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Abstract

In dynamic environments unexpected malfunctions or
conditions can cause plan failure. Research has shown
that plan-repair on failure can be more efficient than
building complete conditional plans from scratch to
handle all contingencies. The effectiveness of replan-
ning depends on knowledge of exactly which plan ac-
tions failed and why. Conventional Model Based Diag-
nosis (MBD) can be used to detect such faulty compo-
nents but the modeling cost (to generate the fault model)
outweighs the benefits of MBD. In this paper, we pro-
pose an Extended Spectrum Based Diagnosis approach
that efficiently pinpoints failed actions and does not re-
quire the fault models. Our approach first computes the
likelihood of an action being faulty and subsequently
proposes optimal probe locations to refine the diagno-
sis. We also exploit knowledge of plan steps that are
instances of the same plan operator to optimize the se-
lection of the most informative diagnostic probes. This
reduces costs and improves the accuracy of diagnoses.

Introduction
Classical planning assumes that the world is deterministic
so that every action produces the intended effects. However,
this assumption is not true in real world planning domains
where actions can fail because of unexpected events. Execu-
tion of a plan will lead to an unexpected goal state if one or
more actions are behaving abnormally. When such incidents
happen one possible way to achieve the desired goal state is
repairing the original plan by adding/removing some actions
(van der Krogt and de Weerdt, 2005). For example, consider
a multimodal freight logistics system, where a planner such
as TIMIPLAN generates optimal plans to deliver goods from
one location to another (Flórez et al., 2011). TIMIPLAN has
a plan monitoring component checking whether the execu-
tion of plans deviates from the expected outcome and trig-
gers a replanning module if needed. To avoid replanning
from scratch, the planner uses plan repair to change the ini-
tial plan as little as possible. For example, a damaged truck
is replaced by a new truck and TIMIPLANS greedily se-
lects such a truck with the least estimated total cost. This,
however, assumes full observability of the health state of the
trucks which in general might be too costly or in some cases
infeasible.

Model based diagnosis is used to infer the set of faulty
component(s) in a system from observations and back-
ground knowledge (Reiter, 1987). It exploits a descriptive
behavioral model of components together with a structural
model of how the components are connected to compute the
implications of observations. The idea of MBD can be fur-
ther extended to diagnose faulty actions in a plan where the
plan can be seen as a system and the action can understood
as a component MINI-MAX (Roos and Witteveen, 2009).
This view enables the application of well known diagno-
sis techniques to plan descriptions. For instance, knowing
that a road must be clear for a truck to pass, and observing
that a truck has arrived from a distant city allows the sys-
tem to infer that the road from that distant city is clear even
though this cannot be directly observed. Methodology such
as the pervasive diagnosis framework (Kuhn et al., 2010),
has demonstrated how diagnosis can be performed on sys-
tems controlled by plans, but makes the simplifying assump-
tion that the planning goal is a single output for the system
and that any failed action has a direct observable effect on
the output. It is therefore unsuitable for domains such as the
logistics domain where many goals must be achieved simul-
taneously and action failures have local effects that are only
indirectly related to the goals.

While powerful, model-based techniques require accurate
fault models which are expensive to develop and in some
cases the required data cannot be obtained at all. For exam-
ple, it may be difficult to model all the ways in which a truck
can fail to deliver a package to a destination. The proposed
Spectrum Based Diagnosis (SBD) approach makes use of
abstract frequency statistics to reveal possible causes of a
problem without a fault model of the system. SBD has been
successfully applied for software fault localization (Abreu et
al., 2009) and hardware diagnosis (Arjan Van Gemund and
Abreu, 2011). In our approach we use SBD to determine the
health state of a plan step which infers the health state of
corresponding action. In the planning domain, it is common
for a single plan operator to be instantiated many times for
different plan steps. For instance, a transport operation might
be instantiated with the same truck to carry packages on sev-
eral different routes in a plan. All plan steps that are instan-
tiated from the same operator will fail if there is something
wrong with the plan operator. For instance, every attempt to
schedule a shipment on a blocked road will fail. In the online



replanning context, we are given the plan ahead of time, so
we can exploit knowledge about the operator dependencies
of actions within a plan. We propose Extended Spectrum
Based Diagnosis which is able to exploit available informa-
tion about such dependencies in the plan by elegantly ex-
tending the spectrum matrix. Finally, in domains, such as the
logistics domain, we often have the ability to take informa-
tion gathering actions. Perhaps we could get the dispatcher
to call drivers and ask for a report on road conditions along
a particular segment. However, each of these actions has
costs involved. We address this, by combining our extended
spectrum based diagnosis with an optimal probing strategy,
which uses a mutual information criteria. Given the result-
ing information, standard replanting techniques are used to
repair the plan. The result is a practical approach to planning
for online systems with dynamic failures that works with in-
completely described systems but exploits the known infor-
mation to efficiently repair plans with the lowest cost. In the
following sections we develop the mathematical framework
for extended spectrum based diagnosis and demonstrate it
on a notional multimodal transportation problem.

Preliminaries
Our planning formalism is modeled after the STRIPS plan-
ner (Fikes and Nilsson, 1971). Our specific notation is cov-
ered in following subsections.

State The world can be described by a finite set Var =

{v1, v2, . . . , vn} of variables and their respective value do-
mains D

i

. A particular state is denoted by an n-tuple � =

(�(v1), . . . ,�(vn)) 2 D1 ⇥D2 ⇥ · · ·⇥D
n

. In multimodal
transportation system, the variables would represent the lo-
cations of individual items such as trucks and goods to be
shipped.

Actions, plan operators and plan steps An action refers
to an activity that results in some change of the (current)
state of the world. A plan operator refers to a description of
such an action in a plan. More exactly, a plan operator o is a
function mapping state (�0) to another state (�1).

An instantiation of an operator o with specific arguments
is called a plan step. It maps a specific state into another
specific state. Therefore, given a set O of plan operators, we
consider a set S = inst(O) of instances of plan operators in
O, called the set of plan steps. A plan step will be denoted
by a small roman letter s

i

. For example, a plan operator can
be understood as a shipping action by a specific mode of
transportation, i.e., a truck, a train or a ship. Such a shipping
action can be used at several places in the plan using the
same truck. Each specific occurrence of such a truck trans-
portation is a plan step.

If plan step s is an instantiation of operator o, we say
that o(s) = o. If for two plan steps s and s0 it holds that
o(s) = o(s0) they are said to be related to each other. In
other words, s and s0 are sharing same resource therefore
there resource dependency between these two plan steps.
For example, if the same truck (plan operator) is used to ex-
ecute two different transportations (plan steps), these plan
steps are related. Note that here plans differ from systems

where normally components operate quite independently
from each other. In plans, it seems rational to assume that
a structural fault in the truck might affect at least a subset of
its instantiations (plan steps).

If two plan steps are instantiated from the same operator,
we say that they are related. Let o(s) be the operator that
step s is instantiated from. Given two plan steps s and s0, if
o(s) = o(s0) then they are related. For example, if the same
truck (plan operator) is used to execute two different trans-
portations (plan steps), these plan steps are related. Note that
unlike typical physical systems in which components that
make up the system fail independently, plans which contain
related plan steps need to model the dependence in the fail-
ures between the related plan steps.

Plan and plan execution We represent our plans as a
partially ordered set of steps. Formally, a plan is a tuple
P = hO, S,<i where S ✓ inst(O) is a set of plan steps
occurring in O and (S,<) is a partial order (Cox, Durfee,
and Bartold, 2005). If step s0 < s then s0 must be executed
before s. Same < relation can be used to denote the rela-
tive order between states. Figure 1 gives an illustration of a
partially ordered plan.

!goal

s1 s2

s4s3

s6 s8

!0

v1 v2 v3 v4 v5

s5

s7

Figure 1: A partially ordered plan graph in which an initial
state �0 is transformed by plan steps (s

i

for i = 1, 2, . . . , 8)
into a goal state �

goal

. Each state characterizes the values of
five variables v1 , v2 , v3 , v4 and v5 . Plan steps having the
same color (e.g. s1 and s7, and s2 and s5 are instantiations
of the same plan operator.

Observations Our framework enables us to observe a set
of values of the variables making up a state of the world.
We denote an observation of variable v in state � by �

v

. We
assume that a cost is associated with any observation, except
for observing the initial state (�0) and the goal state �

goal

.
For ease of exposition, we assume all probes have equal cost.



Plan Diagnosis
We use conventional MBD notation to represent the plan we
are diagnosing.

Definition 1 A system is a pair (P,OBS) where P is a plan
tuple hO, S,<i and OBS is the set of values of the observed
variables at the initial state �0 and the goal state �

goal

.

Plan execution is validated by continuously monitoring the
goal state. The difference in the observed value �

goal(v)0

of any variable v in the goal state from the expected value
�
goal(v) implies the plan execution failure, i.e., some plan

steps are not executed in a correct way. For example, con-
sider the plan shown in Figure 1. Suppose this plan rep-
resents a multimodal transportation plan where five goods
(v1 . . . v5) need to be delivered from initial location to goal
location using different transportation modes (s1 . . . s8). In
the final destination, it is observed that two goods (v2 and
v3) have not arrived which implies one or more plan steps
are faulty.

Let h
j

2 {ok, ab} be the health state of plan step s
j

where
ok represents normal behavior and ab abnormal behavior. In
establishing which part of the plan fails, we are only inter-
ested in those plan steps qualified as abnormal. Therefore, a
plan diagnosis can be defined as following:

In establishing which part of the plan fails, we are only in-
terested in those plan steps qualified as abnormal. Therefore,
a plan diagnosis can be defined as following:

Definition 2 (Diagnosis) A diagnosis P
D

of a plan P =

hO, S,<i is a tuple P
D

= hO, S,<,Di, where D ✓ S
is the subset of plan steps qualified as abnormal (and there-
fore, S �D is the subset of plan steps qualified as ok).

Spectrum Based Diagnosis
In absence of a detailed fault model of plan operators and
plan steps, SBD is a suitable diagnosis methodology for the
problem in hand. The basic principle of SBD can be de-
scribed as follows: if the value of a variable in the goal state
is incorrect, then one or more plan steps involved in genera-
tion of that variable are abnormal.

Obtaining the Spectrum Matrix The spectrum matrix
shows for every variable in �

goal

which plan steps are in-
volved from the state �0 to �

goal

. It records, in the goal
state, whether a particular variable v

i

has the expected value
or not. Together with the information about involvement
of plan steps, the resulting spectrum gives debuggers hints
about the plan steps which are more likely related to failure,
and hence have higher possibility to contain the faults.

The spectrum matrix (A, e), where A = [a
ij

] is the plan
spectrum and e is the error vector can be constructed as fol-
lows: The plan spectrum A has N rows (one for each vari-
able) and M columns (one for each plan step). We have
a
ij

= 1 if a plan step s
j

is involved in the generation of vari-
able v

i

in �
goal

, else a
ij

= 0. The vector e stores whether
the outcome for variable v

i

has the expected value (e
i

= +)

or not (e
i

= �).
For example, suppose that in the plan presented in Figure

1, the value of variable v2 and v3 is not what we would ex-

pect in the goal state. Therefore e
i

= � for i = 2 and i = 3

and the following spectrum matrix can be obtained:
s1 s2 s3 s4 s5 s6 s7 s8 e

v1 1 0 1 0 0 1 0 0 +
v2 1 0 1 0 0 1 0 0 -
v3 1 1 1 1 0 0 1 0 -
v4 1 1 0 1 1 0 0 1 +
v5 1 1 0 1 1 0 0 1 +

In any row with an unexpected outcome, at least on of the
components used must be faulty. A minimal hitting set al-
gorithm, STACCATO (Abreu et al., 2009), can be applied to
the set of rows with unexpected outcomes to generate the set
of diagnoses candidates (c

k

) {c1 =< s1 >, c2 =< s3 >
, c3 =< s2, s6 >, c4 =< s4, s6 >, c5 =< s7, s6 >}.

The Spectrum Matrix for Plan Steps with Shared Re-
sources The candidate < s2, s6 > implies that the opera-
tor associated with s2 may be faulty but it could be expensive
or difficult to probe the output of s2. From our knowledge of
the plan, we know that s2 is instantiated from the same op-
erator as s5. Therefore s5 is also likely to fail, if s2 fails.
In this case, the failure of s5 may have been intermittent or
the failure may not have been relevant to the preconditions
of the subsequent step s8 so it did not have an effect on the
final goal state �

goal

. This is called a masked fault and it
is not picked up by standard SBD methods. This insight is
important, because probing at s5 may be easier and cheaper
than probing at s2. Imagine a scenario in which steps s2 and
s5 use the same truck. Suppose in s2, the truck is used at a
distant location where it is difficult to inspect. If it is later
used in a plan step s5 at a location with inspection facilities
it will be much easier to measure the health of this resource.
There is one small complication. If an operator is used more
than once in a plan, it could be heathy earlier in the plan and
then fail at some later point.

To take these related plan steps into account, we modify
the spectrum matrix in such a way that these relations are
encoded in the matrix A itself. Suppose that the plan steps
s and s0 are related. If s is detected as faulty and s < s0, it
seems reasonable to consider s0 as faulty as well. Formally,
we calculate the extended spectrum matrix A0

= [a0
ij

] from
A as follows:

a0
ij

=

_

j

0
<j,o(j0)=o(j)

a0
ij

0 _ a
ij

(1)

In the plan depicted in Figure 1, plan steps with the same
background are related. So s1 and s7 are related and s2 and
s5 are related. The extended spectrum matrix would be (new
entries appear in bold face):

s1 s2 s3 s4 s5 s6 s7 s8 e
v1 1 0 1 0 0 1 1 0 +
v2 1 0 1 0 0 1 1 0 -
v3 1 1 1 1 1 0 1 0 -
v4 1 1 0 1 1 0 1 1 +
v5 1 1 0 1 1 0 1 1 +

Similar to other MBD engine our diagnosis engine as-
sumes that plan steps are failing independently while com-
puting posterior probability for every diagnosis. Therefore,



if we have a diagnosis in plan steps are related to each other
our engine will compute incorrect posteriors. Hence diagno-
sis must not contain related plan steps. The extended matrix
ensures that application of MHS algorithm on that matrix
will produce diagnosis comprises of independent plan steps.

Application of minimal hitting set algorithm on extended
matrix A0 will generate diagnoses candidates (c

k

) {c1 =<
s1 >, c2 =< s3 >, c3 =< s7 >, c4 =< s2, s6 >, c4 =<
s4, s6 >, c5 =< s7, s6 >, c6 =< s5, s6 >}.

Theorem 1 Introducing related plan steps into the extended
matrix ensures that the MHS algorithm will never return a
diagnosis that includes two related plan steps.

Proof Two plan steps will only appear together in a diag-
nosis if they individually explain distinct error observations.
When we insert a pseudo observation for one of the steps
into the matrix, the second step becomes an explanation for
both error outputs and becomes a singleton diagnosis break-
ing up the joint diagnosis. Schematically,


1 0

0 1

�
)


1 1

0 1

�

Keeping related actions from appearing in the same diag-
nosis prevents us from multiplying these correlated failures
together as if they were independent failures. This preserves
the accuracy of the diagnosis. The diagnosis set for the ex-
tended matrix is c

k

= {c1 =< s1 >, c2 =< s3 >, c3 =<
s7 >, c4 =< s2, s6 >, c4 =< s4, s6 >, c5 =< s7, s6 >
, c6 =< s5, s6 >}.

Probability Calculation Having corrected the spectrum
matrix, we can use the BARINEL (Abreu et al., 2009) di-
agnostic engine to compute a fault probability for every di-
agnosis candidate using Bayes rule. For each variable obser-
vation �

goal(vi), the posteriors are update according to the
following rule for every candidate c.

Pr(c
k

|�
goal

(v
i

)) =

Pr(�
goal

(v
i

)|c
k

) · Pr(c
k

|�
goal

(v
i�1))

Pr(�
goal

(v
i

))

(2)

.
The recursion bottoms out with the prior for the candidate,

Pr(c
k

), which is computed from the individual step priors
assuming independent failures. Note that the candidate <
s
i

> implies health variable h
i

= ab. Generally:

Pr(c
k

) =

Y

i

⇢
p
i

if h
i

= 1

1� p
i

otherwise (3)

where p
i

is the prior probability that plan step s
i

is faulty.1
The BARINEL engine propagates failure probabilities

along the plan step dependencies to calculate the probabil-
ity Pr(�1(vi)|ck) for each output variable i using maxi-
mum likelihood estimation (Abreu, 2009). The final poste-
rior probability is computed by combining Equations 2, 3
and Pr(�1(vi)|ck), and fault probabilities are assigned to
plan step as shown in Table 1.

1In our case, the prior probability of every plan step is assumed
to be to be 0.1.

s
i

Pr(s
i

) Pr0(s
i

) I(X;Y ) I 0(X;Y )

s1 0.200 0.160 0.512884 0.512884
s2 0.002 0.002 0.008762 0.008762
s3 0.800 0.762 0.016707 0.016707
s4 0.002 0.002 0.264348 0.264348
s5 0.000 0.002 0.004198 0.011041
s6 0.007 0.008 0.000000 0.000000
s7 0.003 0.160 0.000000 0.000000
s8 0.000 0.000 0.074128 0.074128

Table 1: Pr(s
i

) and I(X;Y ) are derived for original matrix
A. Pr0(s

i

) and I 0(X;Y ) are derived for extended matrix A0

Probing Strategy
A major challenge for a diagnostician is to identify a suit-
able location for a new probe. In conventional MBD, mutual
information criterion can be used to evaluate and compare
measurement choice based on their information contribution
(de Kleer and Williams, 1987), we have adapted this crite-
rion to probing plan based systems with related steps. To
illustrate the formulation, assume X is a diagnostic state of
a plan and Y is the measure value of a variable at a prob-
ing location where X and Y are both random variables. The
mutual information between X and Y is defined as:

I(X;Y ) =

X

x,y


p(x, y) · log p(x, y)

p(x)p(y)

�
(4)

For example, suppose we derive mutual information
about the value of location l1 and l2 as I(X;Y

l1) and
I(X;Y

l2), respectively. In choosing between l1 and l2, we
will choose l1 to probe if I(X;Y

l1) > I(X;Y
l2). As de-

scribed in (Juan Liu and Zhou, 2008), the above expres-
sion can be estimated using entropy calculation, which is
given as I(X;Y ) = H(Y ) � H(Y |X), where H(Y ) =

P
y

h
p(x) · log 1

p(x)

i
is the entropy of Y and H(Y |X) =

P
x,y

h
p(y|x) · log 1

p(y|x)

i
is the conditional entropy. For the

plan example shown in Figure 1, observations are already
given and fault probability has been computed from SBD,
shown in Table 1. Estimated fault probabilities and obser-
vations in the goal state are used to compute H(Y ) and
H(Y |X) as described in (Juan Liu and Zhou, 2008). Mu-
tual information for different probing location in our exam-
ple (Figure 1) is summarized in Table 1.

Exploiting Related Plan Steps in Diagnosis
In the plan described in Figure 1, s3 has the strongest partic-
ipation in the unexpected goal state outcomes for variables,
v2 and v3. In the first column of Table 1, Pr(s

i

), we see that
the diagnoser assigns s3 the highest probability of failure.
The standard spectrum A assigns different probabilities to
plan steps s1 and s7. The extended spectrum, which recog-
nizes that s1 and s7 are related, increased the fault probabil-
ity of s7 and now s7 and s1 have equal probability. Similar
conclusions can be made for other related plan steps s2 and
s5.



The mutual information results shown in Table 1 pro-
vides us some interesting conclusions. Without any ambi-
guity both the spectrum matrices suggest that s1 is the most
informative location to probe and that s7 is the least. There-
fore, probing at the output of s1 is going to improve the diag-
nosis by the maximum amount. Since s7 is in the goal state
(no cost) of the plan therefore no extra information can be
gained which matches our mutual information computation.
At the same time, extending the matrix reveals the informa-
tion content at the output of plan step s5 to the diagnoser.
In this case, s5 is closer to the middle of the plan than s2
which means that it better splits the hypothesis space about
possible causes of failure and therefore is more informative.
In some cases, s5 may not be more informative, but may be
cheaper or easier to measure. In any case, the extended spec-
trum matrix opens up new options to increase the accuracy
and decrease the cost of diagnosis in plans with related plan
steps.

Conclusion
Continuous planning in online dynamic real world environ-
ments requires accurate diagnosis to pinpoint which plan
steps need to be repaired. Spectrum based diagnosis ap-
proaches are a natural approach as they do not require ex-
plicit fault models to provide useful diagnostic information.
We have seen that extended spectrum based diagnosis ex-
tends the advantage of traditional spectrum based diagnosis
to systems controlled by a plan which can have related plan
steps. The extended spectrum matrix also increases the op-
tions for probing potentially leading to more accurate and
cheaper diagnosis. The technique can be easily extended in
many ways such as computing explicit expected probe costs
and considering other ways in which operators can be re-
lated. Extended spectrum based diagnosis therefore repre-
sents an important technology option for robust, practical
and efficient plan based control of real world systems.
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