
How to keep plan execution healthy?

Femke de Jonge, Nico Roos, and Jaap van den Herik

Universiteit Maastricht, IKAT,
P.O. Box 616, NL-6200, Maastricht

{f.dejonge, roos, herik}@cs.unimaas.nl

Abstract. Developing a conflict-free plan for a multi-agent system in a complex
and dynamic environment is a difficult task. Moreover, it is impossible to take
into account all possible events that might occur during the execution of the plan.
Unexpected events may cause a plan execution to lead to conflicts: we then say
that the plan execution is unhealthy. This paper presents a new model that en-
ables agents (1) to control plan-execution health and (2) to regain health when
necessary. The agents can utilize the model to predict consequences of occurring
disruptions and thus detect unhealthy situations. With the help of the model’s
predictions, agents can correct the execution of tasks within the plan to regain
health. We emphasize that, in the case of bad health, the approach of correcting
the plan execution should be applied before relying on the more drastic approach
of replanning. The applicability of the presented model is demonstrated by in-
troducing two multi-agent protocols to keep the plan execution healthy. Finally,
we investigate the solving capabilities and the efficiency of our method in exper-
iments using randomly generated plans. Our conclusion is that many unhealthy
situations can be solved adequately by corrections in the plan execution instead
of performing a replanning procedure.

1 Introduction
Plan development and plan execution in complex, dynamic environments are difficult
tasks. This explains the tendency to apply intelligent computer programs to support
these tasks. Currently, the (initial) plan development in fields such as Air Traffic Control
(ATC) is to a large extent performed by planning software. For plan execution, however,
such software is not widely available, even though the execution of plans in complex
and dynamic environments requires continuous control and adaptation. Our research
focusses on employing a multi-agent system for plan-execution control and adaptation.
Multi-agent systems seem an obvious means to this end since the plans in environments
such as ATC are mainly distributed.

An adequate plan normally satisfies all constraints imposed by its environment and
by other plans. Hence, such a plan is conflict free. This is a property that should be kept
consequently and persistently during the execution of the plan. We denote a plan exe-
cution as healthy, when during the execution of the plan no constraints are violated. A
conflict-free plan can have an unhealthy plan execution when unexpected changes in the
environment occur. The process of keeping a plan execution healthy can be viewed as a
continuous cycle of detecting unhealthy situations and regaining health. Plan-execution

? This research is supported by the Technology Foundation STW, applied science division of
NWO and the technology programme of the Ministry of Economic Affairs (the Netherlands).
Project DIT5780: Distributed Model Based Diagnosis and Repair

health can be regained by either correcting the execution or changing the plan (i.e.,
replanning).

In our opinion, corrections within the execution of a plan have three advantages
when compared to replanning, viz. (1) they are often easier to accomplish, (2) they are
less influential for the environment and the rest of the plan, and (3) especially within
domains such as ATC, plan changes are more costly than changes in execution. For
instance, gate changes require a large amount of organization as the passengers need
to be informed, the engaged ground handling needs to be relocated, and so on. Not
surprisingly, within the ATC practice, the first attempt to regain health is always to try
and find solutions within the execution of the current plan. Therefore, we emphasize
that before applying replanning, agents should try to regain health by correcting the
execution of the plan without changing the plan itself.

In summary, the contribution of this paper is that it enables agents to keep the plan
execution healthy by applying small corrections within the plan execution. For this
purpose, we developed a model that agents can apply (1) to control the health of the
plan execution and (2) to find corrections to regain health when necessary.

The outline of the paper is as follows. Section 2 discusses the background of our
approach. In section 3, we present our model for plan-execution health control and
repair in a multi-agent system. Section 4 provides formal definitions of when a plan
execution is healthy, and how plan-execution health can by regained by applying small
corrections to the execution. In section 5, we present two protocols that implement
our model and in section 6, we applied these protocols in experiments to evaluate the
applicability of our model. Section 7 concludes the paper.

2 Background

Planning notions As stated in the introduction, we address the execution of a plan
after it is created. So, we assume that a plan is already developed. We view a plan as a
partial ordered set of steps. These steps are actions carried out at specific points in the
plan, while the actions are instantiations of general operations [1]. The execution of the
steps usually has a certain duration and may require resources that have to be shared
with other steps of the same plan or of other plans. We assume that a set of constraints
describes requirements with respect to shared resources. Within ATC, for instance, we
can think of safety constraints and of environmental constraints on noise pollution.
Since we consider a multi-agent context, we assume that the plan is distributed over the
agents. For example, in the ATC case, we can think of a multi-agent system containing
one agent for each aircraft (controlling its plan).

Plan descriptions generally see the steps as atomic parts that make up the plan. Here,
we view them as tasks that require several, often reactive, activities of the executing
agents. These activities cannot be planned because they depend on the status of the
environment (cf. when driving a car from A to B, not every overtaking manoeuvre can
be planned in advance). Therefore, the way the plan should be executed is not specified
exactly and we may state that the tasks have some boundaries or margins within which
the execution may vary. In particular in air traffic, it is common to specify margins for
the duration of tasks. For instance, it is the primary responsibility of a pilot or aircraft
agent, flying from one waypoint to the next one, to keep the aircraft in the assigned

flight path within an assigned time interval. The activities of adjusting speed, height,
and directions are not specified in the plan, but are assumed to be applied within the
boundaries. However, the activities contribute to the attempt to follow the plan, i.e.,
to keep the plan execution within the specified margins such as the flight path and the
time interval. So, the unplannable activities within plan execution influence whether the
constraints are satisfied or violated. Even when a plan is executed within its margins,
it still may happen that constraint violations occur (e.g., due to overtaking manoeuvres
when driving a car from A to B).

Related researchThe main contribution of this paper is the model for plan-execution
health control and repair. A fundamental property of such a model is, in our opinion, the
ability to represent the current and future states of the plan and its environment. Models
that are at the basis of such a property are Discrete Event Systems (DESs) and Markov
Decision Models (see, for an overview [2]). A DES models (1) the states that a task (or
object) can reach by nodes, and (2) the changes of states by events. Markov Decision
Models are a specific type of DES, in which changes of states are probabilistically
determined. Our model is partially inspired by these two models.

The TÆMS modelling framework used by [3] is also related to our model, since
their plan representation is rather similar. In TÆMS, a plan is represented by task de-
scriptions that express the uncertainty in plan execution. Raja et al. use TÆMS for plan
development. In contrast, our research focusses on predicting the states that the tasks
will reach, and how to influence this to regain plan execution health.

Our goal to keep plan execution healthy somewhat overlaps the goal of so-called
continual planning (for an overview of distributed continual planning, see [4]). In con-
tinual planning, the processes of planning and execution are interleaved so as to deal
with uncertainties in a dynamic environment. desJardins et al. [4] state that the most
preferred planning technique for continual planning is hierarchical plan refinement.In
our opinion that plan refinement cannot resolve all possible unhealthy situations, since
there is a level within each plan for which its (sub)activities are unplannable (as dis-
cussed in section 2).

Running exampleThe following example will be used as a running example throughout
the text. Consider a small airport with only one runway used for both arrival and depar-
ture. It is a small but busy airport, so plans are tight. Assume that two aircraft agents,
agentA and agentB, each have their own (sub)plan, connected through a constraint.
A’s plan is (1) to taxi from the gate to the runway, and (2) to take off from the runway.
B’s plan is (1) to arrive at the airport (at the runway), and then (2) to taxi from the run-
way to its gate. The obvious constraint that connects the two plans is that the runway
cannot be used by more than one aircraft at the same time. Therefore, the agents have
agreed on a mutual plan in whichB lands beforeA takes off. (It is remarked that the
aircraft can pass each other on the taxiway.) Although the plan satisfies the constraint,
still, small changes in the execution (mostly caused by external influences) can cause a
violation of constraints imposed on the plan execution. For instance, assume thatA is
a bit early as the aircraft speeded up while taxiing, andB is a bit delayed because of
heavy head wind during its flight. Then, they still may not use the (same part of the)
runway at the same time, but the two aircraft might pass one another at a close dis-
tance. However, a close distance could cause a violation of the safety constraints on the
distance that should be kept between the two aircraft.

3 Model description
The model assigns a health state to each task in a plan. This health state may change
during the execution of a task caused by unforeseen environmental influences or by
activities of the agent executing the task. The external influences of the environment
will be modelled as disruption events and the activities of agents, assuming that agents
do not deliberately disrupt the execution of tasks, as repair events.

The assignment of health states to tasks will enable us to evaluate the effects of
disruption events that have occurred during the execution of tasks. Our first (implicit)
assumption of the model is that disruption events are observable. This assumption will
not hold in general, especially in environments where not all possible disruption events
can be known. However, the model is also useable, with minor adaptations, if agents are
able to determine the actual health states of tasks, for instance through plan diagnosis
(see, e.g., [5]). A second assumption is that the plans of the individual agents are linear.
This assumption is mainly made for the clarity of the presentation of the model. More-
over, it is a common practice in ATC. The model is, however, also applicable if agents
have partial ordered plans.

Formally, we model a multi-agent plan as a quadruple consisting of a four sets:
MAP = (A,PD , R,Cst). The sets are: (1) a set of agentsA, (2) a set of plan descrip-
tionsPD , containing one plan description for each agent:PD =

⋃|A|
i=1 PD i, (3) a set

of common rulesR specifying the execution of the plan in general, and (4) a set of
constraintsCst between the agents’ plans. In the remainder of this section, these four
sets will successively be explained in more detail.

We assume that eachagentin the setA has its own individual plan. All plans are
gathered withinMAP . There are no other plans outside the model that the agents should
consider.

A plan descriptionPD i = (Pi,Si, Ei, τi, σi) describes how the plan of agenti
will be executed. The base of the plan description is the sequence of tasksPi =
〈ti,0, ti,1, ..., ti,n〉 which the agent wants to execute in this specific order. We usePi

to denote the corresponding set of all tasks in sequencePi. To describe the health of a
task, we have the setsSi andEi containing for each task a set of states and a set of events
respectively. The functionsτi andσi formalize, in combination with the common rules
R, the execution of tasks within a plan (we will specify this further on).

During the execution of an agent’s plan, a taskti,j is in a certainstate. Each task has
its own set of possible states:Si,j ∈ Si. We distinguish three types of state: pending,
active, and finish. For each taskti,j holds:Si,j = Spending

i,j ∪ Sactive
i,j ∪ Sfinish

i,j . There
is only one pending state for each task, this is the state in which the task is awaiting
before it is being executed. Thus,Spending

i,j = {spending
i,j }. When the current task (task1)

finishes, the next task (task2) will become active by changing from the pending state
to an active state (which state that is, depends on the execution of the previous task).
Finally, when task2 is completed, task2 changes from an active state to a finish state
and consequently, the then subsequent task (task3) is triggered.

Each plan has one start task:ti,0, with Si,0 = {spending
i,0 , sfinish

i,0 }. The start task has
only one pending and one finish state. When the start conditions are fulfilled, this start
task will change from the pending to the finish state, which will cause the next task to
begin execution (viz. go from the pending state to an active state).

State changes are caused byevents. Each taskti,j has its own set of events:Ei,j ∈
Ei, with Ei,j = Efinish

i,j ∪ Edisrupt
i,j ∪ Erepair

i,j . Finish events are triggered when pre-
defined conditions are fulfilled. Moreover, finish events change tasks from an active to
a finish state. Disruption events are externally caused and represent unexpected changes
in the execution of a task that might effect the plan-execution health. Finally, the repair
events are executed by the agent to regain the plan-execution health when necessary.
They represent the corrections in the plan execution. A task’s state is the result of the
sequence of events during the plan execution, and will be represented by predicate
ts(ti,j , s, E), whereti,j ∈ Pi is the task for which event sequenceE = 〈e1, ..., ek〉
leads to states ∈ Si,j . We use the predicateats(t, s) to denote that taskt will achieve
states during the actual plan execution, i.e., the past, current, and expected events lead
to s.

- - -- -?

pending pending pendingfinish finish
normal

finish
normal

active
normal

active
normal

[condition][start condition] [condition] ?

Start Take offTaxi from gate to runway

-
-

[condition]

state transitions caused by finishing the previous task

finish events caused by fulfilment of the condition.

Fig. 1. Normal plan execution of agent A.

Figure 1 illustrates the normal execution of a plan of the departing agentA in our
running example. The plan consists of three tasks:P1 = 〈t1,Start, t1,Taxi, t1,Takeoff〉, and
has event sequence〈efinish Start, efinish Taxi, efinish Takeoff〉. Note that, for reasons of clarity,
the figure does not present the whole model, but shows only the occurring states.

As stated above, we formalize the execution of tasks within an agent’s plan by the
partial functionsτi andσi, and by the set of common rulesR from MAP . The partial
function τi maps a task, its state, and an event to a new state:τi : Pi ×

⋃
j Si,j ×⋃

j Ei,j 9
⋃

j Si,j . (with9 denoting a partial mapping).τi is defined such that only
events inEi,j can change the state of a taskti,j into a new state inSi,j . We assume that
there is exactly one finish event for each task. A task can, by the definition ofτi, reach
different finish states depending on de previous state the task is in. The partial function
σi returns the new state in the next task based on the previous task and its finish state:
σi : Pi ×

⋃
j Sfinish

i,j 9
⋃

j Si,j .
The set of common rulesR in MAP consists of three rules. The first rule inR

describes how a state transition of a task is caused by an eventek:
(ts(ti,j , s, 〈e1, ..., ek−1〉) ∧ τi(ti,j , s, ek) = s′) → ts(ti,j , s′, 〈e1, ..., ek〉) (1)

The second rule inR describes the immediate activation of the next task when the
previous task is finished:

(ts(ti,j , pending, 〈e1, ..., ek−1〉) ∧ ts(ti,j−1, s, 〈e1, ..., ek〉) ∧ σi(ti,j−1, s) = s′)
→ ts(ti,j , s′, 〈e1, ..., ek〉) (2)

The third rule inR defines which states will or will not be reached during the plan
execution. We use the predicateEvents({E1,, Em}) to denote that these sequences
of events will occur (a sequenceEi for eachPi).

∃e1, ..., ek(Events({〈e1, ..., ek, ..., en〉i, ...}) ∧ ts(ti,j , s, 〈e1, ..., ek〉)) ↔ ats(ti,j , s)
(3)

We denoteRPD as the set of all instantiations of the rules inR for all plan descrip-
tionsPD i.

The setCst in MAP is the set ofconstraints, with each constraint composed of
predicatesats(,) and logic symbols{∨,∧,¬}. Moreover, constraints are only defined
on finish states, as they can be viewed as a summary of the execution of a task. An ex-
ample of a constraint iscst = ¬(ats(t, s)∧ ats(t′, s′))∨ ats(t′′, s′′), in whichs, s′, s′′

are finish states. The constraints are ‘demands’ on the plan execution that should be
fulfilled. A constraint violation or conflict occurs when the expected execution is in-
consistent with a certain constraint. We will assume that when plans are executed nor-
mally (only finish events occur), all constraints will hold and the plan execution is in
good health. Consequently, the constraint violations are caused by disruption events,
and might be solved by repair events to regain the plan-execution health.

A

B

-

- -- -

pending

pending pending

finish

finish
normal

finish
normal

active
normal

active
normal

[condition]

[start condition]

[condition]

Start Take offTaxi from gate to runway

-
- -- -pending

pending pending

finish

finish
normal

finish
normal

active
normal

active
normal

[condition]

[start condition]

[condition]

Start

active finish
earlyearly

[condition]-
active finish

earlyearly

[condition]-RO

U

6

-
finishactive

[condition] -
finishactive

[condition]

delayeddelayeddelayed delayed

µN

Arrive Taxi from runway to gate

¬(ats(t1,Take off, finish early)

∧ats(t2,Arrive, finish delayed))

-
-

[condition]
disruption eventfinish event caused by fulfilment of the condition

state transition caused by finishing the previous task constraint between two states of two tasks.

heavy
headwind

speeded
up

Fig. 2. Disturbed plan executions of agents A and B.

Figure 2 illustrates a disrupted execution of the plans of the departing agentA and
arriving agentB in our running example. Both plans consist of three tasks:P1 =
〈t1,Start, t1,Taxi, t1,Takeoff〉, andP2 = 〈t2,Start, t2,Arrive, t2,Taxi〉. The event sequences of
the plan execution are〈efinish Start, eSpeededup, efinish Taxi, efinish Takeoff〉1 and 〈efinish Start,
eHeavyheadwind, efinish Arrive, efinish Taxi〉2. In this setting, the constraint¬(ats(t1,Takeoff ,
finish early) ∧ ats(t2,Arrive, finish delayed)) between the two plans is violated.

In general, we assume that each agent has knowledge (i) of its individual plan de-
scriptionPD i, (ii) of the common rulesR, (iii) of the constraintsCsti ⊆ Cst that are
relevant for its plan, and (iv) of the other agents to whose plans the constraintsCsti
apply.

4 Health and health repair

We assume that an agent notices when disruption events occur during the execution
of a plan (for instance through its sensors). Based on the detected disruption events,
an agent can construct the sequence of past events (up to and including the current or
latest events) in the so-called current event historyCEH i (with CEH =

⋃
i CEH i).

We assume that in the future, from current taskti,j on, no disruption or repair events
will occur. Hence, for each task in the remaining plan, one finish event will occur. The
resulting sequence of eventsFE i = 〈ej , ej+1, ..., en〉, with eh ∈ Efinish, will be called
the future event sequence. The current event history can be combined with the future
events sequence into the future event history:FEH i = CEH i ◦FE i (with ◦ denoting a
concatenation of the two sequences, andFEH =

⋃
i FEH i). Based on the set of future

event histories,FEH , we can define plan-execution health as follows.

Definition 1. A plan execution is healthy iffEvents(FEH) ∪ RPD ` Cst.

When an unhealthy plan execution has been detected, the agents should correct the
execution of the plans such that no constraint violations will occur in the future and the
plan-execution health is restored. To achieve this, each agent can insert repair events in
the future event history in order to create new state paths in its plan execution.

A plan-execution health repairFER is a set of event sequences containing all future
event sequences with some repair events inserted, in such a way that by applyingFER,
all constraints hold again.

Definition 2. A plan-execution health repairFER is a set of sequencesFER = FE d
RE whereRE is a minimal subset ofErepair s.t.Events(CEH ◦FER)∪RPD ` Cst.

We useFER = FE dRE to denote that the events inRE are placed at specified places
within the sequences collected inFE . Note that for the sameFE andRE different sets
FER = FE d RE are possible, depending on the placement of the repair events in the
sequences inFE . With a minimalRE we limit the subsets ofRE to those which have
no subset that will construct a plan-execution health repair as well.

Note that computing a plan-execution health repair corresponds to applying ab-
duction. Without proof, we state that definition 2 is equivalent to aFER such that
Events(CEH ◦ FER) ∪ RPD ∪ Cst 6` ⊥ holds. This corresponds to applying con-
sistency checks. Since both abduction and consistency-check problems are known to be
NP-hard, in general, plan-execution health repair is NP-hard as well.

In our example, A can apply an eventeWait during the taxi task, which changes the
state of taskt1,Taxi from ‘active early’ to ‘activenormal’, and subsequently the state
of task t1,Taxi to ‘active normal’. This correction of plan execution resolves the con-
straint violation. Therefore, an example of a plan execution health repair isFER =
{〈efin Start, eSpeededup, efin Taxi, eWait, efin Takeoff〉1, 〈efin Start, eHeadwind, efin Arrive, efin Taxi〉2}.

5 Two protocols

Health control During the execution of a plan, agents control its development to de-
tect unhealthy states (conflicts) as follows. Based on the detected disruption events and
the expected future events, the agents construct a future event history. Using the fu-
ture event history, agents are able to predict which states will be reached in the future.

If these expected states are part of a possible constraint violation, the agents commu-
nicate the new values to other agents that participate in this constraint. This way, the
agents individually have sufficient information to determine whether a constraint will
be violated and an unhealthy plan execution is reached. The corresponding protocol for
health control is presented below. When one or more conflicts are detected, i.e., when
the plan-execution health is disturbed, the protocol for finding repair events to restore
plan-execution health is activated.

Health control protocol of agenti
while executing plan

if disruption event occursthen
determine expected future states;
send messageSTATE CHANGE to related agents;

if messageSTATE CHANGE receivedthen update view on other agent’s states;
check for conflicts;
if conflict detectedthen agent 0 starthealth repairprotocol;

Health repair The protocol for health repair is based on a mapping from the problem of
finding a plan-execution health repair to a constraint satisfaction problem. Simplified,
through assignment of an events path, agents choose a state for each task such that all
constraints hold. In this article, we sketch the protocol in broad outlines. For a more
detailed description of the underlying algorithm, we refer to [6].

Health repair protocol of agent 0
all agents startconsistencysubprotocol;
if consistency succeededthen agent 0 startpath assignmentsubprotocol;
elsehealth repair failed, no solution possible;

Consistency subprotocolof agent i
repeat until no domain changes occur anymore

apply domain reduction, check consistency;
if domains changedthen send messageDOMAIN CHANGE to related agents;
receive allDOMAIN CHANGE messages,
update internal representation;

Path assignment subprotocolof agent i
while!path assigned && !failed :

assign a new event path (including repair events);
if succeededthen

all agents: startconsistencysubprotocol;
if consistency succeededthen

path assigned;
if agent i+1 existsthen agent i+1 startpath assignmentsubprotocol;
elseall agents apply repairs

else if i != 0 then failed, agent i-1 startpath assignmentsubprotocol;
elsefailed, no solution possible;

The principal part of the protocol is thepath assignment subprotocol, in which
agents one by one assign an event path they want to follow during their plan execution
(to this end, the existing event path is extended by inserting repair events in the future
part of the path). An event path is chosen only if it does not violate constraints given
the already chosen paths. When an agent is not able to assign a conflict-free event path,
the process backtracks to the previous agent, that should assign a new event path.

Theconsistency subprotocolis applied in between path assignments to increase effi-
ciency. In this subprotocol, two steps are repeated. (1) Agents (with no path assignment
yet) propagate all possible event paths to verify which states are still reachable given
the current assignments. By removing the unreachable states, the agents achieve domain
reduction (and thus search space reduction). (2) Changed domains are communicated
to through constraints related agents, which, based on this new knowledge, apply do-
main reduction (step 1). The consistency subprotocol finishes when no domains change
anymore and subsequently a state of consistency with maximal domain reduction is
achieved. When during the consistency subprotocol a domain becomes empty, no so-
lution is possible given the current path assignments. Consequently, the assignment
subprotocol should backtrack, or when backtracking is not possible, the protocol fails.

6 Experiments
As stated in the introduction, the goal of the experiments is to gain insight into which
unhealthy situations are suitable for our approach of correcting plan execution. More-
over, we would like to test the efficiency of the proposed protocols with respect to the
communication overhead. For these two purposes, the protocols presented in the previ-
ous section have been implemented and tested with randomly generated plans. During
the experiments, the complexity of the problem of finding repair events has been varied
by altering two constraint parameters: (i) the percentage of constraints on the variables
(or tasks), p1, and (ii) the percentage of value combinations that are allowed within a
constraint between the variables, p2. The performance of the protocols is measured by
the number of messages on state or domain changes.

Fig. 3. Results of experiment.

In each experiment, a random plan is generated. Subsequently, an initial value as-
signment is made based on the expectations of a normal plan development. Then, a num-
ber of randomly generated disruption events are executed, which causes state changes.
Based on the current and expected future states, the agents detect constraint violations.
When an unhealthy plan execution is detected, the agents start the repair protocol to
regain plan-execution health.

Figure 3 illustrates typical results of our experiments. The figure shows for a series
of settings of constraint parameters (10 < p1 < 100 and10 < p2 < 100), the average

percentage of problems solved and the average number of messages on domain changes
that were sent during the plan-execution health repair protocol. The other parameter
settings for these specific experiments are: # agents = 5; # tasks per agent = 5; # states
per task = 5; # tasks per constraint = 2; # possible repair events per state = 2; # executed
disruption events = 10; # runs per constraint-parameter setting = 1000.

The results show that problems with high constraint density are unsolvable with
health repair, as was to be expected since increasing the constraint density causes a
decrease in the solution space. Given the settings of the experiments described, the
phase transition from solvable to unsolvable problems lies roughly around the boundary
p1+p2 = 100. The ridge in the bottom figure shows that problems situated at the phase
transition need the largest amount of messages.

7 Conclusion and future research
In this paper, we presented a model that enables agents to maintain plan-execution
health. With help of the predicting capabilities of the model, agents can control the
plan-execution health and regain health by correcting the plan execution. The protocols
for health control and health repair together with their implementations demonstrate
the applicability of the model in a multi-agent system. From the experiments we may
conclude that a substantial proportion of unhealthy situations are solvable by small cor-
rections in plan execution with a reasonable amount of communicative costs. In view of
the observations presented in section 6, we may conclude that health repair is best ap-
plicable in problems with constraint density considerably lower than the transition area.
Our overall conclusion is that many unhealthy situations can be solved adequately by a
well-thought correction in plan execution instead of performing a replanning procedure.
So, the benefits of the new model are large.

There are three topics we wish to examine in the near future. First, the efficiency of
the protocols can be increased to reduce communication overhead. Second, the balance
between health repair and replanning can be examined into more detail to gain a better
insight into which unhealthy situations should be solved by plan-execution corrections,
and which by replanning. Third, the model can be extended to a probabilistic model
in which the probabilities that a disruption event will occur in the future are taken
into account. This will improve the controlling power of the agents, in which they can
anticipate on unhealthy situations in a much earlier stage.

References

1. Ghallab, M., Nau, D., Traverso, P.: Automated planning. Theory and practice. Morgan Kauf-
mann Publishers (2004)

2. Cassandras, C.G.: Discrete event systems: modeling and performance analysis. Aksen asso-
ciates series in electrical and computer engineering. Homewood: Irwin (1993)

3. Raja, A., Lesser, V., Wagner, T.: Towards robust agent control in open environments. In:
Proceedings of 5th International Conference of Autonomous Agents. (2000)

4. desJardins, M., Durfee, E., C.L. Ortiz, J., Wolverton, M.: A survey of research in distributed,
continual planning. AI Magazine4 (2000) 13–22

5. Witteveen, C., Roos, N., de Weerdt, M., van der Krogt, R.: Diagnosis of single and multi-agent
plans. In: AAMAS 2005 (to appear). (2005)

6. de Jonge, F., Roos, N.: Plan-execution health repair in a multi-agent system. In: Proceedings
of the 23rd annual workshop of PlanSIG. (2004)

