
Primary and Secondary Plan Diagnosis∗

Femke de Jongeand Nico Roos and Cees Witteveen
Dept. of Computer Science, Universiteit Maastricht, P.O.Box 616, NL-6200 MD Maastricht

fax: +31-43-3884897,{F.deJonge,Roos}@cs.unimaas.nl
Faculty EEMCS, Delft University of Technology, P.O.Box 5031, NL-2600 GA Delft

fax: +31-15-2786632, C.Witteveen@tudelft.nl

Abstract

Diagnosis of plan failures is an important subject
in both single- and multi-agent planning. Plan diag-
nosis may provide information that can improve the
way the plan failures are dealt with in three ways:
(i) it provides information necessary for the adjust-
ment of the current plan or for the development of
a new plan, (ii) it can be used to point out which
equipment and/or agents should be repaired or ad-
justed so they will not further harm the plan execu-
tion, and (iii) it can identify the agents responsible
for plan execution failures.
We introduce two general types of plan diagnosis:
primary plan diagnosisidentifying the incorrect or
failed execution of actions, andsecondary plan di-
agnosisthat identifies the underlying causes of the
faulty actions. Furthermore, three special cases
of secondary diagnosis are distinguished, namely
equipment diagnosis, environment diagnosisand
agent diagnosis.

1 Introduction

In multi-agent planning research there is a tendency to deal
with plans that become larger, more detailed and more com-
plex. Clearly, as complexity grows, the vulnerability of plans
for failures will grow correspondingly. Taking appropriate
measures to such plan failures requires knowledge on their
causes. So it is important to be able to detect both the occur-
rence of failures and to determine the causes of them. There-
fore, we consider diagnosis as an integral part of the capabil-
ities of planning agents in single- and multi-agent systems.

In this paper we adapt and extend a classical Model-Based
Diagnosis (MBD) approach to the diagnosis of plan execu-
tion. The system to be diagnosed consists not only of the
plan and its execution, but also of the equipment needed for
the execution, the environment in which the plan is executed
and the executing agents themselves. Therefore, the agents,

∗This research is supported by the Technology Foundation STW,
applied science division of NWO and the technology programme
of the Ministry of Economic Affairs (the Netherlands). Project
DIT5780: Distributed Model Based Diagnosis and Repair.

the equipment and the environment need also be the subject
of diagnosis.

To motivate the need for these different types of diagnosis
we distinguished, consider a very simple example in which a
pilot agent of an airplane participates in a larger multi-agent
system for the Air Traffic Control of an airport. Suppose that
the pilot agent is performing a landing procedure and that its
plan prescribes the deployment of the landing gear. Unfortu-
nately, the pilot was forced to make a belly landing. Clearly,
the plan execution has failed and we wish to apply diagnosis
to find out why. A first, but superficial, diagnosis will point
out that the agent’s action of deploying the landing gear has
failed and that the fault mode of this action is “landing gear
not locked”. We will denote this type of diagnosis asprimary
plan diagnosis; this type of diagnosis focuses on set of fault
behaviors ofactionsthat explain the differences between the
expected and the observed plan execution.

Often, however, it is more interesting to determine the
causes behind such faulty action executions. In our exam-
ple, a faulty sensor may incorrectly indicate that the landing
gear is already extended and locked, which led the pilot agent
to the belief that the action was successfully executed. We
will denote the diagnosis of these underlying causes assec-
ondary plan diagnosis. Secondary diagnosis can be viewed
as a diagnosis of the primary diagnosis. It informs us about
malfunctioning equipment, unexpected environment changes
(such as the weather) and faulty agents. As a special type of
secondary diagnosis, we are also able to determine the agents
responsiblefor the failed execution of some actions. In our
example, the pilot agent might be responsible, but so might
be the airplane maintenance agent.

In our opinion, diagnosis in general, and secondary diagno-
sis in particular, enables the agents involved to make specific
adjustments to the system or the plan as to manage current
plan-execution failures and to avoid new plan-execution fail-
ures. These adjustments can be categorized with regard to
their benefits to the general system. First of all, diagnosis
provides information on how the plan behaves during exe-
cution, which might contribute to a failure-free (re)planning.
For example, we can imagine that the initial knowledge of
how a dynamic environment may influence the plan execution
is rather limited. Diagnosis may provide information that ex-
pands the knowledge about plan execution. Secondly, a sec-
ondary diagnosis can point out which equipment used for the

plan execution was malfunctioning. Broken equipment then
can be fixed to improve future plan execution. Moreover, if
the amount of possible repairs is limited, diagnosis can indi-
cate which repair has the most, positive, influence on future
plan execution. In this respect, agents can be viewed in the
same way as equipment: agents too can malfunction, either
because of incorrect beliefs of the agent, or because the agent
somehow died (crashed). Secondary diagnosis can also pro-
vide the information necessary to recover and adjust agents
thereby contributing to a better plan execution. Hence, it can
contribute to solving the well known qualification problem
[McCarthy, 1977]. Finally, diagnosis can indicate the agents
responsible (accountable) for the failures in the plan execu-
tion. This information is very interesting when evaluating the
system, and can also be used to divide costs of repairs and/or
changes in the plan amongst the agents.

To realize the benefits of plan-based diagnosis outlined
above, we introduce an object-oriented view to describe plan-
execution. Based on this model primary and secondary diag-
nosis will be defined. The primary plan diagnosis more or less
corresponds with the main aspects of diagnosis of plan execu-
tion described by Witteveen and Roos[Witteveenet al., 2005;
Roos and Witteveen, 2005]. To enable us to apply secondary
plan diagnosis, we expand their model such that it is not only
possible to analyze the plan execution process, but also the
role of the objects that influence the plan execution. The re-
sulting model is specified in section 3 and consists of objects
representing the plan and its execution, the equipment that is
used for the plan execution, the environmental objects that
are somehow involved in the plan, and the agent executing
the plan. On this model, we can apply techniques inspired
by model-based diagnosis to find the primary diagnosis, as
described in subsection 4.1. The secondary diagnosis is pre-
sented in subsection 4.2, while subsection 4.3 discusses the
agent that are held responsible for the failed actions. But first
of all, we will place our approach into perspective by dis-
cussing some approaches to plan diagnosis in the following
section.

2 Related research
In this section we briefly discuss some other approaches to
plan diagnosis.

Birnbaum et al.[Birnbaumet al., 1990] apply MBD to
planning agentsrelating planning assumptions made by the
agents tooutcomesof their planning activities. However, they
do not consider faults caused by execution failures as a sepa-
rate source of errors.

de Jonge et al.[de Jonge and Roos, 2004; de Jongeet al.,
2005] present an approach that directly applies model-based
diagnosis to plan execution. Here, the authors focus on agents
each having an individual plan, and on the conflicts that may
arise between these plans (e.g. if they require the same re-
source). Diagnosis is applied to determine those factors that
are accountable forfutureconflicts. The authors, however, do
not take into account dependencies between health modes of
actions and do not consider agents that collaborate to execute
a common plan.

Kalech and Kaminka[Kalech and Kaminka, 2003; 2004]

applysocial diagnosisin order to find the cause of an anom-
alous plan execution. They consider hierarchical plans con-
sisting of so-calledbehaviors. Such plans do not prescribe a
(partial) execution order on a set of actions. Instead, based
on its observations and beliefs, each agent chooses the appro-
priate behavior to be executed. Each behavior in turn may
consist of primitive actions to be executed, or of a set of other
behaviors to choose from. Social diagnosis then addresses
the issue of determining what went wrong in the joint execu-
tion of such a plan by identifying the disagreeing agents and
the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors). Although we do
not consider hierarchical plans of behaviors, social diagnosis
is related to the here proposed agent diagnosis.

Lesser et al.[Carver and Lesser, 2003; Horlinget al., 2001]
also apply diagnosis to (multi-agent) plans. Their research
concentrates on the use of acausal modelthat can help an
agent to refine its initial diagnosis of a failingcomponent
(called atask) of a plan. As a consequence of using such
a causal model, the agent would be able to generate a new,
situation-specific plan that is better suited to pursue its goal.
While their approach in its ultimate intentions (establishing
anomalies in order to find a suitable plan repair) comes close
to our approach, their approach to diagnosis concentrates on
specifying the exact causes of the failing of one singlecom-
ponent(task) of a plan. Diagnosis is based on observations of
a component without taking into account the consequences
of failures of such a component w.r.t. the remaining plan. In
our approach, instead, we are interested in applying MBD-
inspired methods todetectplan failures. Such failures are
based on observations during plan execution and may concern
individual components of the plan, but also agent properties.
Furthermore, we do not only concentrate on failing compo-
nents themselves, but also on the consequences of these fail-
ures for the future execution of plan elements.

Witteveen et al.[Witteveenet al., 2005; Roos and Wit-
teveen, 2005] show how classical MBD can be applied to
plan execution. To illustrate the different aspects of diagnosis
discussed in the introduction, below we present an adapted
and extended version of their formalization of plan diagnosis.
This formalization enables the handling of the approaches of
de Jonge et al.[de Jonge and Roos, 2004; de Jongeet al.,
2005], Kalech and Kaminka[Kalech and Kaminka, 2003;
2004], and Lesser et al.[Carver and Lesser, 2003; Horling
et al., 2001]. The work of Birnbaum et al.[Birnbaumet al.,
1990] is not covered by the proposed formalization since it
focuses on the planning activity instead of on plan execution.

3 Preliminaries

Objects In [Witteveenet al., 2005] it was shown that by
using an object-oriented description of the world instead of
a conventional state-based description, it becomes possible
to apply classical MBD to plan execution. Here, we will
take this approach one step further by also introducing ob-
jects for agents executing the plan and for the actions them-
selves. Hence, we assume a set of objectsO that will be used
to describe the plan, the agents, the equipment and the envi-
ronment.

The objectsO are partitioned into classes or types. We
distinguish four general classes, namely:actionsA, agents
Ag, equipmentE andenvironment objectsN .

States and partial states Each object ino ∈ O is assumed
to have a domainDo of values. Thestateof the objectsO =
{o1, ..., on} at some time point is described by a tupleσ ∈
Do1 × ...×Don of values. In particular, the statesσA, σAg,
σE andσN are used to denote the state of the action objects
A, the agent objectsAg, the equipment objectsE and the
environment objectsN , respectively.

The stateσN of environment objectsN describes the state
of the agents’ environment at some point in time. These state
descriptions can be the location of an airplane or the avail-
ability of a gate.

The statesσA, σAg andσE of action, agent and equipment
objects, respectively, describe thehealth modesof these ob-
jects for the purpose of diagnosis[Kleer and Williams, 1989;
Struss and Dressler, 1989]. We assume that each of their cor-
responding domains contains at least (i) the valuenor to de-
note that the action, agent and equipment objects behave nor-
mally, and (ii) the general fault modeab to denote that the ac-
tion, agent and equipment objects behave in an unknown and
possibly abnormal way. Moreover, the domains may contain
several more specific fault modes. For instance, the domain
of a ‘flight’ action may contain a fault mode indicating that
the flight is 20 minutes delayed.1

It will not always be possible to give a complete state de-
scription. Therefore, we introduce apartial stateas an ele-
mentπ ∈ Doi1

×Doi2
× . . .×Doik

, where1 ≤ k ≤ n and
1 ≤ i1 < . . . < ik ≤ |O|. We useO(π) to denote the set
of objects{oi1 , oi2 , . . . , oik

} ⊆ O specified in such a stateπ.
The value of an objecto ∈ O(π) in π will be denoted byπ(o).
The value of an objecto ∈ O not occurring in a partial stateπ
is said to beunknown(or unpredictable) inπ, denoted by⊥.
Including⊥ in every value domainDi allows us to consider
every partial stateπ as an element ofD1 ×D2 × . . .×D|O|.

Partial states can be ordered with respect to their informa-
tion content: given valuesd andd′, we say thatd ≤ d′ holds
iff d = ⊥ ord = d′. The containment relationv between par-
tial states is the point-wise extension of≤: π is said to be con-
tained inπ′, denoted byπ v π′, iff ∀o ∈ O[π(o) ≤ π′(o)].
Given a subset of objectsS ⊆ O, two partial statesπ, π′ are
said to beS-equivalent, denoted byπ =S π′, if for every
o ∈ S, π(o) = π′(o). We define the partial stateπ restricted
to a given setS, denoted byπ � S, as the stateπ′ v π such
thatO(π′) = S ∩O(π).

An important notion for our notion of diagnosis is the
compatibility relationbetween partial states. Intuitively, two
statesπ and π′ are said to be compatible if they could re-
fer to the same complete state. This means that they do
not disagree on the values of objects defined in both states,
i.e., for everyo ∈ O either π(o) = π′(o) or at least one
of the valuesπ(o) and π′(o) is undefined. So we define
π and π′ to be compatible, denoted byπ ≈ π′, iff ∀o ∈

1Note that in a more elaborate approach the value of, for instance,
an equipment object may also indicate the location of the equipment.
In this paper we only represent the health mode of the equipment.

O[π(o) ≤ π′(o) or π′(o) ≤ π(o)]. As an easy consequence
we have, using the notion ofS-equivalent states,π ≈ π′ iff
π =O(π)∩O(π′) π′. Finally, if π andπ′ are compatible states,
they can bemergedinto thev-least stateπ t π′ containing
them both:∀o ∈ O[π t π′(o) = max≤{π(o), π′(o)}].

Goals An (elementary) goalg of an agent specifies a set of
states an agent wants to bring about using a plan. Here, we
specify each such a goalg as a constraint, that is, a relation
over some productDi1× . . .×Dik

of domains. We say that a
goalg is satisfied by a partial stateπ, denoted byπ |= g, if the
relationg contains some tuple (partial state)(di1 , di2 , . . . dik

)
such that(di1 , di2 , . . . dik

) v π. We assume each agenta
to have a setGa of such elementary goalsg ∈ Ga. We use
π |= Ga to denote that all goals inGa hold in π, i.e. for all
g ∈ Ga, π |= g.

Actions and action execution The setA of action objects,
also calledplan stepsis partitioned into subclassesαi called
action typesor plan operators. Through the execution of a
specific action objecta ∈ A, the state of environment objects
N and possibly also of equipmentE objects may change. We
describe such changes of an action objecta ∈ A by a (partial)
functionfα whereα is the type of the action (plan operator)
a is an instance of:

fα : Da ×Dag ×De1 × ...×Dei
×Dn1 × ...×Dnj

→
De′

1
× ...×De′

k
×Dn′

1
× ...×Dn′

l

wherea ∈ α ⊂ A is an action of typeα, ag ∈ Ag is
the execution agent,e1, ..., ei ∈ E are the required equip-
ment objects,n1, ..., ni ∈ N are the required environment
objects, and{e′1, ..., e′k, n′1, ..., n

′
l} ⊆ {e1, ..., ei, n1, ..., nj}

are equipment and environment objects that are changed by
the actiona. Note that since the values of equipment ob-
jects only indicate health modes of these objects we allow
for equipment objects in the range offα in order be able to
describe repair and maintenance actions.

To distinguish the different types of parameters in a more
clear way, semicolons will be placed between them when they
appear in the argument of a function, e.g.:

f transport(driving : A; hal : Ag; truck : E ; goods : N).

The objects whose value domains occur indom(fα) will be
denoted by

domO(oa) = {oa, oag, oe1 , ..., oei
, on1 , ..., onj

}

and, analogously,

ranO(oa) = {oe′
1
, ..., oe′

l
, on′

1
, ..., on′

j
}.

Moreover, we will use domAg
O (oa), domE

O(oa) and
domN

O (oa) to denote{oag}, {oe1 , ..., oei} and{on1 , ..., onj}
respectively. Note that we use the action instanceoa to de-
note the objects involved in the execution ofoa according to
the functionfα with oa ∈ α.

The result of an action may not always be known if, for
instance, the action fails or if equipment is malfunctioning.

f transport

goods
(location: Rotterdam)

truck
(status: normal)

agent
(status: normal)

driving
(status: normal)state

agent
(status: normal)

goods
(location: New York)

truck
(status: normal)

driving
(status: normal)state

Figure 1: An action and its state transformation.

Therefore we allow that the function associated with an ac-
tion maps the value of an objecto to ⊥ to denote that the
effect of the action ono is unknown. In fact, we only require
that the effect of an action is completely specified for all ob-
jects in the function’s range if the action is executed in normal
circumstances. That is, the agent is capable of executing the
planned action given the planned equipment.

Figure 1 gives an illustration of the above outlined state
transformation as result of the application of a drive action.
Note that in this example only the state of the goods is
changed as the result of the transport action. In the paper
we assume that an object representing equipment only indi-
cates the health state of the equipment. In a more elaborated
approach, the health state is only one of the attributes of the
object. Another attribute may indicate the location of the ob-
ject. In Figure 1, the location of thetruck changes also as
result of thedriveaction.

Plans A plan is a tupleP = 〈A,<〉 whereA ⊆ A is a
subset of plan steps (action objects) that need to be executed
and < is a partial order defined onA × A wherea < a′

indicates that the plan stepa must finish before the plan step
a′ may start. Note that each plan stepa ∈ A occurs exactly
once in the planP , while there may be several plan steps that
belong to the same action type. We will denote thetransitive
reductionof < by�, i.e.,� is the smallest sub-relation of<
such that the transitive closure�+ of � equals<.

We assume that if in a planP two action instancesa and
a′ are independent, in principle they may be executed con-
currently. This means that the precedence relation< at least
should capture all resource dependencies that would prohibit
concurrent execution of actions. Therefore, we assume< to
satisfy the followingconcurrency requirement:

If ranO(a) ∩ domO(a′) 6= ∅ thena < a′ or a′ < a.

That is, for concurrent instances, domains and ranges do not
overlap.2

2Note that sinceranO(a) ⊆ domO(a), this requirement ex-
cludes overlapping ranges of concurrent actions, but domains of con-
current actions are allowed to overlap as long as the values of the
object in the overlapping domains are not affected by the actions.

a1 a2

a3 a4

a5

state

π0

π2

π3

a6

π1

state

state

state

o1 o2 o3 o4

Figure 2: Plans and action instances. Each state characterizes
the values of four objectso1, o2, o3 ando4. States are changed
by application of action instances

ExampleFigure 2 gives an illustration of a plan. Since an
action object is applied only once in a plan, for clarity rea-
sons,we will replace the function describing the behavior of
the action by the name of the action. The arrows relate action
to the objects is uses as inputs and the objects it modifies as
its outputs. In this plan, the dependency relation is specified
asa1 � a3, a2 � a4, a4 � a5, a4 � a6 anda1 � a5.
Note that the last dependency has to be included becausea5

changes the value ofo2 needed bya1. The actiona1 shows
that not every object occurring in the domain of an action
need to be affected by the action. The actionsa5 anda6 illus-
trate that concurrent actions may have overlapping domains.

�

Plan execution For simplicity, we will assume that every
action in a planP takes a unit of time to execute. We
are allowed to observe the execution of a planP at dis-
crete timest = 0, 1, 2, . . . , k wherek is the depth of the
plan, i.e., the longest<-chain of actions occurring inP . Let
depthP (a) be the depth of actiona in plan P = 〈A,<
〉. Here, depthP (a) = 0 if {a′ | a′ � a} = ∅ and
depthP (a) = 1 + max{depthP (a′) | a′ � a}, otherwise. If
the context is clear, we often will omit the subscriptP . We
assume that the plan starts to be executed at timet = 0 and
that concurrency is fully exploited, i.e., ifdepthP (a) = k,
then execution ofa has been completed at timet = k + 1.
Thus, all actionsa with depthP (a) = 0 are completed at
time t = 1 and every actiona with depthP (a) = k will be
started at timek and will be completed at timek + 1. Note
that thanks to the above specified concurrency requirement,
concurrent execution of actions having the same depth leads
to a well-defined result.

A timed state is a tuple(π, t) whereπ is a state andt ≥ 0
a time point. We would like to consider the predicted ef-

fect (time state)(π′, t′) as the result of executing planP on
a given timed state(π, t). To define this relation in a pre-
cise way, we will need the following concepts. First of all,
let Pt denote the set of actionsa with depthP (a) = t, let

P>t =
⋃

t′>t Pt′ , P<t =
⋃

t′<t Pt′ andP[t,t′] =
⋃t′

k=t Pk.
Secondly, we say that a plan stepa is enabledin a stateπ

if domO(a) ⊆ O(π).
Now we can predict the timed state(π′, t + 1) using the

timed state(π, t) and the setPt of to be executed plan steps
as follows:

1. whenever an objecto does not occur in the range of an
actiona ∈ Pt, its value in stateπ′ is the same as its value
in π, i.e.,π(o) = π′(o);

2. if the objecto occurs in the range of an actiona ∈ Pt that
is enabled inπ, its value changes according to the func-
tion specification, i.e.,π′(o) = fα(π �domO(a))(o).

Formally, we say that(π′, t + 1) is (directly) generated by
execution ofP from (π, t), abbreviated by(π, t) →P (π′, t+
1), iff the following conditions hold:

1. π′(o) = fα(π �domO(a))(o) for eacha ∈ Pt such that
a ∈ α and for eacho ∈ ranO(α).

2. π′(o) = π(o) for eacho 6∈ ranO(Pt), that is, the value
of any object not occurring in the range of an action in
Pt should remain unchanged. Here,ranO(Pt) is a short-
hand for the union of the setsranO(a) with a ∈ Pt.

For arbitrary values oft ≤ t′ we say that(π′, t′) is (di-
rectly or indirectly) generated by execution ofP from (π, t),
denoted by(π, t) →∗

P (π′, t′), iff the following conditions
hold:

1. if t = t′ thenπ′ = π;

2. if t′ = t + 1 then(π, t) →P (π′, t′);
3. if t′ > t+1 then there must exists some state(π′′, t′−1)

such that(π, t) →∗
P (π′′, t′ − 1) and(π′′, t′ − 1) →P

(π′, t′).

3.1 Normality assumptions
In the above subsection, we defined the (expected) result of
a plan execution given the known states of several objects.
In general, we do not know the state of every object. More
particularly, we do not know the health mode of the objects
affected by an action unless we can directly verify the effect
of the action execution. More in general, the results of plan
execution are uncertain since we need not know the health
mode of actions, agents and equipment. Therefore, to predict
the effect of a plan execution, we must make assumptions
about the (health) state of actions, agents and equipment. We
will simply assume, that actions, agents and equipment are in
the statenor, unless we have information stating otherwise.
Hence, to a given partial stateπ we add a set of default as-
sumptionδ specifying for actions, agents and equipment that
they are executed or behaving normally.

Equivalently, such a set of assumptionsδ associated withπ
specifies a partial stateπδ such that:

• O(πδ) ⊆ O −O(π),
• for eacho ∈ O(πδ): πδ(o) = nor.

Note that normally, in the absence of actions that can sabotage
equipment, the status of the equipment objects inO(πδ) ∩ E
will not change during plan execution.

Using these assumptionsδ, we can define the result of a
normalexecution of a planP by extending the initial partial
stateπ at time pointt = 0 with the stateπδ and then con-
sidering the timed state(π′, t′) as the result of executingP
on the timed state(π t πδ, 0). That is,(π′, t′) is the result of
normal plan execution on(π, 0) iff (π t πδ, 0) →∗

P (π′, t′).

4 Plan diagnosis

By making (partial) observations at different time points of
the ongoing plan execution we may establish that there are
discrepancies between the expected and the observed plan
execution of the plan. These discrepancies indicate that the
results of executing one or more actions differs from the way
they were planned. Identifying these actions and, if possi-
ble, what went wrong in the actions’ execution will be called
primary plan diagnosis. Actions may fail because external
factors such as changes in the environmental conditions (the
weather), failing equipment or incorrect beliefs of agents.
These external factors are underlying causes which are im-
portant for predicting how the remainder of a plan will be
executed. Thesecondary plan diagnosisaims at establishing
these underlying causes.

4.1 Primary plan diagnosis

In [Witteveenet al., 2005; Roos and Witteveen, 2005], Wit-
teveen et al. describe how plan execution can be diagnosed
by viewing action instances of a plan as components of a sys-
tem and by viewing the input and output objects of an action
as in and outputs of a component. This made it possible to
apply classical MBD to plan execution. Here, we will use a
modified version of the plan diagnosis proposed by Witteveen
et al.

Since a planP = (A,<) is a partial order, actions (plan
steps) inA are executed only once. Therefore, we could de-
fine a primary diagnosisin which the execution of some ac-
tions may fail, using the set of default assumptionδ. How-
ever, for other types of diagnosis such as diagnosis of equip-
ment such an approach does not suffice. One of the reasons is
that e.g. equipment may start malfunctioningduring the ex-
ecution of some action instance and not as the result of it.
In general, there may be quite a number of abnormalities that
cannot be attributed to the malfunctioning of an action. So we
define the more general notion of aqualificationκ, consisting
of triples (oj , d, t) each specifying an objectoj , the valued
of the object and the time pointt at which the objectoj takes
this valued.

In case of primary diagnosis, the qualificationκ is used
to change the value (the health mode) ofplan steps. Hence,
the triples have the form(a, d, depth(a)) with a ∈ A and
d ∈ Da. Note that the plan diagnosis defined in[Witteveen
et al., 2005] is a special case of primary diagnosis where the
qualificationκ consists of triples(a, ab, depth(a)) and where
for the general fault modeab the behavior of the action is
unknown.

a1 a2

a3 a4

a6

t=3

π0

π2

π3

a8

a5

⊥

a7

π1

t=2

t=1

t=0

o2 o3 o4 o5o1

Figure 3: Plan execution with abnormal actions.

Using qualifications, we say that(π′, t + 1) is (directly)
generated by execution ofP from (π, t) given the qualifica-
tion κ, abbreviated by(π, t) →κ;P (π′, t + 1), iff the follow-
ing conditions hold for:

1. π′′(o) = d for eacho ∈ O if (o, d, t) ∈ κ,
elseπ′′(o) = π(o).

2. (π′′, t) →P (π′, t + 1).

for some auxiliary stateπ′′.
For arbitrary values oft ≤ t′ we say that(π′, t′) is (directly

or indirectly) generated by execution ofP from (π, t) given
the qualificationκ, denoted by(π, t) →∗

κ;P (π′, t′), iff the
following conditions hold:

1. if t = t′ thenπ′ = π;

2. if t′ = t + 1 then(π, t) →κ;P (π′, t′);

3. if t′ > t+1 then there must exists some state(π′′, t′−1)
such that(π, t) →∗

κ;P (π′′, t′−1) and(π′′, t′−1) →κ;P

(π′, t′).

ExampleFigure 3 gives an illustration of an execution of a
plan. Suppose actiona3 is abnormal and generates a re-
sult that is unpredictable (⊥). Given the qualificationκ =
{(a3, ab, 1)} and the partially observed stateπ0 at time point
t = 0, we predict the partial statesπi as indicated in Figure 3,
where(π0, t0) →∗

κ;P (πi, ti) for i = 1, 2, 3. Note that since
the value ofo1 and ofo5 cannot be predicted at timet = 2,
the result of actiona6 and of actiona8 cannot be predicted
andπ3 contains only the value ofo3. �

Suppose now that we have a (partial) observationobs(t) =
(π, t) of the state of the world at timet and an observation
obs(t′) = (π′, t′) at timet′ > t ≥ 0 during the execution of
the planP . We would like to use these observations to in-
fer the health states of the actions occurring inP . Assuming
a normal execution ofP , we can (partially) predict the state
of the world at a time pointt′ given the observationobs(t):
if all actions behave normally, we predict a partial stateπ′∅
at timet′ such that(π t πδ, t)→∗

P (π′∅, t′). Since we do not
require observations to be made systematically,O(π′) and

O(π′∅) might only partially overlap. Therefore, if this as-
sumption holds, the values of the objects that occur in both
the predicted state and the observed state at timet′ should
match, i.e, we should have

π′ ≈ π′∅.

If this is not the case, the execution of some action instances
must have gone wrong and we have to determine an action
qualificationκ such that the predicted state derived usingκ
agrees withπ′. This is nothing else then a straight-forward
extension of the diagnosis concept in MBD[Reiter, 1987;
Console and Torasso, 1991] to plan diagnosis:

Definition 1 Let P = 〈A,<〉 be a plan with observations
obs(t) = (π, t) and obs(t′) = (π′, t′), where t < t′ ≤
depth(P) and let the action qualificationκ be a set of triples
(a, d, depth(a)) with a ∈ A and d ∈ Da. Moreover, let
(π t πδ, t)→∗

κ;P (π′κ, t′) be a derivation assuming an action
qualificationκ.

Thenκ is said to be aprimary plan diagnosis(action diag-
nosis) of〈P, obs(t), obs(t′)〉 iff π′ ≈ π′κ.

So in a primary plan diagnosisκ, the observed partial state
π′ at time t′ and the predicted stateπ′κ at time t′ assuming
the action qualificationκ agree upon the values of all objects
O(π′) ∩O(π′κ) occurring in both states.

ExampleConsider again Figure 3 and suppose that we did
not know that actiona3 was abnormal and that we observed
obs(0) = ((d1, d2, d3, d4), 0) andobs(3) = ((d′1, d

′
3, d

′
5), 3).

Using the normal plan derivation relation starting withobs(0)
we will predict a stateπ′∅ at time t = 3 where π′∅ =
(d′′1 , d′′2 , d′′3 ,⊥4,⊥5). If everything is ok (κ = ∅), the val-
ues of the objects predicted as well as observed at time
t = 3 should correspond, i.e. we should haved′j = d′′j for
j = 1, 3. If, for example, onlyd′1 would differ from d′′1 ,
then we could qualifya6 as abnormal, since then the pre-
dicted state at timet = 3 usingκ = {(a6, ab, 2)} would be
π′κ = (⊥1,⊥2, d

′′
3 ,⊥4,⊥5) and this partial state agrees with

the observed state. �

Note that for all objects inO(π′) ∩ O(π′κ), the qualifica-
tion κ provides anexplanationfor the observationπ′ made at
time pointt′. Hence, for these objects the qualification pro-
vides anabductive diagnosis[Console and Torasso, 1990].
For all observed objects inO(π′) − O(π′κ), no value can be
predicted given the qualificationκ. Hence, by declaring them
to be unpredictable, possible conflicts with respect to these
objects if a normal execution of all actions is assumed, are re-
solved. This corresponds with the idea of aconsistency-based
diagnosis[Reiter, 1987].

Diagnosing a sequence of observationsIn the previous
section we described how to diagnose the executions of a plan
between two observations at different time points. Here, the
observation at the earliest time point corresponds to observed
inputs of a system in classical Model-Based Diagnosis while
the observations at the latest time point corresponds to the
observed outputs in classical Model-Based Diagnosis. Dur-
ing the execution of a plan, however, we may make observa-
tions at more than two time points during the execution of the

plan. Unless we observe the complete state of the world at
each of these time points, we cannot use successive pairs ob-
servations to make the best possible diagnosis of the part of
the plan executed between these time points. Hence, we must
extend our definition of plan diagnosis to handle sequences
of observations.

The use of a sequence of partial observations implies that a
diagnosis of the part of a plan executed between time pointsti
andti+1 may lead to predictions for the unobserved objects
at ti+1 that are relevant for diagnosing the part of the plan
executed betweenti+1 andti+2. Hence, a qualification of the
actions executed between two time pointsti andti+1 depends
on the qualification of actions executed beforeti.

Definition 2 Let P = 〈A,<〉 be a plan with observations
obs(t1) = (π1, t1), ..., obs(tk) = (πk, tk), wheret1 < t2 <
... < tk ≤ depth(P). Moreover, letκ be an action qualifica-
tion.

The action qualificationκ is said to be a plan diagnosis of
〈P, obs(t1), ..., obs(tk)〉 iff

• (π1 t πδ, t1) →∗
κ;P (π′2, t2),

• (πi t π′i, ti) →∗
κ;P (π′i+1, ti+1) for 1 < i < k, and

• πi ≈ π′i for 1 < i ≤ k.

4.2 Secondary plan diagnosis
Actions may fail because of unforeseen (environmental) con-
ditions such as being struck by lightning, malfunctioning
equipment or incorrect beliefs of agents. Diagnosing these
secondary causes is more difficult since weather, equipment
and agents may play a role in the execution of several ac-
tions. Moreover, objects such as equipment and weather may
go through several unforeseen mode changes.

The above introduced qualification for primary diagnosis
can also be used for secondary diagnosis. In fact, we did
not use the default assumptions to model qualifications of ac-
tion in order to have a uniform representation for both failing
actions and underlying causes. Asecondary qualificationκ
consists of triples(oj , d, t) whereoj ∈ O − A is an object
that changes to the valued ∈ Dj at time pointt. Usually
we choose for the time pointt the depthdepth(a) of the first
action instance where change manifests itself. So, for some
actiona, t = depth(a) andoj ∈ domO(a).

An object such as an airplane may have several (fault)
modes. Between these modes transitions are possible. For
example, continuing to drive an overheated engine will cause
more severe damage, namely a completely ruined engine. Of
course, not every transition between the (fault) modes is valid.
For example, a truck with a broken engine cannot become a
truck with only a flat tyre without first repairing the truck’s
engine. Hence, we needDiscrete Event Systems[Cassandras
and Lafortune, 1999] to represent equipment or objects such
as the weather.

The specification of the discrete event system consists of
the valuesDo of an objecto, the events(o, d, t) ∈ κ that
change the value of the objecto, and atransition function
describing for objecto the set of valid transitions. Hence,
we assume that for every objectoj ∈ O a transition function
trj : Dj → 2Dj has been specified. This transition function

describes how the value of an object may change due to, for
the agent, unknown events. One of the goals of diagnosis is
to determine some of these unknown events.

The values of some objects in the environment may only
change due to the execution of actions. For these objectsoj ,
the transition function is the identity function; i.e.:trj(d) =
d for every d ∈ Dj . The identity function disallows any
change in the object’s value that is not the result of an action.

Since the transition function places restriction on the pos-
sible transitions of an object, we have to adapt the first item
of the specification of(π, t) →κ;P (π′, t + 1).

1. π′′(j) = d if (oj , d, a) ∈ κ, d ∈ trj(π(j)) and t =
depth(a), elseπ′′(j) = π(j).

2. (π′′, t) →P (π′, t + 1)
Definition 3 Let P = 〈A,<〉 be a plan with observations
obs(t) = (π, t) and obs(t′) = (π′, t′), where t < t′ ≤
depth(P) and let the action qualificationκ be a set of triples
(o, d, t) with o ∈ O − A and d ∈ Da. Moreover, let
(π t πδ, t)→∗

κ;P (π′κ, t′) be a derivation assuming a quali-
fication κ and the transition functionstrj : Dj → 2Dj for
each objectoj ∈ O.

Then qualificationκ is said to be asecondary plan diagno-
sisof 〈P, obs(t), obs(t′)〉 iff π′ ≈ π′κ.

The secondary diagnosis can be divided intoagent, equip-
mentand environment diagnosisdepending on whether the
objecto in a triple (o, d, t) ∈ κ belongs toAg, E or N re-
spectively.

An interesting special case of secondary diagnosis isagent
diagnosis. Agents may incorrectly execute an action be-
cause of wrong internal beliefs about the agents’s environ-
ment or about how actions should be executed. One possi-
ble cause of such wrong beliefs are incorrect observations
of malfunctioning equipment such as sensors. In princi-
ple, an agent’s incorrect beliefs can be can be modeled us-
ing the agent’s state. Hence, we need anagent qualifica-
tion (oj , d, t) with oj ∈ Ag describing the incorrect be-
liefs of an agent that have led to the incorrect execution
of actions. This can especially be the case if an action
must be achieved by choosing appropriate behaviors. Note
that agent diagnosis is closely related to social diagnosis de-
scribed by Kalech and Kaminka[Kalech and Kaminka, 2003;
2004].

4.3 Applications of diagnosis
As mentioned in the introduction, the information provided
by primary and secondary diagnosis can be used to improve
the way agents deal with plan failures.

First, to adjust the planning after plan failure, we need
an analysis of the expected future execution of the plan and
whether the goals will still be reached.Secondary plan diag-
nosis enables us to the determine which future actions may
also be effected by the malfunctioning agents and equipment,
and by unforeseen state changes in the environment.
Definition 4 Let t be the current time point and letκ be a
secondary diagnosis of the plan executed sofar. Then the set
of future actions that will be effected given the current diag-
nosisκ is:

{a ∈ A | (oj , d, t′) ∈ κ, oj ∈ domO(a), d 6= nor, depth(a) ≥ t′}

Besides identifying the actions that will be effected by agent
and equipment failure or by unexpected changes in the en-
vironment, we can also determine the goals that can still be
reached.

Definition 5 Lett be the current time point, letπ current par-
tial state and letκ be an secondary diagnosis of the plan exe-
cuted sofar. Moreover, let(π, t) →κ;P (π′, depth(P)). Then
the set of goals that can still be realized is given by:

{g ∈ G | π′ |= g}

Second, based on the equipment diagnosis, the agents can
point out which equipment should be repaired. Moreover, we
can view repairs as events that change an equipment object
from a failed state into a normal state. Then, we can use
definitions 4 and 5 to verify the consequences a certain repair
has. This way, agents can consider which repair to choose if
repairs are limited (e.g., due to their costs).

Third, it is also important to know the agents responsible
for the failures. This information can contribute to negotia-
tion on repairs of plan failure, to division of costs of failed
plans or of plan repair, and to avoiding failures of future
plans.

As an illustration of different agents that can be responsible
for a plan-execution failure, reconsidering the example in the
introduction where the agent responsible for the belly landing
can be the pilot agent, the maintenance agent, or the airline
agent that reduced the maintenance budget.

Here we will present a very simple model of responsibility.
We introduce a responsibility functionres : (O−N) → Ag
specifying the agent that is responsible for each of the action,
agent and equipment objects.

Definition 6 Let κ be any diagnosis of a plan execution and
let res : (O −N) → Ag be a responsibility function.

Then for each event(o, d, t) ∈ κ, the responsible agent is
determined by:res(o).

5 Conclusion
This paper describes a generalization of the model for plan
diagnosis as presented in[Witteveenet al., 2005; Roos and
Witteveen, 2005]. New in the current approach is (i) the in-
troduction of primary and secondary diagnosis, and (ii) the in-
troduction of objects representing actions, agents and equip-
ment. The primary diagnosis identifies failed actions and pos-
sibly in which way they failed while the secondary diagnosis
addresses the causes for action failures. The latter is an im-
provement over the plan diagnosis presented in[Witteveenet
al., 2005; Roos and Witteveen, 2005], where only dependen-
cies between action failures could be described using causal
rules. An additional feature of the here proposed approach
is that all objects can be modeled as discrete events systems.
This enables the description of the unknown dynamic behav-
ior of objects such as equipment over time. The secondary di-
agnosis then identifies the events behind the state changes of
these objects. The results of primary and secondary diagnosis
can be used to predict future action failures, to determine the
goals that can still be reached and to identify the agents that
can be held responsible for plan-execution failures.

References
[Birnbaumet al., 1990] L. Birnbaum, G. Collins, M. Freed,

and B. Krulwich. Model-based diagnosis of planning fail-
ures. InAAAI 90, pages 318–323, 1990.

[Carver and Lesser, 2003] N. Carver and V.R. Lesser. Do-
main monotonicity and the performance of local solutions
strategies for cdps-based distributed sensor interpretation
and distributed diagnosis.Autonomous Agents and Multi-
Agent Systems, 6(1):35–76, 2003.

[Cassandras and Lafortune, 1999] C. G. Cassandras and
S. Lafortune. Introduction to Discrete Event Systems.
Kluwer Academic Publishers, 1999.

[Console and Torasso, 1990] L. Console and P. Torasso. Hy-
pothetical reasoning in causal models.International Jour-
nal of Intelligence Systems, 5:83–124, 1990.

[Console and Torasso, 1991] L. Console and P. Torasso. A
spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7:133–141, 1991.

[de Jonge and Roos, 2004] F. de Jonge and N. Roos. Plan-
execution health repair in a multi-agent system. InPlan-
SIG 2004, 2004.

[de Jongeet al., 2005] F. de Jonge, N. Roos, and H.J.
van den Herik. Keeping plan execution healthy. InMulti-
Agent Systems and Applications IV: CEEMAS 2005, LNCS
3690, pages 377–387, 2005.

[Horling et al., 2001] Bryan Horling, Brett Benyo, and Vic-
tor Lesser. Using Self-Diagnosis to Adapt Organizational
Structures. InProceedings of the 5th International Confer-
ence on Autonomous Agents, pages 529–536. ACM Press,
2001.

[Kalech and Kaminka, 2003] M. Kalech and G. A. Kaminka.
On the design ov social diagnosis algorithms for multi-
agent teams. InIJCAI-03, pages 370–375, 2003.

[Kalech and Kaminka, 2004] M. Kalech and G. A. Kaminka.
Diagnosing a team of agents: Scaling-up. InAAMAS 2004,
2004.

[Kleer and Williams, 1989] J. de Kleer and B. C. Williams.
Diagnosing with behaviour modes. InIJCAI 89, pages
104–109, 1989.

[McCarthy, 1977] John L. McCarthy. Epistemological prob-
lems of artificial intelligence. InIJCAI, pages 1038–1044,
1977.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles.Artificial Intelligence, 32:57–95, 1987.

[Roos and Witteveen, 2005] N. Roos and C. Witteveen. Di-
agnosis of plans and agents. InMulti-Agent Systems and
Applications IV: CEEMAS 2005, LNCS 3690, pages 357–
366, 2005.

[Struss and Dressler, 1989] Peter Struss and Oskar Dressler.
”physical negation” integrating fault models into the gen-
eral diagnostic engine. InIJCAI, pages 1318–1323, 1989.

[Witteveenet al., 2005] C. Witteveen, N. Roos, R. van der
Krogt, and M. de Weerdt. Diagnosis of single and multi-
agent plans. InAAMAS 2005, pages 805–812, 2005.

