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Abstract

This paper presents a protocol forplan health repairin multi-agent plan execu-
tion. Plan health repair aims at avoiding conflicts that might arise due to disruptions in
the execution of a plan. This can be achieved by adjusting the executions of tasks in-
stead of replanning the tasks. For this purpose, established methods from the domains
of planning, discrete event systems, model-based diagnosis, and constraint satisfac-
tion problems have been combined.

1 Introduction

During the plan execution in a multi-agent system conflicts can arise because of discrep-
ancies between the execution and the expectations beforehand. We distinguish two types
of conflicts, viz. conflicts that can be repaired by changing the plans (replanning) and
conflicts that can be solved by adjusting the execution of the plans within the margins set
by the plans. In this article we focus on the second type of conflicts that can arise when
execution of a plan cannot be planned in full detail and the smallest parts of a plan, which
we will call tasks, are reactive processes by nature. The following example illustrates this
type of conflicts among reactive tasks.

Consider a small airport with only one runway used for both arrival and departure.
It is a small but busy airport, so plans are tight. Assume that two aircraft agents, agent
A and agentB, have agreed on the plans to letB land beforeA takes off. Here, the
smallest planned actions are the departure and arrival of the aircraft, which we will refer
to as tasks. The execution of such tasks is a reactive process in the sense that (sub)actions
during the execution of a task (for example manoeuvring or changing speed) are not part
of the planning. Although the plan is agreed on, still, small changes in the execution
(mostly caused by external influences) can cause conflicts. For instance, assume thatA
is a bit early as the aircraft speeded up while taxiing, andB is a bit delayed because of
heavy head wind during its flight. This might cause a conflict because of violating the
security constraints on the distance that should be kept between two aircraft. We would
like to detect such conflicts as early as possible, so that the agents can agree on a set of
reactive actions (repairs) that will prevent the conflicts to occur in the future. For instance,
agentA could wait a while before take off. Note that these reactive adjustments are not
typified as replanning since the changes in executions will remain within the margins of
the planned tasks. Instead, the health of a plan is restored by adjustments in the execution
of tasks. We will call thisplan-execution health repair.
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Below, we will introduce a model for a multi-agent system for plan health repair.
Based on this model, agents can detect (future) conflicts in advance. Next to presenting
such a model, our goals are to apply diagnosis on the model and the anticipated conflicts,
and to present a protocol for regaining plan-execution health with a minimal number of
repairs.

We model the reactive nature of tasks by introducing set of states for each task and a
set of corresponding events that cause state changes within a task. Diagnosing conflicts
in this model is related to diagnosis on Discrete Event Systems (DES), e.g. [3], in which
agents try to determine occurrence of fault-states based on a partially observable sequence
of events. Diagnosis on DES differs from our approach with respect to the diagnostic task.
We focus on determining combinations of events that cause violations of constraints be-
tween states of different tasks and determining events causing state changes that resolve
the constrain violations. In this respect our approach is closer related to Model-Based
Diagnosis (MBD). For an overview of MBD in a ‘single agent context’, see [7]. More re-
cently, MBD has also been studied in a multi- agent context [10]. To our best knowledge,
MBD has not been applied to plan health repair, only to diagnosis of planners [1]. Other
diagnostic approaches in a multi-agent context we would like to mention are Social Diag-
nosis, for finding causes for social disruptions in multi-agent systems [6], and diagnosis
based on a causal model for achieving multi-agent adaptability [5].

Our plan health repair approach is related to plan repair through replanning [11, 12]
and to the TÆMS task descriptions used by Raja et al. [8] for handling uncertainty in plan
execution. Moreover, plan health repair can be viewed as a part of distributed continual
planning, which addresses the adaptation of plans during plan execution in a multi agent
system (for an overview, see [4]). What sets our approach apart is the application of health
repair within the margins of the current plans.

The outline of this paper is as follows. In section 2, we introduce a model that agents
can use to represent a multi-agent system for plan-execution health repair. Based on
this model, agents are able to detect whether conflicts occur in the future. In section 3, we
define diagnoses that agents can apply on the conflicts in order to find out what has caused
them. A formal definition of both weak and strong plan-execution health repair is given
in section 4. In section 5 we present a protocol for agents to regain plan-execution health
based on a transformation to a constraint satisfaction problem. In section 6 we provide
conclusions and suggest future work on diagnosing and resolving conflict in multi-agent
system for plan-execution health repair.

2 Model description

A multi-agent planMAP = (A,PD ,Cst) consists of a set of agentsA, a set of plan
descriptionsPD , containing one plan description for each agent:PD =

⋃|A|
i=1 PD i, and

a set of constraintsCst between the agents’ plans.
A plan descriptionPD i = (Pi,Si, Ei, τi, σi, R) describes how the plan of agent

i will be executed. The base of the plan description is the sequence of tasksPi =
〈ti,0, ti,1, ..., ti,n〉 which the agent wants to execute in this specific order. We usePi

to denote the corresponding set of all tasks in sequencePi. To describe the health of each
task, the setsSi andEi contain for each task a set of states and a set of events respectively.
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Figure 1: Normal plan execution of agent A.

The functionsτi andσi, and the common rulesR formalize the execution of tasks within
a plan (we will specify this further on).

During the execution of a plan, a task is in a certainstate. Each task has its own set of
possible states:Si,j ∈ Si. The state of a task is denoted by the predicatets(ti,j , s), with
ti,j ∈ Pi ands ∈ Si,j . We distinguish three types of states: pending, active, and finish
states. For each taskti,j holds:Si,j = {spending

i,j } ∪ Sactive
i,j ∪ Sfinish

i,j . There is only one
pending state for each task, this is the state in which the task is awaiting before it is being
executed. By finishing the previous task, the next task will become active by changing
from the pending to an active state (which state that is, depends on the execution of the
previous task). Finally, when the task is completed, the task changes from an active state
to a finish state and consequently, the next task is triggered.

Each plan has one start task:ti,0, with Si,0 = {spending
i,0 , sfinish

i,0 }. The start task has
only one pending and one finish state. When the start conditions are fulfilled, this start
task will change from the pending to the finish state, which will cause the next task to
begin execution (viz. go from the pending state to an active state).

State changes are caused byevents. Each taskti,j has its own set of events:Ei,j ∈ Ei,
with Ei,j = Efinish

i,j ∪ Edisrupt
i,j ∪ Erepair

i,j . Finish events are triggered when pre-defined
conditions are fulfilled and change tasks from an active to a finish state. Disruption events
are externally caused and represent unexpected changes in the execution of a task that
might effect the plan-execution health. And finally, the repair events are executed by the
agent to regain the plan-execution health when necessary. A tasks statets(ti,j , s) is the
result of the sequence of eventsE = 〈e1, ..., ek〉 during the plan execution, and will be
represented by[E]ts(ti,j , s), where[E] is a modal operator denoting the events leading
to ts(ti,j , s). We use2ts(t, s) to denote thatts(t, s) will be achieved during the actual
plan execution: i.e. the past, current and expected events lead tots(t, s).

Figure 1 illustrates the normal execution of a plan of the departing agentA in the
example of section 1. The plan consists of three tasks:P1 = 〈t1,Start, t1,Taxi, t1,Takeoff〉,
and has event sequence〈efinish Start, efinish Taxi, efinish Takeoff〉.

We model theexecution of a taskswithin a plan by partial functionsτi andσi, and the
set of common rulesR. The partial functionτi maps a state and an event to a new state:
τi : Pi × Si × Ei 9 Si. τi is defined such that only events inEi,j can change the state
of a taskti,j into a new state inSi,j . We assume that there is exactly one finish event for
each task. A task can, by definition ofτi, reach different finish states depending on de
previous state the task is in. The partial functionσi returns the new state in the next task
based on the finish state of the previous task:σi : Pi × Sfinish

i 9 Si.
There are three common rules inR which are the same for all agents. The first rule in
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Figure 2: Disturbed plan executions of agents A and B.

R describes how a state transition of a task is caused by an eventek:

([e1; ...; ek−1]ts(ti,j , s) ∧ τi(ti,j , s, ek) = s′) → [e1; ...; ek]ts(ti,j , s′) (1)

The second rule inR describes the activation of the next task when the previous task is
finished:

([e1; ...; ek]ts(ti,j , pending) ∧ σi(ti,j−1, s) = s′) → [e1; ...; ek]ts(ti,j , s′) (2)

The third rule inR defines which states will or will not be reached during the plan ex-
ecution. We use the predicateEvents({E1, ...., Em}) to denote that these sequences of
events will occur (a sequenceEi for eachPi).

∃e1; ...; ek(Events({〈e1; ...; ek; ...en〉i, ...}) ∧ [e1; ...; ek]ts(ti,j , s)) ↔ 2ts(ti,j , s) (3)

The setCst in MAP is the set ofconstraints, with each constraint composed of pred-
icates2ts(, ) and logic symbols{∨,∧,¬}. Moreover, constraints are only defined on
finish states, as they can be viewed as a summary of the execution of a task. the constraint
violations can be repaired during the active states of a task. An example of a constraint
is cst = ¬(2ts(t, s) ∧2ts(t′, s′)) ∨2ts(t′′, s′′), in whichs, s′, s′′ are finish states. The
constraints are ‘demands’ on the plan execution that should be fulfilled. A constraint
violation or conflict occurs when the expected execution is inconsistent with a certain
constraint. We will assume that when plans are executed normally (only finish events
occur), all constraints will hold and the plan-execution is in good health. Consequently,
the constraint violations are caused by disruption events, and might be solved by repair
events to regain the plan-execution health. In addition, we assume that the constraints
represent all interdependencies that exist between plans of different agents.

Figure 2 illustrates a disrupted execution of the plans of the departing agentA and
arriving agentB in the example of section 1. Both plans consist of three tasks:P1 =



〈t1,Start, t1,Taxi, t1,Takeoff〉, andP2 = 〈t2,Start, t2,Arrive, t2,Taxi〉. The event sequences of the
plan execution are 〈efinish Start, eSpeededup, efinish Taxi, efinish Takeoff〉1 and 〈efinish Start,
eHeavyheadwind, efinish Arrive, efinish Taxi〉2. In this setting, the constraint¬(2ts(t1,Takeoff ,
finish early) ∧2ts(t2,Arrive, finish delayed)) between the two plans is violated.

In general, we assume that each agent has knowledge of its individual plan description
PD i, of the constraintsCsti ⊆ Cst that are relevant for its plan, and of the other agents
to whose plans the constraintsCsti apply. During the execution of a plan, an agent
notices when disruption events occur (for instance through its sensors). Based on this, an
agent can construct the sequence of past events (up to and including the current or latest
events) in the so-called current event historyCEH i (with CEH =

⋃
i CEH i). We assume

that in the future, from current taskti,j on, no disruption or repair events will occur.
Hence, for each task in the remaining plan, one finish event will occur. The resulting
sequence of eventsFE i = 〈ej , ej+1, ..., en〉, with e ∈ Efinish andFE =

⋃
i FE i, will

be called the future event sequence. The current event history can be combined with
the future events sequence into the future event history:FEH i = CEH i ◦ FE i (with
◦ denoting a concatenation of the two sequences). Using the future event history, an
agent can determine the possible consequences of the disruption events. If the constraints
possibly get violated, the agent contacts the other agents involved to verify this. This way,
conflicts are detected as early as possible.

3 Event diagnosis

Through diagnosis we wish to find out for each violated constraint, which set of disruption
events causes the violation. With the help of these events we can also establish which
states are responsible for the violations. These states might be helpful to prevent new
constraint violations in much earlier phases by recognizing state patterns.

We define two types of Event Diagnosis: Responsible Event Diagnosis (∆R) and
Constraint Satisfaction Event Diagnosis (∆CS). Both diagnoses are a subset of the dis-
ruption events that occur in the future event history;∆ ⊆ Edisrupt ∩ FEH , with FEH
the corresponding set of all events in the sequences inFEH . Moreover, both diagnoses
are defined on one constraintcst∗ that is violated, but can as well be extended to sets of
violated constraints. Below, we provide two formal definitions of the diagnoses. Respon-
sible event diagnosis gives us a minimal set of disruption events that causes the violated
constraintcst∗. To achieve this, we remove as many disruption events as possible, such
that the violation of the constraint still holds.

Definition 1 Responsible Event Diagnosis is a minimal diagnosis∆R ⊆ {Edisrupt ∩
FEH } s.t.Events(FEH − {Edisrupt \∆R}) ∪ PD ` ¬cst∗.

With FEH −X we denote that the events inX are removed from the sequences inFEH .
The constraint satisfaction event diagnosis gives us a minimal set of disruption events,

such that when these events are left out of the future events history, the violated constraint
will hold again.

Definition 2 Constraint Satisfaction Event Diagnosis is a minimal diagnosis∆CS ⊆
{Edisruption ∩ FEH} s.t.Events(FEH −∆CS) ∪ PD ` cst∗.



The two diagnoses are related as follows: each minimal hitting set on the set of all possible
responsible event diagnoses, is a constraint satisfaction diagnosis, and vice versa.

In the example of section 1, all possible event diagnoses are:
∆R = {eSpeededup, eHeavyheadwind}, ∆1

CS = {eSpeededup} and∆2
CS = {eHeavyheadwind}.

4 Plan-execution health repair

Once the agents have detected the constraint violations that will arise because of (some
of) the occurred disruption events, the agents should adjust the execution of the plans
such that no constraint violations will occur in the future and the plan-execution health is
restored. To achieve this, each agent can insert repair events in the future event history
in order to create new state paths in its plan execution. By inserting repair events, the
anticipated constraint violations can be avoided.

A weak plan-execution health repairFER− is a set of event sequences containing all
future event sequences with some repair events inserted, such that by applyingFER−, all
anticipated constraint violations will dissolve and no new violations will be created.

Definition 3 A weak plan-execution health repairFER− is a setFER− = FE d RE ,
whereRE is a minimal subset ofErepair s.t.Events(CEH ◦FER−)∪PD ∪Cst 6` ⊥.

We useFER− = FE dRE to denote that the events inRE are placed at specified places
within the sequences collected inFE . Note that for the sameFE andRE different sets
FER− = FE d RE are possible, depending on the placement of the repair events in the
sequences inFE . With a minimalRE we limit the subsets ofRE to those which have no
subset that will construct a (weak) plan-execution health repair as well.

A strong plan-execution health repairFER+ differs from the weak version in that
FER+ ensures that all constraints hold.

Definition 4 A strong plan-execution health repairFER+ is a setFER+ = FE d RE
whereRE is a minimal subset ofErepair s.t.Events(CEH ◦ FER+) ∪ PD ` Cst.

Proposition 1 A weak plan-execution health repair is a strong one and vice versa.†

In the example of section 1, we can introduce an eventeWait, which changes
ts(t1,Takeoff , activeearly) into ts(t1,Takeoff , activenormal). Then, an example of a plan
execution health repair isFER = {〈efin Start, eSpeededup, efin Taxi, eWait, efin Takeoff〉1,
〈efin Start, eHeavyheadwind, efin Arrive, efin Taxi〉2}.

5 A protocol for plan-execution health repair

Both the weak and strong plan-execution health repair are strongly related to model-based
diagnosis. The weak plan-execution health repair corresponds with consistency-based
diagnosis, as formalized by Reiter [9]. The strong plan-execution health repair is a type of
abductive diagnosis, as defined by Console and Torasso [2]. Since both types of diagnosis
are known to be NP-hard, in general, our plan-execution health repair is NP-hard as well.

†The proof is omitted because of limited space. It is available on request.



To enable the agents to find a plan-execution health repair, we formulate the plan-
execution health repair as a constraint satisfaction problem:PRcsp = (V,D, C). The
set variablesV contains a variable for each task inMAP : V = {vi,j |ti,j ∈ Pi}. D
contains for each variable a domain of possible values, in this case the set of finish states:
D = {Sfinish

i,j |ti,j ∈ Pi}. The set of constraints,C, is divided into plan constraints,
Cplan, and conflict constraints,Cconflict. The plan constraints represent the execution of
the plans, as described byPD . A plan constraint between two successive tasks is true, if
there is an event path from the value assignment (or finish state) of the first task, to the
value assignment (or finish state) of the second task. The possible paths depend onCEH
andFER (the future event sequences combined with repair events). Therefore, the set of
plan constraints can be constructed as follows.

Cplan = {cvi,j ,vi,j+1(s1, s2)|Events(CEH ◦FER)∪PD ` 2ts(ti,j , s1)∧2ts(ti,j+1, s2)}
(4)

The set of conflict constraintsCconflict is a direct mapping of the setCst in MAP
onto the variablesvi,j .

Cconflict = {cvi,j ,....,vk,l
(s1, ..., sp)|2ts(ti,j , s1) ∧ .... ∧2ts(tk,l, sp) ` cst} (5)

We can build a constraint graph by representing the variables by nodes and the con-
straints by hyper-arcs. Based on this graph, we present the following 3-stage multi-agent
protocol for finding a plan-execution health repair after detecting violated constraints.

Stage 1: Initially, the agents attempt to solve the violated constraints locally. There-
fore, all agents that are not involved in a constraint violation, lock the values of their
variables. Moreover, all values of variables that have their tasks in the past are locked.
Then, each agent creates a linear individual constraint graph for its own plan. Influences
of other agents’ plans through the conflict constraints will be represented by unary con-
straints on the nodes involved. The changes in domains based on the locked variables are
updated in the graph as well.

Stage 2: by repeating two steps, arc-consistency on the constraint graph is achieved.
First, the agents reduce the domains of their variables by applying arc-consistency on
their individual graphs. To achieve this, no communication with other agents is required.
Since the individual graphs are linear, arc-consistency will be achieved in linear time.

Second, for each constraint inMAP in which the agent is involved and for which
the related variables have an altered domain, each agent communicates the new domain
to the other agents involved in the constraint. Subsequently, the agents adjust the unary
constraints representing the influences of the plan-constraints. The two steps are repeated
until no domains change anymore.

Stage 3: based on the restricted domains, the agents can search for a value assignment.
First, they agree on a order in which the agents will search for an assignment. Then, the
first agent in the order searches for a value assignment for its variables and communicates
these to the agents involved in its conflict constraints. These agents adjust their graphs
based on this knowledge and thereupon, all agents apply arc-consistency on their adjusted
graphs, as described above. If this succeeds, the second agent in the order searches for a
value assignment, and so on. But when during the arc-consistency procedure a domain
becomes empty, the search process backtracks and the previous agent has to find a new
assignment. Eventually, a solution for the constraint satisfaction problem may be found
and subsequently a plan-execution health repair can be established.



When no solution is found, the search space can be increased through unlocking some
of the locked variables. Another alternative or last resort is to apply replanning.

It is possible to change the third stage of the algorithm such that the assignment with
the minimal number of repair events is found. In addition to this, agents can be enabled
to negotiate on which agent should perform which repairs.

6 Conclusions and future work

In this paper, we introduced a model for reactive execution of plans in a multi-agent
context. The model forms a basis for adequate handling of conflicts that can arise during
the execution of the plans. Using this model, agents may perform appropriately model-
based diagnosis to resolve conflicts and regain plan-execution health by inserting small
repair actions (the repair events) in the execution of the tasks.

Still, several topics are to be examined in the future. First, the model should be ex-
tended to a probabilistic model in which the chances that a disruption event will occur
in the future are taken into account. Second, the heuristics to improve the efficiency of
the described protocol for multi-agent plan-execution health repair should be tested and
further investigated.
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