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Preface

During my study in computer science, I got interested in the the research on formal
aspects of knowledge representation. This was the reason why I asked Prof. dr.
S. C. van Westrhenen of the group of Theoretical Computer Science, whether it
were possible to write my M.Sc. thesis about this subject. I was lucky since he was
also interested in this subject and wanted to learn more about it. Because a friend of
mine Hans Hellendoorn had asked the same question, a combined project was started
in which Hans Hellendoorn investigated theories for handling uncertain and fuzzy
knowledge and in which I investigated theories for handling incomplete knowledge.
This project as well as our studies were successfully completed in January 1987.

At the end of our study Prof. van Westrhenen asked us to continue our research
in a new project that should be completed after four years with the publication of
a Ph.D. thesis. The leaders of this project, which was sponsored by the National
Aerospace Laboratory (NLR), were dr. C. Witteveen from the group of Theoretical
Computer Science and dr. R. J. P. Groothuizen from the NLR. The project was
called the ROOK (Redeneren met Onzekere en Onvolledige Kennis) project which
stands for Reasoning with Uncertain and Incomplete Knowledge. The third aspect
of the project was the inexactness of the knowledge which is expressed by the Dutch
word ‘rook’. In English this word means ‘smoke’, which carries the meaning of
inexactness.

Within this project there have been four topics on which we have been con-
centrating. Hans Hellendoorn who continued the line of research he started for his
M.Sc.thesis, concentrating on reasoning with fuzzy logic. Cees Witteveen started re-
search on Truth Maintenance Systems investigating time complexity and semantical
foundations.

My own research concentrated on two topics, non-monotonic logics and certainty
measures that express our ignorance about the world. The first one and a half year
of the project, I have spent studying the literature on these topics and investigating
whether it is possible to define a certainty measure that could be used to realize
an efficient diagnostic reasoning process using heuristic knowledge. The results of
this research looked promising but there remained some important problems to be
solved.

After the discussions I had with Yao Hua Tan at the ECAI-88 in Miunchen, I
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viii Preface

started to re-examine some ideas I had described in my M.Sc. thesis. These ideas
are to view non-monotonic reasoning as a special case of reasoning with inconsistent
knowledge and to solve conflicts only when they are being derived using a partial
preference relation on the premisses. The first part of this thesis reports on the
result of this research.

In July 1989, I completed the research reported on in the first part of my thesis
and continued my research on defining a certainty measure that could be used to re-
alize an efficient diagnostic reasoning process. In my first attempts I had used condi-
tional probabilities to relate possible causes to anomalies that can be observed. Since
these conditional probabilities depend on the a priori probabilities of the anomalies,
e.g. one can have a headache not caused by some disease, incorrect results could
be derived. To overcome this problem I wanted to use relations like: ‘most humans
have brown eyes’ and ‘by many patients, a brain tumor causes headache’. The prob-
lem that arose was how to base correct conclusions on this information. It turned
out that the solution was to view a reasoning process as a process of constructing a
partial model of the world we are reasoning about. This view on a reasoning process
made it possible to give a very natural definition of a probability and a likelihood
measure. The latter can be used to realize an efficient diagnostic reasoning process.

Viewing a reasoning process as a process of constructing a partial model, is not
only very useful for handling uncertainty, but also for handling default reasoning.
Since in a partial model, the consistency problem is decidable, default conclusions
are correct with respect to the partial model. Default conclusions only have to be
withdrawn when new information is being added to the partial model that overrules
the default conclusion. Hence, default reasoning based on the construction of a
partial model does not possess the process non-monotonicity found in other non-
monotonic logics.

Unfortunately, the results of my research on default reasoning using a partial
model are not reported on in this thesis. They are left out because of two problems
that had to be solved first. The first problem was how to order the partial models
on the amount of information they possess. The second problem, which was pointed
out to me by E. Sandewall at a lecture I gave at the university of Linkoping, was
caused by an incorrect handling of the uncertainty expressed by nested formulas.
Since, I found the solution for both problems only a week before I had to finish this
thesis, there was no time left to discuss default reasoning based on the construction
of a partial model.




Acknowledgement

I thank everyone who has supported me over the last four year making it possible
for me to write this Ph.D. thesis. Without their support, criticism, comments,
discussion and friendship it would not have been possible to finish this thesis. 1
specially want to thank the following persons:

I thank Prof. S. C. van Westrhenen for offering me the opportunity to write
this thesis and for arranging the necessary financial support.

I thank Cees Witteveen for leading the ROOK project, for the discussions we
had about my work and for reading the many draft versions of my thesis.

I thank my colleague Hans Hellendoorn with whom I worked together for many
years, for his friendship and for never agreeing with me.

I thank Trudie Stoute for her advice about English.

I thank the National Aerospace Laboratory for their financial support. Espe-
cially I thank Anneke Donker and Ronny Groothuizen from the NLR for their
participation in the ROOK project.

1x






Contents

Introduction

I Non-monotonic logics

1 Non-monotonic reasoning

1.1 Non-monotonic logics
1.1.1 Circumscription .
1.1.2 Default logic .
1.1.3 Autoepistemic logic
1.1.4 Reasoning with inconsistent knowledge .
1.1.5 Deriving new defaults .
1.1.6 Semantics . .o

1.2 Reason maintenance systems .

1.3 Inheritance networks

1.4 Beliefrevision .

1.5 Research goals .

2 A preference logic

2.1 Basic concepts .

2.2 Formal definitions

2.3 The deduction process .

2.4 Determination of the belief set

2.5 The semantics for the logic

2.6 Some properties of the logic
2.6.1 Preferential models and cumulatlve loglcs
2.6.2 Belief revision

3 Related work
3.1 Hypothetical reasoning . .o
3.2 A framework for default reasoning

x1

w

o O v I

14
18
18
23
24
25
27

29
29
32
33
46
51
55
56
59

63
63
64



xii

3.3 Preferred subtheories

3.4 Default logic . . .

3.5 Deriving new defaults

3.6 Interacting defaults

3.7 Circumscription

3.8 Inheritance networks

3.9 Truth maintenance systems
3.10 The Yale shooting problem

4 Preferred subtheories
5 Evaluation
II A proposal for an alternative way of reasoning
6 In defence of partial models
6.1 Partial models .
6.2 Defining a partial model
7 The reasoning process
7.1 New information
7.2 Formal definitions
7.3 Semantics ..
7.4 The reasoning process
8 Uncertain conclusions
8.1 Expectations .
8.2 Inheritance networks
8.3 Explanations
9 Evaluation
References

Curriculum vitae

Contents

65
65
66
67
67
68
69
70

73

77

79

81
83
85

91
91
92
93
97

105
106

110
118

121
125

129




Introduction

Knowledge based systems differ from conventional programs in the way they perform
their tasks. A task performed by a conventional program is completely specified by
its internal structure designed by the programmer. This implies that the programmer
either has to foresee every possible application of the program or (s)he has to place
constraints on the applicability of the program.

Knowledge based systems offer a greater flexibility than conventional programs.
This flexibility is reached by representing the knowledge needed to perform a task
explicitly. The knowledge based system tries to perform the task at hand by manip-
ulating the available domain knowledge.

If the available knowledge is only applicable in specific situations, the only thing
we have gained by using a knowledge based system, is an easier and more flexible way
of specifying a task to be performed. Although this can be an important advantage,
we like to have more. If it is possible to store more generally applicable, and because
of this possibly less accurate knowledge, in a knowledge base system, we also can
anticipate on unforeseen situations. A disadvantage of the use of this knowledge is
that conclusions based on it can be uncertain and can sometimes be wrong. Hence,
a knowledge based system may not always perform its task in a correct or optimum
way. This, however, is often better than no results at all.

To be able to manipulate generally applicable knowledge correctly, some formal
description of this knowledge is needed. This description should specify a method
for representing the knowledge and should specify a meaning for this representa-
tion. Furthermore, rules for manipulating the knowledge representation are needed.
As was argued by J. P. Hayes [25], especially the meaning of the knowledge repre-
sentation is important. Having a semantics for a knowledge representation enables
us to evaluate the situations in which the represented knowledge is true. Also the
correctness of the rules for manipulating the knowledge can then be verified.

Given these constraints, it seems that logic is a good candidate of knowledge
representation. Logics possess a language for representing knowledge, a semantics
and a proof theory for manipulating the knowledge. Classical logics, however, are
not able to deal with not fully accurate knowledge. Because of this, new logics have
appeared. These logics can roughly be divided into two classes, viz. logics for repre-
senting uncertain knowledge and non-monotonic logics. The logics for representing
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2 Introduction

uncertain knowledge are based on extensions of classical logics. In these logics some
certainty, belief or probability measure is associated with every proposition.

The non-monotonic logics are a different way of dealing with less accurate knowl-
edge. These logics are used to describe what should hold if possible; i.e. they describe
a preferred situation. This allows us to jump to conclusions if the available infor-
mation is incomplete. If new information gets available, some conclusions may no
longer hold. Because of this property, the logics are called non-monotonic.

In the first part of this thesis I will describe a new non-monotonic logic. This
logic, which I will call the preference logic, combines the advantages of some existing
approaches while avoiding some of their disadvantages. Furthermore, a deduction
process in which reason maintenance is integrated, is defined for the logic.

Although non-monotonic logics are a good formalism for representing preferred
situations, their reasoning processes, which must be used to determine what holds
in a set of preferred situations, are not very intuitive. Like in a classical logic the
reasoning processes can only approximate the set of correct conclusions. Here, how-
ever, this approximation may contain wrong conclusions. In fact, not only the logics
are non-monotonic, but also the approximation of the set of correct conclusicns.

To avoid this problem, I will propose a new way of looking at a reasoning process
in the second part of this thesis. What I will propose is to view a reasoning process
as a process of constructing a partial model of the world we are reasoning about.
This way of reasoning has some important advantages over traditional reasoning
processes. First of all, it is a more intuitive way of reasoning. Furthermore, the
consistency problem is decidable for a partial model. Since all non-monotonic log-
ics depend, directly or indirectly, on consistency checks, this property can be very
important for these logics. Finally, it is possible to define two different certainty
measures for conclusions derived which express our ignorance about the world with
respect to a partial model. One certainty measure expresses the expectation that a
conclusion holds, and the other certainty measure expresses whether a conclusion is
an explanation for anomalies observed.

One should not expect a description of a complete framework in the second part
of this thesis. What I will describe are the foundations of such a framework. Since
many problems are still unsolved, much more research is needed. Despite of this,
I hope to convince the reader that the approach proposed in this part can be an
interesting alternative.



Part 1

Non-monotonic logics






Non-monotonic reasoning

In literature four different approaches for non-monotonic reasoning can be distin-
guished, non-monotonic logics, reason maintenance systems, inheritance networks
and belief revision. In the following section I will briefly describe the properties
of these approaches. The reason to describe these properties is twofold. Firstly,
it serves as a context in which the research, described in the following chapter,
should be placed. Secondly, it summarises those approaches that will be used in the
description of the research.

1.1 Non-monotonic logics

The non-monotonic logics all emerged as an extension of some classical logic. Since
there is no uniform way in which the logics are extended, I will describe some of
the non-monotonic logics, starting with the three most prominent ones that exist
today. These are J. McCarthy’s Circumscription [41], R. Reiter’s Default logic [49]
and R. C. Moore’s Autoepistemic logic [44]. The first two were published in 1980 in
a special issue of the Artificial Intelligence journal volume 13, and the autoepistemic
logic, based on the article of D. McDermott and J. Doyle, Non-monotonic logic I

5



6 Non-monotonic reasoning — Chapter 1

[43], appeared in the same special issue. So it seems that in the last ten years no
interesting new approaches have been developed, despite of the fact that these three
approaches are not perfect.

1.1.1 Circumscription

McCarthy’s circumscription is based on the idea of minimizing the set of n-tuples for
which an n-place predicate is true. In fact it can be viewed as a sound formalization
of the Closed World Assumption. To illustrate the ideas behind circumscription,
suppose that we have a set of premisses ¥ in which a predicate p with n arguments
occurs. Given some standard semantical structure (D, v) where D is a set of domain
objects and v is a valuation function, we can define truth values for formulas. The
truth value of the predicate p is defined in this structure as:

(D,v) & p(ty, ..., 1) if and only if (v(t1), ..., v(ts)) € v(p)

So v(p) denotes the set of n-tuples over the domain D for which the predicate p is
true. If we would apply circumscription of the predicate p, we should prefer those
structures that are models for the premisses ¥, in which p is true for the smallest
possible set of n-tuples v(p) C D". Now, consider the following example.
Example 1.1

1. bird(Tweety)
. ostrich(Tweety)
. bird(Woody)
. Vz [bird(z) A ~abnormal(z) — can_fly(z)]
. Yz [ostrich(z) — abnormal(z)]
. Vz [ostrich(z) — —can_fly(zx)}

[=2 TS B - N U

Applying circumscription on the predicate abnormal in this example, implies that
we prefer those models (D, v) in which v(abnormal) = {v(Tweety)}. Now if Tweety
and Woody denote different objects in the domain D, we get the intuitive correct
result, since:

(D, v) k= abnormal(Tweety)
(D, v) | ~abnormal(W oody)
(D, v) | ~can_fly(Tweety)
(D, v) k= can_fly(Woody)

After this more or less intuitive definition of circumscription, I will give the formal
semantic definition.
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Definition 1.2 For each pair of structures M, N if M = (D,v), N = (D, w) and
v(p) C w(p), then M <, N.

M is a minimal model in p for a set of premisses ¥ if and only if M €
Mod(Z) and for no N € Mod(Z) there holds:

N <p M.

The models for circumscription of the predicate p given the premisses X, are called
‘minimal models’. These are the models for ¥ in which the predicate p is true for a
minimal set of n-tuples v(p).

We can also give a syntactical characterization of circumscription. For this a
second order formula is used. This formula says that the predicate we are circum-
scribing should be the predicate that is true for the smallest number of n-tuples such
that the premisses X are satisfied.

Definition 1.3 Let ¥ be a set of premisses. Furthermore, let p,qi,..., ¢, be the
predicates which occur in ¥ and let £ = ¥(p, ¢1, ..., ¢n).
Then circumscription of p in X, denoted as CIRC(Z; p), is equal to:

CIRC(Z;p) = {VP,q1, - A Z(, 41, -, a0)] = — 0" < p1}
U 2(17) g1, -4y qﬂ)

where p < p' =VZ(p(F) — p'(Z)) and p<p' =p < p' AP < p.

Notice that p’ > p in the structure (D, v) if and only if v(p) C R where R is some
relation which represents the predicate variable p'.

The form of circumscription defined in Definition 1.3 is called second order for-
mula circumscription. In Definition 1.3 all predicates in the set of premisses may
vary. In the more general form of formula circumscription, we can specify explicitly
which predicates may vary. A special case of formula circumscription is when we
do not allow any predicate to vary, except for the one we circumscribe [42]. This
version of circumscription, called predicate circumscription, can be described by the
following formula.

o' ([/\ =) AVE[Y () — p(Z)]] — VElR(2) — P'(2)]]

If we remove the quantifiers from this formula and represent the resulting formula
as an axiom scheme, we get the circumscription introduced by McCarthy [41]. How-
ever, this original form of circumscription is not very useful, because predicates not
being circumscribed, are not allowed to vary. Therefore, circumscribing the predi-
cate abnormal in Example 1.1 will not enable us to conclude that Woody can fly,
can_fly(Woody). Other forms of circumscription that have appeared, are e.g. paral-
lel predicate circumscription, in which we minimize a set of predicates [37]; priorized
circumscription [37], in which we minimize a set of predicates according to some pref-
erence ordering, and pointwise circumscription {38]. Pointwise circumscription is a
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form of circumscription that differs from all other forms of circumscription. It is
based on the view that the truth value of an n-place predicate is defined by a func-
tion from D" to {true, false}. If the truth value is defined by such a function, there
is no relation that can be minimized. In fact, we can only minimize a predicate for
each point £ € D" by changing, if possible, its truth value from true to false at this
point €. This form of minimization can be expressed by the following circumscription
formula.

vz =[p(z) A A\ EQ (p(v) Az # v))]

To be able to make deductions from CIRC(X; p), we need to be able to collapse
the second order formula into a first order formula. Neither is this always possible
nor is there an algorithm for doing this. It is only for a number of special cases that
it will be possible to specify how the second order formula can be collapsed into a
first order formula. Another objection against circumscription is that although we
can represent what should hold in a preferred situation in an intuitively clear way
using circumscription, this representation does not seem to be a natural one.

Remark 1.4 When I showed above how circumscription can be applied in Exam-
ple 1.1, I assumed that Tweety and Woody denote different objects in the
domain. This assumption is called the Unique Name Assumption (UNA) (if
ground terms cannot be proved equal, they can be assumed unequal). One
might think that the UNA can be modelled using circumscription on the pred-
icate ‘=". Unfortunately, this is not possible. The reason for this is based on
the fact that the truth value of ‘2 = 3’ ((D,v) | £ = y) is not defined with
a relation but as: v(z) = v(y). So ‘z = ¥’ is true if and only if both z and
y denote the same object in the domain. Hence, we have to specify explicitly
that names denote different objects when we are describing default reasoning
using circumscription of the predicate abnormal [42].

1.1.2 Default logic

Reiter’s default logic is based on extending the predicate logic with a set of special
inference rules. These special inference rules are called default rules. A default
rule is a rule which adds a new formula to the theory when certain conditions are
satisfied. A default rule is a rule of the form:

a(Z) : fi(T), ..., (%)
7(Z)
where «, B1,..., 5, and v are formulas containing the free variables Z. Here « is
called the prerequisite, 0y, ..., O, are called the justifications and v is called the

consequent. A default rule can be viewed as a schemata from which we can generate
closed default rules by substituting the free variables Z by ground terms.




Section 1 — Non-monotonic logics 9

Roughly speaking, the default rules can be interpreted as: ‘for each sequence
of ground terms #: if a(f) is a known belief and =3 (%), ..., 7B (f) are consistent
with every derivable formula (informally: are not known beliefs) then (%) should be
believed’. Using this interpretation, we are able to describe the default rule ‘birds
can fly’.

bird(z) : can_fly(z)
can_fly(z)

A default theory E(X, D) consists of a set premisses £ and a set of default rules
D. The following default theory is a reformulation of Example 1.1. The formula in
Example 1.1 containing the predicate abnormal as a condition in the antecedent of
an implication, is replaced by a default rule.

Example 1.5
1. bird(Tweety)
ostrich(Tweety)
. bird(Woody)
. Vz[ostrich(z) — —-cdn-fly(:c)]
bird(z) : can_fly(z)
can_fly(z)

When we want to deduce the fact can_fly(Woody) from this default theory, we need
to be able to determine if —can_fly(Woody) is one of our beliefs. This means that
can_fly(Woody) is consistent with what we believe, or informally ~can_fly(W oody)
cannot be derived from what we believe. Since the problem whether a set of formulas
is consistent, is, in general, undecidable, we cannot describe the theory of some
default theory E(X, D) using some executable deduction process. The theory of a
default theory E(X, D), which is called an extension, can only be characterized by
a fixed point construction. The following fixed point construction characterizes an
extension of a default theory.

A

=

Definition 1.6 E is an extension of E(X, D) if and only if E is a fixed point of T,
E = T(F), where for each set of sentences S, I'(S) is defined as the smallest
set satisfying:

e T CTI(S5)
e Th(I'(S)) =T(S)
o for each sequence of ground terms %: if «z) : B (E_)’ () €D,

0163
a(f) € I'(S) and =p1(%), ..., =Ba(?) € S, then v(%) € T(S).
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An extension of a default theory, which satisfies the definition above, does not
have to be unique. There may be multiple extensions for the same default theory.
An example of such a theory is the following one:

Example 1.7 Let (X, D) be a default theory with £ = @ and D = {12 T4} This

=g ' —p

default theory has two extensions, namely Th({—¢}) and Th({-p}).

It is also possible that a default theory has no extensions at all, as illustrated in
the following example.

Example 1.8 Let (X, D) be a default theory with ¥ = {p} and D = {TT;} This
default theory has no extensions.

Reiter introduces two special classes of default rules, which always have an ex-
tension, namely normal and semi-normal default rules. Normal default rules are
default rules of the form:

a(Z) : v(T)
7(%)

Since a ground instance of v can only be an element of an extension if the denial
of this instance is not an element of the extension, a default theory only containing
normal default rules will have an extension. A semi-normal default looks much like
a normal default, but it has more expressive power.

a(Z) : ¥(Z), B1(E), -, Pn(T)
7(T)
For the same reason as for a normal default theory, a default theory containing
semi-normal defaults will have an extension.

In his original paper Reiter assumed that defaults used by humans could all be
modelled by only using normal default rules. Later on he withdraws this assumption
[60]. Then he showes that between default rules and between default rules and
implications unwanted transitive relations may occur. Consider, for example, the
following situation.

e Every Quebecois is a Canadian.

o Canadians are normally native English speakers.

¢ Quebecois are normally not native English speakers.
Translated into the default logic, this becomes:

1. Vz[quebecois(z) — canadian(z))

canadian(z) : native_english_speaker(z)

2.
native_english_speaker(z)
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3 quebecois(z) : ~native_english_speaker(zx)

—native_english_speaker(z)

This default theory has two extensions when we add quebecois(Pierre) to the set of
premisses. These extensions are:

¢ Th({native_english_speaker(Pierre)} UX)
e Th({—-native_english_speaker(Pierre)} UX)

1t is clear that only the latter extension is correct. To avoid the former extension in
this example, we have to replace the first default rule by:

quebecois(z) : —~native_english_speaker(z) A ~quebecois(x)
—native_english_speaker(z)

What we have done to eliminate the unwanted extensions is formulating an exception
on the application of a default rule. So, in describing a default using a default rule,
we have to consider every possible exception on its application.

A strange property of default logic is that the default rules are a set of (odd)
inference rules that influence the semantics of the premisses while, normally, infer-
ence rules belong to the proof theory. As part of the proof theory they should not
influence the semantics of the logic.

1.1.3 Autoepistemic logic

Autoepistemic logic is a logic for modelling the knowledge of an ideal introspective
agent. Such an agent knows all the logical consequences of its beliefs; for every
proposition ¢ it believes, it believes that it has a belief ¢, and for every proposition
¥ it does not believe, it believes it has not a belief .

Let a proposition ¢ about which the agent believes that it believes ¢, be described
by B(y). Furthermore, let T' denote the belief set of an ideal introspective agent.
Then the conditions the agent should satisfy can be formulated as follows.

e T =Th(T).
e If p €T, then B(p) € T.
o If o T, then ~B(p) € T.

These conditions on the belief set of an ideal introspective agent were suggested by
Stalnaker. He characterized a theory T that satisfies these conditions as stable, since
no new beliefs can be derived from it.

To show what we can derive by modelling an ideal introspective agent, consider
the following line of reasoning. ‘I firmly believe that Nixon is still alive. Since if he
had died, [ would know that.” The belief: ‘if Nixon had died, I would have known
about that’, can be represented by: ¢ — B(y). This is equivalent to: =B(yp) — —p.
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Since the belief set does not contain a belief that Nixon has died, ¢ & T, the
belief set will contain =B(y) € T. Therefore, =¢ will be believed. Notice that the
autoepistemic logic is a non-monotonic logic. Since, if the agent believes ¢, ¢ € T
and -y cannot be derived any more.

Autoepistimic logic can also be used to describe default rules. For example, the
default ‘Birds can fly’ can be modelled as:

Vz[bird(z) A ~B-can_fly(z) — can_fly(z)]

For a belief set T of an autoepistemic logic, a formal semantics can be defined.
In [44], Moore describes a semantics in which he refers to the belief set to define the
truth value of B(y). Since, in my opinion, such circular references should not occur
in a formal semantics, I will describe the alternative semantics that can be found in

[45].
Definition 1.9 Let 2 be the set of possible worlds. (W, R) is a complete S5 Kripke
structure if and only if W C Qand R=W x W.
(W, R) E o if and only if for every w € W: w [ ¢.
e w [= p if and only if w(p) = t.
e w | -y if and only if w £ ¢.
e wkEp—yifand only if w £ ¢ or w | .
w | B(y) if and only if for every w’' € W: v’ | .

Given this definition, the following relation between stable belief sets and complete
Kripke structures can be established.

Theorem 1.10 Let T be a set of beliefs.

T is a stable belief set if and only if there exists a complete Kripke structure
(W, R) such that (W,R) ET.

Up till now nothing has been said about what an agent may believe. Here, it is
assumed that the belief set is grounded in some base belief set, the premisses; i.e.
the base belief set should be a subset of the stable belief set.

Definition 1.11 A belief set 7" is a stable belief set grounded in a set of premisses
L, T is an autoepistemic (AE) extension of I, if and only if:

T=Th(EU{B(p) | € TYU{-B(p) | ¢ € T})

In [32], a belief set that satisfies this definition is called a weakly grounded belief set
by Konolige. He also gives a different way of characterizing an AE extension of I.
To be able to do this, he introduces a new entailment relation f=gs by restricting
the range of the modal indices on the entailment relation to stable belief sets only.
Furthermore, let the set of ordinary formulas in T' be denoted by Tp, the ordinary
formulas not in T' by T, the set {B(y) | ¢ € T} by BT and the set {—B(¢) | ¢ € T}
by ~BT. Using these new notations, Definition 1.11 can be reformulated as follows.
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Definition 1.12 T is a weakly grounded AE extension for T if and only if:
T = {(p l EUBT()U-'BTO |=ss <p}

In the weakly grounded AE extensions it is possible to possess beliefs that are
not justified by the premisses. For example, let ¢ be an atomic proposition that does
not occur in the premisses. Then, if the premisses possess an AE extension, it will
possess an AE extension that contains ¢, but it will also possess an AE extension
that contains —~p. There is, however, no reason to believe ¢ in the former extension
or to believe =y in the latter extension. To get rid of these extensions, Konolige
introduces moderately grounded extensions.

Definition 1.13 T is a moderately grounded AE extension for X if and only if:
T ={p | ZUBZU-BT, Ess ¢}

Moderately grounded AE extensions do not contain more ordinary beliefs than
strictly necessary. They are minimal according to the following definition.

Definition 1.14 An AE extension T of ¥ is minimal for ¥ if and only if: there
exists no AE extension S of T such that Sy C Tp.

Semantically, this definition implies that the model for an AE extension T, which
is moderately grounded in X, is the most ignorant complete Kripke structure that
satisfies &; i.e. there is no complete Kripke structure that satisfies £ and contains
more worlds.

Theorem 1.15 T is a moderately grounded AE extension for ¥ if and only if there
exists a complete Kripke structure (W, R) such that:

T = Th((W, R)),
(W.R) X

and for no (W', R') with (W', R’) |= X there holds:
wcw'.

Finally, Konolige defines an AE extension strongly grounded in . He introduces
this version of groundedness to avoid an agent from deriving a proposition ¢ from
B(yp) instead of the other way around. So, first an agent must believe a proposition
before it may believe that it believes the proposition. Unfortunately, the definition
of strongly grounded AE extensions depends on the syntactic properties of the pre-
misses. Before a strongly grounded extension can be determined, the premisses have
to be transformed in the following normal form.
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-B(a)VB(B)V..VB(B)Vy
Here, o, f1, ..., Bn and v are ordinary formulas containing no modal operators.

Definition 1.16 Let ¥ be a set of premisses in normal form and let T be an AE
extension of . Let X' be the sentences of ¥ whose ordinary part is contained
inT.

T is strongly grounded in ¥ if and only if:
T = {¢ | Z'UBY U-BT, k55 ¢}

It is possible to translate Reiter’s default rules to sentences of the autoepistemic
logic and vice versa, such that the kernels of the strongly grounded AE extensions
are equivalent to the default extensions. The kernel of a stable set T is its set of
ordinary formulas Tg.

1.1.4 Reasoning with inconsistent knowledge

The three non-monotonic logics discussed above are only intended as a context for
the work described in the next chapter. In this subsection I will discuss three other
logics that are closely related with the work described in the next chapter. The first
logic I will discuss here is N. Rescher’s approach to deal with an inconsistent set of
premisses [51].

Hypothetical reasoning

In his book ‘Hypothetical Reasoning’ Rescher describes how to reason by using
an inconsistent set of premisses. He introduces his reasoning method, because he
wants to formalize hypothetical reasoning. In particular, he wants to formalize
reasoning with belief contravening hypotheses, such as counterfactuals. In case of
counterfactual reasoning, we make an assumption of which we know that in fact it
is false. For example, let us suppose that Plato had lived during the middle ages.
To be able to make such a counter factual assumption, we, temporally, have to give
up some of our beliefs to restore consistency. It is, however, not always clear which
of our beliefs we have to give up. The following example gives an illustration.

Example 1.17
Beliefs
1. Bizet was of French nationality.
2. Verdi was of Italian nationality.

3. Compatriots are persons who share the same nationality.

Hypothesis Assume that Bizet and Verdi are compatriots.
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There are three possibilities to restore consistency. Clearly, we do not like to give 3,
but we are indifferent whether we should give up 1 or 2.

To model this behaviour in a logical system, Rescher divides the set of premisses
into modal categories. The modalities Rescher proposes are: alethic modalities,
epistemic modalities, modalities based on inductive warrant, and modalities based
on probability or confirmation. Given a set of modal categories, he selects Preferred
Maximal Mutually-Compatible subsets (PMMC subsets) from them. The procedure
for selecting these subsets is as follows:

Let My, ..., M, be a family of modal categories.

1. Select a maximal consistent subset of My and let this be the set Sy.

2. Form S; by adding as many premisses of M; to S;_; as possible without
disturbing the consistency of S;.

Sy is a PMMC-subset.
Given these PMMC-subsets, Rescher defines two entailment relations.

e Compatible-Subset (CS) entailment. A formula is CS entailed if it follows from
every PMMC-subset.

¢ Compatible-Restricted (CR) entailment. A formula is CR entailed if it follows
from some PMMC-subset.

Unfortunately, Rescher does not define a formal semantics for his logic.

Two approaches based on the ideas of Rescher are D. Poole’s framework for
default reasoning [48] and G. Brewka’s preferred subtheories [6]. Poole, however,
does not recognise this fact.

A logical framework for default reasoning

The central idea behind Poole’s approach is that default reasoning should be viewed
as scientific theory formation. Given a set of facts about the world and a set of
hypotheses, a subset of the hypotheses which together with the facts can explain an
observation, have to be selected. Of course, this selected set of hypotheses has to
be consistent with the facts. A default rule is represented in Poole’s framework by
a hypothesis containing free variables. Such a hypothesis represents a set of ground
instances of the hypothesis. Each of these ground instances can be used independent
of the other instances in an explanation.

Definition 1.18 Let F be a set of facts and let A be a set of possible hypotheses.
A scenario of (F,A) is a set DU F where D is in the set of ground instances
of A such that DU F is consistent.

Definition 1.19 If g is a closed formula, then an ezplanation of ¢ from F,A is a
scenario of (F, A) that implies g.
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Definition 1.20 An extension of (F, A) is a set of logical consequences of a maximal
(with respect to the set inclusion) scenario of (F, A).

Notice that this framework corresponds with Rescher’s approach in which we have
two modal categories, My = F and M; = A.

Given a set of facts and a set of hypotheses, it may occur that we do not want
to accept some scenario as an explanation for a formula g. To block these unwanted
scenarios, Poole extends his framework with a set of constraints. A scenario must
be consistent with these constraints. In this way constraints can be used as a filter
on the set of possible scenarios.

Definition 1.21 Let F be a set of facts, let A be a set of possible hypotheses and
let C be a set of constraints. A scenario of (F,C,A) is a set DU F where D
is in the set of ground instances of A such that D U F U C is consistent.

Poole does not specify a semantics for his.logic. He does not need a semantics,
because he views default reasoning as scientific theory formation; i.e. he is only
searching for (instances of) hypotheses that can be added to the facts, in order to
explain the observations. If, however, we also want to use the framework for making
predictions, then, clearly, a semantics is needed.

Preferred subtheories

G. Brewka generalizes Poole’s framework for default reasoning. He introduces a
partial preference relation on the hypotheses. Furthermore, he defines facts as the
most preferred hypotheses. Following Rescher, Brewka selects preferred maximal
consistent subsets of the set of hypotheses and calls them preferred subtheories.

With this generalization Brewka can solve the following two drawbacks of Poole’s
model.

¢ It is not possible to represent exceptions of exceptions in an elegant way. Due
to this, the number of defaults needed to represent a situation, may become
quite large.

e It is not possible to represent priorities between defaults directly.

In Brewka’s model constraints do not occur any more. Instead, the preferred
subtheories are generated, using the preference relation on the hypotheses. Although
default reasoning can be described more elegantly with the preferred subtheories
of Brewka, the subtheories contain less expressive power than the original logical
framework for default reasoning of Poole. To illustrate this, Example 3.1 can be
used.

Since Brewka presents his model as a generalization of Poole’s model, there js,
actually, no need for a new formal semantics. Poole argues that default reasoning
should be viewed like scientific theory formation. The hypotheses, used to describe
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defaults, only serve as a tentative theory used to explain observations. With this view
on default reasoning, one can stay in the semantic domain of first order logic. This
approach seems to be perfect for modelling defaults like: birds lay eggs. Observing
that a bird laying eggs, this default can be used as an explanation. Poole’s approach
is not intended to deduce that some bird Tweety lays eggs. Since Tweety can be a
male bird, the derivation of such a conclusion is undesirable. There are, however,
defaults from which we do wish to derive default conclusions. Examples of such
defaults are the following normative rules.

¢ Someone who has a driving licence, is permitted to drive a car.

® Someone who has a driving licence, but has drunk too much, is forbidden to
drive a car.

Brewka’s preferred subtheories can be defined using the following definitions. Let
¥ be a set of hypotheses and let (X, <) be a strict partial order on these hypotheses.
Since hypotheses containing free variables (the defaults) denote a set of ground
instances of these hypotheses, an expanded set of hypotheses ¥ is introduced.

Definition 1.22 Let T be a set of hypotheses. The expanded set of hypotheses &
is the smallest set in which every formula of ¥ (containing free variables) is
replaced by the set of ground instances of this formula.

Here it is assumed that a ground instance of a hypothesis has the same preferences
as the original hypothesis of which it is an instance.

Definition 1.23 Let (X, <) be the preference relation on a set of hypotheses I.
The expanded preference relation (X, <) on the expanded set of hypotheses T,
is the smallest strict partial order containing (X, <), which is invariant under
the expansion of T to X.

Now that the set of hypotheses and the preference relations are defined, the
definition of a preferred subtheory can be given.

Definition 1.24 Let X be a set of hypotheses and (X, <) be a preference relation
defined on these hypotheses. Furthermore, let a4, o5, ... be some enumeration?!
of T such that for every o; < a1 € (T,<): k < j.

S is a preferred subtheory of X if and only if S = S,,, where:
So =0
andfor0<i<m

Sy = SiU{o;} if S;U {0} is consistent
1Y s otherwise

1 Assuming a finite language a transfinite enumeration is needed when functions are allowed in
the language. In that case the index 1 in the set 01, ...,0; is understood to be some ordinal number.
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Note that the most preferred hypothesis is always added. Because (I, <) is a partial
order on &, different enumerations of ¥ may exist. Therefore, there may exist more
than one preferred subtheory.

Given the preferred subtheories, Brewka defines two notions of provability: weak
provability and strong provability.

o A formula ¢ is weakly provable from ¥ if and only if there exists a preferred
subtheory S of ¥ such that S |-¢.

e A formula ¢ is strongly provable from ¥ if and only if for every preferred
subtheory S of ¥ there holds S |-¢.

Notice that weakly provable corresponds with Rescher’s CR entailment and that
strongly provable corresponds with Rescher’s CS entailment.

In Chapter 4 I will define a semantics for the preferred subtheories. The set
of formulas entailed by the set of models is equal to the set of strongly provable
formulas. This set will be denoted by A.

Definition 1.25 Let S1, ..., S” be preferred subtheories that satisfy Definition 1.24.
Then:

A= ﬂ Th(S")
i21

1.1.5 Deriving new defaults

The last approach I want to mention here is Degrande’s conditional logic for prototyp-
ical properties [15]. This logic, which is, in its original version, not a non-monotonic
logic, possesses a property that cannot be found in any non-monotonic logic. In
this logic one can reason about default rules. New default rules can be derived from
old default rules and other propositions. Delgrande defines a semantic and a proof
theory for his logic. For the proof theory soundness and completeness is proven.
In [16], Delgrande extends his logic to enable the deduction of default conclusions.
Unfortunately, the proof theory uses consistency checks. Therefore, no executable
deduction process can be constructed.

1.1.6 Semantics

Till 1987 the semantics of non-monotonic logics was not well developed. The only
logic having a clear and well defined semantic from the start, was circumscription.
This is probably the reason why researchers are still interested in circumscription,
despite of the fact that it is not useful for practical applications. Default logic and
Rescher’s approach to deal with inconsistencies did, originally, not have a semantics
at all. As far as I know, the semantic described in Chapter 4 is the first semantics
that is defined for Rescher’s approach.
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More clarity about the semantics of non-monotonic logics arose with Y. Shoham’s
paper Non-monotonic logic: meaning and utility [59]. In this paper Shoham argues
that the difference between monotonic logic and non-monotonic logic is based on
an alternative definition of logical entailment. In the classical monotonic logics a
sentence is entailed by a set of premisses if and only if this sentence is true in every
model for the set of premisses. In non-monotonic logic we change this definition.
In these logics we define a strict partial preference relation on the set of semantical
structures for a logic. Using this preference relation, we define a set of preferred
models for a set of premisses. This means that we select a subset of the set of
models for a set of premisses. Now, a sentence is entailed in a non-monotonic logic,
it is preferentially entailed, if and only if this sentence is true in every preferred
model of a set of premisses. The different forms of non-monotonic logics can now be
realized, using different preference relations.

Definition 1.26 Let Sir be a set of semantical structures and let (Str,C) be a
preference relation on the set of semantical structures. This relation must be
" transitive, but not reflexive or symmetric.

Using the preference relation C, we can define a set of preferred models for a set of
premisses. '

Definition 1.27 Given a set of premisses X. Let Mod(X) be the set of models for
. Mod(X) is the set of preferred models for X if and only if:

1. Modr(X) C Mod(X)
2. for each M:

if M € Mod(Z) and for each N € Mod(X): ~[M C N], then M €
Modc (5).

Using the set of preferred models, we can define the notion of preferred entailment.

Definition 1.28 A set of premisses preferentially entails a sentence, ¥ = p, if and
only if every preferred model for a set of premisses satisfies this sentence, i.e.
for each M € Modg(Z):

MEDp.

It is not difficult to see that the standard monotonic logics are a special case in
the framework described above. We get a standard monotonic logic if for all sets
of premisses the set of preferred models is equal to the set of models. Furthermore,
notice that it is possible to have a consistent set of premisses which preferentially
entails a sentence and the denial of that sentence. For this it is only necessary that
the set of preferred models of a set of premisses is empty.

An important theorem which does not hold in non-monotonic logics is the de-
duction theorem. A weaker version of this theorem still holds.
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Theorem 1.29 Let A be a set of premisses and let p and ¢ be two sentences.
IfAU{p}Ec ¢, then Al p—q.

Not all forms of non-monotonic reasoning can be modelled in the framework of
Shoham. An important form of non-monotonic reasoning that can be modelled in
this framework is circumscription. The following preference relation ensures that
the preferred models are the same as the minimal models of Definition 1.2.

Definition 1.30 Let p be some atomic predicate.
For each pair of structures M, N if M = (D,v) and N = (D, w), then:

N €, M if and only if v(p) C w(p).

Another example for which this frame work can be used, is the modelling of the
Unique Name Assumption.

Definition 1.31 The result of applying the Unique Name Assumption (UNA) on
a theory can be characterized by the following preference relation on the se-
mantical structures.

For every structure M, N:
N Cuna M if and only if NEQ(N) C NEQ(M),
where NEQ(M) = {t; # 12 | t1,t2 € Terms en M | t; # t2}.

S. Kraus, D. Lehmann and M. Magidor generalized Shoham’s view on the se-
mantics for non-monotonic logics {33]. In their paper ‘Non- monotonic reason, pref-
erential models and cumulative logics’, they study non-monotonic logics along two
different lines. They study non-monotonic logics proof-theoretically by investigating
the non-monotonic consequence relation f~, and they study it semantically by devel-
oping semantics based on Shoham’s ideas. They also establish connections between
the two lines.

The interpretation they give for the non-monotonic consequence relation o
B is: ‘if o, then normally 8’ or ‘G is a plausible consequence of ¢’. Given this
consequence relation, they identify a number of properties a non-monotonic logic
should satisfy. According to Kraus et al. any logical system should at least satisfy
the following properties, since they cannot think of any interesting weaker system.

e a p o (Reflexivity).

, Fa—Baby

ST (Left Logical Equivalence).

Ea—Baba o .
o — '  (Right Weakening).
oy (Rig g)




Section 1 — Non-monotonic logics 21

o INBr VAl B A
P (Cut).

o abBaby
aAf by

A system that satisfies these properties is called system C, for cumulative. Some
properties that can be derived in system C are:

 abB B aaby
B
cabBaby o\
ab BAY (And).
,abB—vabB
aby

System C can be made stronger by adding new properties on the consequence
relation. The first property Kraus et al. add to system C, is the following one:

(Cautious Monotonicity).

(Equivalence).

(Modus Ponens in the Consequent).

. &0 baj, a1 as,..,ak_1 b ag,ar b ao (Loop).
@ b ok

A system that also satisfies this property, is called system CL, for cumulative with
loop. According to Kraus et al. there is another property a non-monotonic logic
should possess.

o 1B ()
aVBhy (Or).

A system that also satisfies this property, is called system P, for preferential. The
addition of the rule Or to CL (or to C since C + Or implies Loop) is not beyond
criticism. Kraus et al. argue that in counter examples for the rule Or, like the
one described below, there is a hidden epistemic operator. If we make this operator
explicit, the problem will disappear.

For example, if I knew «, it would be an abnormal situation and if I knew —a;,
it would be an abnormal situation as well.

There are, however, situations in which no hidden epistemic operator is involved,
but in which the rule Or still leads to unwanted conclusions. This can be shown by
extending the example Kraus et al. gave in defence of the rule Or.

Example 1.32 If John attends the party, normally the evening will be great, and
if Cathy attends the party, normally, the evening will be great. But if both
attend the party, the evening will not be great.
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From this example it is clear that we may not conclude that if at least one of them
attends the party, the evening will be great. So we can conclude that, although
there are situations in which we would like to have the rule Or, we can also imagine
situations in which it leads to undesirable conclusions

Kraus et al. distinguish two other systems CM and M, which stand for cumu-
lative monotonic and monotonic. Since both systems are monotonic, they will not
be considered here any further.

Now I will turn to the semantic side of the systems C, CL and P. As I mentioned
before, Kraus et al. developed their semantics on the ideas of Shoham [58, 59]. They
define a model as a set of state, representing possible states of affairs, and a binary
preference relation on the states. This preference relation is used, for example, to
prefer states in which Tweety can fly to states in which it cannot. The non-monotonic
consequence relation o p 3 is satisfied by such a model if and only if 3 is satisfied
in the most preferred states that satisfy o.

The states in a model are labelled with a non empty set of worlds. Because a
label of a state is not limited to a single world, these models possess more expressive
power than Shoham’s account. Even when states are labelled with single worlds,
they still possess some extra expressive power since different states can be labelled
with the same world. The following definitions describe their models.

Definition 1.33 A model is a triple (S,[, <) where S is a set of states, { : S —
(24 — {®}) is a labelling function that assigns a non empty set of worlds from
a universe U of worlds to every state, and < is a binary preference relation on
the state S. Furthermore, the smoothness condition of Definition 1.35 must
be satisfied.

Definition 1.34 Let (S, [, <) be a model. A formula a is satisfied by a state s € S,
s £ «, if and only if for every w € I(s): w |= a. Furthermore,leta = {s € S|
s E a} be the set of all states that satisfy a.

Definition 1.35 A set of states @ is smooth if and only if for every s € a there
exists a minimal ¢ € @ such that ¢ < s.

A model (S,!, <) satisfies the smoothness condition if and only if for every
formula o their holds: @ is smooth.

Given the definitions of a model, we can formally define the meaning of the non-
monotonic consequence relation.

Definition 1.36 Let W = (S,{,<) be a model. a bw B if and only if for any
minimal state s € @, s E 8.

A model (S, ], <) without any additional conditions is called a cumulative model.
For the cumulative models and system C, we can prove a representation theorem,
relating the two characterizations of non-monotonic logics.
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Theorem 1.37 A consequence relation is a consequence relation for system C if
and only if it is defined by some cumulative model.

We can limit the set of cumulative models to those models whose preference rela-
tion is a strict partial order. These models are called cumulative ordered models. For
the cumulative ordered models and system CL, we can also prove a representation
theorem.

Theorem 1.38 A consequence relation is a consequence relation for system CL if
and only if it is defined by some cumulative ordered model.

We can limit the set of cumulative ordered models to models whose labelling
function assigns only single worlds to a state. The models are called preferential
models. They correspond with Shoham’s semantics for non-monotonic logics. Also
for the preferential models and system P, we can prove a representation theorem.

Theorem 1.39 A consequence relation is a consequence relation of system P, if
and only if it is defined by a preferential model.

1.2 Reason maintenance systems

Reason maintenance systems have emerged as an implementation technique for prac-
tical reasoning systems. Central in these systems is a dependency network. This
network represents the dependencies between propositions, which are represented as
nodes. These dependencies describe on which propositions beliefin some proposition
is based.

A dependency network can be used in two different ways. It can either be used
to determine the propositions that can be believed, given the dependencies between
them, or it can be used to determine minimal consistent sets of assumptions on
which belief in a proposition is based.

The former approach originates from J. Doyle’s JTMS [17]. In a JTMS a depen-
dency is described by an n-tuple

(my,...,mj;n1,.,np — ),

which is called a justification. In such a justification, m, ..., m; are called the mono-
tonic antecedents, ny, ..., n; are called the non-monotonic antecedents and c is called
the consequent. Consequent and antecedents represent nodes in the dependency net-
work. The justifications justify belief in a proposition c if and only if there exists a
justification whose monotonic antecedents my, ..., m; are believed, and if none of its
non-monotonic antecedents ny, ..., nj are believed. The problem of determining the
set of believed propositions is for general dependency networks an NP-Hard problem.

The latter approach originates from J. de Kleer’s ATMS [31]. In an ATMS the
justifications are used to determine for a proposition each minimal set of assumptions
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of which the elements must be believed to justify belief in this proposition. To deter-
mine these sets of assumptions, in the original ATMS only monotonic justifications
are used. Monotonic justifications are justifications that have no non-monotonic
antecedents. ‘

In [24], J. W. Goodwin argues that reason maintenance systems should be viewed
as a process oriented logic that focuses on the process of inference in a logic. In
this, it differs from the logic itself, which only focuses on derivability; i.e. logics
only characterize the set of theorems that follow from the set of premisses. If a
non-monotonic logic possesses a proof theory, this proof theory is only intended to
verify, at least in principle, whether a set of formulas is a set of theorems given
the premisses. A proof theory is not a theory about how we can determine or
approximate the set of theorem in practical situations. Furthermore, since some
non-monotonic logic do not satisfy the compactness theorem, they do not have a
proof theory. For example, Reiter’s default logic does not have a proof theory.

Goodwin’s process oriented logic concentrates on the process of determining the
set of theorems. He argues that reasoning should be viewed as a process of adopt-
ing new constraints on what is currently proven. These constraints are added as
justifications in a dependency network. For example, using the modus ponens, con-
straints of the form: ‘if ¢ and ¢ — v are currently proven, then 1 must be currently
proven’ can be derived. The reason maintenance process uses these constraints to
determine what is currently proven. The set of propositions currently proven, may
change non-monotonically if new constraints are added. In the limit, however, the
set of currently proven propositions will become equal to the set of theorems. Ac-
cording to Goodwin, the process non-monotonicity in this approximation process is
just another side of non-monotonic logics.

1.3 Inheritance networks

Inheritance networks emerged as a branch of the semantic networks. Like the se-
mantic networks, the inheritance networks use a graph for representing knowledge.
In an inheritance network the nodes represent specific objects and classes of objects.
The edges between the nodes represent the is-a or is-not-a relations. To derive con-
clusions from an inheritance network, procedures taking the network as input are
used. Although all today’s networks agree on the fact that the procedure should
use pre-emption [63, 28, 64, 61], i.e. the properties of a class can be overruled by a
subclass, they do not agree if multiple inheritance occurs. In [64], Touretzky et al.
discuss some of the intuitions behind multiple inheritance. In my opinion, the prob-
lems with multiple inheritance arise from the lack of a model based semantics for
their inheritance networks. Some authors have defined the semantics of the network
in terms of propositions in a non-monotonic logic [19, 62, 5, 20]. This implies that
the inheritance network is only used as an implementation technique for a subset of
the logic. F. Bacchus [2] and L. Shastri [57] both describe a semantics for inheri-
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tance networks in which the #s-a relation is modelled as denoting that a percentage
of the objects of a class also belongs to some other class. As Bacchus points out, this
interpretation of the is-q link limits the applicability of an inheritance networks.

In {34], T. Krishnaprasad ad W. Kifer claim to describe a model based semantics
for inheritance networks. What they actually describe, however, is a semantics for
a very limited logic language. In [35], the same authors together with D. S. Warren
do describe a model based semantics for inheritance networks. To be able to handle
the problem of multiple inheritance, they define a preference relation between the
is-a and is-not-a relations, using a special link between their consequent nodes.

A number of problems of inheritance networks are their limited expressive power,
the ad hoc nature of their proof procedures and the lack of a model based semantics
for most of the networks. Therefore, in my opinion, if there is any practical use for
inheritance networks, it is for implementing a limited subset of some non-monotonic
logic. In this thesis I will not consider inheritance networks any further.

1.4 Belief revision

The reason to call a non-monotonic logic non-monotonic is that the set of theorems
of a set of premisses does not have to grow monotonically in such a logic if the set
of premisses is growing monotonically; i.e. it does not satisfy the property:

A C B if and only if TH(A) C TH(B),

where A and B are sets of premisses and T'H is a function that maps a set of
premisses on its set of theorems. If we identify the set of theorems as the belief set
of an ideal omniscient reasoning agent, we can say that the agent may have to revise
its belief set when it receives new information.

P. Gardenfors has studied the revision of an agent’s belief set independent of some
underlying (non-monotonic) logic. In his book ‘Knowledge in Flux’ [23], Gardenfors
studies the dynamics of belief. He identifies a belief set with an epistemic state
containing a deductively closed set of propositions an agent holds to be true. Given
such a belief set of an ideal reasoning agent, Gardenfors studies the changes of the
belief set when new information is received. He describes three possible ways of
changes, ezpansion, revision and contraction. These changes are the result of new
information coming available. They are described by three functions, B*[e], B*[«]
and B~ [a], denoting respectively the expansion, revision and contraction of a belief
set B with respect to a formula a. For each of these three functions, he describes
a set of rationalily postulates that should be satisfied by the appropriated belief
changes.

Expansion

Expansion is the change being the result of learning something. Gadenfors identifies
the following postulates for expansion of a belief set B with respect to a formula a.
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The key idea behind these postulates, and also behind the postulates for revision
and contraction, is that we want to retain the old beliefs as much as possible when
changing the belief set.

1. Bt[a] is a belief set.

2. a € Bt[a].

3. BC B*[a].

4. If a € B, then B*[a] = B.

5. If BC H, then Bt[a] C H*[a].

6. For all belief sets B and all formulas «, Bt [a] is the smallest belief set that
satisfies the postulates 1 to 5.

Given these postulates, the following important theorem can be proven.

Theorem 1.40 The expansion function satisfies the postulates 1 to 6 if and only if
Bt[a] = Th(BU {a}).

revision

Revision is more or less the same as expansion, except for demanding the resulting
belief set to be consistent. This implies that if an agent learns o and =« is in its
belief set, it must give up some of its beliefs to be able to accept a. Hence, the
belief set changes non-monotonically. So, belief revision is closely related to non-
monotonic reasoning. In fact, according to Gardenfors, one of the reasons why an
agent can learn a while believing —a is because —a is some default assumption.
Learning o implies that —~a has to be withdrawn from the belief set. The changes of
the belief set must, of course, be minimal. Gardenfors identifies the following basic
set of postulates for belief revision.

1. B*[a] is a belief set.

2. a € B*[a].

3. B*[a] C Bt[a].

4. If ~a ¢ B, then B*[a] C B*[q].

5. B*[a] = B, if and only if |-—a. Here B) denotes the inconsistent belief set.

6. If o — B, then B*[a] = B*[4].
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Contraction

Contraction is the change that results from stopping to believe a formula while no
new formulas are added. This kind of change may occur when an agent learns
that what he had learned before, comes from an irreliable source. For contraction
Gardenfors identifies the following basic set of postulates.

1. B~ [a] is a belief set.

2. B-[a] C B.

3. If a & B, then B-[o] = B.

4. If {£a, then a € B~ [a].

5. If « € B, then B C (B~ [a])t[a].
6. If o — B, then B~ [a] = B~[f].

Between expansion, revision and contraction the following two relations can be
established.

Theorem 1.41 Let the contraction function satisfy the contraction postulates 1 to
4 and 6 and let the expansion function satisfy the expansion postulates 1 to 6.
Then the revision function defined by:

B*[a] = (B~ [-a])*[e]
satisfies the revision postulates 1 to 6.

Theorem 1.42 Let the revision function satisfy the revision postulates 1 to 6. Then
the contraction function defined by:

B~ [a] = BN B*[a]

satisfies the contraction postulates 1 to 6.

1.5 Research goals

In Default logic and in autoepistemic logic belief in a proposition can be based on not
believing some other proposition. In Default logic this is realized by the justifications
in the default rules, and in autoepistemic logic by formulas containing sub-formulas
of the form —=B(3). Believing a formula a because we do not believe a formula 3,
actually implies that we implicitly assume the formula 8 to be false. Since § must
be either true or false (no intuitionistic logics are considered), and since we may
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not believe a if B is true, # must be false. In Default logic and autoepistemic logic,
however, the truth value of the implicit assumptions is left undefined.

In my opinion, these implicit assumptions should be stated explicitly in a non-
monotonic logic. In [565], E. Sandewall uses the same view when he defines his
functional semantics for non-monotonic logics. One way to avoid these implicit as-
sumptions is to view non-monotonic reasoning as a special case of reasoning with
inconsistent knowledge. This motivated my research, reported in the following chap-
ters. Considering non-monotonic reasoning to be a special case of reasoning with
inconsistent knowledge, I wanted to investigate whether it is possible to create a
non-monotonic logic based on a reasoning process that solves conflicts after they are
being derived. To solve the conflicts derived, generalizing Rescher’s approach, I will
use a strict partial preference relation on the premisses.

If such a non-monotonic logic is possible, its relation with other non-monotonic
reasoning systems should be investigated. Here, we are especially interested in the
relation between its semantics and the semantics for non-monotonic logics described
by Kraus et al. Furthermore, we are interested in the behaviour of the logic when new
information is added. I will compare this behaviour with Gardenfors’s postulates
for belief revision.




A preference logic

In this chapter I will describe a new non-monotonic logic based on the ideas of
N. Rescher [51]. This logic is intended for reason with inconsistent knowledge. To
handle inconsistencies, a partial preference relation on the set of premisses is used
to choose a culprit when an inconsistency is determined. Using J. W. Goodwin’s
view on non-monotonic reasoning [24], a deduction process based on the generation
of justifications will be developed. Furthermore, a semantics based on the ideas of
Y. Shoham [59] will be defined for the logic. It is shown that this semantics fits in
the family of preferred models, defined by Kraus et al. [33].

The logic can also be used for default reasoning. To be able to do this, default
reasoning has to be viewed as a special case of reasoning with with inconsistent
knowledge. Default rules must, of course, have a lower preference than facts. In
that case they can be overruled by the facts.

2.1 Basic concepts

To be able to reason with inconsistent knowledge, I will consider premisses to be
assumptions. These premisses are assumed to be true as long as we do not derive a

29
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contradiction from them. If, however, a contradiction is derived, we have to deter-
mine the premisses on which the contradiction is based. The premisses on which a
contradiction is based are the premisses used in the derivation of the contradiction.
When we know these premisses, we have to remove one of them to block the deriva-
tion of the contradiction. To select a premiss to be removed, I will use a preference
relation. This preference relation must define a strict partial ordering on the set of
premisses. Using the preference relation, we have to remove a least preferred premiss
of the inconsistent set, thereby blocking the derivation of the contradiction.

Example 2.1 Let ¥ denote a set of premisses,
Y¥={l9,2.¢ — 4,3 9,4 a}
and (X, <) a preference relation on X:
(,)={3<1,3<2}

From X, 9 can be derived using the premisses 1 and 2. Furthermore, a contra-
diction can be derived from ¥ and premiss 3. Hence, the contradiction is based
on the premisses 1, 2 and 3. Since premiss 3 is the least preferred premiss on
which the contradiction is based, it has to be removed.

Three problems may arise when trying to remove a contradiction.

e Firstly, we have to be able to determine the premisses on which a contradic-
tion is based. These are the premisses that are used in the derivation of the
contradiction. To solve this problem, justifications are introduced. Such a jus-
tification, called in_justification, describes the premisses from which a formula
is derived. Using Goodwin’s view on justifications [24], in_justification also
functions as a constraint on the set of formulas that we can believe. This set
will be called the belief set.

e Secondly, a premiss that has been removed, may have to be placed back be-
cause the contradiction causing its removal cannot occur any more. This may
take place because of some other contradiction being derived. To solve this
problem, another kind of justifications is introduced. This type of justifica-
tion is called an oui_justification. An out_justification describes which premiss
must be removed when other premisses are still assumed to be true. It is a
constraint on the set of premisses we assume to be true.

e Thirdly, there need not exist a single least preferred premiss in the set of
premisses on which a contradiction is based. In such a situation there are two
possible choices.

— Do nothing. The contradiction is not solved but this does not imply that
the contradiction will not be solved at all [52].
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— Consider the results of the removal of every alternative apart. As a result
of this policy, we have to consider different subsets of the set of premisses.
It is possible that these subsets will converge to one consistent subset of
the set of premisses. If this happens, the result of the two approaches will
be the same.

As already mentioned in the introduction, default reasoning will be treated as
a special case of reasoning with inconsistent knowledge. Default rules are general
rules which may contradict specific information. When this occurs, we have to prefer
specific information to general information. For example, the specific information
“Tweety cannot fly because it is a penguin’ should be preferred to the general infor-
mation ‘Birds can fly’. The question is how to represent the general information. It
is not possible to describe the sentence ‘Birds can fly’ by:

Vz[Bird(z) — Can_fly(z))

If there is one bird that cannot fly, this premiss will be removed making it impossible
to derive for any bird that it can fly. Since this is undesirable, I will introduce
an alternative approach to represent defaults. In the predicate logic a premiss ¢
containing free variables T is equivalent to YZyp. Here, however, like Reiter’s open
default rules, a formula ¢ containing free variables, is interpreted as denoting a set
of instances of this formula. When a member of this set is the least preferred premiss
of a set on which a contradiction is based, only this instance is removed.

Example 2.2 Suppose that the following premisses are given.

1. Bird(z) — Can_fly(zx)
2. Bird(Tweety)
3. =Can_fly(Tweety)

If the second and the third premiss are preferred to the instance of the first
premiss:

Bird(Tweety) — Can_fly(Tweety)

then only this instance will be removed, but not the first premiss.

In Reiter’s default logic ground terms must be substituted for the free variables that
occur in a default rule. Here I will not limit the instances of a formula to ground
instances only. Allowing every possible instance of a formula has two advantages.
Firstly, we can avoid proliferation of ground instances. If we derive a formula con-
taining free variables, every instance of the formula will also be a logical consequence
of the premisses unless it is overruled by some other formula. Secondly, as a result
of this, it becomes possible to derive new default rules in the logic.
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A question that has to be answered yet is: ‘how is the preference relation defined
on the premisses related to a preference relation on instances of these premisses?’. To
motivate the answer of this question, consider the following situation. Suppose that
a problem can be described by two premisses of which one contains a free variable.

L o(x)
2. Vz-p(z)

Clearly this set of premisses is inconsistent. Now suppose that the second premiss
is preferred to the first, then we have to remove the whole set of premisses denoted
by the first premiss. Because we can also derive a contradiction with each instance
of the first premiss, the second premiss has to be preferred to each instance of the
first premiss. Therefore, each instance of the set generated by a premiss containing
free variables should have the same preferences as this premiss.

Condition 2.3 Every instance of a premiss  containing free variables should have
the same preference as .

A possible extension of the logic would be to permit that a preference relation is
specified on the instances of a formula.

2.2 Formal definitions

In the formal description of the preference logic, unification will be used [39]. To
unify two formulas, a substitution of terms for free variables may be required. Such
a substitution @ for the free variables is denoted by placing [f] behind a formula. A
substitution that has to be carried out on every formula of a set of formulas, or on
every formula occurring in a justification, is denoted in the same way.

The preference logic is based on an ordinary first order logic L. A set of premisses
¥ of this logic is some subset of this language L. On this set of premisses a preference
relation can be defined. This preference relation < for a set of premisses ¥ generates
a strict partial order (T, <).

Because premisses containing free variables are viewed as representing a set of
instances of those premisses, an extended set of premisses 3, also containing all
instances, is introduced.

Definition 2.4 Let S be a set of formulas. Then S denotes the ertended set of
formulas, which also contains all instances of the formulas of S.

S = {¢ | ¥ € S and for some substitution 8 : ¢ = [f]}

In case a contradiction is derived, a formula from the extended set of premisses &
has to be withdrawn. To be able to do this, it is necessary to extend the preference
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relation. This extended preference relation should satisfy Condition 2.3 and should
again be a strict partial order. The preference relation for the extended set of
premisses is defined as follows:

Definition 2.5 Let T be a set of premisses and let (£, <) be a strict partial pref-
erence relation on £. Furthermore, let (¥, <) be the preference relation on
the extended set of premisses X. (X, <) is the smallest strict partial order
containing (X, <), being invariant under term substitution in the premisses of
.

One should notice that there need not be an extended preference relation (X, <), as
can be seen in the following example.

Example 2.6 Let ¥ be a set of premisses and let (X, <) be a preference relation
on these premisses.

)
(Z,=<)

{p(z), v(a), ¥}
{p(x) < ¥, % < p(a)}

Clearly, there does not exist an asymetric preference relation on the extended
set of premisses.

Now the set of extended premisses and their preference relation has been defined,
the justifications can be defined. Two kinds of justifications, in-justifications and
oul-justifications, are distinguished. The in-justifications are used to denote that a
formula is believed if the premisses in the antecedent are believed, while the out-
Jjustifications are used to denote that a premiss can no longer be believed (must be
withdrawn) when the premisses in the antecedent are believed.

Definition 2.7 Let ¥ be a set of premisses. Then the set of possible in_ and
out_justifications is defined as follows:

InJust(E£) = {P=>¢|PCXTandpe€ L}
OutJust(Y) = {P#¢p|PCXTandpel}

2.3 The deduction process

Instead of deriving new formulas, in the preference logic only new justifications
are derived. These justifications are generated by the inference rules. Because
the inference rules are defined on justifications and not on formulas, and because
justifications function as constraints on the belief set, Reason (Truth) Maintenance
can be viewed as part of the deduction process. So, a deduction process in the
preference logic can be viewed as a process of belief revision in the same way as
Goodwin’s logical process theory [24]. The deduction process will finally terminate
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with the belief set, being the set of theorems for the models of the set of premisses
and the preference relation. How these models are defined, can be found in section
2.5.

A deduction process for the preference logic starts with an initial set of justifi-
cations Jy. This initial set Jo contains an in-justification for every premiss. These
justifications indicate that a formula is believed if the corresponding premisses are
believed.

Definition 2.8 Let T be a set of premisses. Then the set of initial justifications Jo
is defined as follows:

Jo={{e}=>¢lpel}

Each set of justifications J; with ¢ > 0 is generated from the set J;_; by adding new
justifications. How these justifications are determined, depends on the deduction
system used. In the following description of the preference logic I will use an ax-
jomatic deduction system for a language L, only containing the logical operators —
and — and the quantifier V. The logical axioms used originates from [18]. There is
no specific reason why I have chosen these axioms. In fact, any set of logical axioms
for a first order logic with the modus ponens as the only inference rule can be used
here.

Axioms Let ¢ be a generalization of 9 if and only if for some n > 0 and some
variables zy,..., 25!

Vzl, ...,V.‘Bn '(ﬁ
Since this definition includes the case n = 0, any formula is a generalization of

itself.
The logical axioms are all the generalizations of the formulas described by the
following schemata.

1. Tautologies.

2. Vzp(x) — ¢(y) where y is a variable that does not occur in ¢; i.e. y is a
free variable in ¢(y).

3. Vz(p — ¢) — (Vo — V).

4. ¢ — Vzp where = does not occur in .

The second axiom scheme differs from the axiom scheme described in [18]. In [18]
this axiom scheme is stated as follows:

Vzp(z) — ¢(t) where t is a term containing no variables that occur in ¢.
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Since here a formula containing free variables denotes a set of instances, clearly both
formulations are equivalent. An advantage of the formulation chosen here is that
no unnecessary instances of formulas will be generated by the deduction process
described below.

Because an axiomatic approach is used, justifications for the axioms have to be
introduced. Since axioms cannot be withdrawn, an axiom will always have an in-
justification with an antecedent equal to the empty set. An axiom is introduced by
the following axiom rule.

Rule 2.9 An axiom ¢ gets an in_justification & = ¢.

In the deduction system two inference rules will be used, namely the modus po-
nens and the contradiction rule. The modus ponens introduces a new in_justification
for some formula. This justification is constructed from the justifications for the an-
tecedents of the modus ponens.

Rule 2.10 Let ¢ and ¥ — pu be two formulas with justifications, respectively P = ¢
and Q@ = (¥ — p).

If ¢ and ¥ can be unified with a most general unifier 8, then the formula
©[0] gets an in_justification ((P U Q) = p)[6).

While the modus ponens introduces a new in_justification, the contradiction rule
introduces a new out_justification to eliminate a contradiction.

Rule 2.11 Let ¢ and —~¢ be formulas with justifications P = ¢ and @ = —. Let
¢ and ¢ be unifiable and @ be a most general unifier.

If R = min(P UQ), then each premiss r]. € R gets an out_justification

((PUQ)/n) # n)lb).

Here, the function min(X) selects the set of least preferred premisses from a
set of premisses X.

In order to guarantee that the current belief set will approximate the set of the-
orems of the premisses with respect to the preference relation, we have to guarantee
that the process creating new justifications is fair. By this I mean that this pro-
cess does not forever defer the addition of some possible justification to the set of
justifications.

Assumption 2.12 The reasoning process will not defer the addition of any possible
justification to the set of justifications forever.

If a fair process is used, the following theorems hold. The first theorem guaran-
tees the soundness of the in_justifications; i.e. the antecedent of an in_justification
logically implies the consequent of the in_justification. The second theorem guar-
antees the completeness of the in_justifications; i.e. if a formula is logically implied
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by a subset of the premisses, then there exists a corresponding in_justification. Fi-
nally, the third and fourth theorem guarantee respectively the soundness and the
completeness of the out_justifications.

Theorem 2.13 Soundness
For each ¢ 2> 0:

if P = ¢ € J;, then for each substitution 6:
P[8) C T and P[6) E ¢[6).

Proof By the soundness of first order logic,
if P[6] |-¢[0], then P[8] E [6]).
Therefore, we only have to prove that for each ¢ 2> 0:
if P = ¢ € J;, then for each substitution 8:
P[6] C X and P[6] |-¢[6]-
I will prove this by induction on the index i of J;.
e Fori=0:
{¢} = ¢ € Jo if and only if p € £.
Since ¥ is closed under term substitution, for each substitution 6:
pl0 € T.

Therefore, for each substitution 8:

{6} Fpl0].

e Proceeding inductively, suppose that P = ¢ € Ji41.
Then:

P = ¢ € Ji41 if and only if P = ¢ € J; or P = ¢ has been added by
Rule 2.9 or 2.10.

— If P = ¢ € Ji, then, by the induction hypothesis, for each substitution
0:

P[8] C T and P[0] |-¢[9).
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— If P = ¢ is introduced by Rule 2.9, then it is an axiom.
Therefore, P = @ and for each substitution §:

6]

— If P = ¢ is introduced by Rule 2.10, then there is a Q = a € Ji,
R = (8 — ¢) € Ji, such that o and J are unifiable with a most general
unifier 8.

So we have:

P = (QUR)[f) and ¢ = y[6].

According to the induction hypothesis for each substitution :
Q8o() RIFoC]CE,
Qloo(]alfe(]

and

R[6 o] (B — ¥)[0 ().

Therefore, for each substitution ¢:

P[¢) C T and P[C] Fo[¢)-

Theorem 2.14 Completeness
Foreach PCX:

if P = ¢, then for some ¢ 2 0:
Q=>vel;

and for some substitution 6:
Q[68) C P and 9[6] = ¢.

Proof Let PC T and P = ¢.
By the completeness of first order logic,

if P[6] = [6], then P[6] |-[6].

Since P |-, there exists a deduction sequence (o, ¢1, ..., Pn) such that ¢, = ¢ and
for each j < n: either

e p; € P,or

® ;1S an axiom, or
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o there exists a ¢ and a ¢; with k,l1 < j and ¢ = @ — ;.

The theorem will be proven, using induction on the length n of the deduction se-
quence.

e For n =1, (y1) is the deduction sequence for P |-¢.

— If ¢1 € P, then ¢; € ¥ and there exists a 1 € ¥ such that for some
substitution 6:

¥[0] = .
— If ¢y is an axiom, then there exists some #p 2 0 such that:

Jio = Jig=1 U{D = o} and & = ¢y is added by Rule 2.9.
Hence the theorem holds for deduction sequences of length 1.

e Proceeding inductively, let (@0, ¢1, ..., Pm+1) be a deduction sequence for
Plhom41.

— If pm41 € P, then {9} = 9 € Jo and for some substitution 6:
Pm+1 = Y[0].
— If o;m+1 is an axiom, then there is some %, such that:

Jimpr = Jimp1-1U{DB = omy1} and @ = gy is added by Rule 2.9.

— If there exists a ¢ and a ¢; with k£, < m+ 1 and ¢; = Yr = Pm41,
then, by the induction hypothesis, there exists some i; and some 7; such
that:

Q=>ac€l;,
R=>(B—¢)eJ;
and for some substitution 8:
Ql6] C P and g1 = aff],
and for some substitution (:
R[(] C P and ¢ = (8 — ¥)[(].

Since a[f] = B[¢] = &, @ and B are unifiable.

Let £ be a most general unifier.

Because of the fairness Assumption 2.12, there exists some ip,41 with
ik, 41 < tm41 such that:

(QUR=Y)E) € 4.,
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and for some substitution o:
Pm+1 = P[f o).

Hence there exists some i,41 such that S = ¢ € J;,,, and for some substi-
tution 4:

Pmt+1 = Y[0].

Theorem 2.15 Soundness
For each i 2 0:

if P # ¢ € J;, then for each substitution 6:
(PU{phIF] C T,
(P U {¥})[8] is not satisfiable
and for each ¥ € P[6):
¥ £ o[f].
Proof The theorem will be proven using induction to the index ¢ of the set of
justifications J;. ‘
e For i = 0: the theorem holds vacuously because there is no P % ¢ € Jp.

e Proceeding inductively, suppose that P & ¢ € Jiq41.
P# ¢ € Jyy1 if and only if P & ¢ € Jiy or P # ¢ has been added by
Rule 2.11.

— If P # ¢ € J, then, by the induction hypothesis, for a substitution @:
(PU{ph61CE,
(P U {p})[f] is not satisfiable
and for each ¥ € P[6]:

¥ £ 6]

— If P # ¢ is introduced by Rule 2.11, then there is an K = a € Ji,
Q@ = -0 € Ji and a and B are unifiable.
If ¢ is a most general unifier, then ¢ € min((Q U R)[(]) and P = ((RU

Q)K)/ e
By Theorem 2.13 for each substitution &:



40 A preference logic — Chapter 2

R[¢],QEIC T,
R[¢] Falé]
and

Q F-B[E]-

Hence for each substitution 6:
(PU{ehbl T,
and
(P U {¢])[f] is inconsistent.
Since inconsistency implies unsatisfiability, for each substitution 6:
(PU{phle] €T,
(P U {})[f] is not satisfiable
and for each ¢ € P[6):

¥ £ olf).

Theorem 2.16 Completeness
For each P C X:

if P is a minimal unsatisfiable set of premisses and Q = min(P), then for
some i 2 0 there holds for each ¢ € @:

R#&Y e,
and for some substitution 6:
Q = R[f] and ¢ = ¥[0].
Proof Let P be a minimal unsatisfiable subset of & with Q@ = min(P).

Since P is a minimal unsatisfiable set, P is a minimal inconsistent set.
Therefore, there exists a formula o such that:

P }-a and P |--a.
By Theorem 2.14 there exists a j 2 0:

S=>pel;
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and for some substitution ¢:
S[¢] € P and o = B[(].
Also by Theorem 2.14 there exists a k 2 0:
T=-y€J;
and for some substitution £:
T¢] C P and a = 7[¢].

Since # and v are unifiable, there exists a most general unifier o.
Hence, for some substitutions 8, 65:

(Slee8,]UT[g06,]) C P.
Since P is minimal inconsistent:
(S[o 0 1] UT[o 0 62]) = P.
Hence, for some substitution 6:
(Slo001]UT[o002)) = (SUT)[o o)
and
Q = min(P) = min((S U T)[o o 0]).
Therefore, there exists an | > j, k such that for each ¢ € @, there is a ¢ € min(SUT):
v = [0],
((RUS)/¥)lo] # dlo] € Ji
and
R =P[p=(((SUT)/$)o]F].

Hence for some 7 2 0:
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Plo# ¢ € J;

and for some substitution 8:

P = Q[6] and ¥[8] = ¢.
(]

Given a set of justifications, there may exist one or more subsets of the set of
premisses which can be believed. Such a subset contains the premisses that do
not have to be withdrawn because of an out-justification. Suppose that J; is a set
of justifications derived by a reasoning agent and that A C ¥ is a subset of the
premisses that are believed by the reasoning agent. Then for each premiss ¢ such
that for some out_justification P 7 ¢ € J; and some substitution &, there holds that
P[6] C A and ¢ = ¢[6], one may not believe . The set of premisses that may not
be believed given a set of justification J;, is denoted by Out;(A).

Definition 2.17
Out;(S) = {¢[8] | P # ¢ € Ji, and for some substitution 6 : P[f] C S}

The set of premisses A that we may believe, must, of course, be equal to the set of
premisses we will get after having removed all the premisses that we may not believe;
i.e. A =X ~ Qut;(A). The sets of premisses that satisfy these requirements, are
defined by the following fixed point definition.

Definition 2.18 Let ¥ be an extended set of premisses and let J; be a set of
justifications. Furthermore, let A; be the set containing all the subsets of the
premisses that can be believed given the out_justifications in J;.

Then:

Ai = {A ] A =T - Outi(A)}

After having determined all the sets of premisses that can be believed, the set of
derived formulas that can be believed, can be determined given the in_justifications.
This set is defined as:

Definition 2.19 Let J; be a set of justifications and .4; be the corresponding the
of sets of believed premisses.
The set of formulas B; that can be believed (the belief set) is defined as:

B; = {¢[0] | for each A € A; thereisa P =>4 € J;
such that for some substitution : P[6] C A}
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Property 2.20 For each ¢ € B; : [A }-¢ for each A € A;]

Proof Suppose ¢ € B;.
Then for each A € A; there exists a

P=>qyed;
and for some substitution 6:
¢[f] = ¥ and P[] C A.
Therefore, by Theorem 2.13:
Plpand P[IC A
Hence, for each A € A;:

Al

Joo is defined as the set of all justifications which can be derived.

Definition 2.21 J, = U Ji
i20
The corresponding sets of premisses and formulas that can be believed, will be

denoted by Ay and by Be,. For Joo, Ao and By the following properties can be
proven:

Property 2.22 For each A € A.: ACX.
Proof Since A =X — Out(A), ACE. o
Property 2.23 For each A € A, A is maximal consistent.

Proof Suppose that some A € A is inconsistent.
Then there exists a minimal inconsistent subset M of A.
Let ¢ € min(M).

Then by Theorem 2.16 there exists an i with

PAHYed;

and for some substitution é:
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(PU{$})If] = M and o = [6].

Hence P # ¢ € Juo.
Because P[A] C A, p ¢ A.
Contradiction.

Suppose that some A € Ay is not maximal consistent.

Then there exists a ¢ € (T — A) and {p} U A is consistent.

Since p € (T — A), ¢ € Outo(A).

Therefore, there exists a P # 1 € Jo and for some substitution 6:

P[6) C A and ¢ = ¢[6).

Since P # ¢ € Joo, (P U {%})[f] is inconsistent.
Hence A U {¢} is inconsistent.
Contradiction. o

Property 2.24 If each minimal inconsistent subset of ¥ has only one least preferred
element and there exists no infinite sequence of minimal inconsistent subsets
such that a minimal element of one subset is an element of another subset in
which it is not a minimal element, then | A, |= 1.

Proof Suppose that the condition of the property holds and that |A.| > 1.

Then there exist at least two subsets A, A’ of .

Let ¢ be any formula such that ¢ ¢ A and ¢ € A’.

By Theorem 2.16 there exists a P # ¢ € J and for some substitution & such that:

v = y[f]
and
(P U {¥})[0] is a minimal inconsistent set.

Because each minimal inconsistent set has only one least preferred element, for every
71 € P there holds:

¥[6] < n[f).
Since ¢ ¢ A and ¢ € A, there exists an n € P:

n[0] € A and n[f] € A'.
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Hence there exists an infinite sequence of minimal inconsistent subsets such that a
minimal element of one subset is a non minimal element of another subset.
Contradiction.

Hence A is unique. (|

Property 2.25

B = () Th(A)

where Th(S) = {¢ | S |-¢}

Proof For each A € A,:
Bo, C Th(A)
bec;use according to Property 2.20:
if ¢ € Boo, then for each A € Ay:
A .

Suppose there exists a ¢ such that:

pgBoandp € ()| Th(A).

Since ¢ € (Jaea Th(A), for each A € Aqo:
A .

By Theorem 2.14 for every A € Ay, there exists some ¢ and some @ = ¢ € J; such
that for some substitution 6:

QI6] € A and ¢ = y[o].

Therefore, for every A € Ay, there exists some i and some Q = ¥ € J such that
for some substitution 6:

Q61 C A and ¢ = Y]
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Hence, by Definition 2.20:
¢ € By,

Contradiction.

Hence Boo = Th(Ax)- 0

2.4 Determination of the belief set

In this section I will describe an algorithm that can be used to determine a set
of premisses that can be believed, given a set of out_justifications. The algorithm
determines a single set A from A; given the justifications J;. The idea behind
this algorithm, which was suggested by C .Witteveen, is to order the current set of
out_justifications. Suppose that we prefer an out_justification j; to an out_justifi-
cation j; if two conditions are satisfied. Firstly, the consequent of j; must occur
in the antecedent of j» and secondly, the consequent of j» may not occur in the
antecedents of j;. Since the consequent of an out_justification is never preferred
to any premiss in the antecedent, the ordering defined is a strict partial ordering.
Clearly, if a justification j; is preferred to j;, the application of j; will influence the
application of j2, but not the other way around. If there is no ordering between
two justifications, then either they cannot influence each other or they mutually
influence each other. If j; and j2 mutually influence each other, then the consequent
of j; occurs in the antecedent of j; and the other way around. Therefore, the
application of j; cannot undo the application of jo and vice versa. Finally, if j;
and j; do not influence each other, it makes no difference which one is applied first.
Hence, applying the most preferred out_justifications first, will guarantee that the
application of an out_justification will never have to be undone.

To make the algorithm more efficient, first all non minimal inconsistent sets of
premisses described by the out_justifications are removed by determining the set
min_out_just. This can be executed in O(n?) steps, where n is the number of
out_justifications. The order of the out_justifications can also be determined in
O(n?) steps. Finally, the repeat loop can be executed in O(n - k) steps, where
k is the number of premisses in prem. Hence, the algorithm can be executed in
O(n - maz(k,n)) steps.

begin
prem := {y | ¢ occurs in some justification of J;};
min_out_just := {P # ¢ | P # ¢ € J; and there is no Q # ¢ € J; such
that QU {¢} C PU {¢}};
for each P # ¢ € min_out_just and for each Q@ # ¢ € min_out_just:
PAHeo>QA yifandonlyif p €Q and ¥ & P;
delta := prem;
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repeat
P # ¢ € maz(min_out_just);
min_out_just := min_out_just — {P # p};
for every substitution @ such that P[f] C delta
do delta := delta/p[6);

until min_out_just = J;

out := prem — delta;

return delta, out;

end.

The algorithm determines a set delta and a set out such that for some A € A;:

A={p€X| pis an instance of some 3 € delta and if ¢
is an instance of some pu € out, then v is an instance of u}.

It is not difficult to modify the algorithm in such a way that it determines every
element of A;. Since the cardinality of A; can grow exponential by the number of
out_justifications, as shown in the following example, the determination of all the
sets in A; will be of exponential time complexity.

Example 2.26 Let {ay,...,an, 01, ...,0s} be a set containing 2n premisses. Fur-
thermore, let each pair of premisses o; and fB; be in conflict with each other.
Then we can derive the following set of out_justifications.

{{al} # B, {1} # 1, ..., {an} 2 Bn, {Bn} # an}

Clearly we can create 2" different consistent subsets of the set of premisses by
choosing either «; or §;.

Instead of determining every A € A;, we can try to determine {).A;. This set will
contain all premisses about which we do not have any doubt that we can believe
them. If we can determine this set efficiently, we can approximate B; with the set:

{¢[6] | thereisa P = ¢ € J; such that
for some substitution 6: P[f] € NA;} C B;

Unfortunately, it was proven by K. O. ten Bosch that the determination of [} .A; is
NP-Hard in the propositional case [4]. Ten Bosch proved this by showing that the
decision problem ‘is the premiss ¢ an element of [} .A;’ is co-NP-Complete. I will
give a reformulation of his proof below. In the proof I will limit the preference logic
to a propositional logic. Furthermore, a labelling function [ : prem — {in,out} is
introduced. This function describes which premisses of the set of premisses prem
are in a set A € A;.

Definition 2.27 Let prem be a set of premisses and let J be a set of out justifica-
tions. Furthermore, let I : prem — {in, out} be a labelling function.
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l is a valid labelling of prem with respect to J if and only if for every

¢ € prem: .
l(p) = out if and only if there exists a P # ¢ such that for every
Y€ P:
I(‘l/)) =1in.

Observation 2.28
A; = {{g | l(p) = in} | l is a valid labelling with respect to J;}.

Now we can formulate the decision problem as follows.

NAME: Belief Intersection (BI)

INSTANCE: A set of propositional premisses prem, a set of out_justifications J and
a premiss ¢ € prem. )

QUESTION: Is I{(¢) = in for every labelling! that is valid given the out_justifications
J.

1 will prove that this decision problem co-NP-Complete by proving that the comple-
mentary problem is NP-Complete.

NAME: co-Bl

INSTANCE: A set of propositional premisses prem, a set of out_justifications J and
a premiss ¢ € prem.

QUESTION: Is I(¢) = out for some labelling ! that is valid given the out_justifica-
tions J.

The proof that this problem is NP-Complete, is based on a reduction of the problem
SAT to co-BI. For this reduction the following transformation is used.

Let P = {p1,...,pm} be a set of propositional variables.

Furthermore, let C = {ci, ...,cn} be a set of clauses where ¢; = {e;1,...,€i ¢}
and for every j € {1,...,4} there holds either that e; ; = px or that ¢; ; = 7
for some p; € P.

The sets prem, J and (prem, <) are constructed as follows.

o prem =UNW N {p, ¥} where
— U ={u1,...,um}, and
- W = {wy, .., wn}.
o J=JiNnJaN {{¥} # ¢} where
= i = {{u1} # v, {w1} w1, .. {un} # wm, {wm} # um},
— Ja={A1 # ¢, ..., An 7 ¢} where A; = {a;1,...,ai¢} and
* a;;j = wg if and only if e; ; = pi,
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Figure 2.1: The reduction of {{p, ¢}, {P, 7}}

* a; ; = u; if and only if e; j; = ;.
o (prem, <) = {(u;, ¥), (wi, ¥) | 1 < i <m}U{(¥, 9)}
Clearly, since for every @ # o € J and for every @ € @ there holds: 8 £ «, J
is a set of out_justifications that can be generated by a set of premisses.

Now, let t : P — {true, false} be a truth assignment.
Then a corresponding labelling ! : prem — {in, out} is defined as:

e I(u;) = in and l(w;) = out if and only if t(p;) = true,
¢ l(u;) = out and I(w;) = in if and only if t(p;) = false.

An illustration of this reduction can be found in figure 2.1. In this figure the result

of reducing {{p, ¢}, {P,7}} is shown.
Given the construction, the following lemma can be proven.
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Lemma 2.29 There exists a valid labelling with respect to J such that:
l(¢) = out if and only if the corresponding truth assignment ¢ satisfies C'.
Proof

< Let t be a truth assignment such that C is satisfied and let [ be the corre-
sponding labelling.
We have to prove that [ is a valid labelling and that ¢ is labelled out.
Clearly, [ is valid with respect to J;.
Since C is satisfied, in every ¢; there must be an e; ; whose truth value is true.

— Suppose that e; ; = px.
Then t(px) = true, l(ux) = in and I(w;) = out.
Furthermore, since ¢; ; = pr, wr € A; and I(w) = out.

— Suppose that e; ; = P;. Then t(pz) = false, I(ur) = out and l(wi) = in.
Furthermore, since €; ; = Py, ux € A; and I(ux) = out.

Hence, for every c; there is an a; ; € A; such that: I(a; ;) = out.
So, there is no out_justification that forces ¢ to be labelled with out.
Therefore, I(¢) = in and I(p) = out and [ is valid with respect to J.

= Let [ be a valid labelling such that I(¢) = out.
We have to prove that the corresponding truth assignment ¢ satisfies C.
Since I(p) = out, I(¥) = in.
Since I(¥) = in, for every A; # ¢ there exists an a; j € A; and I(a; ;) = out.

— Suppose that e; ; = p.

Then a; j = wi, {(ux) = in and I(w) = out.

Furthermore, since ¢; j; = pi, t(px) = true and ¢; is satisfied.
— Suppose that e; j = Dy

Then a;; = ug, {(ux) = out and l(w;) = in.

Furthermore, since e; j; = Py, t(px) = false and ¢; is satisfied.

Hence, every c; is satisfied.
Therefore, C is satisfied.

Theorem 2.30 co-Bl is an element of the class of NP-Complete problems.

Proof Clearly, given some labelling [ and a proposition ¢, it can be verified in
polynomial time whether or not [ is a valid labelling such that I(¢) = out.
Therefore, co-BI in NP.

By Lemma 2.29 there exists a polynomial transformation from SAT to co-BIL.
Therefore, co-BI in NPC. (]
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Since, co-BI in NPC, BI in co-NPC. Hence, the problem of determining () A;
must be NP-Hard.

2.5 The semantics for the logic

The semantics of the preference logic is based on the ideas of Y. Shoham [58, 59].
In [58, 59] Shoham argues that the difference between monotonic logic and non-
monotonic logic is a difference in the definition of the entailment relation. In a
monotonic logic a formula is entailed by the premisses if it is true in every model
for the premisses. In a non-monotonic logic, however, a formula is entailed by the
premisses if it is preferentially entailed by a set of premisses; i.e. if it is true in
every preferred model for the premisses. These preferred models are determined by
defining an acyclic partial preference order on the models.

The semantics for the preference logic differs slightly from Shoham’s approach.
Since the set of premisses may be inconsistent, the set of models for these premisses
can be empty. Therefore, instead of defining a preference relation on the models
of the premisses, a partial preference relation on the set of semantical structures
for the language is defined. Given such a preference relation on the structures, the
models for the premisses are the most preferred semantical structures. Hence, an
appropriate preference relation on the structures has to be defined. This preference
relation is based on the following ideas.

o The premisses are assumptions about the world we are reasoning about.

e We are more willing to give up believing a premiss with a low preference than
a premiss with a high preference. :

Therefore, a structure satisfying more premisses with a higher preference (<) than
some other structure, is preferred (C) to this structure.

In the preference logic we have to choose between premisses in case a minimal
inconsistent subset of ¥ does not contain a least preferred element. Choosing some
premiss can be viewed as preferring the alternative choices to this premiss. So
the original preference relation is extended by making choices. In case a premiss
containing free variables is chosen, this choice is made for every instance of this
premiss. Hence, the extension of the preference relation belonging to this choice,
should also satisfy Condition 2.3. Now a structure satisfies more premisses than
some other structure if this is the case for every linear extension of (¥, <) which
satisfies Condition 2.3. The following definitions describe this formally.

Definition 2.31 A semantical structure (interpretation) is a tuple (D, v) where:

e D is a domain of objects, and

e v is a valuation function that assigns objects to constants, functions to
function symbols and relations to predicate symbols.
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The set of all semantical structures is denoted by Str.

Definition 2.32 Let M be a semantical structure and let T be an extended set of
premisses.
Then the premisses Prem(M) C ¥ that are satisfied by M, are defined as:

Prem(M)={p|p €T and M | <p}

Definition 2.33 Let ¥ be an extended set of premisses and let (¥, <) be a pref-
erence relation on ¥. Furthermore, let Str be the set of structures for the
language L and (Str,C) be a preference relation on these structures.

For every structure M, A there holds:

N C M if and only if Prem(M) # Prem(N) and for every linear ex-
tension of (I, <) satisfying Condition 2.3 and for every ¢ € (Prem(N)—
Prem(M)), there is a ¢ € (Prem(M) — Prem(N)) such that:

o<y
and for no 1 € (Prem(N) — Prem(M)):
¥ =<1

Given the preference relation between the structures, the set of models for the pre-
misses can be defined.

Definition 2.34 Let T be an extended set of premisses and let Mod-(X) denote
the models for the premisses .

M € Modc(X) if and only if there exists no structure A such that:
MCN.

Now the following important theorem, guaranteeing the soundness and the com-
pleteness of the preference logic, holds:

Theorem 2.35 Let M be a partial model, let 4, be the corresponding set of
consistent sets of believed premisses and let B, be the corresponding belief
set.

Then:

Modc ()= | ) Mod(A) = Mod(B)
A€A

where Mod(S) denotes the set of classical models for a set of formulas S.

Proof From Property 2.25 follows immediately:
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|J Mod(A) = Mod(Ba)
A€A

The proof of

Modc(B)= | Mod(d)
A€A

can be divided into the proof of the soundness

J Mod(A) C Modc(T)
A€Ax

and the proof of the completeness

- Modz () C | Mod(A)
ACAs

of the preference logic.

Completeness Suppose that for some A € Ay, and some M € Mod(A):
M ¢ Modc(2).
Then there exists a structure N:
MLCN.
According to Proposition 2.23, since Prem(M) = A:
A ¢ Prem(N).

Hence, there exists a ¢ € (A — Prem(N\)).

Now by Definition 2.33 for each linear extension of (X, <) there exists a ¢ €
(Prem(N) — A) and ¢ < 9.

Since ¥ ¢ A, there exists a P # 7 € Joo and for some substitution 6:

P[6] C A and 9 = 5[d].

Now, P[0] € Prem(N), otherwise Prem(N') would be inconsistent.
Hence, there exists a u € P[6]:

p € (A — Prem(N)) and p £ 9.
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Therefore, there exists a linear extension of (¥, <) such that:

p<Y=<up

Contradiction.

Hence,

U Mod(A) € Modc(3).
A€A

Soundness Suppose there exists a structure M € Mod-(T) such that:

Prem(M) # X — Out oo (Prem(M)).

Then there exists a ¢ such that either:
e p € Prem(M) and ¢ ¢ T — Outoo(Prem(M)), or:
e ¢ & Prem(M) and ¢ € T — Outo(Prem(M)).

Suppose that ¢ € Prem(M) and ¢ ¢ £ — Out oo (Prem(M)).
Hence, there exists a P # ¢ € J, and for some substitution 8:

P[f] C Prem(M) and ¢ = ¢[6)].

Because P[0] C Prem(M), Prem(M) is inconsistent.
Contradiction.

Hence,
Prem(M) C T — Outoo(Prem(M)).

Suppose ¢ € Prem(M) and ¢ € T — Quto (Prem(M)).
Then Prem(M) U {p} is either consistent or inconsistent.
If it is consistent, then for each structure N' € Mod(Prem(M) U {¢}):

MCN.

Contradiction.

Hence Prem(M) U {¢} is inconsistent.

Therefore, there exists at least one minimal inconsistent subset of Prem(M)U
{e}.

Let P be such a minimal inconsistent subset.

Now suppose that ¢ € min(P).

Then by Theorem 2.16 there exists an R # ¢ and for some substitution 6:
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P/ = R[] and ¢ = ¥[4].

Since R[f] C Prem(M), ¢ € T — Out o (Prem(M)).

Hence for each minimal inconsistent subset P:

¢ & min(P).

Let MIN be the union of all the sets min(P) for each minimal inconsistent
subset P of Prem(M) U {¢}.
For each n € MIN there holds:

n<e.
Clearly, the set (Prem(M) U {¢}) — MIN is consistent.

Let N € Mod((Prem(M) U {p}) — MIN).
Because for each n € (Prem(M) — Prem(N):

N <
and because ¢ € (Prem(N) — Prem(M)) there holds:

MCN.

Contradiction.

Hence,

¥ — Outoo(Prem(M)) C Prem(M).

2.6 Some properties of the logic

In this section I will discuss some properties of the logic. Firstly, I will relate the
logic to the general framework for non-monotonic logics described by S. Kraus,
D. Lehmann and M. Magidor [33]. Secondly, I will compare the behaviour of the
logic when new information is added with Gardenfors’s theory for belief revision
[23].
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2.6.1 Preferential models and cumulative logics

In [33] Kraus et al. describe a general framework for the study of non-monotonic
logics. They distinguish five general logical systems and show how each of them can
be characterized by the properties of the consequence relation. Furthermore, for each
consequence relation a different class of models is defined. The consequence relations
and the classes of models are related to each other by representation theorems.

The consequence relation relevant for the preference logic is the preferential con-
sequence relation of system P. I will show that the preference relation on the semantic
structures, described in the previous section, corresponds with a preferential model
described by Kraus et al.

Lemma 2.36 Let X be a set of premisses and let (¥, <) be a preference relation on
the premisses. Furthermore, let @ = {M | M [ a}, let &' = T U {a} and let
(&, <) = (E/a,<)U{{p,a) | p € T/a}.
Then M € Mody:(T') if and only if M'€ & and for no N € &:

MLCN.

Proof

¢ Suppose that M€ aand N g &, i.e. MEa and N £ a.
Then by Definition 2.32:

Prem(M) # Prem(N).

Therefore,
a € (Prem(M) — Prem(N)),

for each ¢ € (Prem(N') — Prem(M)) there holds:
p < a,

and for no n € (Prem(M) — Prem(N')) there holds:
a <.

Hence by Definition 2.33 for each M € @ and N ¢ a:
NC' M.

¢ Suppose that M, N € &.
Since M, N [ a, for each ¢ € (Prem(M) — Prem(N')) and for each
¥ € (Prem(N) — Prem(M)):
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— p < ¢ if and only if ¢ <’ 9, and
— ¢ < ¢ if and only if p <’ 3.
Hence, for each M, N € a:

N ' M if and only if N C M.
Hence, M € Mod,::(ﬁ’) if and only if M € @ and for no N € a:

MLCN.

0

Theorem 2.37 Let X be a set of premisses and let (X, <) be a preference relation
on the premisses.

(S,1,<) is a preferential model for X, (X, <) if and only if S = Str,
1.5 — S is the identity function and for each M, N € S:

M < N if and only if N C M.

Proof Since the relation C defines a strict partial order on Sir, so does < on S.
Since { is a function from Str to Str, [ assigns a single ‘world’ to each state.

Suppose that < is not smooth.
Then by Lemma 2.36 for some formula o and some M € & there exists no ' €
Modg () such that:

MLCN.

So, by Definition 2.33 for each N' € Modc:(T') there exists a linear extension of
(X, <) and there exists a most preferred ¢ € (Prem(M) — Prem(N)) such that for
no Y € (Prem(N) — Prem(M)):

@ <.
Since N' € Mod:(T),
{¢} U Prem(N) is inconsistent.
Let T be a minimal inconsistent subset of {¢} U Prem(N).

Clearly, p € T'.
Furthermore, since N' € Mode: (%),
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¢ € min({p} U Prem(N)).
Because we consider a linear extension of (I, <), there holds:
foreach ¢y € I':
P <Y
Contradiction.

Hence, < is smooth.

Hence, (S, 1, <) is a preferential model according to the definition of Kraus et al. O

Now I will relate the consequence relation of system P to the preference logic. To
motivate the relation I will describe below, recall that a b 8 should be interpreted
as: ‘if o, normally 3’. Hence, if we assume «, we must assume that « is true beyond
any doubt. To realize this, we must add « as a premiss and prefer it to every other
premiss, otherwise we cannot guarantee that o is an element of the belief set By .

If a is indeed an element of By, we have to prove that § will also be an element of
B,.

Theorem 2.38 Let W = (5,1, <) be a preferential model for X, (X, <). Then the
following equivalence holds:

a pbow B if and only if

¥ =2 uU{a},
(X, <) = (B/e, <) U{(p,0) | p € T/a}
and 8 € B

Proof According to Theorem 2.35:
B € B!, if and only if for each M € Modc:(T):
MEB.
Therefore, by Lemma 2.36:

B € B!, if and only if for each M € min(a):
MEB.

Hence, by Definition 1.36 we have:
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B € B, if and only if o bw B.

Corollary 2.39 Let W = (5,1, <) be a preferential model for I, (¥, <).
Then:

B ={a| bw a}

2.6.2 Belief revision

In [23], Gardenfors describes three different ways in which a belief set can be revised,
viz. ezpansion, revision and coniraction. Expansion is a simple change that follows
from the addition of a new formula. Revision is a more complex form of adding a
new formula. Here the belief set must be changed in such a way that the resulting
belief set is consistent. Contraction is the change necessary to stop believing some
formula. For each of these forms of belief revision, Giardenfors has formulated a set
of rationality postulates.

In this subsection I will investigate which of the postulates are satisfied by the
preference logic. To be able to do this, the set By, is identified as a belief set. Here
expansion, revision and contraction of this belief set with respect to the formula o
will be denoted by respectively: BY [a], B% [a] and Bz [a].

Expansion

To expand a belief set with respect to a formula a, a should be added to the set
of premisses that generate the belief set. Since the preference logic does not allow
an inconsistent belief set, only if —a does not belong to the belief set, o can be
added. Otherwise, the logic would start revising the belief set. Adding « to the set
of premisses, however, is not sufficient to guarantee that a will belong to the new
belief set. Take for example the following set of premisses and preference relation.

E={1:aAB,2:maAB3:aA~p,4:~aAp}
(E,<)={3<2,4<1}

Clearly, adding a to ¥ does not result in believing . Hence, the second postulate of
expansion is not satisfied. To guarantee that o belongs to the new belief set, we have
to prefer a to any other premiss. If, however, we prefer a to every other premiss in
the example above, the third postulate for expansion will not be satisfied. Hence,
expansion of a belief set is not possible in the preference logic. The reason for this
is that the reasons for believing a formula in a belief set are not taken into account
by the postulates for expansion. Because of this internal structure, revision instead
of expansion takes place.
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Revision

For revision of a belief set B., with respect to a formula a, we have to add « as a
premiss and prefer it to any other premiss. With this implementation of the revision
process, some of the postulates for revision of the belief set with respect to o are
satisfied. The postulates not being satisfied, relate revision to expansion. Expansion,
however, is not defined for the preference logic.

Theorem 2.40 Let B, be the belief set for the premisses X with preference relation
(E,<).
Suppose that B} [a] is the belief set of ¥ U {a} with preference relation:

(Eu{a},<)=(E, <) I (E/a x E/a))U{{p,a) | p € T/a};
i.e. By [a] = {8 | a bw B} where W is a preferential model for

U {a}, (ZU{a},<).
Then the following postulates are satisfied.

1. B [a] is a belief set.
2. a € B [a].
6. If Fa « B, then B [a] = B% [4].

Proof
1. This follows from Property 2.25

2. Since a pbw « (reflexivity), a € Boo[a].
EacBfabwy
p

w
then B [a] = B2 [B].

6. Since (left logical equivalence), if o — 8,

Contraction

It is not possible to realise contraction of a belief set in the preference logic in a
straight forward way. To be able to contract a formula a from a belief set By,
we have to determine the premisses on which belief in this formula is based. This
information can be found in the applicable in_justification that supports the formula
a. When we have determined these premisses, we have to remove some of them. This
can be done in two different ways. We can either add the following out_justiﬁca!;’ions
to Joo ®

{Ple# 9| P= a€Jx,p € min(P)}
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or we have to remove some premisses from X. Choosing the latter solution, there
need not exist one unique new belief set not containing «. Because Gardenfors
assumes a unique new belief set, this solution cannot be compared with his rationality
postulates.

The former solution, which requires a modification of the preference logic, does
give us a unique new belief set. However, it can only be applied if Jo, has been
determined. Using a first order logic, this will never be possible. Given this solution,
we can easily verify that only the most trivial postulates 1, 3, 4 and 6 are satisfied.






Related work

In this chapter I will discuss some related approaches.

3.1 Hypothetical reasoning

The preference logic is closely related to N. Rescher’s approach to deal with incon-
sistent knowledge [51]. This comes, of course, not as a surprise, since the preference
logic is based on the ideas described by Rescher. Therefore, it is possible to translate
Rescher’s approach into the preference logic. Rescher divides a set of premisses into
a finite number of modal categories, Mo, ..., M,,. Here M, contains the premisses
we never want to give up and M,, contains the premisses we prefer to give up, if
we have to give up some premiss to restore consistency. This can be modelled in
the preference logic by preferring every premiss of a modal category M; to every
premiss of M; with i < j. Since Rescher only considers propositional logic, the
set of PMMC subsets is equal to the set A,. Furthermore, the set of CS entailed
formulas is equal to the set Boo, and the set of CR entailed formulas is equal to the

set Une., Th(A).
In Chapter 4 I will describe a semantics that is based on the semantics of the
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preference logic, for Brewka’s preferred subtheories. Since the preferred subtheories
are a direct generalization of Rescher’s work, the semantics described can also be
used as a semantics for Rescher’s work.

3.2 A framework for default reasoning

The preference logic is also related to D. Poole’s framework for default reasoning
[48]. Poole introduces two sets of premisses, facts and hypotheses. The set of facts is
always consistent and cannot be removed. The set of hypotheses, however, may be
inconsistent. Furthermore, a hypothesis may contain free variables. Each hypothesis
containing free variables denotes a set of ground instances of the hypothesis. From
the hypothesis a maximal consistent subset has to be selected, which can explain,
together with the facts, some closed formula. :

This framework can be represented in the preference logic by preferring each fact
to each hypothesis. Because in Poole’s framéwork each hypothesis containing free
variables represents a set of ground instances instead of a set of instances, we have
to restrict each set A € A to formulas containing no free variables. The result will
be equal to the set of maximal scenarios of Poole’s framework.

Although Poole’s framework can be expressed in the preference logic, the philoso-
phies behind the two approaches are quite different. Poole’s work is based on the
idea that default reasoning is a process of selecting consistent sets of hypotheses,
which can explain a set of observations. In the preference logic, however, a consis-
tent set of preferred assumptions is determined from which conclusions are drawn.
This set of preferred assumptions may change due to new information.

In Poole’s framework constraints can be added to denote that some set of hy-
potheses may not be used as an explanation. These constraints express that some
explanations are preferred to others. This is realized by making the latter explana-
tions inconsistent through the addition of constraints.

Poole’s framework without constraints can be modelled in the preference logic.
Since in the preference logic a preference relation on the premisses generates a prefer-
ence relation on consistent subsets of the premisses, we may wonder if the preference
relation described by the constraints can be modelled in the preference logic. Un-
fortunately, the answer is ‘no’. This is illustrated by the following example.

Example 3.1
Facts: ¢, 9.
Defaults: ¢ — a,p — -0,¢ — —a,yp — S.
Constraints: —(a A 8), ~(—a A -f).

Without the constraints this theory has four different extensions. These ex-
tensions are the logical consequences of the following scenarios.

Sl b {‘var‘p_’avv—’-‘ﬂ}
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Sy = {%'/’Mb—"‘a:!/’—’ﬂ}
S3= {‘P;"/),‘P—’a;'/)"'ﬁ}

Sy = {‘P:'ﬁ")o—""ﬂa'p_’ﬁa}

Only the first two scenarios are consistent with constraints. If this default theory
has to be modelled in the preference logic, a preference relation has to be specified
in such a way that {S;,S52} = As. To determine the required preference relation
on the hypotheses, combinations of two scenarios are considered. To assure that
S1 € A and S3 € Ao, ¢ — —f has to be preferred to 1 — 8. To assure that
S € A and Sy € A, ¥ — B has to be preferred to ¢ — —f3. Hence, the
preference relation would be reflexive, violating the requirement of irreflexivity in a
strict partial order. This means that not every ordering of explanations in Poole’s
framework can be modelled, using the preference logic. Whether an ordering on the
explanations that cannot be modelled, will make sense, is something that has to be
investigated.

3.3 Preferred subtheories

In [6], G. Brewka describes a generalization of Poole’s Framework. His general-
ization consists of defining a partial preference relation on the set of hypotheses.
Furthermore, the set of facts are defined as the set of most preferred hypotheses.
Following Rescher, Brewka determines preferred maximal consistent subsets of the
set of hypotheses, and calls them preferred subtheories. The preferred subtheories
correspond with the A € A,. '

Brewka distinguishes between weakly provable and strongly provable formulas.
The strongly provable formulas correspond with formulas that belong to Be,. The
weakly provable formulas correspond with formulas that follow from some A € A.

Brewka does not define a semantics for his preferred subtheories. In Chapter 4 I
will reformulate the semantics of section 2.5 to a semantics for Brewka’s approach.

3.4 Default logic

The relation between the Default logic of R. Reiter [49] and the preference logic is
only a moderated one. The default rules introduced by Reiter do not have something
like a contraposition. In the preference logic a rule always has a contraposition.
There is no way to block this. Therefore, only free defaults rules can be translated
into the preference logic.

T : o(T)
#(T)
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This default rule can be represented by (%) in the preference logic. Furthermore,
for every premiss ¢: :

P(T) < .

In [3] P. Besnard showed that every extension of a normal default theory is a
subset of an extension of a corresponding free default theory. This free default theory
is created by replacing every normal default rule

o(F) : ¥(F)
¥(Z)
by
T: ¢(Z) = ¥(2)
@(Z) = Y(7)

Hence, every extension of a normal default theory is a subset of Th(A) for some
A € Aoo. Here, Ay, is the result of the corresponding theory in the preference logic.

3.5 Deriving new defaults

In the conditional logic of J. P. Delgrande [15] it is possible to derive new default rules
from existing default rules, and from other information available. In the preference

logic also new default rules can be derived. This is illustrated, by using an example
of Delgrande [15].

premisses:
1. Raven(z) — Black(z)
2. Raven(z) A Albino(z) — —=Black(z)

preference relation: 1 <2
conclusion: Raven(z) — —Albino(z).

Here the second premiss is preferred to the first, because the first is more general
than the second.

It is also possible to derive new defaults by using a transitive relation between
premisses. From the premisses:

Bird(z) — Can_fly(z)
Vz[Eagle(z) — Bird(z)]

then the default ‘eagles can fly’ can be deduced.
Eagle(z) — Can_fly(z)
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3.6 Interacting defaults

In the previous section the default ‘eagles can fly’ was derived as a result of a tran-
sitive relation between a default and an implication. The possibility to derive such
a transitive relation is not always wanted. To avoid unwanted transitive relations
among defaults and other implications, Reiter and Criscuolo [50] argued that be-
side normal defaults, semi normal defaults are required. A semi-normal default is
a default with restrictions on its use. These restrictions make it possible to avoid
unwanted transitive relations. In the preference logic we do not have something
equivalent to a semi-normal default. We can, however, avoid the unwanted tran-
sitive relations by stating the implicit assumption described by the justifications
of a default rule, explicit. How this is done, depends on the relation between the
consequent and the justifications. Let

o 7’ﬂ17 '“)ﬂn
Y

be a semi normal default rule. Then one of the following three situations may occur.
1. v implies §;. In this case we only have to choose the correct preference relation.

2. We implicitly assume that if v, then 8;. In this case we should either state
this implicit assumption explicit and add the correct preference relation or we
should add B; to the consequent of a rule, using a conjunction.

Example 3.2
e University students are normally adults.

e Adults are normally employed.

From these two sentences it can be concluded that university students are nor-
mally employed. One knows, however, that university students are normally
unemployed. By adding this information with the correct preference relation,
the unwanted transitive relation can be avoided.

premisses:
1. Univ_Stud(z) — Adult(z)
2. Adult(z) — Employed(z)
3. Univ_Stud(x) — ~Employed(z)

preference relations: 1> 2 and 3 > 2

3.7 Circumscription

There is actually no relation between the preference logic and circumscription. The
latter minimizes the relation for which a predicate is true, while the former selects
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maximal consistent sets of premisses. Of course, in the preference logic we can try
to get the same result as circumscription of an n-place predicate p by adding the
premiss —p(zy,...,z,) and preferring every other premiss to it. The relation for
which the predicate p is true, will only be minimal for those instances (oy,...,0,)
that can be denoted by a tuple of ground terms (¢y,...,¢,). This is illustrated by the
following example.

Example 3.3 Let L be a language with only one constant ¢ and no functions.
Furthermore, let M = ({a, b}, v) be a semantic structure where v(c) = a and
v(p) = {b}. Clearly, given an empty set of premisses, M will not be a model for
circumscription of p. It is, however, a model for £ = {—p(z)} in the preference
logic, since the predicate p is false for any ground instance of the predicate
that can be expressed in the language.

3.8 Inheritance networks

An area where the preference logic can be used, is the formalization of inheritance
hierarchies with exceptions. As was argued by D. S. Touretzky [62], inheritance
networks can be modelled by using only normal default rules and by defining a
correct ordering on these default rules. The ordering Touretzky specifies, models
his inferential distance algorithm [63). As was shown by D. W. Etherington, all
the facts returned by the inferential distance algorithm lay in a single extension
of the corresponding default theory [20]. The ordering Touretzky specifies in [62],
determines this extension. For the preference logic we can get a similar result.

The preference relation, specified in the following definition, is the preference
relation which is required to model the inferential distance algorithm.

Definition 3.4 Let x be a property of the class ¢ and w be a property of the class
;l;"<p is a subclass of 3, then objects of the class ¢ are preferred to have the
property x to the property w.

For each premiss ¢ — x, ¥ - w € L:
if ¢ = ¢ € Boo, then [p — x] > [¢ — w]
Using this preference relation, also relations which hold between two different inher-

itance hierarchies can be handled.

Example 3.5 Suppose that we know that royal elephants are elephants, that ele-
phants do not like mice and that royal elephants like black mice.
1. Vz[Royal_Elephant(z) — Elephant(z)]
2. Elephant(z) A Mouse(y) — ~Like(z,y)
3. Royal_Elephant(z) A Mouse(y) A W hite(y) — Like(z,y)
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Then the preference relation defined by Definition 3.4
2<3

let us conclude that if Clyde is a royal elephant and Micky is a black mouse,
then Clyde likes Micky.

In [64] D. S. Touretzky, J. F. Horty and R. H. Thomason make a distinction
between a sceptical and a credulous reasoner. A sceptical reasoner refuses to draw
conclusions in ambiguous situations and a credulous reasoner tries to conclude as
much as possible by generating multiple extensions. Translated into the preference
logic, this means that B, describes the belief set of a sceptical reasoner. A credulous
reasoner is a reasoner that considers the deductive closure of every A € A,.

3.9 Truth maintenance systems

In preference logic justifications are introduced. Unlike the justification that used in
the JTMS of J. Doyle [17} or the ATMS of J. de Kleer [31], the justifications in the
preference logic are part of the logic. They follow directly from the requirement for
a deduction process (section 2.1). The justifications are also different from the ones
introduced by Doyle and de Kleer. In a(n) (A)TMS the justifications describe depen-
dencies between formulas, while in the preference logic the in_justifications describe
dependencies between formulas and premisses, and out_justifications describe de-
pendencies among premisses. Therefore, the in_justifications of the preference logic
can be compared with the labels in the ATMS [31]. Like a label, an in_justification
describes from which premisses a formula is derived. The out_justifications have
more or less the same function as the set nogood in ATMS. Like an element from
the set nogood, the consequent and the antecedents of an out_justification may not
be assumed to be true at the same time. Unlike an element of the set nogood, an
out_justification describes which element has to be removed from the set of premisses
(assumptions). Something like a justification containing non-monotonic antecedents,
as used in Dolye’s JTMS, does not occur in the preference logic.

Because in_justifications and labels are closely related, it is possible to describe
an ATMS using a propositional preference logic. Let (4, N, J) be an ATMS where:

e A is a set of assumptions,
e N is a set of nodes, and
e J is a set of justifications.

We can model the ATMS in the preference logic using the following construction.
Let AUN be the set of propositions of the logic. Furthermore, let the set of premisses
¥ be equal to AU J where the justifications J are described by rules of the form:
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PiIA..Apn —q.

Finally, let every justification be preferred to every assumption. Then the set A, is
equal to the set of maximal (under the inclusion relation) environments of an ATMS.
Furthermore, the label for a node n € N is equal to the set:

{P|P=>n€Jsandforno Q=>n€ Js: QC P}
The set of nogoods is equal to the set:

{(PU{p}) | A| PAp€Js and forno Q # ¢q € Joo:
QuighrAc(Pu{ph 1 A}

For a practical implementation of the preference logic, an ATMS can be used
to determine the in_justifications (the labels) and the out_justifications (nogoods).
To determine the set A; by using the out_justifications, a special monotonic TMS
is needed. This special TMS must label all premisses for which we have a valid
out_justification, out. A valid out_justification is a justification whose antecedents
are labelled in. The other premisses for which we do not have a valid out_justification
must be labelled #n.

Although the deduction process of the preference logic differs from Goodwin’s
logical process theory [24], it is also based on his view that reasoning is a process
of adopting new constraints on the current belief set. Every new constraint being
adopted, causes a process of belief revision. In this way, as in Goodwin’s logical
process theory, an inference finding process is created.

3.10 The Yale shooting problem

In this section I will show how S. Hanks and D. McDermott’s solution of the Yale
shooting problem can be formulated in the preference logic. Since this solution
cannot be formulated in some non-monotonic logics, it illustrates that the preference
logic possesses more expressive power than these logics.

In [26]) Hanks and McDermott described a temporal projection problem and
showed that the non-monotonic logics they considered are too weak to model it.
They specified their problem in a situation calculus, which I have reformulated for
the preference logic.

premisses: :
1. Vs[T'(Loaded, Result(Load, s))]
. Vs[T'(Loaded, s) — T(Dead, Result(Shoot, s))]
. Vs[~(T(Alive, s) AT (Dead, s))]
. T(f,s) = T(f, Result(e, 5))
. T(Alive, So)

Gl W N
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6. S1 = Result(Load, Sp)
7. S2 = Result(Wait, Sy)
8. S3 = Result(Shoot, S2)

preference relation: 4 <1,4<2,4<3,4<5,4<6,4<7and4<8

From the premisses of the problem T'(Dead, S3) and T(Alive, S3) can be derived,
causing a contradiction. Because in both the deduction of T'(Alive, S3) and

T(Dead, S3) an instance of the same default 4 is used and because no preference
relation between instances of the fourth premiss has been specified, we have to choose
an instance that has to be removed. Hence Ao, will contain two sets of premisses;
one from which T'(Dead, S3) and one from which T'(Alive, S3) can be derived. About
the same problem arises in some of the other non-monotonic reasoning logics. Hanks
and McDermott suggested the following solution [26, page 393]. One should prefer
the chronological minimal models. These are the models in which the normality
assumptions are made in chronological order; i.e. those in which abnormality occurs
as late as possible. To realize this solution in the preference logic, we must allow
that a preference relation is specified on the instance of a formula containing free
variables. With this extension of the logic, we can formulate Hanks and McDermott’s
solution of the shooting problem by using the following preference relation.

Definition 3.6 The new preference relation is the transitive closure of:

* (T,%)
o Let ¢(f,e,s) denote T(f, s) — T(f, Result(e, s)).
For each pair of instances ¢(f, e, s) and ¢(f, e, Resuli(e, s)):
o(f,e,8) > o(f, e, Result(e, 5)).

Using this preference relation, an abnormality will occur as late as possible. Hence,
T(Dead, S3) will be an element of the belief set Bo.






Preferred subtheories

In this chapter I will describe a semantics for the preferred subtheories of G. Brewka
[6]. This semantics, based on the semantics developed in section 2.5, can also be
used for Rescher’s approach to deal with inconsistent knowledge [51].

The semantics

The preferred subtheories are based on an enumeration of the premisses instead of
a set of out_justifications. Therefore, the semantics described here is less compli-
cated than the semantics described in section 2.5. Nevertheless, the models for the
set of strongly derivable formulas A are also equal to those semantical structures
that satisfy more premisses with a high preference (<) than some other semantical
structure.

Definition 4.1 Let S and R be two sets of hypotheses.

The set S dominates the set R, R <« S, if and only if R # S and for every
¢ € (R — S), there exists a ¢ € (S — R) such that:
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ERE

Definition 4.2 Let M be a semantical structure.
Then the set of hypotheses Hyp(M) C X satisfied by M is defined as:

HypM) = {p | p € ¥ and M = ¢}

Definition 4.3 Let Str be the set of structures for the language L and let (Str,C)
be a preference relation on these structures.
For each structure M, A there holds:

N C M if and only if Hyp(N) < Hyp(M).

Given the preference relation between the structures, the set of models for the hy-
potheses can be defined.

Definition 4.4 Let ¥ be a set of hypotheses. Furthermore, let Mod(X) denote
the models for the hypotheses .

M € Mod-(E)
if and only if there exists no structure A such that:

MLCN.

Now the following important theorem, which guarantees the soundness and com-
pleteness of the preference logic, holds:

Theorem 4.5 Let §1,..., 5" be the preferred subtheories of the hypotheses £ with
preference relation (X, <).

Mode(Z) = | | Mod(S%) = Mod(A)
i=1
where Mod(X) denotes the set of classical models for a set of formulas X.
Proof From the definition of strongly provability, it follows immediately:
n
| Mod(S*) = Mod(A)
i=1

The proof of Modr(Z) = (J-, Mod(S;) can be divided into a proof of soundness
and a proof of completeness.
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Completeness Suppose that for some S and some M € Mod(S*):
M & Mod(X).
Then there exists a structure N:
MCN.

Let R = Hyp(N).
Since M € Mod(S*), S* = Hyp(M).
According to Definition 4.3:

M C N if and only if $* < R.
From Definition 1.24 it follows:

S'¢ R

Hence, there exists a ¢ € (S$* — R).

By Definition 1.24 there exists an enumeration o;,03,... of &, which corre-
sponds with S*. :

Let j be the lowest index such that o; € (S* — R).

Now by Definition 4.1, there exists a ¢ € (R — S*) such that:

0’j-<‘l/).

Since ¢ ¢ S* there exists a k such that o = ¢, and Sj_; U{¢} are inconsistent.
Hence there exists a p € S;_; and u & R.
So, p € (S* — R) and because u € Si_,, there exists an index £:

op=pand £<k<j.
Contradiction.
Hence, | J; M0od(S*) C Modc(X).
Soundness Let M be any structure of Mod-(X) and let R = Hyp(M).

Firstly, R C S* for some i, is proven.
Let Hi={p€ER|VWER: pA¥}
Clearly, there exists an enumeration of ¥ such that:

H1 = {0‘1...0’_,'}

for some j 2 1.
Hence, H; is a subset of some preferred subtheory.

Proceeding inductively, let there exist an enumeration of ¥ such that:
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H[ = {0’1...(7j}
for some j: 1< j.

Furthermore, let Hyp1 = {9 € R| V¢ € (R— Hy) : p £ ¥}
Since for every ¢ € (Hy41 — Hy), there exists a ¢ € Hy such that:

p=<v,
there exists an enumeration of ¥ such that:
H¢+1 = {0’1...0’]:}

forsome k: 1< j<k.
Hence, there exists a preferred subtheory S* such that: R C S*.
Suppose that there exists a ¢ € (S* — R).
Because S* is consistent, RU {¢} is consistent.
Let N be a structure in Mod(RU {¢}).
By Definition 4.1, since R C Hyp(N), there holds:
R < Hyp(N).

Since R = Mod(M), MC N.

Hence,
M ¢ Modc(X).

Contradiction.

Hence, for every structure M € Mod(X), there exists a preferred subtheory
S* such that:

§* = Hyp(M).
Therefore,

Modc () C | Mod(S).




Evaluation

It has turned out that it is indeed possible to view default reasoning as a special
case of reasoning with inconsistent knowledge. Furthermore, a deduction process
has been developed, based on the ideas of Goodwin. As a result, the deduction
process can be viewed as a logical process theory that will approximate the set of
theorems of the premisses in the limit. It has also been proven that the preference
logic is a logic of system P. Therefore, according to Kraus et al., the logic satisfies
all properties an ideal non-monotonic logic should satisfy. Less successful has been
the attempt to relate the preference logic with Gardenfors’s postulates for changing
belief sets. The reason for this is because Gardenfors does not assume a base belief
set from which the belief set is generated. Hence, the belief set Gardenfors considers,
does not have an internal structure.

Unfortunately, there are two problems with the preference logic. These two
problems are: firstly, that the determination of a belief set is NP-Hard and secondly,
that the reasoning process is not very intuitive. To start with the former, if in case
of a conflict there does not exist a least preferred element in the set of premisses
on which the conflict is based, the time complexity can get out of control. In
such a case we must either be satisfied with choosing randomly a premiss to be
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removed, or ignore the inconsistency. Removing all least preferred premisses from
the inconsistent set, however, can result in a totally wrong belief set. Although
the determination of the belief set is an NP-Hard problem, the determination of a
single ertension A € A; can be realized in polynomial time. This is still better than
the determination of an extension of Reiter’s default logic or Moore’s autoepistemic
logic. For these logics the determination of a single extension is already an NP-Hard
problem.

The latter problem of the preference logic is a problem that can be found to some
degree in every non-monotonic logic. In my opinion this problem is inherent to the
use of logic as a tool for knowledge representation. In an attempt to overcome this
problem in the next part of this thesis, I will propose an alternative approach not
based on logic.




Part II

A proposal for an alternative
way of reasoning
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In defence of partial models

When reasoning with less accurate knowledge by using some special logic, there
usually arise three problems, viz. (1) the intractability of the reasoning process; (2)
the in-correctness of the conclusions derived, and (3) the counter intuitive way of
reasoning.

To start with the first problem, all logic based reasoning systems explore a search
space in which they try to find a sound proof path to some desired conclusion. Even
for monotonic logics searching through this search space can be very inefficient,
unless knowledge may only be expressed by using a limited subset of the language.
This latter approach is usually implemented in rule based systems.

Using some non-monotonic logic, things become even worse. Somehow every
non-monotonic logic bases its conclusions on a consistency check. Since in first
order logic the consistency problem is undecidable, it become intractable to find a
proof for some desired conclusion. To deal with this problem, Goodwin introduces
the concept of a current proof[24]. In Goodwin’s view, a current proof for a formula
should be interpreted as: given the inferences that are made up till now, a formula
can or cannot be proven to hold. Therefore, the inferences being made, have to
be registrated. They function as a set of constraints on the formulas that can
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currently be believed, the current beliefset. A Reason Maintenance System is used to
determine this current belief set. Although this concept can be used to approximate
the set of correct conclusions, finding a current prooffor some desired conclusion does
not imply that this is a sound proof. In the preference logic, for example, we have to
verify for each (intermediate) conclusion derived whether it can be overruled by its
negation. In other logics, like default logic, we have to verify for every justification
used in a default rule whether the denial of this justification cannot be derived.

For every new constraint on the current belief set being derived, Reason Mainte-
nance has to be applied. When these constraints consist of justifications in a JTMS,
determination of a current belief set is NP-Hard.

The second problem is caused by reasoning with less accurate knowledge. Unlike
monotonic logics, finding a current proof for some proposition in a non-monotonic
logic does not imply that this is an ultimately sound proof. It is only sound if it is
also a proof for that proposition in the deductive closure of the premisses, i.e. its
proof is not cancelled by proving another propasition. Hence, to determine whether
a conclusion is correct, all logical consequences have to be known. Unfortunately,
we can only approximate the deductive closure of a set of premisses. Therefore, we
can never be sure whether the formulas of the current belief set also belong to the
set of theorems of the premnsses

A similar problem arises with the uncertain conclusnons defined in Chapter 8.
Unlike logics for reasoning with uncertain propositions, the certainty measure used
here can be compared with R. Carnap’s logical probability. The certainty measures
defined here express our ignorance.

As I already mentioned in the first part of this thesis, the third problem seems to
be inherent to the use of logic as a tool for knowledge representation. When we are
reasoning, we usually are only interested in determining properties of some specific
objects. When, for example, we have to choose between two roads both leading to
the place we want to visit, we are only interested in facts like the length of the road,
the maximum speed, the chance of running into a traffic jam, etc. So, what we are
interested in, is constructing a model containing all relevant facts of the two roads.
To construct such a model, we must be able to extract the relevant facts from the
knowledge available. Deductive reasoning processes, however, only combine pieces
of knowledge to get a new piece of knowledge. They are not specially designed to
extract the relevant facts from the knowledge available. Therefore, they are not very
intuitive.

To tackle these problems, I propose to model a reasoning process as a process
of constructing a partial model of the world we are reasoning about. In the next
section I will motivate why we can base a reasoning process on the construction of
a partial model and how at least two of the three problems can be solved.
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6.1 Partial models

In his paper In defence of logic [25), P. J. Hayes did not, in the first place, defend the
use of logic as a knowledge representation tool. Although he is in favour of logic, in
his opinion we may choose any form of knowledge representation that is convenient
for our purpose, as long as it possesses a model based semantics. According to Hayes,
it is only then that we are able to evaluate the situations that satisfy the represented
knowledge. Consider, for example, a representation that states that coffee will still
be in a cup after having moved the cup. It is not difficult to imagine a situation that
does not satisfy this knowledge. But to be able to verify this, we must know how
situations (models) are related to the knowledge representation; i.e. it must have a
model based semantics.

So what are these situations or models that we use to evaluate the represented
knowledge? They represent some abstract description of the world. These descrip-
tions of the world are different from the knowledge described by the knowledge
representation we use. The former gives a description of the world as we observe it.
The latter, however, gives a description of what must or should hold in any model
of the world; i.e. it describes what we will or can observe in any world we look at.
Hence, a model is the connection between our knowledge and our observations. It
represents what we observe in and what we know about some world. Clearly, since
we can observe the world only partially and since our knowledge about the world
is far from complete, we can only have a partial model of the world. This partial
model is assumed to be a finite approximation of some complete model, which can
only be possessed by some ideal omniscient agent. It consists of a finite number of
objects and of partially defined relations on these objects.

Since a partial model is the connection between our knowledge and our obser-
vations, I propose to give it a central place in a reasoning process by viewing the
reasoning process as a process of constructing a partial model of the world we are rea-
soning about. With this view on reasoning, like observations, a reasoning step causes
an expansion or a revision of our partial model of the world. To realize this view,
it is necessary to introduce a syntactic representation of a partial model which we
can manipulate. This syntactic representation can be viewed as a conceptual model
of its semantic equivalent. I will, however, address this syntactic representation as
a partial model.

The idea of using a partial model is not new. It can also be found in other
research areas.

o In discourse theory, partial models are used by H. Kamp [30]. In his Dis-
course Representation Theory (DRT) partial models are used to represent the
interpretation of a discourse. New sentences are added by updating this inter-
pretation.

e In cognitive psychology, partial models are used by P. N. Johnson-Laird [29)] to
explain syllogistic reasoning by humans. According to Johnson-Laird, humans
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do not reason by using some internal logic, but they reason by constructing a
partial model. He distinguishes two different kinds of partial models, viz. an
image and a conceptual model. An image is a three dimensional reconstruction
of a scene while a conceptual model is an abstract model of the world, like the
one described here.

o In knowledge representation also something like a partial model has been pro-
posed by D. W. Etherington, A. Bogida, R. J. Brachman and H. Kautz. [21].
They propose the use of a vivid knowledge base to keep the reasoning process
tractable. In this knowledge base they only store positive facts that have a one
to one correspondence with objects and relations in the world. Other forms of
knowledge are stored in a traditional knowledge base, which has a traditional
inference engine.

If we view reasoning as a process of constructing a partial model, how can this
help us to avoid the three problems mentioned at the beginning of this chapter? The
first problem I mentioned in the introduction is the intractability of the reasoning
process. I believe the reasoning process I propose here to be more tractable than
traditional ones. Clearly, the information contained in a partial model can be read
in polynomial time. So, the time complexity of the reasoning process depends on the
process used to construct (update) the partial model by adding new information.
Information like ‘John goes to the movie or to the theatre tonight’, for example, can
be added in polynomial time. However, when information like ‘most humans have
brown eyes’ is added or when default rules are involved, the time complexity of the
reasoning process becomes less clear.

Since the consistency problem is decidable in a partial model, unlike non-mono-
tonic logics, correctness of default conclusions can be guaranteed; i.e. conclusions
based on a partial model are always correct with respect to the partial model and
with respect to the information used to construct the model. This implies that if
some conclusion that follows from a partial model, is not correct, then either some
incorrect piece of information is used to construct the model or some relevant piece of
information has not yet been used in the construction of the partial model. Hence,
we can discuss about the information used or not used in the construction of the
partial model. In logic based reasoning systems, however, we do not know whether
all relevant deduction steps are made or whether some piece of information is either
not available or not correct. Here, it is not possible to discuss the information used
or not used since the correct answer can be implied by the knowledge but not yet
be derived.

Another advantage of using a partial model as a basis for a reasoning process
is that in a partial model we can count objects. In a first order logic we can, of
course, also describe that we have a certain number of distinct objects for which
some property is satisfied. This description, however, is a very clumsy one because
we cannot count in a first order logic. Because objects can be counted in a partial




Section 2 — Defining a partial model 85

model, we can update the model with information describing that for a percentage
of a class of objects some proposition is satisfied.

6.2 Defining a partial model

The issue I will address in this section is how to define a partial model. When the
information, used to update a partial model, is described by a propositional language,
a partial model can be defined, for example, by using Kleene’s strong three valued
logic. When, however, information is described by a first order language as will be
assumed here, defining a partial model becomes much more complex. Before defining
a partial model, I will first look at the things we want to represent in it.

A partial model of the world should contain objects that represent observable
entities, and relations that represent observable events or structures. The question is
how these objects and relations can be represented in a partial model. In traditional
logics a model consists of a set of objects and a valuation function that assigns
an object to every constant symbol and a relation to every predicate symbol. A
partial model can be described by a set of objects and two valuation functions; one
describing the instances of a relation that are known to be true, and one describing
the instances of a relation that are known to be false. I will, however, introduce an
alternative representation to describe a partial model. This representation, which
has been chosen because it is more convenient in other definitions, consists of two
sets of instances of relation; one containing the instances that are known to be true
and one containing the instances that are known to be false.

Definition 6.1 Let O be a set of objects. An instance of an n-place relation r € O
is an n+1 tuple

(r,o01,...,0n)

where 0; € O fori = 1,...,n.

Since I do not use a valuation function and since I treat relation symbols in the
same way as other objects, I need a method to name objects. Here I have chosen
to introduce a set of special objects called names, which have the same function
as constants in a first order logic. These names, which can be used for objects and
relations, are assumed to be unique. Objects that are no names are called anonymous
objects.

Definition 6.2 Let Names be a finite set of names and let {o; | ¢ € N} be an
enumerable set of anonymous objects, Names N {o; | i € N} = &. Then the
domain of objects D for a partial model is defined as:

D = NamesU {o; | i € N}
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Using this domain of objects, a partial model can be defined.

Definition 6.3 Let D be the domain of objects for a partial model. Then, a partial
model M is a tuple (O, V) where:

e O C D is the set of known objects,

e V = (R*,R™) is a view on the world where Rt and R~ are sets of
instances of relations r € O, Rt denoting a set of instances known to be
true, and R~ denoting a set of instances known to be false.

The partial model defined above is the most simple realization of a partial model
for a first order language. I will now investigate whether this partial model possesses
sufficient expressive power to represent the information we want to represent by a
partial model. Clearly, information like ‘Pedro beats a donkey’ can be represented
in a partial model by the relations (beat, Pedro,z) and (donkey,z). Information
containing a disjunction like for example ‘John is 30 or 31 years old’, however,
cannot be expressed in a single partial model. Since a disjunction expresses different
views on the world, two partial models are needed to represent this information; one
stating that John is 30 and one stating that John is 31. Now, suppose that we want
to represent the information ‘a friend of John goes to Paris by bus or by train’ by
a set of partial models. Then also two partial models are needed; one in which the
friend of John goes to Paris by car and one in which he goes by train. In each of
these two partial models, John’s friend will be represented by an anonymous object.
Since there is no relation between the two partial models, there is no reason why
the objects denoting John’s friend in both models should denote the same person.
They can just as well denote two different friends of John. This is, however, counter
intuitive.

A related problem will arise when the definition of the uncertainty of a conclusion,
which is given in Chapter 8, is based on the partial model of Definition 6.3. What
will go wrong in that case is illustrated by the following two examples.

1. Suppose that John’s bowling ball and two other bowling balls lay on the table.
If one of them is red, what is the probability that this is John’s bowling ball.

2. Suppose that John’s, Paul’s and Peter’s bowling ball lay on the table. If one
of them is red, what is the probability that this is John’s bowling ball.

The information described by the first example can be represented by two partial
models, one in which John’s ball is red and one in which it is not. To represent the
information described by the second example , three partial models are needed. One
partial model in which John’s ball is red, one in which Peter’s ball is red and one in
which Paul’s ball is red. Since the first example can be represented by two partial
models, while for the second example three partial models are needed, assuming that
these partial models are equally likely, the probability that John’s ball is red will be
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different in both examples. To avoid these problems, a new definition of a partial
model is needed.

This new partial model is a partial epistemic model. It consists of a set of views
the reasoning agent can have on the world. Like in an epistemic model, ignorance
whether an object o has a property  or s can be modelled, using different views.

Definition 6.4 Let D be the domain of objects for a partial model. Then, a partial
model M is a tuple (O, V) where:

e O C D is the set of known objects,

o V={W,..,Vn}is aset of views V; = (R*t, R~) where Rt and R~ are
sets of instances of relations r € O, R* denoting a set of instances known
to be true, and R~ denoting a set of instances known to be false.

Information expressed by a disjunction does not only express different views on
the world, it also expresses our uncertainty about the world. For example, the
disjunction p = (a V b) expresses, in the absence of other information, two equally
likely views on the world. If we represent this information in a partial model, two
views are needed; one in which a holds and one in which b holds. Assuming that
these views are equally likely, the partial model expresses the same uncertainty about
the world.

Now consider the situation in which we want to represent ¢ = (a V (b A (c V d)))
in a partial model. This disjunction describes that we are uncertain whether a or
(5 A (c Vv d)) holds in the world we are reasoning about. If (b A (¢ V d)) holds in the
world, then we are uncertain whether (b A ¢) or (b A d) holds. These uncertainties
cannot be expressed by the partial model defined above. Because g expresses three
different views on the world, ¢ can only be represented by a partial model containing
three views. Assuming that all views are equally likely, this partial model does not
express the uncertainty described by ¢. Therefore, again a new definition of a partial
model is needed. In the new defined partial model, it should be possible to represent
the uncertainty expressed by a formula.

One possible way of representing this uncertainty would be to use a tree of views.
In such a tree the formula ¢ will be represented by the root. This root must consist
of two views; one representing the formula a and one representing the formulas b and
(¢ v d). Furthermore, the view representing (¢ V d) must also consist of two views;
one representing ¢, and one representing d.
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This way of defining a partial model has an important disadvantage. Repre-
senting the information of a single formula in such a partial model does not cause
any problem. But representing the combined information of two or more formu-
las in a partial model does cause problems. To be able to represent this combined
information, the uncertainties expressed by the formulas have to be combined. Be-
cause choices described by a disjunction can be eliminated by the information of
other formulas, using a tree of views can result in an incorrect representation of the
uncertainties expressed by the combined information.

To illustrate this, consider an empty partial model to which we add the informa-
tion p = ((a V &) V ¢). This will result in the following tree of views.

Suppose that after adding p to the partial model, we add the information ¢ = (-~aVd)
to the partial model. Since this information describes two equally likely alternatives,
this should also be expressed by the new partial model. If we would distribute this
information over the information contained in the partial model, the new partial
model will contain the following tree of views.

Since the view (a,—a) is inconsistent, it has to be eliminated from the tree. Then,
the probability of the view (a,~d) will be equal to %. Now suppose that we first
add ¢ and after that p to the partial model. This will result in the following tree of

views.
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Here, the probability of the view (@, —d) is equal to §. Because this result is counter
intuitive, the distribution of uncertainty is impossible.

Another possibility is to determine the product of the choices described by the
partial model and the new information. For the example described above, this results

m:

/\ '

Now the order in which p and ¢ are added to the partial model does not influence
the result. But if we also added —¢ to the partial model, again the result will depend
on the order in which the information is added.

e

It should be clear that the right tree represents the uncertainty correctly. The reason
why we can also get the incorrect partial model is because by adding —c, we eliminate
a complete level of the tree of views.
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/\ () +e = /\ = O ®
If the views in the partial model of Definition 6.4 may contain formulas instead
of only instances of relations, the problem I have illustrated above can be avoided.
Such a partial model can also be viewed as representing a tree of views. Here,

however, the levels of the tree that do not have the root as a parent, are represented
implicitly by the formulas. For example ((a V b) V ¢) is represented as:

If we add —c to this ‘tree’ of views, we get:

/

Since the formula (a V b) holds in every view of the partial model, we may expand

it. So we get:

Another way of looking at the formulas in a view is to consider them to be
constraints that have to be satisfied by this view on the world. Since formulas have
not been defined yet, I will postpone the definition of the partial model till the
formulas have been defined.




The reasoning process

In this chapter I will characterize the reasoning process needed to update a partial
model with new information. Before I will describe the actual reasoning process, first
I will define the information used to update a partial model. For this a language is
needed in which the knowledge used can be represented. In this language it must
be possible to represent quantification over a description of objects (a quantified
description). By a quantified description I mean expressions like all farmers and
a donkey. It is not possible to limit ourselves to quantifiers like all and a, when
discussing the derivation of uncertain conclusions. Uncertainty can also arise by
using quantifiers like most or many.

7.1 New information

In this section I will describe the representation for the information used to update
a partial model. The main problem discussed here is how to represent a quantified
description. Firstly, it is not possible to describe a class of objects directly. Secondly,
in first order logic only universal quantification is possible. Extending first order logic
by adding more quantifiers will not solve the problem. For example, the sentence

91
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‘Most apples are red’ is not equivalent to (most z)[apple(z) — red(z)]. Here the
quantifier most ranges over the whole domain of objects instead of over the class of
apples. Because of this, objects not being apples are also counted for the percentage
most, for the implication also holds when the antecedent is false. We might, of
course, extend the logic with a device for quantifying over classes of objects. For
example: (most z)[apple(z)] : red(z).

An alternative approach is the knowledge representation language OMEGA [27,
1). This knowledge representation language was specially designed to reason with
indefinite descriptions. Here, classes are represented explicitly. They are used to
create the descriptions. Therefore, it is not difficult to extend the language such that
quantification over classes becomes possible. Another extension which is needed, is
the extension of the number of relations between objects. In OMEGA the only
relation between objects is the relation is. With these extensions we are able to
describe properties of objects of a class like the class of persons. Sometimes, however,
we want to describe subclasses like persons who own a driving licence. Again we must
extend OMEGA to make the description of subclasses possible.

In the partial models defined in section 6.2, we do not have classes. If a class of
objects has to be represented in a partial model, a relation has to be used. We can,
of course, also specify that the relation has a property that says it is a class. Since a
class is represented by a relation in a partial model, we can also do this in OMEGA.
But then we get more or less the extended predicate logic mentioned above.

In the following section I will introduce a representation based on the extended
predicate logic discussed here.

7.2 Formal definitions

In this section I will define the formulas used to describe new information and to
describe constraints used in a partial model. After that, the partial model introduced
at the end of section 6.2 will be defined.

Before the formulas are defined, I will discuss the representation of a disjunction
used here. Unlike the predicate logic, a formula representing a disjunction will not
be a binary operator. If the operator V would be a binary operator, the formula
a VbV e can be read in two different ways; either as (a Vd)VcorasaV (bVe).
As was argued in Section 6.2, both formulas represent two different choices. The
first formula represents a choice between (a V b) and ¢, while the second formula
represents a choice between a and (bV ¢). If, however, we want to describe three or
more alternatives, n-place disjunction operators are needed.

Since the information described by a formula may refer to the objects in the
current partial model, these objects have to be available. These objects to which
we can refer, are called erternal objects. They bind the objects that occur free in a
formula.
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Definition 7.1 Let O, be the set of external objects for the formulas to be defined
here.

The formulas are defined as follows.

e ¢ = (r,01,...,0,) is an n-place relation where r € O, is a relation symbol
and 0y, ...,0, € O,y are the arguments of the relation.

e ¢ = (—, ) is the negation of the formula ¢ with external objects, the set
0O...

o o= (A, %¥1,...,¥n) with n 2> 2 is a conjunction of formulas ¥; with exter-
nal objects, the set O,;.

o ¢ =(V,¥1,...,¥,) with n > 2 is a disjunction of formulas 1); with external
objects, the set Oy

o ¢ = (#,n,0,9(0)) is a description of a group of objects where n € N is
a natural number, o € D is an object and ¥ = (o) is a formula with
external objects, the set Q.. U {0}.

e ¢ = (a,0,91(0),¥2(0)) is an indefinite description where o € D is an
object that occurs in both the formulas 1, and ¥, and where #1(0) = ¥,
and v2(0) = v¥2. The set of external objects for the formulas ¥; and .
is the set O, U {0}.

o ¢ = (%, p,0,%1(0), ¥2(0)) is a quantified description where the percentage
p € [0,1] is a rational number, o € D is an object that occurs in both the
formulas ¥; and 5, and where ¥1(0) = ¥ and ¥2(0) = 2. The set of
external objects for the formulas 1; and 1 is the set O, U {0}.

Now the formulas have been defined, the definition of the partial model can be
given. This partial model consists of a set of objects and a set of views. Each view
consists of a set of formulas that have to be satisfied by it.

Definition 7.2 Let D be the domain of objects for a partial model. Then, a partial
model M is a tuple (O, V) where:

e O C D is the set of known objects,

o V = {W,...,Vin} is a set of views V; where V; is a set of formulas that
have to be satisfied by this view.

7.3 Semantics

In this section I will describe two semantics for the formulas. Before I do so, I
will discuss the meaning of a description. A description does not denote a specific
object. It only describes an object and, therefore, this object can be mapped on
any object in the partial model that satisfies the description. Take, for example,
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the sentence: ‘most humans have brown eyes’. This sentence can be represented
as: (%, p, 0, 1(0), p2(0)) where @;(0) = (human, o) and ¢; = (has_brown._eyes, o).
Here every possible mapping of the object o on the objects of the partial model
has to be considered. Given these mappings, the number of different objects in the
partial model on which o can be mapped such that respectively ¢; and both ¢; and
@2 are satisfied, have to be counted. The ratio between the two numbers should be
equal to p. For any world we can verify whether it satisfies such a description. If
the cardinality of the class of humans is unknown in a partial model, any cardinality
¢ is possible as long as p - ¢ is a natural number. Since there are infinitely many
different cardinalities that satisfy this requirement, it becomes impossible to describe
in a finite partial model the result of updating a partial model with the information
of a quantified description. Therefore, in the semantics below I will introduce the
condition that the cardinality of a class of objects described by a partial model has
to be known.

As mentioned above, two different semantics will be defined, a strong and a weak
semantics. The weak semantics is intended for normal use, i.e. when one wishes to
know whether a formula is true or false in a partial model. The strong semantics has
a totally different purpose. This semantics is introduced to be able to characterize
the reasoning process. It will be used to define the conditions under which a partial
model has incorporated the information described by some formula.

Firstly, I will define the weak semantics. Two satisfiability relations will be used.
Since we only have a partial model, formulas not satisfied by the model do not need
to be false. Therefore, it is not sufficient to define a satisfiability relation for the
formulas that are true (=*). We also need a satisfiability relation that defines when
a formula is false (=~); i.e. a formula that cannot be satisfied by any consistent
extension of the partial model.

Definition 7.3 Let ¢ be a formula and let M = (O, {V4,...,Vin}) be a partial
model.

A formula ¢ is true in M, M E* ¢, if and only if ¢ is true in each view of
M, i.e. for each V;:

(Om, Vi) E* 0.

(Om, Vi) EY ¢ if and only if either ¢ € V; or one of the following conditions
is satisfied.

e (Om, Vi) EY (-, ¢) if and only if:
OMm, Vi) E™ ¥.

o (OMm, Vi) EY (A ¥, ..., ¥n) if and only if for each ¥;:
(Om, Vi) E* 4.
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® (Om, Vi) E* (V, 91, ..., %) if and only if for some ¢;:
(Om, Vi) E* o5,

o (Om,V) E* (a,z,¢¥1(2), ¥2(z)) if and only if for some 0 € Opq:
(Om, Vi) E* ¢1(0) and (Oum, Vi) B #2(0).

A formula ¢ is false in M , M |=~ ¢, if and only if p is false in each view of
M, i.e. for each V;:

(Om, Vi) E™ o

(Om, Vi) == pifand only if either (-, ¢) € C or one of the following conditions
is satisfied.

* (Om, Vi) E-
(OM’ i ’=+ '¢‘
o (Om, Vi) F~ (A, %1, ..., 9¥n) if and only if for some 9;:

(=, ¥) if and only if:
)
(
Om, Vi) F~ ¢5.
(
)

e (Om, Vi) B~ (V, 91, ..., ¢n) if and only if for each ¢;:
(Om, Vi) E- ¥j-

e (Om, Vi) = (a,x,¥1(2), ¥2(x)) if and only if
(Om, Vi) EY (%,0, 2, 91(2), Y2(2)).

Notice that a quantified description and a description of a group of objects ¢ can only
be true or false in a view if respectively ¢ € V; or (-, ) € V;. It is not possible to
define their meanings in terms of their constituents. The reason for this is illustrated
by the following example. Suppose that we know 5 balls to be red. Does this imply
that there only exist 5 red balls? Since partial models are incomplete, we cannot
answer such a question.

The following definition defines the strong satisfiability relation that is used to
characterize the reasoning process. Since it will be used to characterize the reasoning
process, here the meaning of a quantified description and a description of a group
of objects will be defined.

Definition 7.4 Let ¢ be a formula and let M = (Opm, {V4,...,Vin}) be a partial
model.

M strongly satisfies ¢, M | ¢, if and only if the following conditions are
satisfied.

¢ Om [ {r,01,...,04) if and only if for each V;:
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(OM, V,) l: (1', 0, ...,0,,).
e M [ (-, ) if and only if for each V;:
(OM’V!) ': (_'"l))'
e M [ (A, ¥1,...,¥n) if and only if for each y;:
M E ;.
o M [E (V,¥1,...,¢,) if and only if each V; there exists a 9;:
(Om, Vi) = 9.
o M = (#,n,z,9(z)) if and only if there exists a O C O such that:
1. for each o € O:

3. for each 0,0’ € O:
ME (-, (=0, 0,))’
4. and for each 0 € (Opm — O) such that:

M [ ¥(0)
there holds:
M (=,0,0)

for some o’ € O.
o M [ (a,z,¥1(x), P2()) if and only if for some 0 € O

M = ¥1(0) and M [ 2(0).
o M E (%,p,z,¥1(z), ¥2(z)) if and only if for some natural number n:
1. M "_' (#) n, 2,1/)1(17)),
2. there exists an O; C Ot with |O1] = n such that for every 0,0’ € Oy:
M }= (-') (=! 0, ol))v
3.0<k=p-n< n,and
4. for each V; there exists a {0y, ...,0¢} C O; such that for each
o€ {o1,...,0t}:
(OMa ‘/i) '= '/’2(0)
and for each o € (O1 — {01, ..., 0k }):
(Orm, Vi) E (=, 4(0)).

A formula is satisfied by a view, (Om, Vi) | ¢, if and only if the following
conditions are satisfied.

e (Om, Vi) E (r,01,...,05) if and only if:
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{r,o1,...,0n) €EV;.

e (Om, Vi) E (-, ¢) if and only if:
(= ¥) e Vi

e (Om,V;) E (A, 91, ..., %) if and only if for each ¥;:
(Om, Vi) E ¥;.

o (Orm, Vi) E (V,¥1, ..., ¥,) if and only if:
(Vs ¥1,...,¥n) € Vi

¢ (Om, Vi) E (#,n,2z,9(z)) if and only if:
(#.n,z,9(z)) € Vi.

e (Om, Vi) E (a, z, ¥1(x), ¥2(x)) if and only if for some o € Oum:
(Om, Vi) = ¥1(0) and (Om, Vi) [ #2(0).

o (Om, Vi) E (%, p, x,¥1(x), ¥2(z)) if and only if
(%, p, 2, ¥1(2), ¥o()) € Vi

Using the weak satisfiability relation, we can define whether a partial model is
consistent.

Definition 7.5 Let M = (O, {V4, ..., Vin}) be a partial model.

M is consistent if and only if for no view V; there holds for some ¢ € V:
ME" o.

7.4 The reasoning process

To be able to reason by using partial models, an updating function has to be defined.
This updating function maps a partial model M and some piece of new information
¢ on a new partial model . This new partial model, which is called an extension
of M, must contain all the information described by M and must strongly satisfy
¢. So, first of all I have to define when an extension A is at least as informative as
M. The idea behind the ordering relation defined here is that if a partial model M
can be embedded in a partial model N, the latter is at least as informative as the
former. Since the anonymous objects of a partial model can denote any entity in
the world we are reasoning about, in another partial model other objects may have
been used to denote the same entity. It is even possible that an object in a partial
model is represented by more than one object in another partial model. Therefore,
a partial model A can only be at least as informative as a partial model M with
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respect to some inierpretation function. This interpretation function, which is a
partial function from D to D, interprets the objects of M in ..

Since objects of a partial model M can be unified in a2 more informative partial
model N by an interpretation function, i.e. they will be represented by one object,
the equality relation may become useless. So, if M |t (=, a,b) and f(a) = f(b) for
some interpretation function f, (=, f(a), f(b)) need not occur in A. Therefore, only
if NV is extended with these equality relations, M can be embedded in V.

Furthermore, if the partial model N satisfies (=, a, b) one of the objects a, b can
be removed. Since an interpretation function can only map objects of the partial
model M to one of the objects a, b, these objects have to be unified. Therefore, a
unification function will be used.

Definition 7.6 Let ¢ be a formula, let O, be the set of extemal objects for ¢ and

let f : D — D be a partial interpretation function.
Then ¢[f] denotes the result of substituting every object o that occurs in ¢
by f(o).

o (r,01,...,00)[f] = (£(r), f(01), ..., f(0n)).

o (= 9)Mfl= (9l

o (A1, e, ¥n)[f] = (A alS], -, ¥l ])-

o (V,¥1,.., ¥na)lf] = (V, ¥a[f], ... ¥nlf]).

hd (#sn"” 'I)(o))[f] = (#!nvoli"»b[fl](ol)) ,
where o' € D, o' & f(O.z) and f' = f[° /o).

* (a0 ¢1(0) ¥2(0))[f] = (a, o', 91[f']("), 1/)2[1"]( )
where o' €D, o ¢ f(O.z) and f' = f[° /o).

o (%,p,0, ¢1(0) ¥2(0))[f] = (%, p, o', Y1 [£](o), ¥2[]("))
where o € D, o' ¢ f(Oez) and f' = f[°'/,).

Definition 7.7 Let M = (Oam, {Vm 1, VMm}) and N = (On, {Vn.1, - Vrn})
be two partial models and let A : D — D be an interpretation function. h is a
partial function, which is at least undefined for those objects not belonging to
O . Furthermore, let Eq(O) be the set of equality relations for the objects O
and let u : Oyr — O be a unification function. E¢q is defined as:

Eq(0) = {(2’0» 0) o€ O}

Let [0o]= be the equivalent class of equal objects in which o occurs; i.e.:

o' € [0]= if and only if there exists a sequence 01,...,0n, 0 = 01, 0’ = 0
and for each 1 € i < n:

N E* (=,0i,0i41) or N ¥ (=, 0i41,0:).
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Then u is defined as:

for each o € On there exists a o/ € [0]= such that:
[o]= = {0o" € On | u(0") = 0'}.

N is at least as informative as M under the partial interpretation function A,
M € N, if and only if for each 0 € (Om N Names):

h(o) = o,
and for each Vjy,; there exists a Vaq,; such that:
Vam,iluo h] C (Viv,;[u]U Eq(On)).

Lemma 7.8 Let £, M, N be partial models and let f and g be interpretation func-
tions such that:

Then £ <40y N.

Proof Let £ = (O¢,{Ve,1,--Vieed)y M = (Oam, {VMm,1,-, Vym)) and N =

(ON; {VM,IS vrey VN,ﬂ})-
Since M <y N, for each Vj i there exists a Vaq ; such that:

Vam,iluw 0 9] € (Vavk[un] U Eq(Ow)).

Since £ <y M, for each Vpy; there exists a V¢ ; such that:
Ve iluam o f] C (Vam,j[um] U Eq(Om)).

Therefore, for each Vyr,1 there exists a V¢ ; such that:
Veilunwogo f] S (Vv,j[un]U Eq(Ow)).

Hence, £ €gop N. a

Definition 7.9 Let M and N be two partial models.

N and M are equivalent partial models, M = N, if and only if for some
interpretation function f:

MG N
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and some interpretation function g:
N <y M.
Using this ordering on the partial models, the set of possible extensions of M

satisfying ¢ can be defined. These partial models must be at least as informative as
M, must satisfy ¢ and must not be more informative than strictly necessary.

Definition 7.10 N € Ez(M, o) if and only if AV is consistent, there exists f:
M <y N and N E ¢[f]
and for every consistent £ such that for some g, k:
ML, LS N
there holds:
L E ¢[g] implies £ = M.

For this set Exz(M, ) we can prove that all the partial models in this set are
equivalent.

Theorem 7.11 Let M be a partial model and let ¢ be a formula.
For every £, N € Ez(M, ) there holds: L= N

Proof Let L,N € Ex(M, p).
L={04{Ve1, s Ve,m})-
N =(On,{Va1s -, Vn})-
Let f and g be two interpretation functions such that:
MK Land M g N,
Let h: (Og — f(Om)) — D be a bijective function such that:
h(O¢ — f(Om))NOrm C Names

and
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h(O¢ — F(Om))NOx C Names.

This function introduces new objects for objects of the partial model £ not origi-
nating from the partial model M.
Furthermore, let a and b be two interpretation functions that are defined as:

a(o)_{ flo) ifo€Om
T\ h~(o0) ifo€h(Oc— f(Om))

and

o) foe0
b("):{ g( ) ifoe((xr—y(OM))-

Given the functions a and b, we can construct a partial model

L' =(0c, {Veray ooy Verm}).
and a partial model

N' = (On, {Var 1y ey VNI )
where

Oz = (OpmUK(Oc — f(Om))),

On = (Om U (On — 9(0OMm))),

Vi = {e| ¥ € Ve, plal =¥} U{(=,0,0') | 0,0 € Oum, f(0) = f(¢')}
and

Vi ={e | € Vi, ¢lb] = ¥} U {(=,0,0') | 0,0' € O, 9(0) = 9(o)}-
For these partial models £’ and A there holds:

(Ocs - Ow) € (Oaa U Names),

Opm C O and Opq C Opr,
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Om <ia O¢r and Op €iq On,y
Of =0z and Opn = Opr
and
Oc F ¢ and On: F .
Furthermore, we can construct a partial model
P=(0c V0N, {Veiayes Verm, Vara, -, VAn )
Since Vp D V¢ and Op D O we have:
P <ia L.
Hence by Lemma 7.8:
P Kidoa L.
Similarly, since Vp D Vr and Op D Oy, we have:
P <ia N
Hence by Lemma 7.8:
P Sidos N
Furthermore, since M ;4 £’ and M <;q N7,
M<K P
Because for each Vg ;:
(O UON, Vi) E e
and for each Vy j:

(Ol',' UON’sVN',j) '= ®

— Chapter 7
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there holds:
PEe
Since £ € Ez(M, ) and P [ ¢, it follows from Definition 7.10 that
L<€a P |
for some a’ and therefore:
L Spoar N.
Likewise, N' € Ez(M, ¢) and P [ ¢, implies that
N<pP
for some ¥’ and therefore:
N Laop L.
Then, by Definition 7.9:
L=N.
0

Remark 7.12 Although all partial models are equivalent, there are important dif-
ferences between them. Here I will define two conditions in order to choose a
canonical form.

Since objects in a partial model can denote the same objects in a world, there
is no upper bound on the number of objects in a partial model. Therefore, the
only non arbitrary number of objects in a partial model is the smallest number
of objects.

Definition 7.13 Let M be a partial model and let ¢ be a formula. Further-
more, let L, N € Ez(M, ¢).

L <1 M if and only if |O¢]| > |On|.

There is yet another condition that has to be satisfied. It is possible that a
partial model contains redundant views. These are views that describe at least
the same information as some other view. Therefore, a partial model contain-
ing more views than some equivalent partial model, must contain redundant
views. Of course, we prefer those partial models that do not contain redundant
views.
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Definition 7.14 Let M be a partial model and let ¢ be a formula. Further-
more, let £L,N € Ez(M, p).

L <2 N if and only if |V¢| > |Vu|.

Clearly, because <; and < are strict partial orderings on Ez(M, ¢), so is the
combined ordering, <12 = (<1 or <3). Using the ordering < 2, the preferred
partial model of Ez(M, p) can be determined. Whether these preferred partial
models are the models we are looking for, is still an open question.

Definition 7.15 Let Ex(M, ¢) be the set of minimal extensions of M that
satisfy ¢. Then, the set of preferred minimal extensions of M is defined
as follows:

Ezp(M,p) = maz(Ex(M, p), <1,2).

When a partial model M is being updated with a formula ¢, the partial model
that is actually constructed by the updating function, must be an element of
the set Ez,(M, ¢). This partial model is denoted by M|y].



Uncertain conclusions

If a formula is satisfied by every view of a partial model, we are certain that it holds.
It may be possible that a formula is satisfied by only some of the views. In that case
we cannot be certain whether it holds. To express this uncertainty, I will define a
probability and a likelihood measure in this chapter. The probability measure will be
used for conclusions that express an ezpectation, and the likelihood measure will be
used for conclusions that express an ezxplanation. Both of these certainty measures
express our ignorance with respect to our partial models. Examples of both kinds
of conclusions are respectively:

e ‘John probably loves a woman’,
o ‘It is likely that the patient has a brain tumor’.

How these conclusions can be derived, I will describe in the following sections.

The contents of this chapter was presented at the IPMU conference in 1990 and will be published
[54].
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8.1 Expectations

An expectation like: *John probably loves a woman’ can be derived from the quan-
tified description: "Most men love a woman’. The question is how to formalize this
deduction. One possibility is to assume that John is randomly chosen from the
class of all men and that the quantified description is independent of other known
information, e.g. that it is not overruled by some other quantified description. The
main objection against this approach is the demand that John has to be randomly
chosen. When John is a colleague of yours, he cannot be considered to be randomly
chosen from the class of all men.

The approach taken here, is based on the ideas of R. Carnap [8]. A measure
for the expectation of a formula will only be derived from the information available.
So we have to define how the probability measure is based on the set of views.
To motivate the definition below, first consider the following situation. Suppose
that some of the views of a partial model satisfy the formula for which we want to
determine a probability measure. Then the definition of the probability measure
should satisfy the following conditions.

o The probability measure should be proportional to the number of views that
satisfy the formula. ‘

o The measure should be inversely proportional to the total number of views.

¢ Since we have no reason to prefer one view to another, the insufficient reason
argument of Bernoulli and Laplace [22] can be applied on the views.

The probability measure defined below satisfies these requirements.

Definition 8.1 Let M = (O, {V},...,V;}) be a partial model and let a formula
be known in every view V;, i.e. for every view (O, V;): either (O, V;) E* p or
(0,V;) E~ ¢. Then the probability measure Pr(p | M) for a formula ¢ with
respect to a partial model M is defined as follows:

1
n

Pr(p | (O {Vay s Val)) = 3 - 3 Pr(e | Vi)

and

W[ 1 0V Er e
Priciovn={ ¢ HOTHELY
Given this definition, the following observation can be made.

Observation 8.2 Let M = (O, {V, ..., V»}) be a partial model and let ¢ and 3 be
formulas that are known in M, i.e. for each V;:
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(Om, Vi) E ¢ or (Opm, Vi) =
and
(OMm, Vi) E ¢ or (Om, Vi) E 9.

Then the axioms of probability are satisfied. These axioms are:

e 0K Pr(p| M) 1.
e Pr(pV-yp)=1
o If M E =(¢A¢), then:
Pr(pV ¢ | M) = Pr(p | M) + Pr(p | M).

Using the definition, it is possible to derive that John probably loves a woman if
the conceptual model contains the fact ‘John is a man’ and the quantified description
‘Most men love a woman’ is used.

Property 8.3 Let M = (Oam, {V}) denote a partial model and let ¢ denote the
quantified description: (%, p, 2, ¥1(z), ¥2(z)). Furthermore, let all the objects
described by the class 1; be known in the partial model, let ob be one of these

objects and let ¥» be unknown for these objects.
Then:

PT(lﬁg(Ob) IM[(%,p,x,¢1(:L'), 1b'l(‘l"))]) =p

Proof Let N = M[g], let
X = {0 € Op | M E* 1)},
Y ={o€ X | ME" ¥3(0)},
Z={oe X | ME" $(0)).

and let |X| = n. Since ob belongs to the class described by 1; and since ¥, is
unknown for the objects of this class,

obeXandY =2=0

e Suppose that p = 0. Then for no o € X:

N EY ¢2(0).
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Hence

Pr(iz(ob) | Mlp]) = 0
¢ Suppose that p = 1. Then for every o € X:
N ET ¢2(0).
Hence
Pr(iz(ob) | Mlg]) = 1
e Suppose that 0 < p < 1. Then we can choose k = (pf‘") different subsets of X
containing p - n objects.

For every subset of X containing p - n different objects o, there must exist a
view V; for which there holds:

(O./Va ‘/i) h+ '/)2(0)
while for the other objects 0 in X there holds:
(On, Vi) E™ ¢2(0).

Therefore {V4, ..., Vi}. is the set of views of V.
In (,"~1) of these views V;, there holds for the object ob:

pn—

(OAfr Vt) t=+ ¢2(0b):

while for the other views V; there holds:

(Ow, Vi) E™ ¥a(0b).

Hence,
n-1
Pr(da(on) | Mig]) = 5
. -

a

Now I will discuss two examples that have been used to defend respectively the
Dempster-Shafer theory [56] and the transferable belief model [60]. In [56] G. Shafer
discusses an example illustrating that a Bayesian cannot always assign a consistent
probability measure.
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Example 8.4 Life near Sirius? Are there or are there not living things in the
orbit of the star Sirius? Some scientists may have evidence on this question,
but most of us will profess complete ignorance about it. So, let a denote the
possibility that there is such life, then we know that a V ~a will hold. When
we incorporate this information in the partial model,

1
PT(QIMI)-: 5.

We can also consider the question in the context of a more refined set of
possibilities. We might raise the question whether there exist planets around
Sirius. Let this be denoted by 3. Shafer considers three possibilities in his
example, viz. a, ~a A # and -a A ~F. If we update the partial model with
aV (ma A B)V (~a A —B), we get the same inconsistent probability measures
for @ as Shafer does. The formula a V (-a A B) V (ma A ~f) states that we
consider three distinct possibilities. This is not what we actually considered.
What we did consider, however, was life or no life and planets or no planets.

When we update M, with 8V -8, the probability of « in the resulting partial
model M3 will be:

1
Pr(a|M2) = 7

The next example was used by P. Smets to illustrate the difference between
his transferable belief model and the Bayesian approach when new information is
received [60]. Smets’s transferable belief model is based on the Dempster-Shafer
theory and is intended to model changes of belief- when new information comes
available. In the transferable belief model, there is a distinction between a credal
level and a pignistic (betting) level. At the credal level, belief masses are assigned
to subsets of the frame of discernment. A belief mass assigned to a set can be
transferred to its subsets when new information is received. When one is asked to
make a bet, the belief masses assigned to a set, have to be divided over its elements
using the insufficient reason argument; i.e. the probabilities at the pignistic level are
being determined.

Example 8.5 Mr Jone’s murdering Big Boss has decided that Mr Jone has to be
murdered by one of the three persons present in his waiting room and whose
names are Peter, Paul and Mary. Big Boss has decided that the killer on duty
will be selected according to the result of a dice tossing experiment: if the
result is even, the killer will be a female: if the result is odd, the killer will be
a male. We, the judges, know who were in the waiting room and know about
the story of the dice tossing experiment, but ignore what was the result and
who was selected. We also ignore how Big Boss would have decided between
Peter and Paul if the result given by the dice had been odd.
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If we update a partial model using the information available, the probability
that the killer is a female and the probability that the killer is a male will both
be equal to 0.5.

Then we learn that if Peter was not the killer, he would go to the police station
at the time of the killing in order to get a perfect alibi. Peter indeed went to
the police station, so he is not the killer. Now the question is what is the
probability that the killer is a female and what is the probability that the
killer is a male, given this new information.

If we update the partial model using this new information, the probability of
Peter being the killer and the probability of Paul being the killer will change.
The probability that the killer is a female and the probability that the killer
is a male, however, will still both be equal to 0.5.

This example shows that the probability measure defined here, like the transferable
belief model, but unlike the Bayesian model, results in intuitively sound conclusions.
Since the same results follow from the probability measure defined here without the
need of using two levels, the probability measure defined here seems to be preferable
to the transferable belief model.

8.2 Inheritance networks

A totally different approach toward default reasoning is based on the view that
(some) default rules are actually quantified descriptions. In his article In defence of
probability [12], P. Cheeseman claims that all default rules are actually quantified
descriptions. It is, however, not difficult to find counter examples for this claim.
More modest claims are presented by F. Bacchus [2] and by L. Shastri [57). Both
authors claim that some default relations are actually quantified descriptions. Bac-
chus distinguishes between quantified descriptions and relations describing typical
properties. Shastri, however, distinguishes two areas in an inheritance hierarchy.
According to Shastri the top of the inheritance hierarchy is an ontological tree, only
used for classification. The other part of the inheritance hierarchy, which need not
be a tree, contains quantified descriptions.

In most of the Al literature quantified descriptions are confused with typical
properties. For example in [64, page 480] a counter example for off-path pre-emption
is described, which clearly is a problem of reasoning with quantified descriptions.
Touretzky et al. discuss whether George is a beer drinking marine chaplain when
one knows that George is a marine and a chaplain, and also that men are beer
drinkers and chaplains are not. In the discussion of this problem they say: ‘the most
relevant missing bit of information is the rate of beer drinking among marines’.
They continue with: ‘If this rate is far higher than the rate of abstention among
chaplains, one would be better off assuming George is a beer drinker than not’. Also
R. Reiter [49)] treats quantified descriptions and typical relations identically. In his
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view, properties that hold for most objects of some class, are preferred to hold for
any object in this class. So, a sentence like ‘most ¢ are ¢’, he represents as:

p(z) : ¥(x)
¥(z)

It is not difficult to recognize a quantified description when words like ‘all’, ‘most’,
‘many’, ‘always’, ‘usually’, ‘often’, etc. are used. These words denote a percentage of
a set of objects or time intervals. It becomes more difficult to recognize a quantified
description in case these words are not used in the sentence. To verify whether a
sentence like: ‘Republicans are non pacifists’ is describing a typical relation, using
Shastri’s view on inheritance hierarchies, we wonder if this relation can be used to
classify someone as a republican. If the answer is no, then the sentence must describe
a quantified description.

When a property of a type is described by a quantified description, the expec-
tation that an object of the type has this property, can be determined. Bacchus [2]
and L. Shastri [57] both describe a model for inheritance reasoning using quanti-
fied descriptions. Bacchus recognizes that a number of default relations are actually
relations of the form: ‘most men are beer drinkers’. He represents this kind of re-
lations with a special kind of implication. With this approach, however, he cannot
distinguish between different frequencies.

A different approach is used by Shastri [57). In his approach frequencies are
used. Actually, Shastri uses the number of objects which belong to a class. In his
results, however, only the ratios between the number of objects that belong to a
class are relevant. Shastri determines a conclusion by comparing the number of
worlds in which the conclusion holds with the number of worlds in which it does
not hold. Here a world denotes a distribution of objects over properties such that
the constraints, i.e. the quantified descriptions, are met. By comparing the number
of worlds that satisfy a formula of interest, with the number of worlds that do
not, inheritance problems are solved. To solve the problem of multiple inheritance,
Shastri uses knowledge about the distribution of objects of a type over its subtypes.
He illustrates this with the Nixon diamond. To determine whether Nixon has pacifist
beliefs, knowledge about the distribution of pacifist beliefs over all person is needed.
More knowledge is needed in case the types involved in the multiple inheritance
do not have a common parent, but only a common ancestor. Shastri argues that
this knowledge is needed, because otherwise the problem is underconstrained. It
seems counter intuitive that this additional knowledge is needed to solve multiple
inheritance problems. The actual reason why he needs the additional knowledge is
that he determines the number of objects which satisfy a property. In the example
of the Nixon diamond he determines the number of republican-quakers who have
pacifist and who have non-pacifist beliefs. So, not only the ratio between pacifist
and non-pacifist republican-quakers is estimated, but also the number of republican-
quakers. We are, however, only interested in the former and this can be determined
without additional knowledge.



112 Uncertain conclusions — Chapter 8

The probability measure defined in this chapter can also be used to justify inher-
itance reasoning in a similar way as is proposed by Shastri [57]. This is illustrated
by the following two theorems.

Theorem 8.6 Let M = (O, {V1,...,Vs}) be a partial model and let
¢ = (%,p,z,a(z),y(z)) and ¢ = (%,q,,8(x),7(z)) be two quantified de-
scriptions. Furthermore, let all the objects described by the classes a and 3 be
known in the partial model, let the class described by & be a subclass of the
class described by 8 and let 4 be unknown for any object of the class described
by 8.

Then for any object ob that belongs to the class described by a there holds:

Pr(7v(ob) | M[p A ¢]) = Pr(y(ob) | M[gp)).
Proof Let N = M[p A ], let
A={0€0m|ME? a(o)},
B={o€Om|ME* fo)},
C={o€ B|ME* 7(0)},
D={o€ B|ME~ v(0)}
and let a = |A| and b = |B|.
Since the class of objects described by a is a subclass of the class described by 3,

ACB.
Since 4(0) is unknown for any object o€ B, BNC=BND =.

e Suppose that p=1and ¢ < 1.
Then for every o € A:

N E* 7(0).
Since ob € A,
Pr(y(o) | Mlp A ¢]) = 1 = Pr(y(0) | M[y]).

e Suppose that p =0 and ¢ 2 0.
Then for every o € A:

N E™ (o).
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Since ob € A,
Pr(v(o) | Mlp A9]) = 0= Pr(y(o) | Mlp]).
e Suppose that 0<p<land 0 < g¢g< 1.
Then we can choose (° ) different subsets of A containing p - a objects.

For each subset, A" must contain a view such that for the objects o in the
subset there holds:

(On, Vi) E* 7(0)
and for the other objects in A there holds:
(O, Vi) E™ 1(0).

Furthermore, given some subset of A, we can also choose (

subsets of (B — A) containing (¢ - b — p - a) objects.
For each subset, /' must also contain a view such that for the objects o in the
subset there holds:

(On, Vi) E* (o)
and for the other objects in B there holds:
(ONv Vl) '=— 7(0)‘

Therefore,

¢b—p- a) different

- (ON, {‘/1, Vk})

with k = (p a) : (q ::;a)'
(p 1) (q . 8 ) of these views V; there holds for an object ob € A:

OJVa V; I=+ 7(0b)’
while in the other views V; there holds:
Ow, Vi E™ 7(ob).

Hence,

(p a-l) (q b—p- a)
(') - (13750)

Pr(y(od) | Mlp AY]) = =p = Pr(y(o) | M[y)])
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o

Example 8.7 Let Pierre be a Quebecois. Furthermore, let it be known that most
Quebecios are not native English speakers and that every Quebecois is a Cana-
dian. Finally, let it be known that most Canadians are native English speak-
ers. Then, according to Theorem 8.6, Pierre is probably not a native English
speaker.

In his article Objective probabilities {36], H. E. Kyburg describes a model for
assigning probabilities to formulas. To determine these probabilities, he introduces
reference classes of objects in his model. For a reference class, one can specify what
the percentage of objects is that satisfies some property. To be able to determine
the probability that an object possesses this property, Kyburg introduces an axiom
that is essentially the same as the theorem described above. Kyburg, however, nei-
ther takes into account the number of objects in a reference class nor the number
of objects that are known to possess the property. Therefore, he must implicitly as-
sume that a reference class contains infinitely many objects. Another axiom Kyburg
introduces is that equivalent formulas must have the same probability. Clearly, this
also holds for the model described here. »

In case of multiple inheritance an object inherits conflicting properties of two
unrelated classes. The following theorem confirms our intuitions about multiple
inheritance. It shows that we need not know the distribution of objects in some
superclass of the two classes from which the conflicting properties are inherited. We
simply can make a decision by comparing the percentages of objects of the classes
for which the conflicting properties hold.

Theorem 8.8 Let M = (Oum, {V4,..., Va}) be a partial model and let
¢ = (%,p,z,a(x),y(z)) and ¥ = (%, ¢, z, B(z), (-, 7(z))) be two quantified
descriptions. Furthermore, let all the objects described by the classes a« and 8
be known in the partial model, let a and @ be two unrelated classes, let ob be
the only object known to belong to both classes and let ¥ be unknown for any
object of these classes.

Then p > ¢ implies:

Pr(x(ob) | Mlp A¥]) > 5

Proof Let N = M[p A 9], let
A={0€0m|ME* a(d)},

B ={0o€O0pm|ME* o)},
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C={o€e A|ME* (o)},
D={oc A|ME" 7(9)},
E={o€B|ME* ()},
F={o€B|ME" (o)}

and let a = |A| and b = | B|.

Since ob is the only known object in the intersection of A and B, {ob} = (AN B).
Since ¥(0) is unknown for any object 0 € (AUB), ANC = AND = BNE = BNF = <.
Notice that it is not necessary to make an assumption about the objects in the
intersection of the two classes A and B. Treating all the objects as distinct objects,
will also cover each possible number of objects in the intersection of the two classes.
Hence ob the is only object in the intersection of the classes.

e Suppose that p=1 and ¢ > 0.
Then for every o € A:

N E* ¥(o).
Since ob € A,
Pr(y(ob) | Mlp A g]) =1 > %

e Suppose that p=0and ¢ < 1.
Then for every o € A:

N E= %(0).
Since ob € A,
Pr(x(o)  Mlp A 9] =0 < 3.

e Suppose that p <1 and ¢ = 0.
Then for every o € B:

N E~ 7o)

Since ob € B,
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1

Pr(y(o) [ MlpA¥]) =1> 5.

e Suppose that p=0and ¢ < 1.

Then for every o € B:

N E* (o).

Since ob € B,

Priz(o) | MlpAg]) =0 < .

Suppose that 0 < p<land 0 < ¢g< 1.

Consider those views in which y(ob).

Then, we can choose (p‘f;_ll) different subsets of (A/ob) containing (p-a — 1)
objects.

For each subset, A/ must contain a view V; such that for the objects o in the
subset there holds:

(On, Vi) E* 1(0)
and for the other objects in A there holds:

(On, Vi) E™ (o).

Furthermore, we can choose (l’qul) different subsets of (B/ob) containing

(¢ -b—p-a) objects.

For each subset, A must also contain a view V; such that for the objects o in
the subset there holds:

(On, Vi) E* 7(0)

and for the other objects in B there holds:

(On, Vi) E~ 7(0).

Now consider those views in which y(ob) is false. Then, we can choose (‘;Tal
different subsets of (A/ob) containing p - a objects.
For each subset, N/ must contain a view V; such that for the objects o in the

subset there holds:

(0w, Vi) E* 1(0)
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and for the other objects in A there holds:

(On, Vi) E™ (o).

Furthermore we can choose (%, },) different subsets of (B/ob) containing (g -

— 1) objects.
For each subset, A must also contain a view V; such that for the objects o in
the subset there holds:

(On, Vi) EY 7(0)
and for the other objects in B there holds:
(Own, Vi) E™ 7o)

Therefore,

¢-b-1

N = (0w, {W1,..Vi})
with
() ()

p“a‘_ll) ( =1} of these views V;, there holds:

(On, Vi) E* y(0b)
while in the other views V; there holds:
(On, Vi) E™ 7(ob).

Therefore,

Pa_ qb 1 p(1<q

Hence, if p > ¢, then

Pr(x(ob) | Mlp A¥)) > 5.
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The following example has been described by D. S. Touretzky, J. F. Horty and
R. H. Thomason [64]. They gave this example as a counter example for off-path
pre-emption. The solution they suggested to derive the correct conclusion, is being
described in the example below.

Example 8.9 Let John be a marine chaplain. Furthermore, let it be known that
the percentage of beer drinking marines is p and that the percentage of beer
drinking chaplains is ¢. According to Theorem 8.8, if p > (1 — ¢), it is more
likely for John to be a beer drinker than not.

8.3 Explanations

An explanation tries to describe a cause (a disease, a malfunction) for anomalies
(symptoms) observed. There may, however, exist more than one cause that can
explain the anomalies observed. Since we are interested in the actual cause, we need a
method to discriminate between the possible causes. One possibility to discriminate
between the possible causes is to determine their probabilities. To be able to do so,
we have to know their a priori probabilities. As was argued by J. T. Nutter [47],
it is often not possible to know these probabilities. Furthermore, in a study carried
out by A. Tversky and D. Kahneman [65], it was observed that humans do not
use a priori probabilities either. Although this cannot be used as an argument for
neglecting a priori probabilities, it is an indication that a priori probabilities may not
be necessary for explanations. A stronger argument to neglect a priori probabilities
is that there are cases in which the use of a priori probabilities can result in wrong
decisions. Consider, for example, the situation in which two diseases can explain the
same symptoms. If one of the diseases is common and requires no medication, while
the other disease is very rare and will kill a patient when no medication is given,
then, by using a priori probabilities, the latter disease will never be considered.

Although a priori probabilities are not used here, this does not imply that they
cannot be used at all when they are known. When reasoning on a meta level about
the likelihood measures, it is still possible to use these a priori probabilities. So,
defining a likelihood measure independent of the a priori probabilities, enables us to
reason about possible causes with or without using the a priori probabilities.

Instead of using a probability measure, here the compatibility of a possible cause
with the current state of knowledge is determined. This means that we have to
determine the views in which we cannot believe in the possible cause. This compati-
bility is expressed by an unlikelihood measure. Now a likely cause for the anomalies
observed can be determined by showing that all other possible causes are unlikely.
This approach can be viewed as a generalization of the falsification principle.

Like the probability measure, the unlikelihood measure of a formula is also de-
termined by considering the set of views of a partial model.

¢ The unlikelihood measure should be proportional to the number of views in
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which the formula is false.
e The measure should be inversely proportional to the total number of views.

o Since we have no reason to prefer one view to another, the insufficient reason
argument of Bernoulli and Laplace [22] should be applied on the set of views.

Definition 8.10 Let M = (0, {V4, ..., V;,}) be a partial model. The unlikelihood
measure UL(p | M) for a formula ¢ with respect to a partial model M is
defined as follows: _

1

and

1 if (O, Vi) o
0 otherwise.

UL(p | (0, Vi) = {

For this likelihood measure the following observations can be proven.

Observation 8.11 Let M be a partial model. If Pr(y | M) is determined, then
Pr(p| M) =1-UL(p | M).

Using the unlikelihood measure, an efficient diagnostic reasoning process can
be realized when we only try to determine one likely cause. For this diagnostic
reasoning process an abstraction hierarchy of possible causes (diseases) is needed.
The abstraction hierarchy of possible causes is used as a search tree. In this search
tree the unlikelihood measure is used as an evaluation function. In an ideal situation
we can find a specific cause in O(log n) steps, where n denotes the number of possible
causes. The worst case is, of course, O(n) steps. The use of an abstraction hierarchy
is not only motivated by the wish to realize an efficient diagnostic reasoning process.
In a study of existing expert systems, carried out by W. Clancey [13], it was observed
that such a hierarchy is implicitly implemented in these systems.

Given an abstraction hierarchy for the possible causes, the following diagnostic
reasoning process can be used to determine a specific cause.

1. Start with the most abstract possible cause.

2. Determine the most abstract refinements of the possible cause.
3. Determine for each refinement the unlikelihood measure.
4

. For each refinement which is not proven to be unlikely, i.e. its unlikelihood
measure is above some threshold value, one can repeat step 2 until one reaches
the specific causes, or until there are no possible causes which are not proven
to be unlikely.
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The correctness of this reasoning process depends on the following theorem.

Theorem 8.12 The unlikelihood measure for some abstract possible cause
(a,0,(cl,0),(d,0)) is a lower bound for each of its refinements. Here a refine-
ment is either (a, o, (¢!, 0), (d, 0)) or (d, inst) where cl’ subclass of class ¢! and
inst € Names is an instance of the class ¢l for any partial model M.

UL((a) 0, (CI' o)’ (dr o)) I M) < UL((a: 0, (CI,’O)) <d: 0)) | M)
and
UL({(a,o,({cl,0),(d,0)) | M) < UL((d, inst) | M)
Proof By Definition 8.10:

UL({a,o,(cl,0),{d,0)} | (O, {V1,.... Vo }}) =

% Do UL({a, 0, (¢l 0), (d,0)) | (O, )

and

1 if (0, V;) E™ (a,o0,(cl,0),{d,
UL (0, (o) o | O,V = { (O AV ET (o (eh o), (40l
Since any view that satisfies (a, o, (cl’, 0), (d, 0)) or (d, inst) will also satisfy
(a, 0, (cl,0),(d, 0)), there holds:

UL({a,o0,{cl,0),(d,0)) | M) < UL({(a, o, {cl’, 0), (d, 0)) | M)
and
UL({a,o0,({cl,0),(d,0)) | M) < UL((d, inst) | M)

(m]

This theorem confirms our intuition that if a possible cause turns out to be unlikely,
then each of its refinements will also be unlikely. For example, if a lung disease
is unlikely, tuberculosis will also be. The strategy behind the diagnostic reasoning
process was already suggested by B. Chandrasekaran and M. C. Tanner [10]. Here,
this strategy is given a sound foundation. Notice that because only lower bounds are
used for the unlikelihood measure, one can use linguistic percentages, e.g. ‘most’,
‘many’, etc., and linguistic unlikelihood measures, e.g. ‘impossible’ and ‘unlikely’,
instead of numbers. These linguistic percentages and unlikelihood measures can be
linked using a simple table.




Evaluation

In this part of my thesis I have proposed an alternative way of looking at a reasoning
process, namely to view a reasoning process as a process of constructing a partial
model. This way of looking at a reasoning process has some important advantages
over the traditional view on a reasoning process. In a traditional reasoning process
information is being derived by combining formulas. Here, however, information
is extracted from a formula by using it in the construction of a partial model of
the world we are reasoning about. When these formulas do not contain quantifiers,
the information they describe can be added to a partial model in polynomial time.
When, however, quantifiers are involved, there are cases in which the time complexity
can become exponential. Here, more research is needed.

Another subject for further research is the definition of the updating function,
which adds new information to a partial model. In this thesis I have only formulated
the conditions that have to be satisfied by such an updating function.

To illustrate the possibilities of this reasoning process, I have shown how un-
certain conclusions can be derived from a partial model. Two different certainty
measures have been defined, one expressing the probability of a formula and one
expressing the unlikelihood of a formula. The former measure is used for conclusions
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expressing an erpectation and the latter for conclusions expressing an ezplanation.
Using the probability measure, pre-emption and multiple inheritance in an inher-
itance network can be dealt with correctly. Using the unlikelihood measure, an
efficient heuristic diagnostic reasoning process can be realized. Since the diagnostic
reasoning process described in this thesis is only suited for diagnostic problems in
which there is only one cause for the anomalies observed, more research is needed.
Furthermore, the combination of heuristic and diagnostic reasoning has to be inves-
tigated. In my opinion the reasoning process described here is suited for this.

Compared with other certainty measures in literature, the measures defined here
have some important advantages. For example, in the Bayesian probability theory
probabilities are either viewed as representing relative frequencies or as representing
subjective belief values. In the former view we have to be able to assign a correct
a priori probability value to every proposition. As J. T. Nutter remarks, it is not
always possible to know these probabilities [47]. In the latter view a probability
describes the belief in a proposition of a reasoning agent [11, 12]. There is, however,
no inter-subjective interpretation of such a belief value. Hence, there is no reason
why two persons with the same knowledge should agree on a belief value assigned
to a statement. The certainty measures defined here, however, do not depend on a
priori probabilities. Furthermore, the measures defined here have an inter-subjective
interpretation. Two agents possessing the same knowledge, i.e. they have the same
partial model about the world, will assign the same certainty measures to a formula.
Therefore, the measures defined here do not suffer from these drawbacks. Other
certainty measures like the belief in Dempster-Shafer theory [56] and the certainty
factors in the certainty factor model of EMYCIN [7] do not use a priori probabilities
either. Unfortunately, these measures have a subjective but no inter-subjective
interpretation.

Two other approaches based on the probability theory are the probabilistic logics
of J. Los [40] and of N. J. Nilsson [46]. Both authors define a probability distribution
over a set of models. The probability of a formula is defined as the sum of the prob-
abilities of the models that satisfy the formula. This way of defining a probability
measure is related with the measures defined in the preceding chapter. This relation
also needs to be investigated.

A very important property of a partial model is the decidability of the consis-
tency problem. The consistency problem is not only decidable, but it can be solved
in polynomial time as well. This suggests that it may be possible to realize an ef-
ficient non-monotonic reasoning process without the process non-monotonicity; i.e.
a partial model is always correct with respect to the defaults used to create it. In
[53] I have shown that if we limit ourselves to normal default rules only, such a rea-
soning process is possible. Normal default rules, however, do not possess sufficient
expressive power. Therefore, I propose to define a preference relation on normative
rules. Unfortunately, lack of time has prevented me from investigating this idea in
detail. Therefore, it is not reported in this thesis.

Despite of the fact that there are a number of important problems that have to
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be solved yet, in my opinion it is an important new idea to view a reasoning process
as a process of constructing a partial model. Hopefully, others will share this opinion
and will start to investigate this idea.
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