
The semantics of behavior
Nico Roos1

Abstract. The BDI architecture is one of the most popular archi-
tectures for agents with symbolic reasoning capabilities. To formally
define the notions of Beliefs, Desires and Intentions, different formal
logics have been proposed in the literature. Although these propos-
als often refer to the work of Bratman [2], none, however, correctly
capture the form of practical reasoning that Bratman describes. What
is lacking, is a proper characterization of the agent’s behavior. The
formal logics proposed so far, do not allow for an adequate charac-
terization of the refinement of behaviors that Bratman describes.

This paper focuses on describing an agent’s behavior. The pro-
posed behavioral descriptions allow for the specification of abstract
behaviors, which can subsequently be refined. The approach enables
a more accurate characterization of Bratman’s BDI model.

1 Introduction

The Beliefs, Desires and Intentions (BDI) model was introduced by
Bratman [2] as a basis for realizing practical reasoning. His ideas
have subsequently been used in the specification of agent architec-
tures [8, 3, 7, 6], agent programming language [16, 10, 23, 1, 5], and
agent communication languages [15]. These applications of the BDI
model have played an important role within the area of autonomous
agents and multi-agent systems. For this reason, a clear understand-
ing of the notions of beliefs, desires and intentions and their mutual
connections is essential. Several formal logics have been proposed in
order to provide this clarity [4, 9, 13, 12, 14, 17, 18, 21, 20, 22, 24].
Unfortunately, these logics do not always provide the clarity that we
desire.

An important difference between the logics that have been pro-
posed in order to describe the notions of beliefs, desires and inten-
tions, and the work of Bratman [2], concerns the refinement of in-
tentions. In Bratman’s view, an intention is described by some ab-
stract action such as: “going to Rome” instead of a state property:
“being in Rome”, which is the effect of the intended action. This ab-
stract action is subsequently refined by (i) identifying options that
can realize the intention, (ii) deliberating over these options within
the context of the chosen intention; e.g., “going to Rome”, and (iii)
choosing a more refined intention; e.g., “going to Rome in the first
week of May”. Further refinements of the latter intention, over which
the agent may deliberate could be: “going to Rome in the first week
of May by train”. These stepwise refinements of the intention realize
the means-ends analysis.

In order to truly describe the refinement process proposed by Brat-
man, we need to be able to describe (i) an agent’s (intended) behav-
ior, and (ii) the refinement of abstract behavior specifications. Here a
behavior is an (abstract) action the agent intends, desires or is going
to execute. The approaches proposed in the literature do not enable

1 Department of Knowledge Engineering, Maastricht University, email:
roos@maastrichtuniversity.nl

us to describe the refinement of an abstract behavior.2 Therefore, this
paper will focus on the semantics of behaviors, the refinement of
behaviors, and reasoning about behaviors. Since behaviors will be
described by actions, dynamic logic is used as a starting point.

We start in the next section with a summary of dynamic logic. in
Section 3, we discuss the semantics of a behavior specification. Sec-
tion 4 discusses the specification of subsumption relations between
actions. These relations will form the basis of the refinement process.
Section 5 provides a proof theory for the proposed extensions of dy-
namic logic. The related work is briefly discussed in Section 6 and
Section 7 concludes the paper.

2 Preliminaries
This paper makes use of dynamic logic in order to specify the seman-
tics of behaviors. We therefore assume interpretations that are Kripke
structures. An interpretation I contains a set of states S describing
the possible states of the agent’s environment, an interpretation func-
tion π, and several relations. The interpretation of atomic actions in
the set A is described by the relation RA : A→ 2S×S .

Dynamic logic allows us to formulate composite actions (plans)
using regular expressions. The following operators are used to con-
struct composite actions: an is-followed-by operator: ; , a non-
deterministic choice operator: + , an iteration operator: ∗ , and a test
operator: ? . The composite action a; a′ denotes that a′ is executed
after a, the composite action a+ a′ denotes that a non-deterministic
choice is made between executing a and a′, a∗ denotes that a is ex-
ecuted 0 or more times; i.e., a∗ = ε + a + (a; a) + (a; a; a) +
(a; a; a; a) + . . . where ε is a special action representing the absence
of an action, and ϕ? denotes a test whether the proposition ϕ holds.
The set of all composite actions is denoted by A∗. We define an ex-
tended relationRA∗ : A∗ → 2S×S interpreting composite actions in
A∗, in the usual way. The possible and necessary effect of an action a
described by the proposition ϕ, can be specified by the propositions
〈a〉ϕ and [a]ϕ, respectively. The semantics of these propositions is
given by:

• (I, s) |= 〈a〉ϕ iff there is an s′ ∈ S such that (s, s′) ∈ RA∗(a)
and (I, s′) |= ϕ.

• (I, s) |= [a]ϕ iff for every s′ ∈ S, if (s, s′) ∈ RA∗(a), then
(I, s′) |= ϕ.

Descriptions of the effects of actions should hold in all state of
an agent’s environment, not just the current state. Therefore, descrip-
tions of actions are often given in terms of axioms. Here, however, we
prefer to use one set of propositions to describe all information. We
will therefore use the modal operator 2, to specify that something
always holds. For instance: 2(ϕ → (〈a〉> ∧ [a]ψ)). Since an agent

2 The refinement of abstract behaviors is related to hierarchical planning, such
as HTNs [19].

may, incorrectly, believe that action a always results in the effect ψ,
we will not interpret 2 as referring to all states in S, but to all states
reachable from the current state given some sequence of actions. The
latter choice makes it possible to use doxastic logic to describe an
agent’s possibly incorrect beliefs about the effect of actions. The se-
mantics of 2 denoting always and its dual 3 denoting sometimes, is
given by:

• (I, s) |= 2κ iff for every s′ ∈ S, if (s, s′) ∈
(⋃

a∈AR
A(a)

)∗
,

then (I, s′) |= κ.
• (I, s) |= 3κ iff for some s′ ∈ S, (s, s′) ∈

(⋃
a∈AR

A(a)
)∗

and
(I, s′) |= κ.

We will use Σ ⊆ L to describe all available information. The
entailment relation between the information Σ ⊆ L and a conclusion
ϕ is given by:

Σ |= ϕ iff for every interpretation I and for every state s ∈ S of
that interpretation, (I, s) |= Σ implies (I, s) |= ϕ.

3 The semantics of behaviors
An agent that needs to realize an intention, must choose a behav-
ior that realizes the intention. A behavior is the result of executing a
composite action that causes a transition from the current state to one
of the intended states. Dynamic logic can be used to identify possi-
ble composite actions that realize a transition to an intended state.
However, dynamic logic cannot be used to specify which action is
actually chosen since dynamic logic only allows for what if analy-
sis. That is, the agent can only derive what may and will hold if a
(composite) action a is chosen.

To describe an agent’s behavior; i.e., the action a the agent chooses
to execute, we introduce a special predicate do(a). We could inter-
pret do(·) as a predicate in first order logics; i.e., “(I, s) |= do(a) iff
π(a) ∈ π(s)(do)”. This interpretation does not specify the transi-
tion from state s to a next state s′ caused by the choice of executing
a. Moreover, the semantics does not enable us to evaluate relations
between chosen actions, such as:

do(‘goto the station’; ‘take the train to Rome’)→ do(‘go to Rome’)

To formalize the transition specified by an action and to enable the
description of relations between (composite) actions, which are im-
portant for describing Bratman’s BDI model, we propose a different
approach.

To express the semantics of the predicate do in terms of a transition
to a next state, we introduce a relation over states:Rdo ⊆ S×S. This
relation specifies a transition of the (current) state s to a next state s′.
This transition need not be unique because of uncertainty about the
effects of actions, especially in case of abstract actions.

Note that the relation Rdo ⊆ S × S does not specify which action
is executed, though the predicate do(a) does specify that the action
a is executed. If the relation Rdo were a function of the executed ac-
tion, it would specify a transition for every action. However, we only
need transitions that can be the result of the action a that is actually
executed. To identify in the semantics which action is actually exe-
cuted, we will make use of dynamic logic. First, however, we will
look at the properties of the relation Rdo.

The relation Rdo introduces a notion of time in the semantics.
Here, time progresses in discrete steps by the actions the agent is ex-
ecuting. Of course, the agent cannot travel back in time. Therefore,
we require that Rdo is an acyclic relation. Rdo should also enable the
choice for composite actions. Moreover, we require that each state

has its own unique history. This implies that the relation Rdo should
represent a tree in the direction of the future. Finally, we do not re-
quire the tree to contain infinitely long paths toward the future. When
representing an intention for instance, we do not care what happens
after the intention has been realized. So the relationRdo must possess
the following properties:

• irreflexive:
∀s (s, s) 6∈ Rdo

• transitive:
∀s, t, u[{(s, t), (t, u)} ⊆ Rdo → (s, u) ∈ Rdo]

• tree:
∀s, t, u[{(t, s), (u, s)} ⊆ Rdo → [(t, u) ∈ Rdo ∨− (u, t) ∈ Rdo]]

The relation Rdo describes the actual, the believed, the desired or
the intended behavior of an agent depending on the preceding modal
operator. Multiple paths indicate that there is uncertainty about the
behavior. We assume that the behavior specified by Rdo is always
caused by actions the agent is executing. To determine these actions,
we will use the semantics of composite actions of dynamic logic.
The semantics of a composite action a is specified by the relation
RA∗(a) ⊆ S×S. The agent is executing the action a in state s if all
possible behaviors (s, s′) that may be realized according to relation
Rdo are behaviors that are possible according to the relationRA∗(a).

The reason for the following somewhat complex specification of
the chosen action is because an abstract action may be realized by
a sequence of actions. So, we need to be able to identify whether a
sequence of actions realize an abstract action. To make this identifi-
cation, we need to consider the paths to the future specified by Rdo.

(s0, s1, . . .) is a path determined by Rdo and the state s0 iff

• for every index i ≥ 0, (si, si+1) ∈ Rdo, and

• for every index i ≥ 0 there is no s′ ∈ S such that (si, s
′) ∈

Rdo and (s′, si+1) ∈ Rdo.

Note that the second item guarantees that a path contains all interme-
diate states.

The paths defined by Rdo enable us to specify the chosen actions
of a behavior. An agent is doing an action a in state s if every path
specifying a behavior starting in s contains a state s′ that is a possible
effect of the action a; i.e., (s, s′) ∈ RA∗(a). If a is a composite ac-
tion, then doing a should imply that the agent also does the sequence
of atomic actions determined by the composite action a. Since the
relation RA∗ : A∗ → S × S summarizes the effects of a composite
action a, we need to identify the paths determined by the sequence
of atomic actions underlying the composite action.

A path (s0, s1, . . . , sn) determined by a composite action a
and the state s0, is recursively defined as:

• If a is an atomic action (a ∈ A) and (s0, s1) ∈ RA(a), then
(s0, s1) is a path of a.

• If a = b; c , (s0, . . . , sk) is a path of b and (sk, . . . , sl) is a
path of c, then (s0, . . . , sk, . . . , sl) is a path of a.

• If a = b+ c , (s0, . . . , sk) is a path of b and (s0, s
′
1, . . . , s

′
l)

is a path of c, then both (s0, . . . , sk) and (s0, s
′
1, . . . , s

′
l) are

paths of a.

• If a = b∗ and (s0, . . . , sk) is a path of (ε + b; b∗), then
(s0, . . . , sk) is a path of a.

• If a = ε , then (s0) is a path of a.

• If a = ϕ? and (I, s0) |= ϕ, then (s0) is a path of a.

• Nothing else is a path of a.

The paths defined by Rdo and by the actions, enable us to specify
the chosen composite actions of a behavior.

Let P (s) be the set of all paths determined by Rdo and the state s.
(I, s) |= do(a) iff a ∈ A∗ and for every (s0, s1, . . .) ∈ P (s)
there is a path (s0, s

′
1, . . . , s

′
n) of a such that for every s′i there is

an sji in (s0, s1, . . .) such that s′i = sji and ji−1 < ji.

Figure 1 gives an illustration of semantics. The relation Rdo con-
tains the couples (s0, s1), (s0, s2) and (s1, s2). So, we have one
path in P , namely: (s0, s1, s2). Since (s0, s1) ∈ RA(a), (s1, s2) ∈
RA(b) and (s0, s2) ∈ RA∗(a; b), do(a) holds in state s0, do(b)
holds in state s1, and do(a; b) also holds in state s0, respectively. If
we would ignore the path that realizes the composite action a; b, then
do(a; b) still holds in state s0 while do(a) need not hold in state s0
and do(b) need not hold in state s1.

s2 s1 s0

Rdo

RA(b)RA(a)

Rdo

Rdo

RA*(a;b)

Figure 1. Behavior specification.

Since we distinguish abstract actions, it is useful to introduce a
special predicate dea(a) that identifies a directly executable action
a. Moreover, to distinguish atomic actions from composite actions,
it is useful to introduce a special predicate action(a) that specifies
whether the term a denotes an atomic action.

4 Relations between actions
In the previous section we have formalized the semantic relation be-
tween an agent’s behavior and the specification of actions. Dynamic
logic can be used to describe the effects of actions. It is, however, not
possible to specify relations between (composite) actions in dynamic
logic. So, we cannot specify that an action refines some abstract ac-
tion. In the remainder of this section, we will consider two possibil-
ities of specifying relations between actions. The first approach con-
sists of explicitly specifying subsumption relations between (com-
posite) actions. The second approach is based on the assumption that
actions are fully characterized by their effects.

4.1 Subsumption relations between actions
The idea behind defining subsumption relations between actions is
the following: if an action a that enables an agent to reach a subset
of the states that can be reached by an action b, then the action b
subsumes the action a. We denote this by a v b where a and b
are (composite) actions. We also allow this relation to depend on the
current state s. So, if we wish to denote that the subsumption relation
always holds, we will have to specify; 2(a v b).

The semantics of the subsumption relation over actions given a
state s, is specified by:

Let a, b ∈ A∗ be two actions.
(I, s) |= a v b iff for every t ∈ S, if (s, t) ∈ RA∗(a), then
(s, t) ∈ RA∗(b).

This definition does not imply that a subsumption relation holds in
every state of the interpretation I . To illustrate this, consider a state s
where ϕ holds. In the state s, the action a is subsumed by the action
(ϕ?; a)+(¬ϕ?; b); i.e.: (I, s) |= ϕ∧(a v (ϕ?; a)+(¬ϕ?; b)), while
this is not the case in a state t in which ¬ϕ holds. When we require
the subsumption relation to hold in every state of an interpretation,
we can prove the following result:

Proposition 1 Let a, b ∈ A∗ be two actions, and let I be an inter-
pretation.

For every s ∈ S, (I, s) |= a v b iff RA∗(a) ⊆ RA∗(b).

Proof For every s ∈ S, (I, s) |= a v b iff for every s ∈ S, {(s, u) |
(s, u) ∈ RA∗(a)} ⊆ {(s, u) | (s, u) ∈ RA∗(b)} iff RA∗(a) ⊆
RA∗(b). 2

In order to reason about subsumption relations, it would be use-
ful if we could describe a subsumption relation in terms of dynamic
logic. It turns out that this is possible if we introduce for each state a
proposition ξ that uniquely characterize the state.

Proposition 2 Let a, b ∈ A∗ be two actions, let I be an interpreta-
tion and let s be a state of the interpretation.

(I, s) |= a v b iff for every proposition ξ that uniquely character-
izes a state, (I, s) |= 〈a〉ξ implies (I, s) |= 〈b〉ξ.

Proof (I, s) |= a v b iff for every t ∈ S, if (s, t) ∈ RA∗(a),
then (s, t) ∈ RA∗(b) iff for every t ∈ S, if (s, t) ∈ RA∗(a) and
(I, t) |= ξ, then (s, t) ∈ RA∗(b) and (I, t) |= ξ iff for every ξ,
(I, s) |= 〈a〉ξ implies (I, s) |= 〈b〉ξ. 2

Although in general it will not be feasible to construct a proposition
ξ, the above result will be useful in defining a proof theory.

Corrolary 1 If (I, s) |= a v b, then for every proposition ϕ,
(I, s) |= 〈a〉ϕ implies (I, s) |= 〈b〉ϕ.

We can also prove the following property of a v b.

Proposition 3 For every interpretation state pair (I, s), if (I, s) |=
a v b, then for every ϕ ∈ L, if (I, s) |= [b]ϕ, then (I, s) |= [a]ϕ.

Proof Suppose that (I, s) |= [b]ϕ but (I, s) 6|= [a]ϕ. Then there is
a t ∈ S such that (s, t) ∈ RA∗(a) and (I, t) 6|= ϕ. So, (s, s′) ∈
RA∗(a) and (I, s′) 6|= ϕ. Since (I, s) |= a v b, for every t ∈
S, if (s, t) ∈ RA∗(a), then (s, t) ∈ RA∗(b). Therefore, (s, s′) ∈
RA∗(b). Since (I, s) |= [b]ϕ, for every t ∈ S, if (s, t) ∈ RA∗(b),
then (I, t) |= ϕ. Therefore, (I, s′) |= ϕ. Contradiction. 2

4.2 Characterizing actions by their effects
The second approach is based on the assumption that actions are
completely characterized by their effects. This assumption implies
that action b subsumes action a if the effects of action a realize at
least all effects of action b. So, the action of ‘going to Rome’ sub-
sumes the action of ‘going to Rome by train’ because both actions
have as effect ‘being in Rome’ while the latter action also has the
effect of ‘arriving by train’.

(I, s) |= a v b iff for every ϕ ∈ L, if (I, s) |= [b]ϕ, then
(I, s) |= [a]ϕ.

An important question is whether we can always make this as-
sumption. That is, whether we can always determine an interpretation
satisfying the assumption.

Proposition 4 For every interpretation I with a set of states S there
exists an interpretation I ′ with states S′ and there exists a surjective
function f : S → S′ such that the following two conditions hold:

1. Our assumption holds.
2. For every s ∈ S and ϕ ∈ L, if (I, s) |= ϕ, then (I ′, f(s)) |= ϕ.

Proof We prove the proposition by constructing the interpretation
I ′. We ensure in the construction of I ′ that the assumption holds. So,
we have to prove for any ϕ that (I, s) |= ϕ implies (I ′, f(s)) |= ϕ.

Note that each state s′ can be uniquely characterized by by a propo-
sition ξs′ except for duplicate states that are indistinguishable from
s′. Hence, there is proposition that uniquely characterizes the states
{s′ | (s, s′) ∈ RA∗(a)}, namely ω =

∨
s′|(s,s′)∈RA∗ (a) ξs′ .

Determine for every state s, every relation a v b that must hold in s
according to our assumption. Clearly, the relations a v b that must
hold in s form a partial ordering. Let a1, . . . , ak be a linearization
such that for very ai there is no aj such that j < i and ai v aj . We
construct the interpretation I ′ and the function f starting from a1.
For every ai, and for every aj such that ai v aj and such that for no
al such that ai v al v aj , execute the following construction step.

Let ω be the proposition characterizing the states {s′ | (s, s′) ∈
RA∗(aj)}. Then, (I, s) |= [aj]ω, and therefore (I, s) |= [ai]ω.
Since ω = ξ1 ∨ · · ·∨ ξk, and since every ξi completely characterizes
a state, for every state t ∈ {s′ | (s, s′) ∈ RA∗(ai)} there is a
duplicate state t′ ∈ {s′ | (s, s′) ∈ RA∗(aj)}. In the construction of
the interpretation I ′, we replace each of these states t′ by its duplicate
state t. That is f(t′) = t, and (s, t′) ∈ RA∗(aj) is replaced by
(s, t) ∈ RA∗(ai).

The construction guarantees that (1) our assumption holds, and (2)
for every s ∈ S and ϕ ∈ L, if (I, s) |= ϕ, then (I ′, f(s)) |= ϕ.

The range of f is given by S′ = {t ∈ S | s ∈ S, t = f(s)}. 2

The assumption that actions are characterized by their effects, im-
plies that, in order to distinguish two actions such as: ‘walking to the
train station’ and ‘taking the bus to the train station’, the effect must
be different. So, it is insufficient to only specify that the effect of both
actions is: ‘being at the train station’. Another requirement is that an
agent’s knowledge of the effect of actions must be complete.

We cannot specify in dynamic logic that all effects of an action
have been specified. It is always possible to add another proposition
[a]η. What we need, is a formalism which enables us to specify that
‘being in Rome’ is the only necessary effect of the action: ‘going to
Rome’. This is the only change in world caused by the action. The
fact that my name did not change during the execution of the action:
‘going to Rome’, is not an effect of the action but a property of the
world. So, we need a formalism to describe all necessary effects of an
action. We will use the -̂operator, when applied to a modal necessity
operatorN , to denote all effects ofN .

(I, s) |= N̂ϕ iff (I, s) |= Nϕ and for every ψ ∈ L, if
(I, s) |= Nψ, then |= ϕ→ ψ.

Note that this definition is related to the definition of only-knowing
[11].

There always exists a proposition that characterize all the neces-
sary effects of a modal operator. This proposition is unique in the
sense that all propositions ϕ for which N̂ϕ holds, are equivalent.

Proposition 5 Let N be a modal necessity-operator, let I be an in-
terpretation and let s be a state of the interpretation.

• There exists a proposition ϕ ∈ L such that (I, s) |= N̂ϕ.
• For every ϕ,ψ ∈ L, if (I, s) |= N̂ϕ and (I, s) |= N̂ψ, then
|= ϕ↔ ψ.

Proof • Let ϕ be the proposition characterizing the states {s′ |
(s, s′) ∈ RA∗(aj)}. That is ϕ = ξ1 ∨ · · · ∨ ξk and every ξi
completely characterizes a state ti with {t1, . . . , tk} = {s′ |
(s, s′) ∈ RN }. Suppose that (I, s) |= Nψ. Then for every
ti, (I, ti) |= ψ. Since ξi completely characterizes ti, |= ξi → ψ.
So, |= ϕ→ ψ since ϕ = ξ1 ∨ · · · ∨ ξk. Hence, (I, s) |= N̂ϕ.

• Suppose that (I, s) |= N̂ϕ and (I, s) |= N̂ψ. Since (I, s) |=
N̂ϕ, (I, s) |= Nϕ and therefore, |= ψ → ϕ. Since (I, s) |= N̂ψ,
(I, s) |= Nψ and therefore, |= ϕ→ ψ. Hence, |= ϕ↔ ψ.

Hence, the proposition holds. 2

Applying the -̂operator to the necessity operator of dynamic logic
using the above proposition, we get:

(I, s) |= [̂a]ϕ iff (I, s) |= [a]ϕ and for every ψ ∈ L, if
(I, s) |= [a]ψ, then |= ϕ→ ψ.

Now we have introduced a modifier of modal-operator that enables
us to denote all necessary effects of an action, we can address the
problem of identifying subsumption relations between actions. The
assumption that actions are completely characterized by their effects,
is equivalent to a property that more useful to identify subsumption
relations between actions.

Proposition 6 The assumption:

(I, s) |= a v b iff for every ϕ ∈ L, if (I, s) |= [b]ϕ, then
(I, s) |= [a]ϕ.

is equivalent to:

(I, s) |= a v b iff there is a ϕ ∈ L such that (I, s) |= [̂b]ϕ and
(I, s) |= [a]ϕ

Proof It is sufficient to prove that “there is a ϕ ∈ L such that
(I, s) |= [̂b]ϕ and (I, s) |= [a]ϕ” is equivalent to “for every ϕ ∈ L,
if (I, s) |= [b]ϕ, then (I, s) |= [a]ϕ”.

(⇒) Suppose there is a ϕ ∈ L such that (I, s) |= [̂b]ϕ and (I, s) |=
[a]ϕ. Moreover, suppose that for some ψ ∈ L, (I, s) |= [b]ψ and
(I, s) 6|= [a]ψ. Since (I, s) |= [̂b]ϕ, |= ϕ → ψ. Therefore, (I, s) |=
[a]ψ. Contradiction. Hence, for every ϕ ∈ L, if (I, s) |= [b]ϕ, then
(I, s) |= [a]ϕ.

(⇐) Suppose that for every ϕ ∈ L, if (I, s) |= [b]ϕ, then (I, s) |=
[a]ϕ. According Proposition 5, there is a ψ ∈ L such that (I, s) |=
[̂b]ψ. Since (I, s) |= [b]ψ, also (I, s) |= [a]ψ must hold. 2

5 Proof theory
In the previous two sections we have addressed the semantics of an
agent’s behavior and the semantics of the subsumption relation be-
tween composite actions. We did not yet address how to reason with
behavior specifications and subsumption relations between actions.
Reasoning with these notions will be the focus of this section.

We will present a semantic tableaux method based on the con-
struction of a prefix-tableaux. We choose a prefix tableaux because
it enables an easy integration with semantic tableaux methods devel-
oped for other logics such as doxastic logic, which we may use to

describe an agents beliefs. In a prefix tableaux, we can view a prefix
as a representation of a state.

We start by giving the tableaux rules for the subsumption relation.
In the left rule, ϕ must be an existing proposition, while in the right
rule ξ must be a new atomic proposition uniquely characterizing a
state. ξ is the name we choose for the new proposition.

x : a v b
x : ¬〈a〉ϕ | x : 〈b〉ϕ

x : ¬(a v b)
x : 〈a〉ξ, x : ¬〈b〉ξ

The two rules relating the subsumption relation between actions
to dynamic logic are valid tableaux rules.

Lemma 1 Let Γ be the set of proposition of a node of the semantic
tableaux, and let Γ′ and possibly Γ′′ be the directly succeeding nodes
that are the result of applying one of the above rules.

Then Γ is satisfiable iff Γ′ or Γ′′ is satisfiable

Proof Corollary 1 and Proposition 2 imply the correctness of the
lemma for the left and the right rule, respectively. 2

The next tableaux rules address the derivation of a subsumption
relation assuming that actions are completely characterized by their
effects. In the right rule, ϕ must be an existing proposition, while in
the left rule ξ must be a new atomic proposition.

x : a v b
x : [a]ξ, x : [̂b]ξ

x : ¬(a v b)
x : ¬[a]ϕ | x : ¬[̂b]ϕ

The two rules relating the subsumption relation to the effects of
the actions involved are valid tableaux rules.

Lemma 2 Let Γ be a the set of proposition of a node of the semantic
tableaux, and let Γ′ and possibly Γ′′ be the directly succeeding nodes
that are the result of applying one to the above rules.

Then Γ is satisfiable iff Γ′ or Γ′′ is satisfiable

Proof Proposition 6 implies the correctness of the lemma for both
rules. 2

The last tableaux rules address reasoning about behavior. The first
two rules describe the relation between doing an action and the sub-
sumption relation. The remaining ten rules describe how (not) doing
a composite action implies (not) doing sub-actions.

x : a v b, x : do(a)

x : do(b)

x : a v b, x : ¬do(b)

x : ¬do(a)

x : do(a)

x : 〈a〉>
x : do(ϕ?)

x : ϕ

x : do(ε)

x : >
x : ¬do(ε)

x : ⊥

x : do(a; b)

x : do(a), x : 〈a〉do(b)

x : ¬do(a; b)

x : ¬do(a) | x : [a]¬do(b)

x : do(a+ b)

x : do(a) | x : do(b)

x : ¬do(a+ b)

x : ¬do(a), x : ¬do(b)

x : do(a∗)

x : > | x : do(a; a∗)

x : ¬do(a∗)

x : ⊥

The twelve rules concerning the behavioral predicate do(·) are
valid tableaux rules.

Lemma 3 Let Γ be a the set of proposition of a node of the semantic
tableaux, and let Γ′ and possibly Γ′′ be the directly succeeding nodes
that are the result of applying one to the above rules.

Then Γ is satisfiable iff Γ′ or Γ′′ is satisfiable

Proof The first two rules: Every path for a is a path for b. Therefore,
if every path of Rdo covers a path of a, then every path of Rdo also
covers a path of b.
The second two rules: One can only do an action a if there is at least
one path for a. One can only do a test for ϕ successfully if ϕ actually
holds.
The third two rules: Doing nothing is always possible.
The fourth two rules: Since do(a; b) holds if every path ofRdo covers
a path of a; b, the results immediately follow from the definition of
the paths for a; b.
The fifth two rules: Since do(a+ b) holds if every path ofRdo covers
a path of a+ b, the results immediately follow from the definition of
the paths for a+ b.
The last two rules: Since a∗ = ε+ a; a∗, the results follow. 2

The three lemmas together with similar results for the semantic
tableaux method for dynamic logic and possibly other logics such as
doxastic logic, enable us to prove the correctness and completeness
of a semantic tableaux method.

Proposition 7 The root of the tableaux is satisfiable iff there is a
branch starting from the root and all nodes of this branch are satisfi-
able.

Proof We prove the proposition using induction on the depth of the
tableaux. It suffices to prove that there is a node of some branch at
depth i + 1 with i ≥ 0 that is satisfiable iff its parent at depth i
is satisfiable. For the rules listed above, Lemmas 1, 2 and 3 imply
the desired result. For tableaux rules of propositional logic, dynamic
logic, doxastic logic, etc., there exist similar lemmas implying the
desired results the corresponding rules. 2

If a semantic tableaux is closed, then the proposition implies that the
root is not satisfiable. If, however, the tableaux is open, we must show
that the root is satisfiable. We do this by constructing an interpreta-
tion using the leaf of an open branch.

Proposition 8 If there is a leaf of a branch is open, then there exists
an interpretation I satisfying the leaf.

Proof We use the leaf to construct an interpretation. For proposi-
tions belonging to propositional logic, dynamic logic, doxastic logic,
etc., we use the standard construction process. For the subsumption
relation between actions: a v b, we can use the construction used
in the proof of Proposition 4. For propositions describing atomic be-
haviors: do(a) with a ∈ A, if (I, s) |= do(a) must hold, we add
(s, s′) to Rdo for every (s, s′) ∈ RA(a). The resulting interpretation
can be shown to satisfy the leaf of the open branch. 2

The above two propositions enable us to prove the correctness and
completeness of the semantic tableaux method.

Theorem 1 The root of the semantic tableaux is satisfiable iff the
semantic tableaux is open.

Proof The theorem follows from Propositions 7 and 8. 2

6 Related work

This section summarizes some of the main approaches to specify the
semantics of Beliefs, Desires and Intentions and discusses how they
deal with behaviors. Most semantics are based on temporal logics
such as: LTL [4], CTL* [17, 18, 20, 21, 22, 24] and ATL [14]. The
Observation-based BDI logic [22] is closely related on LTL. These
temporal logics associate the execution of actions with the transition
between discrete time points.

In LTL based logics, the linear timelines represent possible behav-
iors of the agent. In these logics, Bratman’s refinement of a behavior
can be viewed as selecting proper subset of a set of behaviors. How-
ever, behaviors are sequences of atomic directly executable actions.
No abstract behaviors can be represented.

In CTL* based logics, trees toward the future are used to describe
behaviors. A tree represents uncertainty about the effect of an action
and different possible actions an agent can choose. Each path to the
future in a tree represents a possible behavior. The refinement of a set
of behaviors is realized by introducing duplicate trees in which some
branches are eliminated. Also in these logics no abstract behaviors
can be represented.

A rational agent should only select behaviors it considers to be
possible. In LTL and CTL* based logics, the agent’s beliefs specify
all behaviors the agent considers possible. Therefore, to be rational
the agent should only select subsets of the behaviors it believes to be
possible. This is realized by the requirements of realism and strong
realism in LTL and CTL* based logics, respectively.

In LTL based logics, realism has the following odd consequence.
When an agent believes that it will rain tomorrow, independent of
any action it chooses to execute, the (believed) fact that it will rain
tomorrow will become the agent’s desire and intention.

In CTL* based logics, strong realism has a different odd conse-
quence because behaviors are selected by by introducing duplicate
trees in which some branches are eliminated. When an agent at cur-
rent time-point intends exactly one action, for instance switching off
the light, then this action will be inevitable, and therefore the agent
will desire and will believe that it is inevitable that it will switch off
the light. To avoid this problem all actions and behaviors should be
optional, so we cannot specify that the agent intends of execute one
action at current time-point.

The approach presented in this paper does not consider behaviors
describing what an agent will do for the rest of its life. Therefore, the
agent cannot select a subset of the behaviors it considers possible.
Of course, the agent should still behave rationally. The requirements
proposed in [12] could be used to ensure rationality.

Dynamic logic has also been used to specify the semantics of Be-
liefs, Desires and Intentions [13, 12]. The execution of behaviors is
not addressed. The focus is on giving a psychological plausible de-
scription of practical reasoning with an emphasis on the requirements
choosing a desire to become a intention. The representation of ab-
stract behaviors is not addressed.

7 Conclusion

This paper addressed the semantics of an agent’s behavior. Espe-
cially, the relation between abstract behavior and more specific be-
haviors was formalized. These aspects are important in order to give
proper description of the refinement process described in Bratman’s
BDI model. Beside a discussion of the semantic relations and prop-
erties between behaviors, also a proof theory is given. Soundness and
completeness of the proof theory is proved.

Future work will address application of the here presented model
of behaviors in the description of an agent beliefs, desires and inten-
tions. Moreover, the extension to multiple agents will be investigated.
Finally, an implementation based on the specification is intended.

REFERENCES
[1] Davide Ancona and Viviana Mascardi, ‘Coo-BDI: Extending the BDI

model with cooperativity’, in DALT, volume 2990 of Lecture Notes in
Computer Science, pp. 109–134. Springer, (2003).

[2] Michael E. Bratman, Intention, Plans, and Practical Reason, Harvard
University Press, Cambridge, MA, 1987.

[3] Michael E. Bratman, David J. Israel, and Martha E. Pollack, ‘Plans and
resource-bounded practical reasoning’, Computational Intelligence, 4,
349–355, (1988).

[4] Philip R. Cohen and Hector J. Levesque, ‘Intention is choice with com-
mitment’, Artificial Intelligence, 42(2-3), 213–261, (1990).

[5] Louise A. Dennis, Berndt Farwer, Rafael H. Bordini, Michael Fisher,
and Michael Wooldridge, ‘A common semantic basis for BDI lan-
guages’, in PROMAS, volume 4908 of Lecture Notes in Computer Sci-
ence, pp. 124–139. Springer, (2007).

[6] Mark d’Inverno, Michael Luck, Michael P. Georgeff, David Kinny,
and Michael Wooldridge, ‘The dmars architecture: A specification of
the distributed multi-agent reasoning system’, Autonomous Agents and
Multi-Agent Systems, 9(1-2), 5–53, (2004).

[7] Michael P. Georgeff and Franois Flix Ingrand, ‘Decision-making in an
embedded reasoning system’, in IJCAI, (1989).

[8] Michael P. Georgeff and Amy L. Lansky, ‘Reactive reasoning and plan-
ning’, in AAAI, pp. 677–682, (1987).

[9] Guido Governatori, Vineet Padmanbhan, and Abdul Sattar, ‘On fibring
semantics for BDI logics’, in Logics in computer science, pp. 198–210.
Springer Verlag, (2002).

[10] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-
Jules Ch. Meyer, ‘Agent programming in 3APL’, Autonomous Agents
and Multi-Agent Systems, 2(4), 357–401, (1999).

[11] Hector J. Levesque, ‘All I know: A study in autoepistemic logic’, Arti-
ficial Intelligence, 42, 263–309, (1990).

[12] J.-J. Ch. Meyer, ‘Intelligent agents: Issues and logics’, in Logics for
Emerging Applications of Databases, pp. 131–165. Springer, (2003).

[13] John-Jules Ch. Meyer Meyer, Wiebe van der Hoek, and Bernd van Lin-
der, ‘A logical approach to the dynamics of commitments’, Artificial
Intelligence, 113(1-2), 1–40, (1999).

[14] Roberto Montagna, Giorgio Delzanno, Maurizio Martelli, and Viviana
Mascardi, ‘BDIATL : An alternating-time BDI logic for multiagent sys-
tems’, in EUMAS 2005, pp. 214–223, (2005).

[15] Foundation of Intelligent Physical Agents, Communica-
tive act library specification, Technical Report FIPA00037,
http://www.fipa.org/specs/fipa00037/, 2002.

[16] Anand S. Rao, ‘Agentspeak(l): BDI agents speak out in a logical com-
putable language’, in MAAMAW, volume 1038 of Lecture Notes in
Computer Science, pp. 42–55. Springer, (1996).

[17] Anand S. Rao and Michael P. Georgeff, ‘Modeling rational agents
within a BDI-architecture’, in Knowledge Representation and Reason-
ing (KR), pp. 473–484, (1991).

[18] Anand S. Rao and Michael P. Georgeff, ‘Decision procedures for BDI
logics’, Journal of Logic and Computation, 8(3), 293–342, (1998).

[19] Earl D. Sacerdoti, A structure for plans and behavior, Elsevier-North
Holland, 1977.

[20] Caroline Semmling and Heinrich Wansing, ‘From BDI and stit to bdi-
stit logic’, Logic and Logical Philosophy, 17(1-2), 185–207, (2008).

[21] Munindar P. Singh, ‘Semantical considerations on some primitives for
agent specification’, in Intelligent Agents II Agent Theories, Architec-
tures, and Languages, volume 1037 of Lecture Notes in Computer Sci-
ence, pp. 49–64. Springer, (1996).

[22] Kaile Su, Abdul Sattar, Kewen Wang, Xiangyu Luo, Guido Governa-
tori, and Vineet Nair, ‘The observation-based model for bdi-agents’, in
AAAI, pp. 190–195, (2005).

[23] Birna van Riemsdijk, Wiebe van der Hoek, and John-Jules Ch. Meyer,
‘Agent programming in dribble: from beliefs to goals using plans’, in
AAMAS, pp. 393–400. ACM, (2003).

[24] Michael Wooldridge, Reasoning about Rational Agents, The MIT
Press, 2000.

