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Abstract—This paper presents a framework to generate en-
ergy efficient dynamic human-like walk for a Nao humanoid
robot. We first extend the inverted pendulum model with the
goal of finding an energy efficient and stable walking gait. In this
model, we propose a leg control policy which utilizes joint stiffness
control. We use policy gradient reinforcement learning to identify
the optimal parameters of the new gait for a Nao humanoid robot.
We successfully test the control policy in a simulator and on a
real Nao robot. The test results show that the new control policy
realizes a dynamic walk that is more energy efficient than the
standard walk of Nao robot.

Keywords—Humanoid Robot, Learning Control, Energy-
efficient

I. INTRODUCTION

The gait of humans is often assumed to be the most energy
efficient way of walking [1]. Srinivasan and Ruina [2] confirm
this hypothesis using a simple model in which the human
is a point mass with straight legs that can change in length
during a step. Their results show that the dynamically stable
inverted pendulum walk [3] is the most energy efficient gait.
The question is whether this result also holds for humanoid
robots. In their model, energy consumption is determined by
the positive work while increasing the length of the leg. The
spring behaviour of human muscles is ignored as well as the
energy required to maintain a torque on the knee joint when
the leg is not stretched. The torque generated by a bended knee
might be ignored while walking. Humans need not bend the
knee of the stance leg when walking because they can push
off using the foot and the calf muscle. In this way humans can
”increase” the length of the leg without torque on the knee
joint. A humanoid robot such as a Nao, differs in important
ways from a human [4]. First, unlike muscles, motors of robot
do not behave like springs. Second, our experiment with a Nao
shows that the energy consumption of a motor depends more
on the torque than on the work that is done. However, there
is no torque on the knee joint of a human when its leg is
stretched while the human can still stretch the leg a bit more
by pushing off using the foot. Third, a robot such as a Nao
cannot push off, because it can not bend its foot. So, the third
difference makes it possible to ignore the torque in the human
model but not in models of certain robots such as a Nao.

Our main contribution is the development of framework
for generating a human-like energy efficient dynamic gait for
humanoid robots. A dynamic gait is a gait that is temporarily
unstable in the forward direction during a step. In the paper,
we first briefly describe Inverted Pendulum Model (IPM) [5, 6]
which has been adapted to a humanoid robot such as Nao.
We extend the IPM with a double support phase which is
needed for side-way stability. We used the extended inverted

pendulum model (EIPM) to identify the most energy efficient
gait (Section II and III). The results are used to create a gait
controller (Section IV) which is fine-tuned for a Nao robot
using a webots simulator (Section V). The gait is evaluated on
a real Nao robot (Section VI). The last section concludes the
paper.

II. THE EXTENDED INVERTED PENDULUM MODEL
(EIPM)

The gait of humans and of humanoid (bipedal) robots is
a repeating pattern consisting of two phases; a single support
phase (SSP) where the body is supported by only one leg and
a double support phase (DSP) where the body is supported by
both legs [7]. In the DSP the weight of the body is shifted
from one leg to the other. The DSP is crucial for the sideways
stability but is sometimes ignored when analysing the gait.
However, since it is impossible to implement a gait on a Nao
without a double support phase, we must consider it in our
model. We will start presenting a model without a DSP and
subsequently extend the model with a DSP.

The goal of our model is to identify an energy minimal
gait for a bipedal robot such as a Nao. To analyse the energy
consumption, we need a model of the main joints and limbs
of the robot. Since the walk pattern is what we are concerned
about, to simplify the model, we assume that the upper part
of body above the hip can be ignored. Moreover, since we are
interested in a dynamic gait instead of the statically stable gait
that is often used [8], we also ignore the feet and the ankle
joints. Finally, we assume that legs are weightless, making it
possible to use a single point mass for the whole robot. The
resulting model consists of 5 links and a point m shown by
the solid line in Fig. 1. We can replace the 5-link model by an
equivalent 2-link model consisting of two links that can change
their length during a step and a point mass m, see the dashed
lines in Fig. 1. The two links will be denoted as telescopic
legs [6, 9, 10].

A. The model without double support phase

1) leg-length policy: If we would know the force produced
by the leg, we could apply Newton’s second law to derive
the second order equation for the movement of the mass m.
Since the ground generates a reaction force which can become
infinitely large at the moment a stretched leg impacts with the
ground, and since the length of the leg is bounded by l, we
choose a different approach. We assume a leg-length policy
δ(β) where δ : [−π2 ,

π
2 ] → [0, 1] and where β is the angle

between stance leg with vertical axis and lδ(β) is the actual
length of the leg, as shown in Fig. 1. We use the leg-length
policy to determine the radial force Fr on the leg and a force



Ft perpendicular to Fr. Note that Ft works perpendicular to
leg while the path of the mass m need not be perpendicular to
the leg because the length of the leg may change. Using the
force Ft, we can determine the movement xt perpendicular to
leg which is given by:

Ft = ma = m
d2xt
dt

Ft is determined by the component of the gravity working
perpendicular to the stance leg: mg sinβ and the friction: bdxt

dt .
Note that we assume the friction to be linear in the speed. The
air friction is assumed to be linear because of the low walking
speed.

d2xt
dt2

+
b

m

dxt
dt
− g sinβ = 0 (1)

We can transform this movement in a change of the angle β
using:

dβ =
dxt
δ(β)l

Therefore,
dxt

dt = δ(β)l dβdt
d2xt

dt2 = l dδ(β)dt
dβ
dt + δ(β)l d

2β
dt2

= l dδ(β)dβ
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This result in:
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δ(β)
dδ(β)
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(
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m
dβ
dt −

g
δ(β)l sinβ = 0

To use this second order differential equation in a simulator, we
reformulated it as a system of first order differential equations.

dω
dt = − 1

δ(β)
dδ(β)
dβ ω2 − b

mω + g
δ(β)l sinβ

dβ
dt = ω

(2)

The length of the stance leg at the beginning and the end
of a step, denoted by l1 and l2 respectively, need not be the
same. We therefore need to know the angle β at the beginning
and the end of a step, denoted by β1 and β2 respectively, given
a fixed step size s. The leg-length policy should describe the
changes in the leg-length between these angles. To determine
the angles β1 and β2, we apply the cosine rule. Hence,

β1 = arcsin
s2+l21−l

2
2

2sl1
β2 = arcsin

s2+l22−l
2
1

2sl2

2) Force on Stance Leg: The solution of the above pre-
sented system of differential equations enables us to determine
the radial force on the stance leg. This force together with the
leg-length policy δ(β) determines the energy consumption of
the knee joint of the stance leg. The radial force consists of a
gravitational component and a component needed to accelerate
the mass in the direction of the radius. The former is a reaction
force equal to: mg cosβ, and the latter is determined by the
second derivative of the leg-length policy:

dlδ(β)
dt = l dδ(β)dβ

dβ
dt

d2lδ(β)
dt2 = l

(
d2δ(β)
dβ2

(
dβ
dt

)2
+ dδ(β)

dβ
d2β
dt2
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Fig. 1. A Five-links Model Simplified to a Two-links Model

So,

Fr = mg cosβ +ml

(
d2δ(β)

dβ2

(
dβ

dt

)2

+
dδ(β)

dβ

d2β

dt2

)
(3)

When the foot of the robot impacts with the ground at
the beginning of a step, the direction in which the mass
m is moving may change. Since the change in direction
is instantaneous, no energy is transferred to the mass. The
conservation law of kinetic energy now implies that the speed
of the mass may not change the moment the foot impacts with
the ground. For a gait without acceleration, this implies that
the speed of m at the beginning and end of a step must be the
same.

Also the law of momentum conservation applies. The sum
of the momentum before and after the foot impacts with the
ground must be 0. This does not imply that the impulse
generated by the reaction force of the leg when it impacts
with the ground is 0. This impulse causes the change in the
direction of m. The impulse generated by the reaction force
of the leg is determined by the change in speed of m in the
direction of the new stance leg:

Ir = vr,bm− vr,em

The subscript r denotes the radial direction of the leg, the
subscript b denotes the beginning of a step and the subscript
e the end. After the foot impacts with the ground, the speed
in the direction of the leg is:

vr,b =
dlδ(β)

dt
(tb)

Before the foot impacts with the ground we have to calculate
the component of the speed in the direction of the new stance
leg. We first calculate the speed in the x and z direction of
the Cartesian coordinate system.

vt = lδ(β)dβdt vr =
dlδ(β)
dt = l dδ(β)dβ

dβ
dt

vx = vt cos(β) + vr sin(β) vz = vt sin(β) + vr cos(β)

So, impulse produced by the leg becomes:

Ir = m(vr,b − (vx,e sin(βb) + vz,e cos(βb)))

The impulse is also equal to: Ir =
∫
Fi dt, which enables

us to calculate the force Fi generated by the impulse. In an
ideal situation the impact time with the ground is infinitely
small implying an infinitely large reaction force Fi produced
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Fig. 2. (a) Force Policy in Double Support Phase and (b) Arm of Knee
Bending

by the leg on the mass m. In practice material always bends
or compresses somewhat. This increases the impact time and
thereby reduces the reaction force of the leg. Although the
force will now be finite, even if we would know the impact
time, we cannot calculate it. We therefore make the simplifying
assumption that the reaction force is constant during the
impact. Moreover, we assume that the impact time is 10 ms.
These assumptions make it possible to calculate the force Fi
on the leg during the impact time. Fi = 0 outside the impact
time of 10 ms.

B. The model with double support phase

We extended the model described in the previous subsec-
tion with double support phase. We stop the single support
phase at 75% of a step [11]; i.e., at the angle β1+0.75(β2−β1)
where β1 and β2 are the begin and the end angle, respectively,
of the stance leg during a step. From this moment the swing leg
will also be on the ground, thereby influencing the movement
of the mass m.

We need a way to describe the influence of the swing leg
on the mass in DSP. This can not be done by just simply
applying a leg-length policy for the swing leg in the double
support phase. Given the step size s and the leg-length policy
δ(β) of the stance leg, the length leg of the swing leg is fixed.
Prescribing this length of the swing leg by a policy, creates a
rigid triangle in which the mass m can no longer move freely.
We therefore choose to let the mass m move freely given the
leg-length policy of the stance leg and use a force policy for
the swing leg in the double support phase. So the length of the
swing leg is determined by the leg-length policy of the stance
leg and the step size, but force the swing leg executes on the
mass is determined by the force policy of the swing leg. This
force may influence the forward speed of the mass m.

The force Fs generated by the swing leg, causes a force Fo
in the opposite direction of Fr and a force Fp perpendicular to
the swing leg (as shown in Fig. 2(a)). We use the force policy
γ(β′) where γ : [−π2 ,

π
2 ] → [0, 1] and β′ is the angle of the

swing leg with the vertical axis, to determine Fo = γ(β′)Fr,
and thereby the force Fp and the force Fs generated by the
swing leg. Note that the force policy γ(β′) ensures that the
stance leg stays on the ground. Also note that the angle β
of the stance leg with the vertical axis, the leg-length policy
δ(β), and the step size, determines the angle β′ of the swing
leg with the vertical axis.

We can now derive the following differential equations for
the movement of the mass m in the DSP:

d2β
dt2 + 1

δ(β)
dδ(β)
dβ

(
dβ
dt

)2
+ b

m
dβ
dt−

g
δ(β)l sinβ + Frγ(β

′) tan(β + β′) = 0
(4)

The last term of Equation 4 is determined by the force Fp.
The force Fr in this term is given in Equation 3.

Fp = Frγ(β
′) tan(β + β′)

C. The energy consumption

To calculate the energy consumption of the robot, we
make use of the fact that the robot has to bend its leg
at the knee joint in order to shorten the leg. The energy
consumption is assumed to be proportional to the torque of
these joints. So, a stretched leg requires no energy while an
almost completely bended leg requires a maximum amount
of energy. The experiment with a Nao described in Section
III, confirmed our assumption that the torque on the knee
joint determines its energy consumption. We will use this
observation to determine the energy consumption in the model.

The torque on the knee joint is determined by the force on
the stance leg, and the arm r, shown in Figure 2(b). The arm
r = 1

2 l
√

1− δ(β)2 is a function of the shortening of the leg
specified by the leg-length policy δ(β). The radial force on the
stance leg Frt is determined by Fr defined in Equation 3, Fo
and by the impulse when the swing leg hits the ground. That
is

Frt = Fr + Fi − Fo

We determine the energy consumption based the observation
hat the energy consumption is linear increasing with the torque.
Therefore, we define the energy consumption as:

E =

∫ 1
2T

− 1
2T

1

2
l
√

1− δ(β)2Frtdt

In this equation, the shortening of the leg δ(β) ∈ [0, 1] is the
policy that is used to control the gait. This means that the
bending angle of the knee-joints and the time that the knee-
joins are bended are key factors in determining the energy
consumption.

III. SIMULATION EXPERIMENTS WITH THE EIPM

This section describes three experiments. The first exper-
iment confirms our assumption that knee joint provides the
main contribution to the energy consumption of a walk. The
second and third experiment describe the identification of the
optimal policy.

A. Torque

As mentioned in the introduction, we assume that the
energy consumption of a gait is determined by the torque on
the knee joint. We can ignore the torque on the ankle joint,
because we assume a dynamic gait. Since the upper part of
the body is balanced above the hip joint, ideally, no torque is
required in the hip joint. Experiment on the Nao by Kulk and
Welsh [12] confirms the assumption about the ankle and hip
joints. Moreover they show that the knee joint provides the
main contribution to the energy consumption of a walk.
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Fig. 3. The ”energy optimal” leg-length policy

In the first experiment, we measure the electric current
of a knee joint. Since the voltage is constant, the energy
consumption is linear in the current. We changed the position
of the Nao from standing upright (knee angle = 180◦) to a
position where the angle is around 90◦. We kept the Nao for
a while in this position after which we let the Nao move back
to the upright position. During this exercise, we monitored the
current of a knee joint. When standing upright it is around 0.2
A, and decreases to 0.1 A during the bending of the knees.
In the fixed bended position, the current is 0.7 A. Finally,
when the Nao moves back to the upright position, the current
gradually drops from 0.7 A to 0.2 A. During these experiment
“Smart Stiffness” was switched on. Based on this experiment,
we conclude that the torque determine energy consumption
and that the positive work can be ignored.

B. Optimal leg-length policy in the absence of a double
support phase

In the first series of simulation experiments, we generated
a large number of leg-length policies. We divided a step into
eight intervals and chose a leg-length for the beginning (end)
of each interval. Next we determined a polynomial for the
leg-length policy through these points using the cubic spline
method. We repeated the process to investigate all possible
policies with a resolution of eight intervals, to find an optimal
policy that minimizes the power usage. We also considered
devisions in other numbers of intervals. Eight intervals gave
the best results with respect to accuracy and computation time.

Fig. 3 shows that a slightly bended leg which is subse-
quently stretched to the maximum length results in the most
energy-efficient gait. The optimal policy keeps the leg stretched
during the remainder of the step. The energy consumption of
this policy for one step is 0.011. Fig. 3 also shows a relatively
large peak force on the leg, which results from the impulse
when leg hits the ground.

C. Optimal leg-length and force policy in the presence of a
double support phase

In a second series of simulation experiments, we added the
double support phase and divided the double support phase in
to four intervals and chose a force percentage of the beginning
(end) of each interval. Next we determined a polynomial for
the force policy through these points using the cubic spline
method. We iterate the process to investigate all possible
combinations of leg-length and force policies to find an optimal
combination that minimizes the power usage.

The experiments showed that the optimal leg-length policy
is the same as the leg-length policy for the gait without DSP,
as shown in Fig. 3. The optimal force policy is the policy that
sets the force generated by the swing leg to zero till the end
of the DSP. This implies that the force generated by the swing

leg in the DSP will only be determined by requirement of the
sideways stability.

IV. GAIT CONTROLLER AND PARAMETERS

This section presents the parameters of a gait that realizes
the leg-length policy determined by the experiments described
in the previous section. Moreover, the stiffness control of the
joints is discussed.

A. Gait Parameters

Based on the results of the simulation experiments, we
identify six parameters that are essential in controlling a
dynamic gait:

• Step Size (θ1): Defines the how long Nao can move
in a singe step (forward).

• Ankle Roll(θ2): Defines the roll angel of ankle joints.

• Step Height (θ3): Defines the maximum distance be-
tween ground and lifting feet. A high step height will
require higher speed of the swing leg and may cause
horizontal instability. A low step height increases the
possibility of tripping and limits the step size.

• Angle Bending (θ4): Defines the maximum bending
of the new stance leg at the beginning of the single
support phase. This parameter determines the forward
velocity and the energy cost.

• Swing Time (θ5): Defines how long the single support
phase lasts. This parameter determines the forward
walking velocity.

• Stretch Time (θ6): Defines how long it takes for the
stance leg to stretch to its full length at the beginning
of the single support phase.

• Torso Pitch Inclination (θ7): Defines the maximum
angle that torso leans in forward direction. If positive,
it will move the center of mass (COM) forward. If it
is set not appropriate, a fall will occur.

TABLE I. TRAJECTORY PARAMETERS

Description of joint motion q
step size θ1
swing hip pitch p1(θ1, θ3, θ5, θ7)
swing hip roll θ2
swing knee pitch p2(θ1, θ3, θ5, θ7)
swing ankle pitch −p1 − p2
swing ankle roll −θ2
stance hip pitch p3(θ1, θ3, θ4, θ6, θ7)
stance hip roll θ2
stance knee pitch p4(θ1, θ3, θ4, θ6, θ7)
stance ankle pitch −p3 − p4
stance ankle roll −θ2

Table I shows all the parameters of the trajectory for walk
movement. Walk posture q is determined by joints value, step
size, acceleration and so on. The value of hip pitch, knee pitch
and ankle pitch are functions pn of parameter sets.



B. State-dependent stiffness

An appropriate joint stiffness of the knee and ankle pas-
sively safeguard the internal leg stability and control the
energy consumption [13, 14]. Full joints stiffness is good for
manipulating the movement of a robot, but may lead to high
energy consumption and the absence of a dynamic gait.

The two-link EIPM does not model the foot, therefore no
torque will be applied on the ankle joints. So when design
the gait controller in the simulator and the real Nao, we set
the stiffness of stance foot ankle to zero in the single support
phase. This ensures that the stance leg can move in exactly
the same way as we assumed in the EIPM. Since there is no
torque on the ankle, there is no energy cost.

We need a sufficiently high stiffness in the ankle of swing
leg to keep the foot sole be parallel to ground when swing
foot is about to touch the ground. Due to unpredictable small
body movements, foot sole may not always be parallel to the
ground. This could result in ”toe poking” or ”heel striking”.
Therefore, we lower the stiffness of the swing leg ankle to
zero just before the foot touches the ground .

V. OPTIMIZING GAIT PARAMETER FOR NAO

This section describes the optimization of the control
parameter of a dynamic gait for a Nao.

A. Policy Gradient Algorithm

After investigated several policy search algorithms [15, 16],
we chose to use a policy gradient algorithm presented by
Kohl and Stone [17] to optimize the Nao’s gait. The objective
function F that is optimized by the algorithm, will be a
function of the energy cost and the stability of the Nao. The
policy gradient algorithm starts with an initial parameter vector
π = θ1, ..., θN and estimates the partial derivative of the
objective function F with respect to each parameter. This is
done by evaluating t randomly generated policies R1, ...Rt
near π, such that each Ri = θ1 + δ1, ..., θN + δN and δj is
randomly chosen to be either −ε, 0, +ε, where ε is a small
fixed value relative to θ. After evaluating each policy Ri on the
objective function F, each dimension of every Ri is grouped
into one of the three categories to estimate an average gradient
for each dimension:

Ri ∈


S+ε,n, if the nth parameter of Ri is θn + εn
S+0,n, if the nth parameter of Ri is θn + 0

S−ε,n, if the nth parameter of Ri is θn − εn
We calculate average score Avg−ε,n, Avg+0,n and Avg+ε,n
for S−ε,n, S+0,n and S+ε,n respectively.

• Avg−ε,n The average score for all Ri that have a
negative perturbation in dimension n

• Avg+0,n The average score for all Ri that have a
zero perturbation in dimension n

• Avg+ε,n The average score for all Ri that have a
positive perturbation in dimension n

These three average values estimate the benefit of altering the
nth parameter by +εn, 0, −εn. An adjustment vector A of size
n is calculated where:

Fig. 4. Series of snapshots of best learned dynamic walking
with our method

An =


0, if Avg+0,n ≥ Avg+ε,n and

Avg+0,n ≥ Avg−ε,n
Avg+ε,n −Avg−ε,n, otherwise

Algorithm 1 Pseudo-code of Policy Gradient Algorithm
π ← InitialPolicy
while !done do

R1, R2, ...Rt = t random perturbations of π
evaluate(R1, R2, ...Rt)
for n = 1 to N do

Avg+ε,n
Avg+0,n

Avg−ε,n
if Avg+0,n > Avg+ε,n and Avg+0,n > Avg−ε,n

then
An ← 0

else
An ← Avg+ε,n −Avg−ε,n

end if
end for
A← A

|A| ∗ η
π ← π +A

end while

In order to generate a gait that is energy efficient and stable,
we adopt an objective function based on the energy cost and
the stability. The energy cost is expressed by the normalized
current Mc, and the stability by normalized standard deviation
of the three accelerometers Ma

F = 1− (wcMc + waMa) (5)

The components of the objective function are weighted by
wc and wa respectively to emphasize the relevance of the
underlying goals. These weights are constrained so that the
sum of the weights are equal to one. In this experiment, we
set wc = 0.25, wa = 0.75.

B. Learning optimal parameters in simulator

Experiments were conducted to generate the optimal gait
parameters and to test the gait’s performance. Modules for
the dynamic gait and for the policy gradient algorithm were
uploaded in Nao model of the Webots simulator. We used a
relatively elementary hand-tune gait as a starting policy for
the policy gradient algorithm described in Section V. Though
a bad starting policy may lead to a simulation failure, we did
not deliberately optimize the starting policy. The performance
of the task is measured by monitoring the knee torque and
electric current. Falling or ”toddle” is penalized. We found
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Fig. 5. Comparison of Energy Cost of Three Models

a most energy-efficient gait after 237 iterations. Subsequent
evaluations showed no further improvement. The learning
algorithm produce a set parameters of a stable gait which is
more energy-efficient and faster than the standard walk of Nao.
The parameters of the gait and ε value are given in Table II.

TABLE II. INITIAL PARAMETERS AND BEST LEARNED PARAMETERS

Parameter Initial Value epsilon Learned Value
step size 6(cm) 6(cm)
step height 3(cm) 0.02 3.24(cm)
angle bending 15 (degree) 0.1 13.8 (degree)
swing time 300(ms) 25 225(ms)
bending time 300(ms) 25 375(ms)
torso pitch inclination 10 (degree) 0.1 7.5 (degree)

VI. SIMULATION AND REAL WORLD EVALUATION

To validate our approach, we perform a real world ex-
periment with the Nao V3.2 humanoid robot, which has 25
degrees of freedom. We evaluated the efficacy of the learned
parameters by sending them to a Nao robot and command
the Nao to walk a constant distance. We compared the energy
consumption of learned gait with the energy consumption of
the standard gait of the Nao and our initial hand-tuned gait. The
step size was set to 6 cm. Fig. 5 shows the energy consumption
of the three gaits. We see that the learned gait results in a power
reduction of 44% of standard gait and a reduction of 23.8%
of hand-tune gait.

VII. CONCLUSION

In this paper, we presented a framework to generate energy
efficient dynamic human-like walk for a Nao humanoid robot.
We extended the inverted pendulum model and used it to
identify a control policy for an energy efficient gait. We
optimize the control policy for a Nao humanoid robot and
evaluated the result on the real Nao. The latter evaluation
shows that our dynamic gait is more energy efficient than the
standard gait of the Nao.
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