
Diagnosis of multi-agent plan execution�

Femke de Jonge1, Nico Roos1, and Cees Witteveen2

1 Dept of Computer Science, Universiteit Maastricht
P.O.Box 616, NL-6200 MD Maastricht

{f.dejonge,roos}@cs.unimaas.nl
2 Faculty EEMCS, Delft University of Technology

P.O.Box 5031, NL-2600 GA Delft
witt@ewi.tudelft.nl

Abstract. Diagnosis of plan failures is an important subject in both single- and
multi-agent planning. Plan diagnosis can be used to deal with plan failures in
three ways: (i) it provides information necessary for the adjustment of the current
plan or for the development of a new plan, (ii) it can be used to point out which
equipment and/or agents should be repaired or adjusted so they will not further
harm the plan execution, and (iii) it can identify the agents responsible for plan-
execution failures.
We introduce two general types of plan diagnosis: primary plan diagnosis iden-
tifying the incorrect or failed execution of actions, and secondary plan diagnosis
that identifies the underlying causes of the faulty actions. Furthermore, three spe-
cial cases of secondary plan diagnosis are distinguished, namely agent diagnosis,
equipment diagnosis and environment diagnosis.

1 Introduction

In multi-agent planning research there is a tendency to deal with plans that become
larger, more detailed and more complex. As complexity grows, the vulnerability of
plans for failures will grow correspondingly. Taking appropriate measures to a plan
failure requires knowledge on the causes of these failures. So it is important to be able to
detect the occurrence of failures and to determine their causes. Therefore, we consider
diagnosis as an integral part of the capabilities of agents in single- and multi-agent
systems.

To illustrate the relevance of plan diagnosis, consider a very simple example in
which a pilot agent of an airplane participates in a larger multi-agent system for the
Air Traffic Control of an airport. Suppose that the pilot agent is performing a landing
procedure and that its plan prescribes the deployment of the landing gear. Unfortunately,
the pilot was forced to make a belly landing. Clearly, the plan execution has failed and
we wish to apply diagnosis to find out why. A first, superficial, diagnosis will point out
that the agent’s action of deploying the landing gear has failed and that the fault mode of

� This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs (the Netherlands).
Project DIT5780: Distributed Model Based Diagnosis and Repair.

this action is “landing gear not locked”. We will denote this type of diagnosis as primary
plan diagnosis. This type of diagnosis focuses on a set of fault behaviors of actions that
explain the differences between the expected and the observed plan execution.

Often, however, it is more interesting to determine the causes behind such faulty ac-
tion executions. In our example, a faulty sensor may incorrectly indicate that the landing
gear is already extended and locked, which led the pilot agent to the belief that the ac-
tion was successfully executed. We will denote the diagnosis of these underlying causes
as secondary plan diagnosis. Secondary diagnosis can be viewed as a diagnosis of the
primary diagnosis. It informs us about malfunctioning equipment, unexpected environ-
ment changes (such as the weather) and faulty agents. As a special type of secondary
diagnosis, we are also able to determine the agents responsible for the failed execution
of some actions. In our example, the pilot agent might be responsible, but so might be
the airplane maintenance agent.

In our opinion, diagnosis in general, and secondary diagnosis in particular, enables
the agents involved to make specific adjustments to the system or the plan as to manage
current plan-execution failures and to avoid new plan-execution failures. These adjust-
ments can be categorized with regard to their benefits to the general system. Primary
diagnosis can contribute to plan repair by identifying the failed action and how they
failed. Secondary diagnosis can also can contribute to plan repair by pointing out the
broken equipment and the misbehaving agents. Plan repair can either plan to fix the
broken equipment or to use other equipment. Moreover, information about agents helps
to recover and adjust the agents thereby contributing to a better plan execution. Finally,
secondary diagnosis can indicate the agents responsible (accountable) for the failures
in the plan-execution. This information is very interesting when evaluating the system,
and can also be used to divide costs of repairs and/or changes in the plan amongst the
agents.

In this paper we adapt and extend a classical Model-Based Diagnosis (MBD) ap-
proach to the diagnosis of plan execution. To enable secondary diagnosis, the system
to be diagnosed consists not only of the plan and its execution, but also of the equip-
ment needed for the execution, the environment in which the plan is executed and the
executing agents themselves. We introduce an object-oriented description of plans in
which objects represent actions, agents, equipment and the environment. The state of
these objects may change dynamically by other causes than the execution of planned
actions. Primary and secondary diagnosis is used to identify these causes.3

To realize the benefits of plan-based diagnosis outlined above, we present in section
3 an adaptation of the object-oriented description of plan execution introduced in [18,
16]. Section 4 shows how this object-oriented plan description enables the formalization
of primary and secondary plan diagnosis. But first of all, we will place our approach into
perspective by discussing some approaches to plan diagnosis in the following section.

3 How to implement diagnosis is outside the scope of this paper. For an example of an approach
for distributed diagnosis in a multi-agent system, we refer to [15].

2 Related research

To realize plan diagnosis, we adapt and extend the object oriented representation of
plans presented in [18, 16]. This representation has been chosen because it is more
suited to plan diagnosis than the traditional plan representations such as [10, 2, 9, 17]
and it also enables us to extend the classical Model-Based Diagnosis (MBD) approach
to the planning domain. Since one of the goals of plan diagnosis is to facilitate plan
repair, it might be beneficial to make use of information used to generate a plan and
therefore use one of the traditional plan representations. However, we wish to study
plan diagnosis independent of any planning approach that is used to generate a plan or
that will be used to repair a plan.

Similar to our use of MBD as a starting point of plan diagnosis, Birnbaum et al.
[1] apply MBD to planning agents relating health states of agents to outcomes of their
planning activities, but not taking into account faults that can be attributed to actions
occurring in a plan as a separate source of errors.

de Jonge et al. [7, 8] present an approach that directly applies MBD to plan exe-
cution. Here, the authors focus on agents each having an individual plan, and on the
conflicts that may arise between these plans (e.g., if they require the same resource).
Diagnosis is applied to determine those factors that are accountable for future conflicts.
The authors, however, do not take into account dependencies between health modes of
actions and do not consider agents that collaborate to execute a common plan.

Kalech and Kaminka [12, 13] apply social diagnosis in order to find the cause of
an anomalous plan execution. They consider hierarchical plans consisting of so-called
behaviors. Such plans do not prescribe a (partial) execution order on a set of actions. In-
stead, based on its observations and beliefs, each agent chooses the appropriate behavior
to be executed. Each behavior in turn may consist of primitive actions to be executed,
or of a set of other behaviors to choose from. Social diagnosis then addresses the issue
of determining what went wrong in the joint execution of such a plan by identifying the
disagreeing agents and the causes for their selection of incompatible behaviors (e.g.,
belief disagreement, communication errors).

Lesser et al. [3, 11] also apply diagnosis to (multi-agent) plans. Their research con-
centrates on the use of a causal model that can help an agent to refine its initial diagnosis
of a failing component (called a task) of a plan. As a consequence of using such a causal
model, the agent would be able to generate a new, situation-specific plan that is better
suited to pursue its goal. Diagnosis is based on observations of a component without
taking into account the consequences of failures of such a component w.r.t. the remain-
ing plan.

Witteveen et al. [18, 16] show how classical MBD can be applied to plan execution.
To illustrate the different aspects of diagnosis discussed in the introduction, below we
present an adapted and extended version of their formalization of plan diagnosis. This
formalization enables the handling of the approaches of de Jonge et al. [7, 8], Kalech
and Kaminka [12, 13], and Lesser et al. [3, 11]. The work of Birnbaum et al. [1] is not
covered by the proposed formalization since it focuses on the planning activity instead
of on plan execution.

3 Plans as systems

Objects In [18] it was shown that by using an object-oriented description of the world
instead of a conventional state-based description, it becomes possible to apply classical
MBD to plan execution. Here, we will take this approach one step further by also intro-
ducing objects for agents executing the plan and for the actions themselves. Hence, we
assume a finite set of objects O that will be used to describe the plan, the agents, the
equipment and the environment.

The objects O are partitioned into classes or types. We distinguish four general
classes, namely: actions A, agents Ag, equipment E and environment objects N .

States and partial states Each object in o ∈ O is assumed to have a domain Do of
values. The state of the objects O = {o1, ..., on} at some time point is described by a
tuple σ ∈ Do1 × ... × Don

of values. In particular, four projections of the state σ: σA,
σAg, σE and σN are used to denote the state of the action objects A, the agent objects
Ag, the equipment objects E and the environment objects N .

The state σN of environment objects N describes the state of the agents’ envi-
ronment at some point in time. For instance, these state descriptions can represent the
location of an airplane or the availability of a gate.

The states σA, σAg and σE of action, agent and equipment objects respectively
describe the working order of these objects. Their domains consist of the health modes
of the action, agent and equipment objects. We assume that each of these domains
contains at least (i) the value nor to denote that the action, agent and equipment objects
behave normally, and (ii) the general fault mode ab to denote that the action, agent and
equipment objects behave in an unknown and possibly abnormal way. Moreover, the
domains may contain several more specific fault modes. For instance, the domain of a
‘flight’ action may contain a fault mode indicating that the flight is 20 minutes delayed.4

It will not always be possible to give a complete state description. Therefore, we
introduce a partial state as an element π ∈ Doi1

× Doi2
× . . . × Doik

, where 1 ≤
k ≤ n and 1 ≤ i1 < . . . < ik ≤ |O|. We use O(π) to denote the set of objects
{oi1 , oi2 , . . . , oik

} ⊆ O specified in such a state π. The value of an object o ∈ O(π)
in π will be denoted by π(o). The value of an object o ∈ O not occurring in a partial
state π is said to be unknown (or unpredictable) in π, denoted by ⊥. Including ⊥ in
every value domain Di allows us to consider every partial state π as an element of
D1 × D2 × . . . × D|O|.

Partial states can be ordered with respect to their information content: given values
d and d′, we say that d ≤ d′ holds iff d = ⊥ or d = d′. The containment relation �
between partial states is the point-wise extension of ≤: π is said to be contained in π′,
denoted by π � π′, iff ∀o ∈ O [π(o) ≤ π′(o)]. Given a subset of objects S ⊆ O, two
partial states π, π′ are said to be S-equivalent, denoted by π =S π′, if for every o ∈ S,
π(o) = π′(o). We define the partial state π restricted to a given set S, denoted by π �S,
as the state π′ � π such that O(π′) = S ∩ O(π).

4 Note that in a more elaborate approach the value of for instance an equipment object may also
indicate the location of the equipment. In this paper we only represent the health mode of the
equipment.

An important notion for diagnosis is the notion of compatibility between partial
states. Intuitively, two states π and π′ are said to be compatible if there is no essen-
tial disagreement about the values assigned to variables in the two states. That is, for
every o ∈ O either π(o) = π′(o) or at least one of the values π(o) and π′(o) is
undefined. So we define π and π′ to be compatible, denoted by π ≈ π′, iff ∀o ∈
O [π(o) ≤ π′(o) or π′(o) ≤ π(o)]. As an easy consequence we have, using the notion
of S-equivalent states, π ≈ π′ iff π =O(π)∩O(π′) π′. Finally, if π and π′ are com-
patible states, they can be merged into the �-least state π
 π′ containing them both:
∀o ∈ O [π
 π′(o) = max≤{π(o), π′(o)}].
Normality assumptions The health mode of action, agent and equipment objects
need not be known explicitly but are usually assumed to be normal: nor. Although
it seems reasonable to also assume environment objects such as the weather, to be
normal, we cannot make this assumption for every environment object. It makes no
sense to assign the state normal to, for instance, a good to be transported. There-
fore, we exclude environment objects from our normality assumption. By adding these
normality assumptions to a partial state π we create a partial state π̄ where ∀o ∈ O
[π̄(o) = nor if π(o) = ⊥ and o �∈ N ; π̄(o) = π(o) otherwise].
Goals An (elementary) goal g of an agent specifies a set of states an agent wants
to bring about using a plan. Here, we specify each such a goal g as a constraint, that
is, a relation over some product Di1 × . . . × Dik

of domains. We say that a goal g is
satisfied by a partial state π, denoted by π |= g, if the relation g contains some tuple
(partial state) (di1 , di2 , . . . dik

) such that (di1 , di2 , . . . dik
) � π. We assume each agent

a to have a set Ga of such elementary goals g ∈ Ga. We use π |= Ga to denote that all
goals in Ga hold in π, i.e. for all g ∈ Ga, π |= g.

Action execution Through the execution of a specific action a ∈ A, the state of envi-
ronment objects N and possibly also of equipment objects E may change. We describe
such changes induced by a specific action (also called plan step) a ∈ A by a (partial)
function fα where α is the type of the action (also called plan operator) of which a is
an instance.

fα : Da × Dag × De1 × ... × Dei
× Dn1 × ... × Dnj

→
De′

1
× ... × De′

k
× Dn′

1
× ... × Dn′

l

where a ∈ α ⊂ A is a specific action of type α, ag ∈ Ag is the execution agent,
e1, ..., ei ∈ E are the equipment objects required, n1, ..., ni ∈ N are the environment
objects required, and {e′1, ..., e′k, n′

1, ..., n
′
l} ⊆ {e1, ..., ei, n1, ..., nj} are equipment and

environment objects that are changed by the action a. Note that since the values of
equipment objects only indicate health modes of these objects we allow equipment
objects to occur in the range of fα in order be able to describe repair and maintenance
actions.

To distinguish the different types of parameters in a more clear way, semicolons will
be placed between them when specifying the function, e.g.:

f transport(driving : A; hal : Ag; truck : E ; goods : N).

The objects whose value domains occur in dom(fα) will be denoted by domO(oa) =
{oa, oag, oe1 , ..., oei

, on1 , ..., onj
} and, likewise ranO(oa) = {oe′

1
, ..., oe′

l
, on′

1
, ..., on′

j
}.

Fig. 1. An action and its state transformation.

The result of an action may not always be known if, for instance, the action fails or
if equipment is malfunctioning. Therefore we allow that the function associated with
an action maps the value of an object to ⊥ to denote that the effect of the action on an
object is unknown.

Figure 1 gives an illustration of the above outlined state transformation as result of
the application of a drive action. Note that in this example only the state of the goods is
changed as the result of the transport action.

Plans A plan is a tuple P = 〈A,<〉 where A ⊆ A is a subset of the actions (plan
steps) that need to be executed and < is a partial order defined on A × A where a < a′

indicates that the action a must finish before the action a′ may start. Note that each
action a ∈ A occurs exactly once in the plan P . We will denote the transitive reduction
of < by �, i.e., � is the smallest sub-relation of < such that the transitive closure �+

of � equals <.
We assume that if in a plan P two actions a and a′ are independent, in principle

they may be executed concurrently. This means that the precedence relation < at least
should capture all resource dependencies that would prohibit concurrent execution of
actions. Therefore, we assume < to satisfy the following concurrency requirement:

If ranO(a) ∩ domO(a′) �= ∅ then a < a′ or a′ < a.5

Figure 2 gives an illustration of a plan with one abnormally executed action. Since
an action object is applied only once in a plan, for clarity reasons, we will replace the
function describing the behavior of the action by the name of the action. The arrows
relate actions to the objects it uses as inputs and the objects it modifies as its outputs.
In this plan, the dependency relation is specified as a1 � a3, a1 � a4, a2 � a4,
a2 � a5, a4 � a7, a5 � a8and a4 � a6. Note that the last dependency has to be
included because a6 changes the value of o2 needed by a4. The action a4 shows that
not every object occurring in the domain of an action need to be affected by the action.

5 Note that since ranO(a) ⊆ domO(a), this requirement excludes overlapping ranges of con-
current actions, but domains of concurrent actions are allowed to overlap as long as the values
of the object in the overlapping domains are not affected by the actions.

a1 a2

a3 a4

a6

t=3

0

2

3

a8

a5

a7

1

t=2

t=1

t=0

o2 o3 o4 o5o1

Fig. 2. Plan execution with one abnormal action.

Plan execution For simplicity, we will assume that every action in a plan P takes one
time unit to execute. We are allowed to observe the execution of a plan P at discrete
times t = 0, 1, 2, . . . , k where k is the depth of the plan, i.e., the longest <-chain of
actions occurring in P . Let depthP (a) be the depth of action a in plan P = 〈A,<〉.
Here, depthP (a) = 0 if {a′ | a′ � a} = ∅ and depthP (a) = 1 + max{depthP (a′) |
a′ � a}, otherwise. If the context is clear, we often will omit the subscript P . We
assume that the plan starts to be executed at time t = 0 and that concurrency is fully
exploited, i.e., if depthP (a) = k, then execution of a has been completed at time
t = k + 1. Thus, all actions a with depthP (a) = 0 are completed at time t = 1 and
every action a with depthP (a) = k will be started at time k and will be completed at
time k+1. Note that thanks to the above specified concurrency requirement, concurrent
execution of actions having the same depth leads to a well-defined result.

A timed state is a tuple (π, t) where π is a state and t ≥ 0 a time point. We would
like to consider the predicted effect (time state) (π′, t′) as the result of executing plan P
on a given timed state (π, t). To define this relation in a precise way, we will need the
following concepts. First of all, let Pt denote the set of actions a with depthP (a) = t,

let P>t =
⋃

t′>t Pt′ , P<t =
⋃

t′<t Pt′ and P[t,t′] =
⋃t′

k=t Pk. Secondly, we say that an
action a is enabled in a state π if domO(a) ⊆ O(π).

Now we can predict the timed state (π′, t+1) using the timed state (π, t) and the set
Pt of to be executed actions. We say that (π′, t+1) is (directly) generated by execution
of P from (π, t), abbreviated by (π, t) →P (π′, t+1), iff the following conditions hold:

1. π′(o) = fα(π � domO(a))(o) for each a ∈ Pt such that a ∈ α and for each
o ∈ ranO(a).

2. π′(o) = π(o) for each o �∈ ⋃
a∈Pt

ranO(a), that is, the value of any object not
occurring in the range of an action in Pt should remain unchanged.

3. π′(o) = ⊥ otherwise.

For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indirectly) gener-
ated by execution of P from (π, t), denoted by (π, t) →∗

P (π′, t′), iff the following
conditions hold:

1. if t = t′ then π′ = π;
2. if t′ = t + 1 then (π, t) →P (π′, t′);
3. if t′ > t + 1 then there must exists some state (π′′, t′ − 1) such that (π, t) →∗

P

(π′′, t′ − 1) and (π′′, t′ − 1) →P (π′, t′).

Disruptions of plan execution In [18, 16], Witteveen et al. describe how plan execu-
tion can be diagnosed by viewing an action of a plan as a component of a system having
a normal or an abnormal behavior, and by viewing the input and output objects of an
action as in- and outputs of a component. This view made it possible to apply classical
MBD to plan execution. In their view, a diagnosis is a subset Q ⊆ A of abnormally
executed actions.

Here, we will use a modified version of the plan diagnosis proposed by Witteveen
et al. First of all, we define the more general notion of a qualification κ consisting of
triples (oj , d, t) each specifying an object oj , the value d ∈ Doj

of the object oj and
the time point t at which the object oj takes this value d. Such a triple might be used
to specify a state change at time t of an object oj to a value σ(oj) = d. If the object
oj denotes an action, an agent or equipment, value d will usually indicate some fault
mode.

Using qualifications, we say that (π′, t + 1) is (directly) generated by execution of
P from (π, t) given the qualification κ, abbreviated by (π, t) →κ;P (π′, t + 1), iff the
following conditions hold:

1. For each oj ∈ O: π′′(oj) = d if (oj , d, t) ∈ κ, and π′′(oj) = π(oj) otherwise.
2. (π′′, t) →P (π′, t + 1).

For arbitrary values of t ≤ t′ we say that (π′, t′) is (directly or indirectly) generated by
execution of P from (π, t) given the qualification κ, denoted by (π, t) →∗

κ;P (π′, t′).
An object such as an airplane may have several (fault) modes. Between these modes

transitions are possible. For example, continuing to fly with an overheated engine will
cause more severe damage, namely a completely ruined engine. Of course, not every
transition between the (fault) modes is valid. For example, an airplane with a broken
engine cannot become an airplane with only a flat tyre without repairing the engine
first. Hence, we need to describe the valid state changes of objects. A transition function
trj : Dj → 2Dj will be used to describe the transitions that may occur.

Remark 1. Note that we can view each object oj as representing a Discrete Event Sys-
tem [4]. The triples (oj , d, t) in a qualification κ describe the unknown events that
change the state of the object oj and trj : Dj → 2Dj is the transition function of the
DES. Figure 3 gives an illustration. The goal of diagnosis is to identify these unknown
events (oj , d, t) that have caused the state changes. Also note that actions enforce state
changes independent of the transition function trj .

The transition function make is possible to judge whether a qualification κ describes
valid transitions. It places restrictions on the autonomous state changes (not caused by
actions) that may occur. Hence, we must verify whether a qualification κ induces a
sound derivation given a plan P and the transition functions trj . We say that a qualifi-
cation κ induces a sound derivation (π, t) →∗

κ;P (π′, t′) iff:

a1d0 d2d2d1
(o,d2,1) (o,d3,2)

a2 d4

t=0 t=1 t=1+ t=2+t=2 t=3

o d3

)(12 dtrd)(23 dtrd

Fig. 3. A Discrete Event System of the object o.

– for no pair of events (oj , d, t), (oj , d
′, t′) ∈ κ, we have that t = t′, and

– for each event (oj , d, t′) ∈ κ, if (π, t) →∗
κ;P (π′, t′), then d ∈ tr∗j (π′(oj)).

4 Plan diagnosis

By making (partial) observations at different time points of the ongoing plan execution
we may establish that there are discrepancies between the expected and the observed
plan execution. These discrepancies indicate that the results of executing one or more
actions differs from the way they were planned. Identifying these actions and, if possi-
ble, what went wrong in the actions’ execution will be called primary plan diagnosis.
Actions may fail because external factors such as changes in the environmental con-
ditions (the weather), failing equipment or incorrect beliefs of agents. These external
factors are underlying causes which are important for predicting how the remainder
of a plan will be executed. The secondary plan diagnosis aims at establishing these
underlying causes.

4.1 Primary plan diagnosis

In [18, 16], Witteveen et al. describe how plan execution can be diagnosed by viewing
action instances of a plan as components of a system and by viewing the input and
output objects of an action as in- and outputs of a components. Here, we will use a
modified version of the plan diagnosis proposed by Witteveen et al. using a qualifica-
tion κ of events (a, d, depth(a)) with a ∈ A. This qualification κ is called an action
qualification.

Figure 2 gives an illustration of an execution of a plan. Suppose action a3 is ab-
normal and generates a result that is unpredictable (⊥). Given the qualification κ =
{(a3, ab, 1)} and the partially observed state π0 at time point t = 0, we predict the
partial states πi as indicated in Figure 2, where (π0, t0) →∗

κ;P (πi, ti) for i = 1, 2, 3.
Note that since the value of o1 and of o5 cannot be predicted at time t = 2, the result of
action a6 and of action a8 cannot be predicted and π3 contains only the value of o3.

Suppose now that we have a (partial) observation obs(t) = (π, t) of the state of
the world at time t and an observation obs(t′) = (π′, t′) at time t′ > t ≥ 0 during
the execution of the plan P . We would like to use these observations to infer the health
states of the actions occurring in P . Assuming a normal execution of P , we can (par-
tially) predict the state of the world at a time point t′ given the observation obs(t): if
all actions behave normally, denoted by π̄, we predict a partial state π′

∅
at time t′ such

that (π̄, t)→∗
P (π′

∅
, t′). Since we do not require observations to be made systematically,

O(π′) and O(π′
∅

) might only partially overlap. Therefore, if this assumption holds, the

values of the objects that occur in both the predicted state and the observed state at time
t′ should match, i.e; we should have π′ ≈ π′

∅
. If this is not the case, the execution of

some actions must have gone wrong and we have to determine an action qualification κ
such that the predicted state derived using κ agrees with π′. This is nothing else then a
straight-forward extension of the diagnosis concept in MBD to plan diagnosis (cf. [14,
6]).

Definition 1. Let P = 〈A,<〉 be a plan with observations obs(t) = (π, t) and obs(t′) =
(π′, t′), where t < t′ ≤ depth(P) and let the action qualification κ be a set of triples
(a, d, depth(a)) with a ∈ A and d ∈ Da. Moreover, let κ induces a sound derivation
(π̄, t)→∗

κ;P (π′
κ, t′) given the plan P and the transition functions trj : Dj → 2Dj for

each action aj ∈ A.
Then κ is said to be a primary plan diagnosis (action diagnosis) of 〈P, obs(t), obs(t′)〉

iff π′ ≈ π′
κ.

So in a primary plan diagnosis κ, the observed partial state (π′) at time t′ and the
predicted state (π′

κ) at time t′ assuming the action qualification κ agree upon the values
of all objects O(π′) ∩ O(π′

κ) occurring in both states.
Consider again Figure 2 and suppose that we did not know that action a3 was abnor-

mal and that we observed obs(0) = ((d1, d2, d3, d4), 0) and obs(3) = ((d′1, d
′
3, d

′
5), 3).

Using the normal plan derivation relation starting with obs(0) we will predict a state
π′

κ at time t = 3 where π′
κ = (d′′1 , d′′2 , d′′3). If everything is ok (κ = ∅), the values

of the objects predicted as well as observed at time t = 3 should correspond, i.e. we
should have d′j = d′′j for j = 1, 3. If, for example, only d′1 would differ from d′′1 , then
we could qualify a6 as abnormal, since then the predicted state at time t = 3 using
κ = {(a6, ab, 2)} would be π′

κ = (d′′3) and this partial state agrees with the observed
state on the value of o3.

Note that for all objects in O(π′)∩O(π′
κ), the qualification κ provides an explana-

tion for the observation π′ made at time point t′. Hence, for these objects the qualifica-
tion provides an abductive diagnosis [5]. For all observed objects in O(π′) − O(π′

κ),
no value can be predicted given the qualification κ. Hence, by declaring them to be un-
predictable, possible conflicts with respect to these objects if a normal execution of all
actions is assumed, are resolved. This corresponds with the idea of a consistency-based
diagnosis [14].

4.2 Secondary plan diagnosis

Actions may fail because of unforeseen (environmental) conditions such as being struck
by lightning, malfunctioning equipment or incorrect beliefs of agents. Diagnosing these
secondary causes is more difficult since weather, equipment and agents may play a role
in the execution of several actions. Moreover, objects such as equipment and weather
may go through several unforeseen state changes.

A secondary qualification κ consists of triples (oj , d, t) where oj ∈ O − A is an
object that changes to the value d ∈ Dj at time point t. Usually we choose for the time
point t the depth depth(a) of the first action instance where change manifests itself. So,
for some action a, t = depth(a) and oj ∈ domO(a).

Definition 2. Let P = 〈A,<〉 be a plan with observations obs(t) = (π, t) and obs(t′) =
(π′, t′), where t < t′ ≤ depth(P) and let the action qualification κ be a set of triples
(o, d, t) with o ∈ O − A and d ∈ Do. Moreover, let κ induces a sound derivation
(π̄, t)→∗

κ;P (π′
κ, t′) given the plan P and the transition functions trj : Dj → 2Dj for

each object oj ∈ O.
Then the qualification κ is said to be a secondary plan diagnosis of 〈P, obs(t), obs(t′)〉

iff π′ ≈ π′
κ.

The secondary diagnosis can be divided into agent, equipment and environment
diagnosis depending on whether the object o in a triple (o, d, t) ∈ κ belongs to Ag,
E or N respectively. Note that agent diagnosis is related to social diagnosis described
by Kalech and Kaminka [12, 13] if the agents’ health modes are used to describe the
agents’ incorrect beliefs.

Predicting the future Secondary diagnosis offers an important advantage over primary
diagnosis. First, secondary diagnosis enables us to the determine which future actions
may also be affected by the malfunctioning agents and equipment, and by unforeseen
state changes in the environment.

Definition 3. Let t be the current time point and let κ be a secondary diagnosis of the
plan executed sofar. Then the set of future actions that will directly be affected given the
current diagnosis κ is:

{a ∈ A | (oj , d, t′) ∈ κ, oj ∈ domO(a), d �= nor, depth(a) ≥ t ≥ t′}
Second, besides identifying the actions that will be affected, we can also determine

the goals that can still be reached.

Definition 4. Let t be the current time point, let π current partial state and let κ be an
secondary diagnosis of the plan executed sofar. Moreover, let (π, t) →κ;P (π′, depth(P)).
Then the set of goals that can still be realized is given by: {g ∈ G | π′ |= g}

Responsible agents Besides knowing the underlying cause of plan execution failures,
it is also important to know the agents responsible for the failures. To illustrate this,
reconsidering the example in the introduction where the agent responsible for the belly
landing can be the pilot agent, the maintenance agent, or the airline agent that reduced
the maintenance budget.

Here we will present a very simple model of responsibility. We introduce a respon-
sibility function res : (O−N) → Ag specifying the agent that is responsible for each
of the action, agent and equipment objects.

Definition 5. Let κ be any diagnosis of a plan execution and let
res : (O −N) → Ag be a responsibility function.

Then for each event (o, d, t) ∈ κ, the responsible agent is determined by: res(o).

5 Conclusion

This paper describes a generalization of the model for plan diagnosis as presented in
[18, 16]. New in the current approach is (i) the introduction of primary and secondary

diagnosis, and (ii) the introduction of objects representing actions, agents and equip-
ment. The primary diagnosis identifies failed actions and possibly in which way they
failed while the secondary diagnosis addresses the causes for action failures. The latter
is an improvement over the plan diagnosis presented in [18, 16], where only dependen-
cies between action failures could be described using causal rules. An additional feature
of the proposed approach is that all objects can be modeled as discrete events systems.
This enables the description of the unknown dynamic behavior of objects such as equip-
ment over time. The secondary diagnosis then identifies the unknown state changes of
objects and possibly the agents that can be held responsible for the state changes.

References

1. L. Birnbaum, G. Collins, M. Freed, and B. Krulwich. Model-based diagnosis of planning
failures. In AAAI 90, pages 318–323, 1990.

2. A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281–300, 1997.

3. N. Carver and V.R. Lesser. Domain monotonicity and the performance of local solutions
strategies for cdps-based distributed sensor interpretation and distributed diagnosis. Au-
tonomous Agents and Multi-Agent Systems, 6(1):35–76, 2003.

4. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Aca-
demic Publishers, 1999.

5. L. Console and P. Torasso. Hypothetical reasoning in causal models. International Journal
of Intelligence Systems, 5:83–124, 1990.

6. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7:133–141, 1991.

7. F. de Jonge and N. Roos. Plan-execution health repair in a multi-agent system. In PlanSIG
2004, 2004.

8. F. de Jonge, N. Roos, and H.J. van den Herik. Keeping plan execution healthy. In Multi-Agent
Systems and Applications IV: CEEMAS 2005, LNCS 3690, pages 377–387, 2005.

9. D. McDermott et al. The pddl planning domain definition language. In The AIPS-98 Plan-
ning Competition Committee, 1998.

10. R. E. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 5:189–208, 1971.

11. Bryan Horling, Brett Benyo, and Victor Lesser. Using Self-Diagnosis to Adapt Organiza-
tional Structures. In Proceedings of the 5th International Conference on Autonomous Agents,
pages 529–536. ACM Press, 2001.

12. M. Kalech and G. A. Kaminka. On the design ov social diagnosis algorithms for multi-agent
teams. In IJCAI-03, pages 370–375, 2003.

13. M. Kalech and G. A. Kaminka. Diagnosing a team of agents: Scaling-up. In AAMAS 2004,
2004.

14. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.
15. N. Roos, A. ten Teije, and C. Witteveen. A protocol for multi-agent diagnosis with spatially

distributed knowledge. In AAMAS 2003, pages 655–661, 2003.
16. N. Roos and C. Witteveen. Diagnosis of plans and agents. In Multi-Agent Systems and

Applications IV: CEEMAS 2005, LNCS 3690, pages 357–366, 2005.
17. H. Tonino, A. Bos, M. de Weerdt, and C. Witteveen. Plan coordination by revision in collec-

tive agent based systems. Artificial Intelligence, 142:121–145, 2002.
18. C. Witteveen, N. Roos, R. van der Krogt, and M. de Weerdt. Diagnosis of single and multi-

agent plans. In AAMAS 2005, pages 805–812, 2005.

