different types of parameters in a more

iff d = L ord = d'. The containment relation between par- clear way, semicolons will be placed between them when they

tial states is the point-wise extension<of 7 is said to be con- appear in the argument of a function, e.g.:

tained in7’, denoted byr C ', iff Yo € O[r(0) < 7'(0)]. amshort /g e -

Given a subset of obje)gS C O, two partiag s(ta)tea, 71"( a)ge frrenseert(driving : A; hal : Ag; truck : €; goods : N).

said to beS-equivalent denoted byr =5 ', if for every - 1ng gpiects whose value domains occudimn(f*) will be

o € 8, m(o) = 7'(0). We define the partial staterestricted  yanoted by

to a given setS, denoted byr | S, as the state’ C 7 such

thatO(x') = SN O(x). domo(04) = {0a; 0ag; Ocy s s Oc;y Ony s vy On; }
An important notion for our notion of diagnosis is the

compatibility relationbetween partial states. Intuitively, two @nd, analogously,

statest and «’ are said to be compatible if they could re-

fer to the same complete state. This means that they do

not disagree on the values of objects defined in both state

i.e., for everyo € O eitherw(o) = 7'(0) or at least one

of the valuesr(o) and n/(0) is undefined. So we define

7 and 7’ to be compatible, denoted by ~ =/, iff Yo €

7ano(0a) = {0¢); s Oct, Ont ...,0”;}.

Moreover, we will use domA?(o,), dom&(o,) and

dom® (0,) to denote{o,,}, {0c, , -, 0, } @and{o,, , ..., On, }

respectively. Note that we use the action instamcto de-

note the objects involved in the executionsgfaccording to
!Note thatin a more elaborate approach the value of, for instancdhe functionf< with o, € a.

an equipment object may also indicate the location of the equipment. The result of an action may not always be known if, for
In this paper we only represent the health mode of the equipment. instance, the action fails or if equipment is malfunctioning.
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Figure 1: An action and its state transformation. a, a,
t et
Therefore we allow that the function associated with an ac-  State | ‘ \‘ To |

tion maps the value of an objeatto | to denote that the
effect of the action om is unknown. In fact, we only require
that the effect of an action is completely specified for all ob-
jects in the function’s range if the action is executed in normafFigure 2: Plans and action instances. Each state characterizes
circumstances. That is, the agent is capable of executing tH&e values of four objects, 02, 03 ando,. States are changed
planned action given the planned equipment. by application of action instances

Figure 1 gives an illustration of the above outlined state

transformation as result of the application of a drive aCtiO”-ExampIe Figure 2 gives an illustration of a plan. Since an

Saction object is applied only once in a plan, for clarity rea-

changed as the result of the transport action. In the papelong e will replace the function describing the behavior of
we assume that an object representing equipment only indipe 5ction by the name of the actioPhe arrows relate action

cates the health state of the equipment. In a more elaborateg e opiects is uses as inputs and the objects it modifies as
approach, the health state is only one of the attributes of thg,

' . o , s outputs. In this plan, the dependency relation is specified
object. Another attribute may indicate the location of the ob- b P P y P

) . A asa; < as, as K a4, ag < as, ay < ag anda; < as.
ject. In Figure 1, the location of thieuck changes also as \gte that the last dependency has to be included beeause
result of thedrive action.

changes the value @f, needed by:;. The actiona; shows

that not every object occurring in the domain of an action

. B . need to be affected by the action. The actionandag illus-

Plans A plan is a upleP = {4, <) whered € Als a tr(:f\te that concurrent actions may have overlapping domains.
O

0, 0, 03 0,

subset of plan steps (action objects) that need to be execute
and < is a partial order defined oA x A wherea < o
indicates that the plan stepmust finish before the plan step
a’ may start. Note that each plan steg A occurs exactly Plan execution For simplicity, we will assume that every
once in the plarP, while there may be several plan steps thataction in a planP takes a unit of time to execute. We
belong to the same action type. We will denotetitamsitive  are allowed to observe the execution of a pl@nat dis-
reductionof < by «, i.e.,« is the smallest sub-relation ef  crete timest = 0,1,2,...,k wherek is the depth of the
such that the transitive closure™ of < equals<. plan, i.e., the longest-chain of actions occurring i. Let

We assume that if in a plaR two action instances and  depthp(a) be the depth of actiom in plan P = (A, <
a’ are independent, in principle they may be executed cony. Here, depthp(a) = 0if {a’ | ¢/ < a} = @ and
currently. This means that the precedence relaticat least ~ depthp(a) = 14 max{depthp(a’) | ' < a}, otherwise. If
should capture all resource dependencies that would prohibibe context is clear, we often will omit the subscript We
concurrent execution of actions. Therefore, we assunte ~ assume that the plan starts to be executed at time0 and
satisfy the followingconcurrency requirement that concurrency is fully exploited, i.e., depthp(a) = k,

, ;o then execution ot has been completed at tinte= k£ + 1.

If rano(a) N domo(a’) # @ thena < a’ ora’ <a. Thus, all actions: with depthp(a) = 0 are completed at
That is, for concurrent instances, domains and ranges do nfme t = 1 and every actiom with depthp(a) = k will be
overlap.? started at timé: and will be completed at timg + 1. Note

that thanks to the above specified concurrency requirement,
2Note that sincerano(a) C domo(a), this requirement ex- concurrent e_xecution of actions having the same depth leads
cludes overlapping ranges of concurrent actions, but domains of cod0 @ Well-defined result.
current actions are allowed to overlap as long as the values of the A timed state is a tuplér, t) wherer is a state and > 0
object in the overlapping domains are not affected by the actions. a time point. We would like to consider the predicted ef-



fect (time state)n’,t’) as the result of executing plah on  Note that normally, in the absence of actions that can sabotage
a given timed statér,t). To define this relation in a pre- equipment, the status of the equipment objec®(ns) N E
cise way, we will need the following concepts. First of all, will not change during plan execution.

let P, denote the set of actionswith depthp(a) = t, let Using these assumptiods we can define the result of a
Py =Upoy Py Pot = Uy oy P and Py ) = UZI—t Py. normal execution of a plar? by extending the initial partial

Secondly, we say that a plan stefis enabledin a stater ~ Stater at time pointt = 0 with the staters and then con-
if domo(a) C O(). sidering the timed statér’,¢') as the result of executing

Now we can predict the timed state’, ¢ + 1) using the ~ On the timed statér Li;, 0). Thatis,(r’,1') is the result of
timed state(r, ¢) and the sef, of to be executed plan steps normal plan execution ofrr, 0) iff (7 U ms,0) =5 (7', t').
as follows:

1. whenever an objeet does not occur in the range of an 4 Plan diagnosis
actiona € P, its value in state’ is the same as its value

in T, i.e.m(0) = ' (0); By making (partial) observations at different time points of

. . . _ the ongoing plan execution we may establish that there are
2. ifthe objecb occursin the range of an actiarc P that  giscrepancies between the expected and the observed plan
is enabled in, its \_/alut/a changgs according to the func- gxecution of the plan. These discrepancies indicate that the
tion specification, i.ez’(0) = f*(m [ domo(a))(0)- results of executing one or more actions differs from the way
Formally, we say that=’,t + 1) is (directly) generated by they were planned. ldentifying these actions and, if possi-
execution ofP from (r, t), abbreviated byr,¢t) —p (7',t+  ble, what went wrong in the actions’ execution will be called
1), iff the following conditions hold: primary plan diagnosis Actions may fail because external
1. 7'(0) = f*(r [domo(a))(o) for eacha € P; such that factors such as changes in the environmental conditions (the
a € o and for each € rano (). weather), failing equipment or incorrect beliefs Qf agents.
, . These external factors are underlying causes which are im-
2. 7'(0) = (o) for eacho & rano(F;), thatis, the value  portant for predicting how the remainder of a plan will be

of any object not occurring in the range of an action ingxecuted. Theecondary plan diagnosams at establishing
P, should remain unchanged. Hereno(P;) isashort-  tnege underlying causes.

hand for the union of the setano(a) with a € P;.
For arbitrary values of < ' we say that(z’,t') is (di- 4.1 Primary plan diagnosis

rectly or indirectly) generated by execution Bffrom (7, t), , ) . .
denoted by(,#) —% («',¢'), iff the following conditions In [Witteveenet al,, 2005; Roos and Witteveen, 2005Vit-

hold: teveen et al. describe how plan execution can be diagnosed
) by viewing action instances of a plan as components of a sys-

1. ift =" thenr' = m; tem and by viewing the input and output objects of an action
2. ift' =t+1then(r,t) —p (7', ), as in and outputs of a component. This made it possible to

apply classical MBD to plan execution. Here, we will use a

e,y - /I
3. ift’ > t-+1 then there must exists some st@t€, ¢’ —1) modified version of the plan diagnosis proposed by Witteveen

such that(w,t) —% (7", — 1) and(n”,¢ — 1) —p

(7‘(" t/). etal.
’ Since a planP = (A, <) is a partial order, actions (plan
3.1 Normality assumptions steps) inA are executed only once. Therefore, we could de-

In th ti fi th ted It . :
n the above subsection, we defined the (expected) resu lons may fail, using the set of default assumptéionHow-

a plan execution given the known states of several object . . X . .
In general, we do not know the state of every object. MoreEVver, for other types of diagnosis such as diagnosis of equip-

particularly, we do not know the health mode of the objectsrﬂent such an approach does not Shlﬂﬁ'ce.' One .Of thﬁ reasonsis
affected by an action unless we can directly verify the effect!at €-9- ?qument may start ma ugctlonmyﬂgt e elx- ¢

of the action execution. More in general, the results of plarfcUtion of some action instance and not as the result of it.
execution are uncertain since we need not know the healt general, there may be quite a number of abnormalities that

mode of actions, agents and equipment. Therefore, to predi nnot be attributed to the malfunctioning of an action. So we
the effect of a plan execution, we must make assumption efine the more general notion ofjaalificationx, consisting

about the (health) state of actions, agents and equipment. trr]iplegl(oj, dﬂg (;ach specifying a;]r) ‘r-"’]bjheoti ’bt'he Va|U|fd
will simply assume, that actions, agents and equipment are iﬂ].t ecl) éZCt and the time poitt which the objecd; takes
the statenor, unless we have information stating otherwise, 'S VaUec.

éi‘ne a primary diagnosisn which the execution of some ac-

Hence, to a given partial statewe add a set of default as- N case of primary diagnosis, the qualificatiens used
sumptions specifying for actions, agents and equipment tha© change the value (the health modeptin steps Hence,
they are executed or behaving normally. the triples have the fornia, d, depth(a)) with « € A and
Equivalently, such a set of assumptigrassociated with @ € Da. Note that the plan diagnosis defined[Witteveen
specifies a partial state; such that: et al_., _20(_)5] isa sp_eC|aI case of primary diagnosis where the
qualificationx consists of triplega, ab, depth(a)) and where
* O(ms) € O = O(m), for the general fault modeb the behavior of the action is

e for eacho € O(ws): w5(0) = nor. unknown.
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Figure 3: Plan execution with abnormal actions.

Using qualifications, we say that’ ¢t + 1) is (directly)
generated by execution @t from (,t) given the qualifica-
tion , abbreviated byr,t) —,.p (7', ¢ + 1), iff the follow-
ing conditions hold for:

1. n”(0) = d foreacho € O if (0,d,t) € &,
elser” (o) = 7 (o).

2. (7", t) —p (7', t+1).
for some auxiliary state”.

For arbitrary values of < ' we say thatr’, ') is (directly
or indirectly) generated by execution &ffrom (x,¢) given
the qualifications, denoted by(w,t) —. p (7',t), iff the
following conditions hold:

1. ift =t thenn’ = m;

2. ift' =t+1then(m,t) —xp (7, ¢);

3. ift’ > t+1 then there must exists some staté, ¢ —1)

suchtha{n,t) —; p (7", ¢’ —1) and(7",t' —1) —..p
(', ).

O(7y) might only partially overlap. Therefore, if this as-
sumption holds, the values of the objects that occur in both
the predicted state and the observed state at tinskhould
match, i.e, we should have

/ /
TR Ty

If this is not the case, the execution of some action instances
must have gone wrong and we have to determine an action
qualificationx such that the predicted state derived using
agrees withr’. This is nothing else then a straight-forward
extension of the diagnosis concept in MBReiter, 1987;
Console and Torasso, 19ab plan diagnosis:

Definition 1 Let P = (A, <) be a plan with observations
obs(t) = (m,t) and obs(t') = («',t'), wheret < ¢’ <
depth(P) and let the action qualificatior be a set of triples
(a,d,depth(a)) witha € A andd € D,. Moreover, let
(m U ms,t)—7. p(m,, ') be a derivation assuming an action
qualificationx.

Thenk is said to be grimary plan diagnosiéction diag-
nosis) of( P, obs(t), obs(t")) iff n’ =~ =/..

Soin a primary plan diagnosis the observed partial state
7' at timet’ and the predicted state, at timet¢’ assuming
the action qualificatiom agree upon the values of all objects
O(#") N O(=},) occurring in both states.

Example Consider again Figure 3 and suppose that we did
not know that actiorms was abnormal and that we observed
0bs(0) = ((d1,da,ds,dy4),0) andobs(3) = ((d}, d5, d§), 3).
Using the normal plan derivation relation starting witts (0)

we will predict a statery at timet = 3 wheren),, =
(dy,dy,dy, La, Ls). If everything is ok £ = @), the val-
ues of the objects predicted as well as observed at time
t = 3 should correspond, i.e. we should halle= d/ for

j = 1,3. If, for example, onlyd} would differ from d/,
then we could qualifyag as abnormal, since then the pre-
dicted state at time = 3 usingx = {(as, ab,2)} would be

. = (L1, L, dY, Ly, L5) and this partial state agrees with
the observed state. |

Note that for all objects irD(7’) N O(«,), the qualifica-

Example Figure 3 gives an illustration of an execution of a tion « provides arexplanatiorfor the observation’ made at
plan. Suppose action; is abnormal and generates a re- time pointt’. Hence, for these objects the qualification pro-

sult that is unpredictablel(). Given the qualificationc =
{(as3,ab,1)} and the partially observed statg at time point

t = 0, we predict the partial states as indicated in Figure 3,

where (7, to) —r.p (m;,t;) for i = 1,2,3. Note that since
the value ofo; and ofos cannot be predicted at time= 2,

vides anabductive diagnosi§Console and Torasso, 1990
For all observed objects i@ (7') — O(),), no value can be
predicted given the qualification Hence, by declaring them
to be unpredictable, possible conflicts with respect to these
objects if a normal execution of all actions is assumed, are re-

the result of actiorus and of actionas cannot be predicted solved. This corresponds with the idea @fmsistency-based

andr3 contains only the value afs. O
Suppose now that we have a (partial) observatiort) =

diagnosidReiter, 1987.

(m,t) of the state of the world at timeand an observation Diagnosing a sequence of observationsin the previous

obs(t') = («',t’) attimet’ > ¢t > 0 during the execution of

section we described how to diagnose the executions of a plan

the planP. We would like to use these observations to in- between two observations at different time points. Here, the

fer the health states of the actions occurring’ZinAssuming

observation at the earliest time point corresponds to observed

a normal execution of, we can (partially) predict the state inputs of a system in classical Model-Based Diagnosis while

of the world at a time point’ given the observationbs(t):
if all actions behave normally, we predict a partial stale
at timet’ such that(r U 75,t)—%(75,t’). Since we do not
require observations to be made systematicallyx’) and

the observations at the latest time point corresponds to the
observed outputs in classical Model-Based Diagnosis. Dur-
ing the execution of a plan, however, we may make observa-
tions at more than two time points during the execution of the



plan. Unless we observe the complete state of the world alescribes how the value of an object may change due to, for
each of these time points, we cannot use successive pairs difie agent, unknown events. One of the goals of diagnosis is
servations to make the best possible diagnosis of the part ¢ determine some of these unknown events.
the plan executed between these time points. Hence, we mustThe values of some objects in the environment may only
extend our definition of plan diagnosis to handle sequenceshange due to the execution of actions. For these objgcts
of observations. the transition function is the identity function; i.ez;(d) =

The use of a sequence of partial observations implies thatd for everyd € D;. The identity function disallows any
diagnosis of the part of a plan executed between time pgints change in the object’s value that is not the result of an action.
andt;.; may lead to predictions for the unobserved objects Since the transition function places restriction on the pos-
att;,; that are relevant for diagnosing the part of the plansible transitions of an object, we have to adapt the first item
executed between,; andt; 2. Hence, a qualification of the of the specification ofr,t) —..p (7',t + 1).
actions executed between two time pointandt,; . ; depends 1. 7"(j) = dif (0j,d,a) € Kk, d € trj(n(j)) andt =
on the qualification of actions executed before depth(a), elser” () = n(j).

Definition 2 Let P = (A, <) be a plan with observations 2. (7”,t) —p (7/,t+ 1)

obs(t1) = (m1,11), .., 0bs(ty) = (mk, ty), wheret; < iy < Definition 3 Let P = (A, <) be a plan with observations
... <ty < depth(P). Moreover, lets be an action qualifica- obs(t) = (m,t) and obs(t') = (',t'), wheret < t' <

tion. ) S ) ) depth(P) and let the action qualificatior be a set of triples
The action qualification: is said to be a plan diagnosis of (, 7 +) with o € © — A andd € D,. Moreover, let

(P, 0bs(t1), ..., obs(ty)) iff (7 U ms,t)—7, p(ms, ') be a derivation assuming a quali-
o (m Ums,t1) —5.p (75, t2), fication x and the transition functions-; : D; — 2P for

each objecb; € O.
Then qualifications is said to be asecondary plan diagno-
o m~m,forl <i<k. sisof (P, obs(t), obs(t)) iff n/ = 7.
. . The secondary diagnosis can be divided iagent equip-
4.2 Secondary plan diagnosis mentand environment diagnosidepending on whether the
Actions may fail because of unforeseen (environmental) conebjecto in a triple (0,d,t) € r belongs tadg, £ or N re-
ditions such as being struck by lightning, malfunctioning spectively.
equipment or incorrect beliefs of agents. Diagnosing these An interesting special case of secondary diagnosigést
secondary causes is more difficult since weather, equipmenfiagnosis Agents may incorrectly execute an action be-
and agents may play a role in the execution of several accause of wrong internal beliefs about the agents’s environ-
tions. Moreover, objects such as equipment and weather mayient or about how actions should be executed. One possi-
go through several unforeseen mode changes. ble cause of such wrong beliefs are incorrect observations
The above introduced qualification for primary diagnosisof malfunctioning equipment such as sensors. In princi-
can also be used for secondary diagnosis. In fact, we digle, an agent's incorrect beliefs can be can be modeled us-
not use the default assumptions to model qualifications of adng the agent’s state. Hence, we needagent qualifica-
tion in order to have a uniform representation for both failingtion (o;,d,t) with 0; € Ag describing the incorrect be-
actions and underlying causes. s&condary qualification.  liefs of an agent that have led to the incorrect execution
consists of triplego;, d, t) whereo; € O — Ais an object  of actions. This can especially be the case if an action
that changes to the value € D; at time pointt. Usually  must be achieved by choosing appropriate behaviors. Note
we choose for the time pointthe depthiepth(a) of the first  that agent diagnosis is closely related to social diagnosis de-
action instance where change manifests itself. So, for somecribed by Kalech and Kamink&alech and Kaminka, 2003;
actiona, t = depth(a) ando; € domo(a). 2004.
An object such as an airplane may have several (fault) L ) i
modes. Between these modes transitions are possible. F8r3 Applications of diagnosis
example, continuing to drive an overheated engine will causé&s mentioned in the introduction, the information provided
more severe damage, namely a completely ruined engine. My primary and secondary diagnosis can be used to improve
course, not every transition between the (fault) modes is valicthe way agents deal with plan failures.
For example, a truck with a broken engine cannot become a First, to adjust the planning after plan failure, we need
truck with only a flat tyre without first repairing the truck’s an analysis of the expected future execution of the plan and
engine. Hence, we nediscrete Event Systerf€assandras whether the goals will still be reached.Secondary plan diag-
and Lafortune, 19990 represent equipment or objects suchnosis enables us to the determine which future actions may
as the weather. also be effected by the malfunctioning agents and equipment,
The specification of the discrete event system consists cind by unforeseen state changes in the environment.
the valuesD, of an objecto, the eventso,d,t) € « that  Definition 4 Lett be the current time point and let be a
change the value of the objeat and atransition function  secondary diagnosis of the plan executed sofar. Then the set
describing for objecb the set of valid transitions. Hence, of future actions that will be effected given the current diag-
we assume that for every object € O a transition function  nosisk is:
tr; : D; — 2Pi has been specified. This transition functiofu € A | (0;,d,t') € K,0; € domo(a),d # nor, depth(a) > t'}

o (mUm,t;) =% p (M, tiy1) for 1 <i <k, and
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