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Abstract

Communication in open systems is hampered by the lack of standardization of the on-
tology used to describe information. This problem is known as the interoperability problem.
Establishing a mapping between pairs of ontologies is a practical alternative for formulating
standard ontologies. Of course, creating such a mapping by hand is not applicable in an
open environment such as the Internet. Therefore, this paper proposes a domain indepen-
dent method for learning a mapping between ontologies.1 The learning method is based on
exchanging instances of concepts that are defined in the ontologies. The method starts with
identifying pairs of instances of concepts that describe the same entity in the world, followed
by proposing and evaluating mappings between the ontologies using the pairs of instances.
For each step of this method, a measure based on relative probabilities has been derived and
is used in the decision process. Important benefits of the method are that (a) no domain
knowledge is required, and (b) the structures of ontologies between which a mapping must
be established, play no role. Experimental results show that the proposed method gives high
quality mappings between ontologies.

1 Introduction

The Internet offers new possibilities for accessing and sharing information. The semantic web
aims at sharing information in a machine interpretable way, agent technology aims at enabling
collaboration between distributed, autonomous and possibly self-interested programs, federated
database systems aim at transparently integrating multiple autonomous database systems into
a single federated database, and electronic data exchange aims to reduce economic costs of, for
instance, supply chains. In each of these areas accessing and sharing of information is hampered by
a lack of standardization of the way information is represented. This is called the interoperability
problem [1, 10, 16, 17, 19, 28, 30]. The cost of the interoperability problem is considered to be
significant. The National Institute of Standards and Technology (USA) estimates the costs of the
interoperability problem to be about $15.8 billon annually for the US capital facilities industry [6].

The lack of standardization causing the interoperability problem concerns the way informa-
tion can be accessed (structural heterogeneity) and the interpretation of the stored information
(semantic heterogeneity). We assume that structural heterogeneity will not be an issue. The se-
mantic web and electronic data exchange are based on standards formats such as OWL and XML,
and communication between is based on standard languages such as ACL and KQML. Structural
heterogeneity can be an issue in federated database systems.

Semantic heterogeneity concerns the interpretation of the communicated information, especially
the meaning of concepts and relations used in the communication. Ontologies [8] are intended
to provide a standard vocabulary, and to provide semantics through the specification of logical
relations between concepts and relations. Therefore, the development of standard ontologies will
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offer a solution for the interoperability problem. Examples of standard ontologies are the Dublin
Core [29] and the ontologies of the Ontolingua library [4, 7]. Moreover, within the semantic web
community, languages such as DAML+OIL and OWL [15] have been developed for specifying
ontologies.

The development of standard ontologies is expected to take a very long time because of the
number of topics on which a standard ontology must be developed is almost infinite. Moreover,
different conceptualizations of a domain are possible depending on the application domain and the
developers’ point of views.

Instead of developing standard ontologies, one can also use mappings between pairs of ontologies
to enable information exchange. Creating such a mapping by hand is not feasible in an open
environment. Therefore, this paper proposes a domain independent method for learning a mapping
between ontologies. In short, the method consists of two steps: (i) identifying pairs of instances of
concepts that describe the same entity in the world and (ii) proposing and evaluating mappings
between the ontologies using the pairs of instances. Before presenting our method for learning an
ontology mapping in more detail, in Section 2 we will first discuss the interoperability problem in
more detail, and in Section 3 we point out some problems in current approaches. Section 4 outlines
the basic ideas of our learning method while Section 5 presents experiments with learning ontology
mappings. Section 6 discusses some extensions of the presented approach and Section 7 concludes
the paper.

2 Heterogeneity

In order to reach interoperability, two problems must be dealt with, namely: structural heterogene-
ity and semantic heterogeneity [21, 28]. Structural heterogeneity concerns the different represen-
tations of information. Information described by the same ontology can be represented in different
ways. This is a problem for heterogeneous databases but not for agents or the semantic web.

Semantic heterogeneity concerns the intended meaning of the described information. Infor-
mation about, for instance, persons can be described by different ontologies. We distinguish the
following differences between ontologies2:

1. Structural conflicts arise where different semantic structures are used [1].

2. Naming conflicts arise where different names for the same type of information are used, or
the same name for (slightly) different types of information [1, 28].

3. Data conflicts arise where different representations exist of the same data [12]. These conflicts
can be refined in conflicts because of different units, conflicts because of different precision,
and conflicts because of different expressions (e.g., using ‘van der Belt’ or ‘Belt, van der’ to
describe a person’s family name).

The two ontologies shown in Figures 1 and 2 illustrate some forms of semantic heterogeneity.
Both ontologies define a concept ‘person’ in terms of relations/subconcepts and attributes. In these
simple ontologies, the attributes are located on the right hand side and the concepts are printed
in italics. Note that Ontology 1 contains a ‘father’ and a ‘mother’ relation with an instance of
the concept ‘person’. The dashed line denotes the definition of the concept ‘person’ with which a
person has a ‘father’ and a ‘mother’ relation.

In Ontology 1, ‘street’ also includes the house number, and ‘phone number’ describes the
country code, the area code, and the local number. In Ontology 2, ‘phone number’ only describes
the local number. The ‘area code’ and the ‘country code’ are stored with the city and the country,
respectively.

Each ontology clearly has a different structure. Ontology 1 is flat while Ontology 2 has a
hierarchical structure. This structural conflict can be solved relatively easy because Ontology 2
more or less extends Ontology 1. When the two ontologies have completely different hierarchical
structures, the structural conflict becomes a more serious.

The naming conflicts between the two ontologies form a more severe problem. Different concept
names are used for the same type of data; e.g., ‘first name’ and ‘christian name’. Moreover, the

2A slightly different categorization of differences between ontologies is given in [27]
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Figure 2: Ontology 2

same concept name is used for slightly different types of data; e.g., ‘street’. In Ontology 1 ‘street’
denotes both the street name and the house number while in Ontology 2 it only denotes the street
name. Hence, in order to reach interoperability, we must be able to split and concatenate data
fields. For example, an instance of the concept ‘street’ in Ontology 1 containing the value ‘Castle
Lane 1’ must be split into ‘Castle Lane’ and ‘1’ in order to map ‘street’ in Ontology 1 to ‘street’
and ‘number’ in Ontology 2. The inverse mapping requires concatenating ‘Castle Lane’ and ‘1’.

In Ontology 2, the concept ‘person’ does not contain ‘father’ or ‘mother’ relations with an
instance of ‘person’. If such a relation would be present, we would not only like to learn a mapping
between concepts but also a mapping between relations, such as the ‘father’ and ‘mother’ relation,
relating two concepts.

We can conclude that to reach interoperability we have to find a mapping from the concepts of
one ontology to the concepts of another ontology using concatenating and splitting operators in the
mapping process. Moreover, we have to find a mapping from the relations between the concepts
of one ontology to the relations between concepts of the other ontology.

3 Related work

To deal with semantic heterogeneity, several solutions have been proposed. Many of the proposed
solutions try to derive a common ontology by some (semi) automatic process, see for instance
[1, 10, 16, 19, 30]. These approaches heavily rely on assumptions such as:

• Concepts are defined using a set of shared attributes,

• Different ontologies are the result of differentiations of one initial ontology,

• A human specifies relations between concepts of different ontologies and resolves possible
conflicts.

Unfortunately these assumptions often cannot be met. Instead of deriving a common ontology,
other approaches try to establish a mapping between two ontologies directly [2, 3, 5, 13, 17, 18,
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22, 25, 26].
Firat et al. [5] assume that concepts of a shared ontology have slightly different interpretations

in different contexts. They propose the use of a meta-ontology to describe the context dependent
interpretations using ‘type-modifiers’; e.g. a type-modifier to denote that profit is interpreted as
‘profit before taxes’ or ‘profit after taxes’. These type-modifiers enable them to derive a mapping
and also handle data conflicts caused by different units and different precision.

Papazoglou et al. [17] assume that the same naming conventions are used in different databases
and that for each database an abstract description model describes the types of relations that hold
between concepts that are specified. The possible relation types are common knowledge. From this
information a mapping between the databases can be derived. The disadvantage of this approach
is that it cannot handle naming conflicts.

Van Eijk et al. [26] use first order logic to give a characterization of establishing a mapping. They
assume a multi-agent system in which agents communicate using first order formulas. A mapping
consists of a set of translation formulas each expressing an equivalence between expressions. The
disadvantage of this approach is that it cannot handle structural conflicts, and naming conflicts.
Moreover, they do not provide a method for establishing a mapping.

Burnstein et al. [2] have proposed a somewhat similar approach based on λ-calculus. Their
approach does provide a method for establishing a mapping. They assume, however, the existence
of a common ‘topic domain’ in which the meaning of terms is specified.

Haase and Motik [9] also propose a similar approach for integrating OWL ontologies. They
assume that an ontology integrating a set of source ontologies is given together with mapping rules
for each source ontology.

In [31, 32], the authors have outlined the initial ideas behind their learning method. Likelihood
measures for mappings were derived, which, in combination with threshold values, were used to
select a mapping [31]. Additional experiments with the described approach demonstrated that the
optimal thresholds values depended on the ontologies between which a mapping had to be estab-
lished. This dependency was caused by an invalid assumption underlying the derived measures.
This report resolves this problem by presenting new measures. Moreover, this reports extends the
results described in [31].

Prasad et al. [20] have adapted the method for learning a mapping between ontologies describe
in [32] to document classification. Instead of instances of concepts known in both ontologies,
Prasad et al. classify documents in both ontologies and subsequently update the probability that
a candidate mapping is correct. A drawback is that the candidate mappings have to be given in
advance.

Several other approaches apply machine learning to learn classifiers for concepts [3, 13, 22].
Doan et al. [3] (GLUE) and Lacher & Groh [13] use the classifiers to estimate the (joint) probability
that a two concepts are similar. Doan et al. define a similarity measure based on the Jaccard
coefficient using the joint probability, while Lacher & Groh define a similarity measure based on
the difference between probabilities of two pairs. Both similarity measures, however, do not give
us the probability that a mapping is correct.

The classifiers that are learned in the approach of Soh [22] are concept classification rules.
Concept translations are derived by matching the classification rules.

Lee et al. [14] propose a three step approach; (1) humans specifying semantic types for concepts,
(2) filtering possible mappings between concepts based on the semantic types and (3) determining
mappings between attributes and concept using a ranking based on the correspondence of names,
data types and the number of corresponding relations. For the latter ranking only an intuitive
under pinning is given.

4 Learning ontology mappings

We focus on establishing a mapping between two concepts, one in each ontology. No restrictions
are placed on the structure of a concept. A concept may be defined as an aggregation of attributes
and sub-concepts. This aggregation may even, directly or indirectly, contain the concept that is
being defined. That is, we do not, for instance, exclude a concept ‘person’, the description of which
contains a ‘father’ and ‘mother’ relation with the concept ‘person’.
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We will discuss learning an ontology mapping in terms of agents that wish to exchange informa-
tion. This choice does not limit the proposed approach in any way to the area of agent technology.
Instead of communicating agents, one may also consider two programs in a supply chain or a
semantic web application where the application corresponds with Agent 2 in the discussion below
and the information accessible in the semantic web by Agent 1.

The discussion of learning an ontology mapping will be based on the two example ontologies
given in Section 2 where Agent 1 uses Ontology 1 and Agent 2 uses Ontology 2. Suppose that
Agent 1 wishes to know the phone number and email address of a person. Agent 1 knows that
the information is (probably) available in an information store managed by Agent 2. Therefore,
Agent 1 contacts Agent 2. In order for Agent 1 to put forward its request, the agents first have to
establish whether both use the same ontology or whether they use an ontology of which the other
agent knows how to map it on its ontology. If the agents use different ontologies and if no mapping
is known, the agents should try to establish a mapping.

4.1 Underlying ideas

The way the agents establish a mapping is inspired by language games [23, 24]. In a language game,
an agent (robot) tries to interpret the utterances of another agent by creating and evaluating
associations between the received utterances and categorizations of observed entities, the joint
attention.

To illustrate the idea behind using language games for ontology mapping, suppose that:

• Agent 1 wishes to communicate about a concept such as a ‘person’;

• Both agents use different conceptualizations of the concept ‘person’ (i.e., different ontologies);

• A one-to-one mapping exists between concepts of interest in the two ontologies, that is,
the concept ‘person’ will not be represented by two or more concepts such as ‘student’ and
‘teacher’ in another ontology;

• Some instances of the concept ‘person’ are known by both agents (although it is not known
which ones).

Given these assumptions, the agents establish a mapping by the following four steps.

1. Creating a flattened representation of instances of concepts. Such a flattened representation
is called an utterance and is used in the communication between the two agents.

2. Identifying corresponding instances of concepts in both ontologies by exchanging utterances
between the two agents. The pairs utterances representing corresponding instances of con-
cepts, form the joint attention.

3. Identifying the corresponding concepts in the two ontologies using the joint attention.

4. Establish a mapping between the corresponding concepts in the two ontologies using the joint
attention.

Note that the first step solves the problem of structural conflicts by removing the structure
of the ontologies while the last two steps handle the problem of naming conflicts by determining
the most likely mapping between the ontologies, based on the corresponding instances of concepts.
Although it should also be possible to learn unit conversions, the handling of data conflicts will
not be addressed in this report. In general, the handling data conflicts requires some domain
knowledge. In the report, we will only consider mappings that can be learned without any domain
knowledge.

4.2 Utterances

To establish a mapping, the agents start with exchanging utterances in order to find instances of
concepts that represent the same entity in the agents’ environment. Such an utterance represents
all relevant information of an instance in a uniform way. Moreover, an utterance also contains
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an identification of the concept to which the represented instance belongs in order to determine
corresponding concepts in the ontologies. Since the two ontologies may have completely different
structures (structural heterogeneity) only the values of attributes of a concept are considered.
Hence, the aggregation hierarchy of sub-concepts and attributes is flattened. The hierarchy is
flattened by representing each attribute by a label followed by the corresponding attribute value.
The labels must be unique for every path from the root concept (e.g., the person) to an attribute
(e.g., the street name). We cannot use the name of an attribute as a label since it is possible that
an attribute is used several times in the definition of a concept. The attribute ‘street name’, for
instance, can be used for the home address and for the working address of a concept ‘person’.

By the introduction of labels, an agent transforms a possibly highly structured conceptual
hierarchy into a new shallow hierarchy in which the labels represent the new attribute of a concept.
It does not matter how agents represent the labels in an utterance, as long as the label is unique.
The agent may use, for instance, the term ‘pnfn’ or a term representing the place of an attribute
in the ontology ‘person.name.first name’ to denote a person’s first name in a communication.

An important decision concerns the amount of information to put in an utterance. Since Agent
1 wishes to communicate with Agent 2 about the concept ‘person’, it must decide which attributes
and sub-concepts of the concept ‘person’ should be included in the utterance. In other words,
Agent 1 decides which part of Ontology 1 should be flattened. If, for instance, the concept ‘person’
in Ontology 1 contains a ‘father’ and a ‘mother’ relation with itself and since there are, in principle,
no restrictions on the number of ancestors represented in the knowledge base / database described
by the ontology, deciding what to include in the utterance is an important issue. Reasons for
including, for instance, a person’s father, mother, grandfather, grandmother, and so on, are (i)
Agent 1 may wish to communicate about them and (ii) their names are needed to uniquely identify
a person.

The following utterances gives an illustration of an utterance representing an instance of the
concept ‘person’ in Ontology 1:

CONCEPT:person
person.christian name:‘Archibald’
person.family name:‘Haddock’
person.street:‘Castle Lane 1’
person.city:‘Marlinspike’
person.country:‘Belgium’
person.phone number:‘06229–421’
person.email:‘haddock@herge.be’
person.father.christian name:‘Francois’
person.father.family name:‘de Hadoque’

The value of a label will be represented by a string of characters. This guarantees that there
cannot be any confusion about its interpretation; i.e., whether four bytes represent a string of 4
characters or an integer. For numbers the standard translation to strings will be applied. Moreover,
Boolean values will be represented by ‘true’ or ‘false’. Since a string may consist of multiple words
(e.g., a family name consisting of more than one word or a combination of a street name and
a house number), a label’s value will be interpreted as a list of words separated by punctuation
marks.

The following two utterances consisting of label-value pairs for Ontology 1 and Ontology 2
respectively represent instances of the ontologies shown in Figure 1 and Figure 2, respectively.
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Ontology 1

CONCEPT:‘person’
person.christian name:‘Archibald’
person.family name:‘Haddock’
person.street:‘Castle Lane 1’
person.city:‘Marlinspike
person.country:‘Belgium’
person.phone number:‘06229–421’
person.email:‘haddock@herge.be’

Ontology 2

CONCEPT:’prsn’
pnfn1:‘Archibald’
pnfn2:‘Haddock’
pas:‘Castle Lane’
pan:‘1’
pacn1:‘Marlinspike’
pacac:‘06229’
pacn2:‘Belgium’
paccc:‘32’
ppn:‘421’
pem:‘haddock@herge.be’

4.3 Joint attention

The utterances are used to establish a joint attention. A joint attention is a set JA of pairs of
utterances (u1, u2) where u1 is an utterance of Ontology 1 and u2 is an utterance of Ontology 2.
Both utterances in a pair (u1, u2) should represent the same entity in the world.

Agent 2 establishes the joint attention using the utterances u1 communicated by Agent 1. Given
the words in an utterance u1, Agent 2 searches for a similar instance of a concept of Ontology 2,
which will be represented by the utterance u2. A similar instance denotes the same entity in the
world. Agent 2 uses information retrieval techniques for unstructured data to determine zero or
more matching utterance u21, . . . , u

2
r. To decide whether two utterances u1 and u2i are similar, the

probability that u1 and u2i denote the same entity in the world is used. This probability is derived
from the corresponding words of the two utterances. Here, a set of words consists of the values
associated with the labels in an utterance. For example, a person called ‘Haddock’, who lives at
‘Castle’ ‘Lane’ ‘1’ in ‘Marlinspike’, with phone number ‘421’.

We will use the following notations to determine the probability that u1 and u2 denote the
same entity in the world.

• U2 = {u21, ..., u2r} is the set of utterances of instances of Ontology 2 that might denote the
same entity as the utterance u1 of an instance of Ontology 1.

• id(u1, u2i ) is a proposition which holds if u1 and u2i denote the same entity in the world.

• ei denote the words in u1 that also occur in the utterance u2i .

• E = 〈e1, ..., er〉 is a list containing for each u2i ∈ U2 the set of words ei in u1 that also occur
in u2i . The correspondences between u1 and each of the utterances in U2, denoted by E,
form the evidence for id(u1, u2i ).

Given the above listed information, Agent 2 should determine the conditional probability: P (id(u1, u2i ) |
E).

No nesting of concepts In the following discussion of using the probability measure P (id(u1, u2i ) |
E), we assume that concepts of Ontology 2 are independent of each other. At the end of this section,
we will relax this assumption.

To determine the conditional probability: P (id(u1, u2i ) | E), note that the sample space under-
lying the probability measure consists of instances of mapping problems. Hence, all instances of
mapping problems in which the evidence is present should be considered. Given this sample space,
we can draw the following three conclusions. The latter two conclusions do not hold in case we
consider nested concepts such as the concept ‘person’ and the sub-concept ‘address’ in Ontology
2.

• If id(u1, u2i ) holds and if for every label-value pair in the utterance u1 there is at least one
value-label pair in the utterance u2i having the same value, then P (ei | id(u1, u2i )) = 1.
However, u1 may represent attributes for which there is no corresponding attribute in the
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corresponding concept of the other ontology. For instance, the concept ‘person’ in Ontology
2 has no representation of a person’s father. Therefore, P (ei | id(u1, u2i )) ≤ 1. If the
number of sets of words that can be denoted by the evidence ei is sufficiently large, then
P (ei)� P (ei | id(u1, u2i )). Hence,

P (ei)� P (ei | id(u1, u2i )) ≤ 1

• It is safe to assume for the instances of an ontology that the words occurring in an utterance
uj are independent of the words occurring in uk with j 6= k.

• P (ej | id(u1, u2i )) ≈ P (ej) if i 6= j.

Hence,

P (id(u1, u2i ) | E) =
P (id(u1, u2i )) · P (E | id(u1, u2i ))

P (E)

=
P (id(u1, u2i )) ·

∏r
j=1 P (ej | id(u1, u2i ))∏r

j=1 P (ej)

=
P (id(u1, u2i )) · P (ei | id(u1, u2i )) ·

∏
j 6=i P (ej | id(u1, u2i ))

P (ei) ·
∏

j 6=i P (ej)

≥ P (id(u1, u2i )) · P (ei | id(u1, u2i ))

P (ei)

In the last inequation, three terms are important:

• The term P (ei) denotes the a priori probability that the utterance u2i contains the words ei
from the utterance u1.

• The term P (ei | id(u1, u2i )) denotes the a priori probability that the utterance u2i contains
the words ei from the utterance u1 if u1 and u2i represent the same entity in the world.

• The term P (id(u1, u2i )) denotes the a priori probability that u1 and u2i represent the same
entity in the world.

The above derived expression for P (id(u1, u2i ) | E) cannot be used to calculate the probability
since Agent 2 does not know P (ei | id(u1, u2i )) and P (id(u1, u2i )), and since Agent 2 can only
estimate P (ei) if there are no dependencies between the words w ∈ ei occurring in the evidence.
However, the above derived expression can be used to compare the probabilities P (id(u1, u2i ) | E)
for each u2i ∈ U2. Suppose id(u1, u2i ) holds. Then P (id(u1, u2i ) | E) is expected to be significantly
larger than P (id(u1, u2j ) | E) if i 6= j.

P (id(u1, u2i ) | E) � P (id(u1, u2j ) | E)

P (id(u1, u2i )) · P (ei | id(u1, u2i ))

P (ei)
�

P (id(u1, u2j )) · P (ej | id(u1, u2j ))

P (ej)

Since a priori there is no reason to prefer any id(u1, u2x), we assume that P (id(u1, u2i )) = P (id(u1, u2j ))

for all i and j. Moreover, if id(u1, u2i ), then there holds P (ei | id(u1, u2i )) ≥ P (ej | id(u1, u2j )).
Hence,

P (ei)� P (ej)

This result implies that Agent 2 should add those pairs to the joint attention that have a signifi-
cantly lower a priori evidence probability than other pairs.

The probability P (ei) depends on the probability that a word w ∈ ei occurs in the value of
a label-value pair in the utterance u2i . Let lv1, ..., lvk be the label-value pairs in the utterance u2i
and let the function v(·) denote the value of a label-value pair. Then, assuming that there are no
dependencies between the words occurring in the evidence, Agent 2 can determine P (ei). P (ei) is
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the a priori probability that each word w ∈ ei is an element of a value of a label-value pair in u2i
while no word w ∈ (u1\ei) is an element of a value of a label-value pair in u2i .

P (ei) ≈ P (
∧

w∈ei

∃j : w ∈ v(lvj) ∧
∧

w∈(u1\ei)

∀j : w 6∈ v(lvj))

≈
∏
w∈ei

P (¬∀j : w 6∈ v(lvj)) ·
∏

w∈(u1\ei)

P (∀j : w 6∈ v(lvj))

In this approximation Agent 2 makes the assumption that the values of label-value pairs are
independent of each other. In cases where this assumption is incorrect, the approximated value
of P (ei) will be too low. On the other hand, if a word occurring in the evidence matches with
the value of more that one label-value pair, the approximated value of P (ei) will be too high.
Suppose that a word w ∈ ei can match with every label-value pair in u2i (which is the case in
our experiments). Then the next word w′ ∈ ei may match with all but one label-value pairs in
while w′′ ∈ ei may match with all but two label-value pairs in u2i , and so on. Considering all
combinations that can be created in this way cannot be done efficiently.

The probability P (∀j : w 6∈ v(lvj)) that a word w of the utterance u1 occurs in the value of no
label-value pair lvj of u2i is, assuming that independence, the product of the probabilities that the
word w does not occur in the value of the label-value pair lvj .

P (∀j : w 6∈ lvj) =
k∏

j=1

(1− P (w ∈ v(lvj)))

Agent 2 can approximate P (w ∈ v(lvj)) using the instances of Ontology 2 by determining the
relative frequency that w occurs in the value of the attribute represented by the label-value pair
lvj . So, Agent 2 can approximate the a priori probability of the evidence P (ei).

Agent 2 can decide whether id(u1, u2i ) holds by evaluating whether P (ei) � P (ej) holds for
every j 6= i. Agent 2 can use a threshold value θu to make this decision. The threshold value θu

represents the difference between the estimated a priori probability values. So, Agent 2 will add a
pair (u1, u2i ) to the joint attention if for every j 6= i there holds:

P (ej)

P (ei)
≥ θu

Nested concepts There is one last issue Agent 2 has to take into account when establishing the
joint attention JA. In the above outlined approach we assumed that no concept c2a is a sub-concept
of a concept c2b . This assumption does not hold in general. For instance, in Ontology 2 the concept
‘address’ is a sub-concept of the concept ‘person’.

CONCEPT:prsn
pnfn1:Archibald
pnfn2:Haddock
pas:Castle Lane
pan:1
pacn1:Marlinspike
pacac:06229
pacn2:Belgium
paccc:32
ppn:421
pem:haddock@herge.be

CONCEPT:addr
pas:Castle Lane
pan:1
pacn1:Marlinspike
pacac:06229
pacn2:Belgium

Consider an utterance u2i representing an instance of the concept c2a. If c2a is a sub-concept of c2b ,
then there exists an utterance u2k representing an instance of c2b such that ei ⊆ ek. For instance,
an utterance describing an instance of the concept ‘person’ in Ontology 2 contains all the words
occurring in an instance of the concept ‘address’.

Agent 2 cannot assume that the evidence ei and ex is independent in the presence of nested
concepts. Therefore, the derivation of the inequation for P (id(u1, u2i ) | E) must be reconsidered.
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Suppose that u1 and u2i describe the same entity in the world. Then, normally, ei = ek will
hold, implying:

• P (ei)� P (ei | id(u1, u2i )),

• P (ei, ek | id(u1, u2i )) = P (ei | id(u1, u2i )) ≤ 1 and

• P (ei) = P (ei, ek).

Hence, the above derived expression for P (id(u1, u2i ) | E) still holds.
Now suppose that u1 and u2k describe the same entity in the world. Then ei ⊂ ek will hold,

implying:

• P (ek)� P (ek | id(u1, u2k)),

• P (ei, ek | id(u1, u2i )) = P (ek | id(u1, u2k)) ≤ 1 and

• P (ek) = P (ei, ek).

Hence, the above derived expression for P (id(u1, u2i ) | E) still holds.
Because the evidences ei and ek can be the same or almost the same if c2a is a sub-concept of

a concept c2b , P (ei)
P (ek)

≥ θu or P (ek)
P (ei)

≥ θu need not hold. Therefore,

if c2a is a sub-concept of a concept c2b , Agent 2 should not compare P (ej) with P (ek)
using θu.

Agent 2 may consider adding both (u1, u2i ) and(u1, u2k) to the joint attention JA. Clearly, at most
one pair can be correct. Agent 2 should add (u1, u2k) to the joint attention if there is enough
additional evidence for (u1, u2k). That is,

P (ei)

P (ek)
≥ θs

for some threshold value θs. Otherwise it should add to (u1, u2i ) the joint attention.

4.4 Mappings

A mapping M between two ontologies will relate the corresponding concepts in two ontologies and
the attributes of these concepts. Ideally, all pairs in the joint attention JA will support the same
mapping. However, Agent 2 cannot prevent that a pair of utterances is incorrectly added to JA
because of coincidental correspondences. Hence, Agent 2 must determine the mapping for which
it has the highest support. A second reason for determining the mapping with the highest support
is because a pair of utterances may support more than one mapping. The latter can occur if two
label-value pairs of an utterance have the same value.

To determine the mapping with the highest support, Agent 2 might start with determining
all mappings that are supported by at least one pair of utterances in the joint attention JA. Let
M1, . . . ,Mm be all these mappings and let JAi denote the subset of JA supporting the mapping
Mi. Agent 2 preferably should determine the conditional probability P (Mi | E) where E = {Ek |
(u1k, u

2
k) ∈ JA} denotes all the evidence for the joint attention JA.

Suppose that a mapping Mi is incorrect, denoted by ¬Mi. Then, all pairs (u1, u2) ∈ JAi are
incorrectly added to JA, denoted by ¬JAi. Hence,

P (¬Mi | E) = P (¬JAi | E)

=
∏

id(u1,u2)∈JAi

P (¬id(u1, u2) | E)

≈ α
|JAi|
i

where αi ≈ P (¬id(u1, u2) | E) is assumed to hold for all id(u1, u2) ∈ JAi. Unfortunately, Agent
2 does not have enough information to estimate a value for αi. Hence, based on the above result,
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Agent 2 can only say that the probability that the mapping M is incorrect, is exponentially
decreasing in the size of JAi.

Assuming that αi is more or less the same for all mappings Mi, i.e., α ≈ αi for every i, and
assuming P (M | E) = 0 for every mapping M not belonging to M1, . . . ,Mm, an estimation of the
odds that a mapping is correct can be made.

O(Mi | E) =
P (Mi | E)

P (¬Mi | E)

=
P (

∧
j 6=i ¬Mj | E)

P (¬Mi | E)

≈
∏

j 6=i α
|JAj |
j

α
|JAi|
i

≈ α
∑

j 6=i |JAj |−|JAi|

Since α < 1, this result implies that:

|JA|∑
j 6=i |JAj |

≥ θm > 1

should hold for some threshold θm. Since the sets JAj are disjoint,
∑

j 6=i |JAj | = |JA − JAi|.
Hence, we can write |JAi| ≥ θm · |JA−i | with JA−i = JA− JAi.

The above result also provides Agent 2 with a way to create and evaluate a mapping step by step.
Since |JAi| ≥ θm · |JA−i | must hold for a mapping Mi, it must also hold for each element making
up the mapping. Therefore, Agent 2 can derive a mapping by first identifying the corresponding
concept, and subsequently, association between the labels.

Corresponding concepts A pair (u1, u2) in the joint attention comprises an instance of a
concept c1 of Ontology 1 and an instance of a concept c2 of Ontology 2. Since the instances are
probably describing the same entity in the world, the concept c1 and c2 should also correspond
assuming that a one to one mapping exists between corresponding concepts in both ontologies. For
instance, the concept ‘person’ in one ontology will not be represented by the concepts ‘student’
and ‘teacher’ in the other ontology.

Since there is no absolute certainty that the pairs of utterances that are added to the joint
attention are correct, it is possible that concept c1 is identical to the concept c2i (i.e., id(c1, c2i )),
according to one pair in the joint attention, and to the concept c2j according to another pair.
Clearly, assuming a one to one mapping, one of the two must be incorrect. If JAi denotes the pairs
of utterances supporting id(c1, c2i ) and if JA−i denotes the pairs of utterances supporting other
correspondences between concepts: id(c1, c2j ) with j 6= i, then the result of this subsection implies

that id(c1, c2i ) may hold according to a mapping Mi if |JAi| ≥ θm · |JA−i |.
After having determined all pairs (c1i , c

2
i ) of corresponding concepts; i.e., all pairs for which

id(c1i , c
2
i ) holds, Agent 2 can remove those pairs (u1j , u

2
j ) from the joint attention for which c1i =

c(u1j ) and c2i 6= c(u2j ), where c(uyx) denotes the concept of which utterance uyx is an instance. This
gives us the following pruned joint attention:

ĴA = {(u1j , u2j ) ∈ JA | c1i = c(u1j )⇒ c2i = c(u2j )}

If the pruned joint attention is empty; i.e., if no pairs pass the threshold θu or no corresponding
concepts are identified given θm, then no associations can be created. This is favored over finding
an ontology mapping that is probably not correct.

Creating associations After establishing the corresponding concepts, Agent 2 will try to estab-
lish a mapping between the attributes that make up the concept c1 respectively c2. To establish a
mapping Agent 2 uses pairs of utterances (u1, u2) from the pruned joint attention ĴA.

Given a pair of utterances from the joint attention, Agent 2 proposes associations between the
labels of two utterances based on the proportion of corresponding words. An association consists
of an Agent 1 label and an ordered list of operations on Agent 2 labels. Possible operations are:
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label(x): denotes the value in the utterance denoted by the label with name x.

first(x, s): as label(x), but returns the value up to the first occurrence of separator s. Possible
separators are: ‘ ’, ‘,’, ‘;’, and TC (a type change, i.e., a transition from numbers to letter or
vice versa).

last(x, s): as first(x, s), but returns the value starting after the first occurrence of separator s.

conc(t, x1, . . . , xn): concatenates all the elements x1, . . . , xn and inserts t as separator.

null: does nothing; used when no operation is applicable.

The mapping operations were chosen on the one hand to be expressive enough to enable useful
mappings, and on the other hand to be limited in order to prevent a combinatorial explosion.

The following example illustrates a mapping from Ontology 1 to Ontology 2.

label(pan) ← first(label(person.street),TC)

Agent 2 searches through a space of possible associations guided by the proportion of words
that instances of concepts have in common. Agent 2 accepts an association assoc as being correct
if it is supported by enough pairs in the pruned joint attention ĴA. That is, if ĴAi denotes the pairs

of utterance in ĴA supporting the association associ and if ĴA
−

denotes the pairs of utterance in
ĴA supporting other associations assocj with i 6= j, then the result of this subsection implies that

associ may hold according to a mapping Mk if |ĴAi| ≥ θm · |ĴA
−
i |.

In order to get the best possible result, the first association ‘label(x) ← . . .’ for a label-value

pair ‘label(x)’ that is added to a mapping Mk, is the one for which ĴAi

ĴA
−
i

is maximal. Subsequently,

Agent 2 prunes the joint attention using the association ‘label(x)← . . .’ creating a new pruned joint

attention
̂̂
JA. Next, Agent 2 repeats the process by searches for the next best association using

the new joint attention
̂̂
JA. Agent 2 continues searching for associations and pruning the joint

attention till no more associations can be found that are supported by enough pairs of utterances
in the joint attention.

5 Experiments with basic ontology mappings

We have evaluated our method for learning an ontology mapping through two series of experiments.
In the experiments we have investigated the number of errors that where made in establishing the
joint attention, in determining the corresponding concept, and in creating a mapping. These
aspects depend, of course, on the threshold values θu, θs and θm. A number of other factors also
influence the success of learning a mapping.

• Increasing the number of labels in an utterance makes the mapping problem easier (because
it becomes more clear that two utterances denote the same entity).

• Increasing the number of words in the set W from which the values of an attribute are chosen
makes the mapping problem easier (because there is less room for confusion).

• The occurrence of sub-concepts and super-concepts makes the mapping problem harder (be-
cause they overlap, and especially if they differ on only a few labels in an utterance).

• Splitting and concatenating label values makes the mapping problem harder (because the
search space becomes larger).

• Labels in one ontology that do not occur in the other ontology make the mapping problem
harder (because there is more room for confusion).

• Mistakes or differences in utterances makes the mapping problem harder (because it makes
the matching utterances less similar).
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We investigated the influence of the above mentioned aspects on the success of learning a mapping
in two experiments.

The goal of the first experiment was to investigate how well our approach can find matching
utterances and the correct associations. Therefore, we assumed one concept in both ontologies. To
complicate the determination of the associations, we introduced one label of which the value had
to be split in two association and two labels that had to be concatenated in an association. To
make finding corresponding utterances hard, the maximum number of words in a label was set to
2.

We performed the experiments for different values for θm, for different numbers of unrelated
labels, and for different numbers of words in W . We also experimented with the influence of noise
in the correct joint attention.

The goal of the second experiment was to investigate how well our approach can distinguish
different yet similar concepts.

Experiment 1 In this series of experiments, Ontology 1 consisted of one concept c1 which had
to be mapped to a concept c2 of Ontology 2. Moreover, if `ij denotes the j-th label in an utterance
of Ontology i, then:

• label `11 in u1 corresponded with label `21 in u2,

• label `12 in u1 corresponded with labels `22 and `23 in u2,

• label `24 in u2 corresponded with labels `13 and `14 in u1,

• no label in u2 corresponded with in `15 and `16 in u1.

• no label in u1 corresponded with in `15 and `16 in u2.

Ontologies 1 and 2 were randomly generated for each experiment, making sure that 10 instances
of c1 corresponded with 10 instances of c2. In both ontologies, each value of a label consists of
2 words, with the exception of `13, `14, `22 and `23 since `13 and `14 corresponded with `24, and since
`22 and `23 corresponded with `12. The total number of instances of each ontology was 1000. Given
these ontologies, the agents established a mapping between them. In the experiments the following
values for θu, θm, and the size of the set of words W were chosen: θu ∈ {1000}, θm ∈ {1, 1.5, 2, 3}
and |W | ∈ {100, 250, 500, 1000}.

In each experiment, we determined the recall and the precision for the joint attention, and
counted the number of correct associations in a mapping. Also the number of times that a mapping
was not possible was determined. If in a run no mapping was possible, the run was ignored when
computing the other three variables. Table 1 shows some of the average results over 100 runs (for
each run new random instances were created). For W = 100, often it is not possible to find a
mapping (0.28-0.40). If nevertheless a mapping is found, the result is acceptable. For increasing
|W |, the precision increases and consequently also the correct associations. The high precision for
|W | = 100 is somewhat misleading, since in most runs there was no precision. The best results
were found for θm = 1.0; for each run the correct mapping was found.

One might expect that increasing the value of θm would increase the number of correct mappings
found instead of decreasing this number as we see in Table 1. Increasing θm implies that we need
a larger joint attention. Table 2 shows that increasing the number of instances represented in both
ontologies from 10 to 30 improves the result.

Next, we increased the number of labels n that had no correspondence, making it more difficult
to find a mapping. The number of instances represented in both ontologies was set back to 10.
Table 3 shows the results. Not surprisingly, the results are worse for increasing n. The effect
is most notable for W = 100 (almost a factor 3 when n increases from 2 to 4), but decreases
for increasing W . Note that for n = 4, the ontologies have more non-corresponding labels than
corresponding labels.

Finally, we investigated the consequences of adding noise to the instances. For the instances of
Agent 1 that were part of the correct joint attention, a percentage of the words was replaced by
randomly chosen other words. Consequently, labels that were supposed to match did not match
anymore for all 10 joint attention pairs. Table 4 shows the results. With the increase of noise,
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θm 100 250 500 1000

Recall 1.0 0.162 0.981 1.000 0.998
Precision 1.0 0.828 0.846 0.994 1.000
No mapping 1.0 0.35 0.00 0.00 0.00
Associations 1.0 0.839 0.847 0.993 1.000

Recall 1.5 0.175 0.971 0.997 1.000
Precision 1.5 0.823 0.664 0.941 0.997
No mapping 1.5 0.32 0.00 0.00 0.00
Associations 1.5 0.833 0.613 0.920 0.967

Recall 2.0 0.168 0.979 1.000 1.000
Precision 2.0 0.817 0.591 0.942 0.947
No mapping 2.0 0.28 0.00 0.00 0.00
Associations 2.0 0.817 0.480 0.920 0.920

Recall 3.0 0.160 0.975 0.999 1.000
Precision 3.0 0.778 0.516 0.821 0.821
No mapping 3.0 0.40 0.00 0.00 0.00
Associations 3.0 0.744 0.360 0.680 0.667

Table 1: Results of Experiment 1, for various values of |W | and θm.

θm 100 250 500 1000

Recall 3.0 0.171 0.970 1.000 1.000
Precision 3.0 0.952 0.958 1.000 1.000
No mapping 3.0 0.3 0.00 0.00 0.00
Associations 3.0 0.929 0.933 1.000 1.000

Table 2: Results of Experiment 1, for 30 corresponding instances.

recall becomes slightly worse, and precision and associations are worse. The differences between
5% and 10% are greater than the differences between 0% and 5%.

Experiment 2 In this series of experiments, Ontology 1 consisted of one concept c1 which had
to be mapped to a concept c22 of Ontology 2. Ontology 2 consisted of four concepts in total: c21,
c22, c23 and c24. The concept c23 was a sub-concept of c22 and c22 was a sub-concept of c21. Concept
c24 was unrelated to the other concepts. The instances of concepts c21 and c24 each consisted of five
single valued labels. The instances of concept c22 contained n additional single valued labels with
respect to the corresponding instances of c21 and the instances of concept c23 contained n additional
single valued labels with respect to the corresponding instances of c22. Instances of the concept c1

contained n+ 5 single valued labels.
Ontology 1 and 2 were randomly generated for each experiment, making sure that 10 instances

n 100 250 500 1000

Recall 3 0.040 0.887 0.990 1.000
Precision 3 0.280 0.707 0.855 1.000
No mapping 3 0.53 0.00 0.00 0.00
Associations 3 0.436 0.727 0.853 1.000

Recall 4 0.025 0.270 0.980 1.000
Precision 4 0.135 0.813 0.659 0.971
No mapping 4 0.49 0.26 0.00 0.00
Associations 4 0.327 0.847 0.640 0.967

Table 3: Results of Experiment 1, for various numbers of unrelated labels (with θm = 1.0) In Table
1: n = 2.
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Noise (%) 100 250 500 1000

Recall 0 0.162 0.981 1.000 0.998
Precision 0 0.828 0.846 0.994 1.000
No mapping 0 0.35 0.00 0.00 0.00
Associations 0 0.839 0.847 0.993 1.000

Recall 5 0.161 0.954 0.998 1.000
Precision 5 0.781 0.540 0.744 0.741
No mapping 5 0.29 0.00 0.00 0.00
Associations 5 0.836 0.742 0.967 0.977

Recall 10 0.126 0.962 0.996 0.998
Precision 10 0.699 0.518 0.744 0.751
No mapping 10 0.31 0.00 0.00 0.00
Associations 10 0.712 0.597 0.937 0.953

Table 4: Results of Experiment 1 with noise (θm = 1, n = 2).

n 100 250 500 1000

Recall 1 0.788 0.980 0.989 0.998
Precision 1 1.000 1.000 1.000 1.000
Concept 1 1.000 1.000 1.000 1.000
Associations 1 1.000 1.000 1.000 1.000

Recall 5 0.061 1.000 1.000 1.000
Precision 5 1.000 1.000 1.000 1.000
Concept 5 1.000 1.000 1.000 1.000
Associations 5 0.889 1.000 1.000 1.000

Table 5: Results of Experiment 2 for θm = 1.5, s = 5.

of c1 corresponded with 10 instances of c22. Ontology 1 contained 1000 randomly generated instances
of the concept c1 and Ontology 2 contained 990 randomly generated instances of the concept c21 and
an additional 10 instances of c21 where generated in such a way that the corresponding instances of
c22 correspond with 10 instances of c1. Moreover, Ontology 2 contained 1000 randomly generated
instances of concept c24. Given these ontologies, the agents established a mapping between them. In
the experiments θs was set to 5, θm was set to 1.5, and |W | ∈ {100, 250, 500, 1000}. The results of
these experiments are shown in Table 4. Note that the value θs = 5 is sufficiently low to guarantee
that one additional corresponding label-value pair was sufficient to exceed the threshold value for
all values of |W |.

Table 5 shows that in all cases only correct mappings are found. Except for W = 100 and
n = 5, the correct mappings are always identified.

6 Extensions

The experiments have shown that the proposed approach is highly successful in learning a mapping
if a few entities in the world are represented in both ontologies. In this section we discuss two
extensions that will make the proposed approach more generally applicable.

Context dependent mappings The experiments show that agents can successfully learn a
mapping between their ontologies. There are, however, a number of restrictions on mappings that
can be learned by the agents, such as learning context dependent mappings. A context dependent
mapping is a mapping in which the correct association depends on the values of certain attributes.
For instance, the way in which the street name and the house number are represented in a single
attribute depends on the country. In the Netherlands the house number is placed behind the street
name while in the USA it is in front of the street name.
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An agent can, in principle, learn a context dependent mapping by generating an association
between attributes as it did before. For each association the agent proposes, it also formulates a
context. A context is a set of label-value pairs for which the association is correct. To illustrate
why a context might be a set of label-value pairs, suppose that the way a street name and a house
number is combined differs from city to city in some countries (e.g., Belgium). Then the context
must contain the name of the country as well as the name of the city.

An association may be valid in more than one context. Germany and The Netherlands, for
instance, combine the street name and house number in the same way, resulting in two different
contexts; one in which the attribute country has the value ‘Germany’ and one in which it has the
value ‘The Netherlands’.

Multiple contexts in combination with contexts that consist of a set of label-value pairs sig-
nificantly complicate the learning process. An agent could of course use all label-value pairs as
a context. This results in context for an association that consists of a complete utterance. Such
an approach does not generalize to utterances that do not occur in the joint attention. Hence, a
context should contain no more information than necessary. Unfortunately, determining a mini-
mal context is an NP-Hard problem. We can prove this by reducing the Minimal Disjunctive
Normal Form problem to a minimal context determination problem.

A Minimum Disjunctive Normal Form problem is a problem in which we have a set of
Boolean variables U , and a set A of truth value assignments to these variables. The question to be
answered is whether there exists a formula over U in disjunctive normal form with no more than
K disjuncts that is true for every assignment in A but for no assignment not in A.

Proposition 1 Learning a context dependent mapping of which the context is minimal is an NP-
hard problem.

Proof We reduce the problem by representing each Boolean variable in U as an attribute and a
truth value assignment to the variable in U as a label-value pair. Moreover, we can interpret each
assignment in A as a description of all instances for which an association is correct, all assignments
not in A as a description of all instance for which an association is incorrect. By determining all
minimal contexts, we can check whether there exists a formula in disjunctive normal form with no
more than K disjuncts. For, each minimal context corresponds with a disjunct. 2

Though learning a context dependent mapping is, in general, infeasible, there are special cases
where a context dependent mapping is feasible. Suppose, for instance, that a concept ‘person’ in
one ontology is represented by two concepts, ‘student’ and ‘teacher’, in another ontology. If the
former ontology contains an attribute indicating whether the person is a student or a teacher, a
context dependent mapping between concepts can be learned efficiently. This is possible because
there is only one attribute value for each mapping. Moreover, instead of a single attribute, also sets
of attributes can form a context that can be learned efficiently, provided that (i) for each mapping
there is exactly one context of attributes, and (ii) there are enough pairs in the joint attention to
exclude irrelevant attributes from the context.

Mappings between sets of concepts Until now we have assumed that Agent 1 wishes to
communicate about one concept and that Agent 2 tries to establish a mapping between this concept
and a corresponding concept in its ontology. If Agent 1 wishes to communicate about more than
one concept, the same approach can be used if the concepts are unrelated. Usually, however, there
will exist relations between the concepts Agent 1 wishes to communicate about. When establishing
a mapping, the relations between the concepts must also be learned.

Suppose that Agent 1 wishes to communicate about the concepts c11, . . . , c
1
k. Hence, Agent 1

has to formulate utterances for each of the concepts. If there are relations between two of these
concepts: c1i and c1j , Agent 1 could, of course, include c1j in the utterance of an instance of c1i . This

will make it hard for Agent 2 to learn that there is a relation between c1i and c2j . Therefore, in an

utterance describing an instance of concept c1i , labels denoting a relation with other concepts c1j
should be added.
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CONCEPT:person
person.christian name:‘Archibald’
person.family name:‘Haddock’
person.street:‘Castle Lane 1’
person.city:‘Marlinspike’
person.country:‘Belgium’
person.phone number:‘06229–421’
person.email:‘haddock@herge.be’
person.father−→CONCEPT:‘person’
person.mother−→CONCEPT:‘person’

The labels denoting a relation between c1i and c1j ; e.g., the last two labels in the utterance

above, will not be used by Agent 2 to establish a mapping between concept c1i and a concept c2l
of its ontology. Hence, after ignoring these labels, what remains is the problem of establishing a
mapping between a concept of Ontology 1 and a concept of Ontology 2 as has been discussed in
the preceding subsections. Having established a mapping for each concept c1i of Ontology 1 with
a concept c2l of Ontology 2, the mappings have to be extended in order to incorporate the labels
such as:

person.father−→CONCEPT:‘person’
person.mother−→CONCEPT:‘person’

that have been ignored so far. Since Agent 2 has established which concept in its ontology corre-
sponds with which concept communicated by Agent 1, given a pair of utterances (u1, u2), Agent
2 can determine the labels in an utterance u2 that refer to the same concepts as labels in the
utterance u1. Next Agent 2 has to determine whether instances of the concepts referred to are the
same. This is especially important if there is more than one reference to the same concept, as is
the case in the above example. For each pair of utterance in the joint attention and for each label
referring to a concept, Agent 2 has to request Agent 1 to send the utterance v1 describing the
actual instance of the concept referred to. Subsequently Agent 2 has to determine whether it has
a corresponding instance of the corresponding concept; i.e., Agent 2 determines pairs of utterances
(v1, v2) forming a joint attention for the references. Using the new joint attention, Agent 2 can
evaluate associations between labels representing references in the same way as it evaluates other
associations between labels.

7 Conclusions

We have proposed a successful approach for learning mappings between two ontologies. The
learning method is based on exchanging utterances representing instances of concepts. If a small
number (10) of instances of concepts are represented using both ontologies, then a 100% correct
mapping can be learned. The method can cope with noise in the data and also can indicate when
a mapping is not possible.

The strongest assumption of the proposed approach is the requirement that a small number of
instances of corresponding concepts are represented in both ontologies. Therefore future research
will focus on relaxing this requirement.

In the paper we assumed that data conflicts do not occur since handling data conflicts often
requires domain specific knowledge. Initial experiments [11] have shown that some data conflicts
caused by the use of different units or different precision can be learned. Further research is,
however, required.

17



References

[1] S. Bergamaschi, S. Castano, S. Vermercati, S. Montanari, and M. Vincini. An intelligent
approach to information integration. In International Conference on Formal Ontology in
Information Systems (FOIS’98), 1998.

[2] M. Burnstein, D. McDermott, D. R. Smith, and S. J. Westfold. Semantic integration of
semistructured and structured data sources. Autonomous Agents and Multi-Agent Systems,
6:265–286, 2003.

[3] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies on
the semantic web. In The Eleventh International WWW Conference, 2002.

[4] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: a tool for collaborative ontology
construction. In Proceedings of the Tenth Knowledge Acquisition for Knowledge-Based Systems
Workshop, 1996.

[5] A. Firat, S. Madnick, and B. Grosof. Knowledge intergration to overcome ontological het-
erogeneity: challenges from financial information systems. In Twenty-Third International
Conference on Information Systems, 2002.

[6] M.P. Gallaher, A.C. O’Connor, Jr. J.L. Dettbarn, and L. T. Gilday. Cost analysis of inadequate
interoperability in the u.s. capital facilities industry. Technical Report NIST GCR 04-867,
National Institute of Standards and Technology, 2004.

[7] T. R. Gruber. Ontolingua: A mechanism to support portable ontologies. Technical Report
KSL 91-66, Stanford University, Knowledge Systems Laboratory, 1992.

[8] T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies, 43:907–928, 1995.

[9] P. Haase and B. Motik. A mapping system for the integration of owl-dl ontologies. In Pro-
ceedings of the first international workshop on Interoperability Of Heterogeneous Information
Systems (IHIS’05), pages 9–16, 2005.

[10] J. Hammer and D. McLeod. An approach to resolving semantic heterogeneity in a federation
of autonomous, heterogeneous database systems. Journal for Intelligent and Cooperative
Information Systems, 2(1):51–83, 1993.

[11] D. Jehoul. Interoperabiliteit. Master Thesis CS-05-20, Universiteit Maastricht, 2005.

[12] W. Kim and J. Seo. Classifying schematic and data heterogeneity in multidatabase systems.
IEEE Computer, 24(12):12–18, 1991.

[13] S. Lacher and G. Groh. Facilitating the exchange of explixit knowledge through ontology
mappings. In 14th International FLAIRS conference, 2001.

[14] Y. Lee, K. Supekar, and J. Geller. Ontology integration: Experience with medical terminolo-
gies. Computers in Biology and Medicine, 36:893–919, 2006.

[15] D. L. McGuinness and F. van Harmelen. Owl web ontology language overview. W3C Recom-
mendation 10 February 2004, 2004.

[16] Tova Milo and Sagit Zohar. Using schema matching to simplify heterogeneous data translation.
In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 122–133, 1998.

[17] M. P. Papazoglou, N. Russell, and D. Edmond. A translation protocol achieving consensus of
semantics between cooperating heterogeneous database systems. In Conference on Cooperative
Information Systems, pages 78–89, 1996.

[18] D. Pérez-Rey, V. Maojo, M. Garćıa-Remesal, R. Alonso-Calvo, H. Billhardt, F. Martin-
Sánchez, and A. Sousa. Ontofusion: Ontology-based integration of genomic and clinical
databases. Computers in Biology and Medicine, 36:712–730, 2006.

18



[19] H. S. Pinto. Some issues on ontology integration. In IJCAI-99 workshop on Ontologies and
Problem-Solving Methods (KRR5), 1999.

[20] S. Prasad, Y. Peng, and T. Finin. Using explicit information to map between two ontologies.
In S. Cranefield, T. Finin, and S. Willmott, editors, Ontologies in Agent Systems workshop,
2002.

[21] A. P. Sheth and J. A. Larson. Federated database systems for managing dristributed, hetero-
geneous, and autonomous databases. ACM Computing Serveys, 22:183–236, 1990.

[22] L.-K. Soh. Multiagent distributed ontology learning. In S. Cranefield, T. Finin, and S. Will-
mott, editors, Ontologies in Agent Systems workshop, 2002.

[23] L. Steels. Emergent adaptive lexicons. In P. Maes, editor, From Animals to Animats 4: Pro-
ceedings of the Fourth International Conference On Simulating Adaptive Behavior, Cambridge
Ma., 1996. The MIT Press.

[24] L. Steels and P. Vogt. Grounding adaptive language games in robotic agents. In C. Husbands
and I. Harvey, editors, Proceedings of the Fourth European Conference on Artificial Life,
Cambridge Ma. and London, 1997. MIT Press.

[25] G. Stumme and A. Maedche. Ontology merging for federated ontologies on the semantic
web. In Proceedings of the International Workshop for Foundations of Models for Information
Integration (FMII-2001), 2001.

[26] R. M. van Eijk, F. S. de Boer, W. van der Hoek, and J.J. Ch. Meyer. On dynamically
generated translators in agent communication. International Journal of Intelligent Systems,
16:587–607, 2001.

[27] P. R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. An analysis of onto-
logical mismatches: Heterogeneity versus interoperability. In AAAI 1997 Spring Symposium
on Ontological Engineering, Stanford, USA, 1997.
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