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Abstract

Reiter’s Default Logic is one of the most popular formalisms for describing defauit reasoning.
One important defect of Default Logic is, however, the inability to reason by cases. Over the years,
several solutions for this problem have been proposed. All these proposals deal with deriving new
propositions through reasoning by cases. None, however, discuss the propositions that should no
longer be derivable as a result of reasoning by cases. This paper discusses the latter subject.
It shows that an intuitively plausible way of dealing with propositions that should no longer
be derivable as a result of reasoning by cases, can have far reaching consequences. One of the
consequences is that disjunctions must be viewed as describing possible extensions. © 1998
Elsevier Science B.V.
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1. Introduction

Reiter’s Default Logic [14] is one of the most popular formalisms for describing
default reasoning. Its popularity is the result of the simplicity of its formalism and the
fact the default rules possess no contraposition. The contraposition is often undesirable
for defaul: rules. We do not wish to conclude, for example, that John is drunk because
he may not drive a car. He might not own a driving license. In cases where the
contraposition is valid, we can always use a free default rule
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One important defect of Default Logic is, however, inability to reason by cases. A
solution to this problem should enable reasoning by cases but may not result in intro-
ducing a contraposition for some of the default rules. Several proposals have been made
to extend Default Logic with reasoning by cases [1,4,9, 13]. As Moinard shows [13],
these approaches all introduce in one way or another some form of a contraposition.
Moinard analyzes the problem, and presents a modified definition of a default extension
that solves the problem. He also shows that a simple transformation of the default rules,
makes it possible to realize reasoning by cases using Reiter’s original definition of an
extension. Independently, Voorbraak [15] has proposed a similar transformation.

One aspect that has been ignored by all solutions presented so far, are the conse-
quences for the default rules that are applicable? if reasoning by cases is not possible.
Consider for example the default theory (D, W) where

W = {bird, penguin \ ostrich}

and

’

D= {bird : —excep_bird, can fly
can fly
penguin : —excep _penguin, —can_fly
—can fly
penguin : —excep-_penguin, excep _bird
excep_bird

’

3

ostrich : —excep_ostrich, —can_fly
—can_fly

ostrich : —excep_ostrich, excep_bird
excep_bird }

s

The reader can convince him/herself that through reasoning by cases we can derive
excep bird and —can_fly.

Hence the rule
bird : —excep_bird, can_fly
can fly
is no longer applicable.

The above example shows that the application of a default rule can be blocked?
through reasoning by cases. This is also intuitively plausible. Now suppose that in the
above example we have penguin V eagle instead of penguin V ostrich. Then we can no
longer derive excep_bird through reasoning by cases. Hence, can_fly is derivable. The
question is whether this is correct.

2 A default rule is applicable in an extension if its prerequisite belongs to the extension and its justifications

are consistent with the extension.
3 The application of a default rule is blocked in an extension if its prerequisite belongs to the extension and
one of its justifications is inconsistent with the extension.
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2. Reasoning by cases

Through reasoning by cases, we can derive new conclusions. Suppose that we have
two rules, one stating that penguins cannot fly and one stating that ostriches cannot fly.
Then, knowing that the bird Tweety is a penguin or an ostrich, we should be able to
conclude that it cannot fly.

To make things even more complicated, default rules can become inapplicable through
reasoning by cases. Obviously, in the above example, we may not conclude that the bird
Tweety can fly using the rule “birds can fly”. Since we only consider exceptional
situations with respect to this rule, its application must be blocked.

Reasoning by cases can also be viewed in another way. Every situation described by
a disjunction can be considered separately. This is, for example, the normal procedure
in natural deduction. In the above example, the application of the rule “birds can fly”
will be blocked if we assume that Tweety is a penguin and if we assume that it is an
ostrich. Clearly, the application of a default rule should be blocked if it is blocked in
every case described by a disjunction.

Should the application of a default rule also be blocked if it is blocked in only one
case described by a disjunction? For example, may we conclude that the bird Tweety
can fly if we know that it is either a penguin or an eagle? Some people working in the
area of nonmonotonic reasoning will answer this question with yes.* They argue that
Tweety being a penguin is more exceptional than Tweety being an eagle. Therefore, if
we only know that the bird Tweety is either a penguin or an eagle, we conclude that it
can fly.

Most people, however, will not agree with this line of reasoning. They argue that by
stating that the bird Tweety is either a penguin or an eagle, we introduce two situations
with no preference between them. Therefore, both situations should be evaluated sep-
arately. Furthermore, a conclusion should hold in every situation. Hence, we may not
conclude that the bird Tweety can fly because the rule describing that birds can fly is
not applicable in case that Tweety is a penguin. So, if we have a default theory (D, W)
where

W = {bird(Tweety), penguin(Tweety) V eagle(Tweety) }

and
D= { bird(x) : —excep_bird(x), can_fly(x)
Rt can fly(x) ’
penguin(x) : ~excep_penguin(x), ~can_fly(x)
—can fly(x) '
penguin(x) : —excep_penguin(x), excep_bird(x) }
excep bird(x) ’

then can_fly(Tweety) should not be derivable.

4 Discussions at the Dutch German workshop on Non-Monotonic Reasoning '95.
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The following example illustrates the reason for evaluating the situations described
by a disjunction separately even better. Suppose that we have the following rules:
e A person that injures another person must be punished.

injures(x,y) : —ex1(x, y), must_be_punished(x)
must_be_punished(x) )

e A person that injures another person in self defense should not be punished.

self defence(x) A injures(x,y) : —ex2(x,y), ~must_be_punished(x)
—~must_be_punished(x) ’

self defence(x) A injures(x,y) : mex2(x,y),exl(x,y)
ex1(x,y) '

e A person that is dragged into a fight against his/her will, is acting in self defense.

dragged_into fight(x) : —ex3(x), self defence(x)
self defence(x) )

Now suppose that John has injured Peter:
injures(John, Peter)

and that a reliable witness testifies that either John or Paul has been dragged into the
fight against his will:

dragged_into_fight(John) V dragged_into_fight(Paul).

If we would not evaluate the situations described by the disjunction separately, we will
conclude that John must be punished:

must_be_punished(John).

This would be most unfortunate for John if he was dragged into the fight against his
will.

Considering cases separately raises an important problem. How do we avoid consid-
ering irrelevant cases? A tautology n V -7 introduces two cases. If we would use it for
reasoning by cases, we can defeat any rule. Consider, for example, the default theory
(D, W) where

W = {bird(Tweety) }

and

D= {bird(x) : ~excep-bird(x), can fly(x) }
N can_fly(x) '

can_fly(Tweety) is not a theorem of this default theory because of the tautology

excep bird(Tweety) V —excep_bird(Tweety).



N. Roos/Artificial Intelligence 99 (1998) 165-183 169

A similar problem arises when we derive ¢ V 7 from ¢. If we would use n for
reasoning by cases, again we can defeat any rule. From the premise bird(Tweety), we
can derive

bird(Tweety) V excep_bird(Tweety).

Clearly, we should not consider excep_bird(Tweety) when reasoning by cases. Only
if none of the constituents of a disjunction is derivable, we can be certain that the
disjunction describes the alternative situations that are possible.

When reasoning by cases we assume that one of the constituents of the disjunction
holds. Furthermore, we can replace a conjunction by the set of its constituents. If we
do this subsequently with every disjunction and every conjunction, we will end-up with
a set of literals that imply all the propositions that we believe. The fact that we may
only use a disjunction for reasoning by cases of which the constituents are not derivable
and which is not a tautology, implies that the set of literals must be a minimal set.
The minimal sets describe exactly the separate situations that we need for reasoning by
cases. So, if we view a set of literals as describing an extension in Reiter’s definition,
reasoning by cases becomes possible. Notice that as a consequence, a disjunction can
be viewed as describing possible extensions.

Definition 1. Let (D, W) be a default theory.? For any set of closed formulas S, let
r¢s) ={n,...,T,}. T € I(S) if and only if T is a smallest set, with respect to the
subset relation <, of formulas satisfying following conditions:

(1) WCT;

(2) T is equal to the deductive closure of the set of literals® that T contains;

(3) if ¥Bbn e D g e T and =By,...,~Bn ¢ S, then y € T.
A closed set of formulas E is an extension of the default theory if and only if E € I'(E).

Notice that we get Reiter’s criginal definition if we replace Condition (2) by T =
Th(T). In that case I'(S) will consist of exactly one set T.

To illustrate the modifications made to Reiter’s default logic, consider a default theory
(D, W) where

a:6 -fB:6 y:-b
W={av-g} and D={ R 3
To satisfy the first two requirements of Definition 1, an extension must contain a or —f.
No extension will contain y or -8, since propositions such as §V —-d and a V-8V y
already follow from « and also from —p. Therefore, § V =8 and o V -~ V 7y cannot

introduce additional extensions. So, there are only two extensions

E =Th({a,8}) and E,=Th({~B,5}).

3 For simplicity, we will assume that the default theory _is closed. Open default theories can either be dealt
with as described in [14], or by replacing D by the set D of ground instances of the rules in D.
6 1n first order logic, the formulas Jx ¢ and Vx ¢ are also viewed as literals.
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A side effect of reasoning by cases is that it can result in the absence of extensions.
Consider for example a default theory (D, W) where

:ﬁa,—yB}.

W=0 and D={ <V B

In Reiter’s Default Logic, the default theory has one extensions: E = Th({a V £}). In
the here presented default logic, the default theory has no extension because none of the
cases o and B is consistent with the two justifications of the default rule.

The above defined extensions give all the descriptions of the world that we consider
possible. Alternative descriptions arise because of disjunctions and because of default
rules that block each other application (e.g., the Nixon diamond). We can, of course,
consider each description of the world given by an extension separately. We can also
look at the information on which all descriptions of the world agree. This informa-
tion will be called the belief ser and is often denoted as the skeptical view of the
world.

Definition 2. Let (D, W) be a default theory and let E, ..., E, be the corresponding
extensions. Then the belief set B is defined as

We can now apply the above presented results to the two examples given in the
beginning of this section and see whether reasoning by cases behaves as is expected.
Let us first consider the first example in which we only know that the bird Tweety
is a penguin or an eagle. There are two minimal sets of literals that satisfy the
premises:

{bird(Tweety), penguin(Tweety)} and {bird(Tweety), eagle(Tweety)}.
In the former case,
Th({bird(Tweety), penguin(Tweety),
—can fly(Tweety) , excep_bird( Tweety) })
is an extension. In this extension default rule

bird(x) : —excep_bird(x), can fly(x)
can fly(x)

is blocked since excep_bird(Tweety) is derivable. In the latter case, however, it is the
only applicable default rule. Hence,

Th({bird(Tweety), eagle( Tweety), can fly(Tweety) })

is an extension. Since we have one situation in which Tweety can and one in which it
cannot fly, we may not conclude that it can fly.
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In the second example, we also have two extensions. One for each case introduced
by the disjunction

dragged_into_fight(John) V dragged_into fight( Paul).

Ey = Th({injures(John, Peter), dragged_into_fight(John),
self_defence(John), ex1(John, Peter), ~must_be_punished(John)}),

E, = Th{({injures(John, Peter) , dragged_into fight(Paul),
self defence(Paul) , must_be_punished(John)}).

Since in only one of the two situations John must be punished, we do not know whether
John must be punished. Additional information should be collected to enable us to make
a choice between the two situations that are represented by the two extensions.

3. Discussion

To enable reasoning by cases in Default Logic, one important modification was re-
quired; the view that disjunctions describe possible extensions. This raises the question
concerning the consequences of this modification.

Viewing a disjunction as describing possible extensions is an important deviation from
the “normal” interpretation of a disjunction. In Default Logic multiple extensions arise
because the application of one default rule blocks the application of another default rule
and vice versa; e.g., the Nixon diamond. This can be interpreted as a disjunction stating
that one of the default rules is applicable. For each case described by this disjunction
we create an extension describing that case.

For real disjunctions we can do the same. We can introduce an extension for each
case described by a disjunction. Such an extension is equal to the deductive closure of
the literals that it contains. It can therefore be viewed as a partial model in the logical
sense. Hence, a disjunction describes possible partial models.

A proposition is frue with respect to the set of a partial model (the extensions) if it
is true in each of the partial models. Therefore, the belief set represents the propositions
that are true in all partial models.

Another consequence of viewing disjunctions as describing possible extensions is that
we can no longer represent a material implication @ — 8 by the disjunction —a V 8.
Representing an implication be a disjunction would enable reasoning by cases using the
implication. Clearly, @« — B does not represent two possible extension; one in which
—a holds and one in which 8 holds. Instead, it represents that an extension satisfying
a must also satisfy B and an extension satisfying -8 must also satisfy —a. Therefore,
we need a new representation of a material implication. Default rules can be used
for this purpose. We can represent a material implication &« — 8 by the two default
rules:

-B

a: :
— and —.

B —a
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In the literature, several variants of Default Logic have appeared. Refer, for example,
to [3,6, 11]. These variants modify Default Logic in order to gain some desired property.
They usually realize this by changing the third condition in Reiter’s definition [14] of
the operator I'. These changes are usuaily not affected by the view that disjunctions
describe possible extensions. Therefore, the proposed modifications can also be applied
to the default logic presented here.

4. Reiter’s Default Logic

Can we reformulate the here presented default logic in terms of Reiter’s Defauit
Logic? If it is possible, we must ensure that an extension is equal to the deductive
closure of the literals that it contains. To do this, a special set of default rules, called
the hypotheses, can be used. These hypotheses ensure that one of the cases describe by
a disjunction will hold. We have seen in Section 2 that not every disjunction may be
used for reasoning by cases. Therefore, a restriction must be placed on the disjunctions
for which we introduce hypotheses.

Hz{avﬂ.—'ﬁ’avﬂ.—wa ‘aV,BeE}.
a B

Here, 5 contains every disjunction a V 8 such that for any set of literals A; A Favp
if and only if A |- @ or A  B. So, a disjunction in & does not contain literals of
which the truth values are irrelevant for the meaning of the disjunction. For example,
(aAB)V(an-B) ¢ &.

Since the set of hypotheses consists of non-normal defaults rules, we may wonder
whether this can result in the inexistence of extensions. Unfortunately, the answer is
yes. This is illustrated by the following default theory (D, W) where

D= {%,B—;g} and W={aV B}

Definition 1 gives us the extension Th({a, B}). Reiter’s Default Logic, however, gives
us no extension for the default theory (D U H,W). The reason is that 8 is derivable
after applying the hypothesis

aV B:-B
o
and « is derivable after applying the hypothesis
aV p: -«
—Q5

Since the derivation of 8 (a), depends on the hypothesis, it should not block the
application of the hypothesis.

Although the addition of the set of hypotheses H to the set of default rules can result
in the inexistence of an extension in Reiter’s Default Logic, if extensions do exist, then
they are also extensions according to the above presented new default logic.
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Theorem 3. Let (D, W) be a default theory. Then E is an extension of (D, W) accord-
ing to Definition 1 if E is a Reiter-extension of the default theory (D U H,W).

Proof. To prove the theorem, we must prove that for a fixed point E of the operator I'g
defined by Reiter, E € I'(E) holds.

Let E be a Reiter extension of the default theory (DU H, W). Clearly, E satisfies the
first and the third condition of Definition 1. Furthermore, we can prove for every ¢ € E
that E contains a set of literals that imply ¢ by induction to the length of ¢.

e Let ¢ be a literal. Then the set of literals in E contains ¢.

e Let ¢ = a A B. Since I'r(E) is deductively closed, {«, 8} C E.

e Let o =—(aV B). Since I'r(E) is deductively closed, {—~a, -8} C E.

elet¢g=aVv B If avpB e &, then, since E is a Reiter extension, there is a

hypothesis adding either @ or B to I'r(E). Hence,a €c Eor Be E. IfaVvB ¢ 5,
then, since I'r(E) is deductively closed, there is a £ € I'r(E) such that £ |- aV 8
and £ contains less atoms. Hence, ¢ € E.
o Let o =—(aAB). If ~aV -8B € 5, then, since E is a Reiter extension, there is
a hypothesis adding either —a or =8 to I'r(E). Hence, —a € E or -8 € E. If
—aV~-B ¢ &, then, since I'r(E) is deductively closed, there is a £ € I'r(E) such
that £ - —a V =B and ¢ contains less atoms. Hence, € € E.
Hence, there is a T € I'(E) such that T C E.

To show that E is a smallest set satisfying the three requirements of an element of
I'(E), we will show that T satisfies the three requirements of I'r(E)

e Since W C T, T satisfies the first condition of Reiter’s definition of an extension.

e Since T is deductively closed, T satisfies the second condition of Reiter’s definition

of an extension.

e For each rule

fl:ﬂl,...,ﬂm eD
Y

such that @ € T and —8i,...,- B, ¢ E, y € T. Let
Vi
fﬂ cH
a
be a hypothesis with « V B8 € T and 8 ¢ E. According to Definition 1, there is
a possibly empty set of literals A C T such that A |- a Vv B. Since aV 8 € 5,

A}l ¢ Hence, a €T.
Hence, E= I'r(E) € I'(E). O

5. Closure properties

Gabbay [7] has initiated the study of the closure properties of the nonmonotonic
derivability relation () [7,10,12]. Here, the nonmonotonic derivability relation is
defined as

W kv @ if and only if B is the belief set of (D, W) and ¢ € B.
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Gabbay [7] argues that there are three axioms that must be satisfied by all nonmono-
tonic logics.

Reflexivity. If ¢ € W, then W v, .
Cautious Monotonicity. If W [, ¢ and W v, ¢, then WU {o} v &.

Cut. If W, @ and WU {@} v, ¢, then W v, .

These axioms characterize the property called cumulativity.
We wish, of course, that all logical consequences of the set of premises are also
derivable.

Deduction. If W |- ¢, then W ~, ¢.

This axiom implies Reflexivity, it implies together with Cut the axiom Right Weaken-
ing, and it implies together with Cautious Monotonicity and Cut the axiom Left Logical
Equivalence. The latter two axioms have been proposed by Kraus, Lehmann and Magidor
[10]. They also proposed an axiom characterizing reasoning by cases.

Or. If WU {¢} fvpnand WU {§} vy m, then WU{oV i} bp m.

Nonmonotonic logics satisfying Deduction, Cautious Monotonicity, Cut and Or are
said to belong to system P.

Like Reiter’s default logic, the here presented Default Logic is not cumulative [12].
It inherits the absence of cumulativity from Reiter’s Default Logic. So, Cautious Mono-
tonicity does not hold. To illustration this, consider a default theory (D, W) with the set
of rules

Dz{azﬂ B:y Y:ﬂﬂ}

By B L
If W = {a}, then we have one extension resulting in the belief set B = Th({a, B,7}).
If, however, W' = {a, v}, then we have two extensions resulting in the belief set
B = Th({a,y}). So, Cautious Monotonicity does not hold for the here presented default
logic.

The absence of cumulativity is often seen as a defect of a logic. The underlying
intuition is that there should be no difference between deriving that a proposition holds
and observing that it holds. There is, however, an important difference between the two.
We believe a derived proposition for some specific reason. An observed proposition,
however, may be believed for the same reason as well as other reasons. So, an observed
proposition need not represent the same information as a derived proposition (refer also
to [21).

The axiom Or, characterizes reasoning by cases. Nevertheless, it does not hold for
the here presented default logic. The reason is that we may not use any disjunction. In
Section 2, we have seen that we can block the application of any default rules if we
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may use tautologies for reasoning by cases. The axiom Or does not exclude the use of
tautologies for reasoning by cases. Hence, we need a more restricted axiom than Or.

Restricted Or.
KEWU{e}hpn WU{d} bpnandeVy € 5, then WU{pVy} vy 7.

As already defined, & contains every disjunction « V 3 such that for any set of literals
AALavBifandonlyif Abaor A B.

Theorem 4. Let (D, W) be a default theory. Then the belief set satisfies the following
axioms:
o Deduction

W g then Wk o

e Cut

FWU{Y} pnand Wy o, then Wy
o Left Logical Equivalence

FW =Wand W~y n, then W p g
e Right Weakening

fEn—>pand Wi, n, then Wy p
e And

fWirpnand Wiy p, then Whp pAp

e Restricted Or
fWU{elbpn WU{ytbpnand oV € 5, then WU{pV i} by

Proof. Deduction. The axiom: “if W |- ¢, then W ) ¢” immediately follows from
requirements (1) and (2) of Definition 1.

Cut. We will show that every extension E of the default theory (D, W) is also an
extension of the default theory (D, W U {¢}). Since B = (), E;, for every extension E
of the default theory (D, WU {¢'}), n € E holds. Hence, W (p,  will hold.

Let E be an extension of the default theory (D, W). Since W r, ¢, ¢ € E. One can
easily verify that E satisfies the three requirements of I'(p wu{y}) (E) that Definition 1
gives for the default theory (D, WU {¢}).

Now suppose that E ¢ I'(pwu{y})(E). So, for some T € T'owuyp(E), T CE.
Since WU {¢} C T, W C T. One can easily verify that T also satisfies the other two
requirements of I'(p w) (E) that Definition 1 gives for the default theory (D, W). Since
T CE, E ¢ I'\pw)(E). Contradiction.

Hence, E € F(D,WU{!{J}) (E).
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Left Logical Equivalence. Let E be an extension of (D, W). Since E is a deductively
closed set, W' C E. Therefore, E satisfies the three requirements of I'(pw)(E) that
Definition 1 gives for the default theory (D, W’).

Now suppose that £ ¢ I'cpw(E). So, for some T € I'ipw(E), T C E. Since T
is a deductively closed set, W C T. One can easily verify that T also satisfies the other
two requirements of I'(pw)(E) that Definition 1 gives for the default theory (D, W).
Since T C E, E ¢ I"'(pw){(E). Contradiction.

Hence, E € F(D,W')(E).

Right Weakening. Since W |~ 7, for every extension E, n € E. Since = 1 — u and
since E is deductively closed, u € E. Hence, W va M.

And. Since W |~ 7, for every extension E, i € E. Furthermore, since W p, u, for
every extension E, u € E. Therefore, for every extension E, {9, u} C E. Since E is
deductively closed, 7 A u € E. Hence, W b, n A

Restricted Or. We will show that every extension E of the default theory (D, WU
{@ V1)) is also an extension of the default theory (D, W U {¢}) or the default theory
(D, WU{y}). Since B =), E;, for every extension E of the default theory (D, WU{¢})
and for every extension E of the default theory (D, W U {¢}), € E holds. Hence,
WU {eVy} vy n will hold.

Let E be an extension of the default theory (D,W U {¢ V ¢}). Since ¢ V¢ € &
and since E is a deductively closed set with respect to the literals that it contains, either
o€ Eory cE.

Suppose that ¢ € E. Then E satisfies the three requirements of I'(p wu{e})(E) that
Definition 1 gives for the default theory (D, W U {¢}).

Now suppose that E ¢ I'(pwuie)) (E). So, for some T € I'(pwuie)) (E), T C E.
Since WU {¢} C T, WU {eV ¢} C T. One can easily verify that T also satisfies
the other two requirements of I'(p wu{evy}) (E) that Definition 1 gives for the default
theory (D, WU {@V ¢}). Since T C E, E ¢ I'(pwu{evy}) (E). Contradiction.

Hence, E € r(D,WU{(p})(E)-

In a similar way, we can prove that E € I'(pwuqy)) (E) if ¢ € E.  [J

1t is not difficult to verify that Deduction implies Reflexivity. Furthermore, And and
Right Weakening imply Modus Ponens in the Consequent [10].

6. Semantics

The semantics for the here presented default logic is based on Etherington’s semantics
[5] for Reiter’s Default Logic. The semantics proposed by Etherington uses sets of
interpretations. The default rules are used to define a preference relation on the sets.
The reason for defining a preference relation on sets of interpretations instead of a
preference relation on interpretations is because we must be able to represent that a
proposition is unknown; i.e., the proposition is frue in one interpretation and false in
another interpretation. We need this information for handling the justifications of a
default rule.
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We do not know the truth value of a proposition if it is frue in one interpretation and
false in another. But can we really say that « is unknown if we know a V £ to hold?
No, a is unknown only if B is known to hold. If B holds, the truth value of & does not
matter any more. In other words, any interpretation in which B is frue, can be replaced
by an interpretation that is identical except for the truth value of a.

Each case that we consider while reasoning by cases, can be interpreted as describing
a situation in which a proposition either has a known truth value or is really unknown.
So, in the context of the known propositions, there are no restrictions on the truth values
that we assign to the unknown proposition.

In Kleene’s strong three-valued semantics, the truth value unknowrn denotes that a
proposition can either be true or false. Unfortunately, we can not use this semantics
here because tautologies can have the truth value unknown. In the here defined default
logic, tautologies hold. Therefore, we will use sets of two-valued interpretations where
each set mimics one three-valued interpretation.

Definition 5. A partial two-valued interpretation M is a set of two-valued interpreta-
tions such that for some consistent set of literals A:

M={I|Vte AUl E )}

Definition 6. Let M be a partial two-valued interpretation and let ¢ be a closed formula.
Then M }= ¢ if and only if for each I € M: I = o.

Definition 7. Let S be a set of closed formulas. Then the models of S are defined as
the largest partial interpretations satisfying S.

Mod(S) = {M | Ve € S(M £ ¢),YN D M(3p € S(N F¢))}-
Using the partial interpretations we can modify Etherington’s definitions.

Definition 8. A default rule

6:5:'31"""3"' eD
Y
prefers N to M, M <;s N, if and only if
o M a;

e MHE-B forl <i<m
e N is the largest, with respect to the subset relation C, partial interpretation such
that N C M and NV | 7.
If M Ey;ie., N C M, then 8 strictly prefers N to M, M <s N.
A set of default rules D prefers N to M, M <p N if and only if for some 6 € D:
M <5 N. <} will be used to denote the transitive closure of <p.

For a normal default theory (D, W) it suffices to consider the <p maximal partial
interpretations A such that M <} N and M € Mod(W). N is a <p maximal
partial interpretation if and only if for no partial interpretation P, N' <p P holds.
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The requirement M <} N and M € Mod(W) guarantees that N is grounded in the
premises. This restricts the <p maximal partial interpretation A/ that we consider.

For non-normal default theories we must account for the fact that a rule may require
the continued consistency of its justification without ensuring this itself. To handle this,
Etherington introduces a stability condition.

Here, we extend this stability condition to handle a problem specific to the here
presented default logic. To illustrate the problem, consider the default theory

() tavm),

This default theory has a <p maximal partial interpretation satisfying a and . However,
the corresponding set of propositions Th({a, b}) is not an extension. The consequent
of the default rule also ensures that the disjunction a V b holds. Therefore, there is no
need for a to hold.

Definition 9. Let (D, W) be a defanlt theory. Furthermore, let A be a <p maximal
partial interpretation with respect to some M € Mod(W); hence, for some partial
interpretation M, M € Mod(W) and M <} N.

N is stable for (D, W) if and only if there is a D’ C D such that:

L 4 M <*D’ N 5

e for each & Luske € D': N B —B; for 1 <i< m;and

e for no partial interpretation £ with N' C L: L = ¢ for each

goeWU{'y’g:—Bl-’};”—’ﬂm-ED'}.

Given the stability requirement, we can now prove soundness and completeness.

Theorem 10 (Soundness). Let (D, W) be a default theory and let E be an extension
of (D,W). Let A be the set of literals in E. According to Definition 5, A determines a
unique partial interpretation N i.e., E= {¢ | N = ¢}.

Then, N is stable for (D, W).

Proof. Firstly, we will prove that there is a partial interpretation M € Mod(W) such
that N C M.
Let

D’={6’6DI6’=a—:ﬁ—l—’};”—’ﬂnl,Nhé—|B,-,1<igm}.

Then we will prove that for every partial interpretation £ with N’ C £ C M there is
a default rule 8 € D' and a partial interpretation P such that £ <¢ P, N C P C L.
Therefore, we may conclude that M <3, N.

Finally, we will prove that for no 8 € D there is a partial interpretation P such that
N <5 P. Hence, N is a <p maximal partial interpretation. A is also stable since for
each & € D': N £ =B for 1 < i < m and since E = {¢ | N |= ¢} is the smallest set
satisfying the requirements of I"(E).
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Since W C E, there is a smallest set of literals A° C A such that Vo € W(A° |- ¢).
According to Definition 5, A° determines a unique partial interpretation M. Hence,
M € Mod(W).

Let £ with N/ C £ C M be a partial interpretation. Furthermore, let A’ be a set
of literals that determines the partial interpretation L. Finally, let E’ be the deductive
closure of A'. Clearly, A’ C Aand E' = {¢ | L | ¢}.

Suppose that for no rule

6/=51:Bl,--'7ﬂm GDI,
Y
L | a@. Since £L C M, W C E’. Furthermore, for every
5= E“Bl,---,ﬂm ED—DI,
Y

N |= —B; for some 1 < i < m. So, for some 1 < i < m, =B; € E. Hence, E' satisfies
the three requirements Definition 1 gives for /'(E). Therefore, for some T € I'(E),
T CE'. Since T C E' CE, E ¢ I'(E). Contradiction.

Hence, for some rule

5/:_'7:B19'-~9ﬁm ED’,
Y
LEa
Suppose that for no rule
6/= .a:ﬁl"-'yﬂm eD/
Y

such that &« € E’, y € E — E' holds. Since a € E/, a € E. Therefore, since E € I'(E),
v € E. Hence, since ¥ ¢ E — E’, ¥ € E'. Furthermore, since £ C M, W C E’. Hence,
E’ satisfies the three requirements Definition 1 gives for I'(E). Therefore, for some
Terl(E),  TCE. Since T CE CE,E¢ I'(E). Contradiction.

Hence there is a rule

8’: jﬁliﬁ[,...,ﬂm
Y

such that £ = a, L ~B; for 1 < i< mandy € E—~ E'. Let P be the largest
partial interpretation such that Y C P C £ and P = y. Clearly, &', £ and P satisfy the
conditions of Definition 8. Hence, £ <s P.

Hence, for some M € Mod(W), M <}, N.

Since E is a fixed point of I", for no rule

=ff:Bla-~-,,Bm
Y

if Nl=aand N H B for 1 <i< m, then N Hy. Hence, N is a <p maximal partial
interpretation.

e D’

5 €D,
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Since for each

a':,Bl,...,,B,,,
Y

N H-B; for 1 <i < mandsince E = {¢ | N |= ¢} is the smallest set satisfying the
requirements of I"(E), N is stable for (D,W). O

eD:

Theorem 11 (Completeness). Let (D, W) be a default theory and let a <p maximal
partial interpretation N be stable for (D,W). Furthermore, let E = {¢ | N [ ¢}.
Then, E is an extension of (D, W).

Proof. Since N is stable for (D, W), there is a (possibly infinitely long) sequence of
rules &/, ..., 8, € D such that

Mo <g; - <oy M =N and My € Mod(W).

Since Mo € Mod(W) and N C My, W C E.

From the definition of a partial interpretation, it follows that E is deductively closed
with respect to the set of literals that it contains.

Finally, for each

a . ,31 ooy Bm
Y
if @ € E and -8; ¢ E for each 1 < i < m, then, since N is a <p maximal partial
interpretation, y € E. Hence, E satisfies the three requirement of I"(E) Definition 1
gives for the default theory (D, W). Therefore, for some T € I'(E), T C E.
Let D' = {&],...,8,} be the set stated by the stability condition. Since My <},
M1 <5 M <p N, for each

o= €D

6/=azﬂl,---sﬂm€D/
Y
a € E. Furthermore, since NV is stable, for each
5/=a:ﬂ19~--’Bm€D/
y 3

Bi ¢ E for 1 < i < m. Finally, since AV is stable, there is no partial interpretation £
such that N' C £ and £ = ¢ for each
a:Bi,....Bnm ED'}.
Y
Hence, E is a smallest set closed with respect to the set of literal it contains such that
a ,31,...,,3,,,
Y

goEWU{’y‘
Wu{y) eD'}gE.

Therefore, E C T.
Hence, E is an extension of (D,W). U
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7. Related work

Since Reiter presented his Default Logic, several proposals have been made to enable
reasoning by cases. The oldest proposal, by Besnard et al. [1], is to use free default
rules

ra— B

a— B’
In a free default rule, the rule is actually described by a material implication in the
consequent of the default rule. The default rule itself guarantees that the material im-
plication is applied whenever this is consistently possible. Since reasoning by cases is
not a problem using material implications, it is neither problem when using free default
rules.

Delgrande and Jackson [4] propose free default rules with additional justifications.
They point out that semi-normal default rules are used to specify preferences between
the default rules. To describe the same preferences using free default rules, they propose
to use semi-normal free default rules

Lo — ﬂ’ Y
a—pB
Since a material implication possesses a contraposition, so does a rule described by
a (semi-normal) free default rule. As we saw in the introduction this is not always
desirable. When we wish to describe a rule that possesses no contraposition, a (semi-
normal) free default rule is not a good candidate.
Konolige [9] proposes a slightly modified free default rule

B

a—f8
to enable reasoning by cases. This default rule seems to enable reasoning by cases while
avoiding the contraposition. The justification B blocks the introduction of the material
implication whenever it can be used in a contraposition. Unfortunately, as is shown by
Moinard [13], we get some “shadow contraposition”. The set of theorems of the default
theory

b ic
b yag)
({ a—b a— c} { }

contains the proposition —a.
Moinard [13} proposes a modified free default rule. To enable reasoning by cases,
he translates a default rules

a:f o taANBAY
Y a—y
Voorbraak [15] proposes a slightly different but equivalent translation. He translates

a:pB o ta AP

Y a—7y
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These translations enable reasoning by cases without contraposition or shadow contra-
position.

Moinard derives the translation from another approach to enable reasoning by cases.
In this approach, sets of default rules are used in the definition of an extension. Suppose
that oy V---Va,Vé V-- V8, € E; and suppose that

Yi

Then Ejyy = TR(E;U{y1 V- VY, V8 V---V§,}), provided that certain conditions
are met. Moinard shows that the conditions are: E £ —(a; A Bj Ay;) for 1 < j < m.
Here Ey = Th(W) and E = J, E;.

Although Moinard’s and Voorbraak’s solution to the problem of reasoning by cases
avoids the problems with contraposition and shadow contraposition, it does not consider
the cases described by a disjunction separately. As a consequence, a default rule may
be applicable though it is not applicable in one of the cases described by a disjunction.
As we have seen, this can result in counter intuitive conclusions.

The ability to reason by cases also solves a related problem, applying a default rule

a:f

Y

in the context of disjunctive information —8 Vv 8. The intuition is that the default rule
should not be applicable. Several solutions have been proposed for this specific problem
[2,6,8]. The solution proposed by Gelfond et al. [8] also enables reasoning by cases
under certain conditions.

Gelfond et al. [8] introduce a new type of default rule with a special kind of
disjunctive consequent

a:Bl,...,Bm
yilooolwn

If such a default rule is applicable in an extension, then the extension must contain one
of the consequences vy;. As a result, the application of this default rule leads to multiple
extensions

To reason by cases and to solve the problem of applying a default rule in the context of
disjunctive information, disjunctive information must be described by disjunctive default
rules. So, instead of the proposition ¢ V ¢, we must use the disjunctive default rule

ely
There is one major objection against this approach. We must replace every disjunction
by a disjunctive default rule. This even holds for implicit disjunctions such as —(@Ay).
Clearly, this is undesirable. Another objection against this approach is that default rules
are normally considered describing background knowledge. In this approach, however,
we must also use default rules for describing contingent facts describing implicit and
explicit disjunctions.
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8. Conclusions

We have evaluated different proposals that have been made to enable reasoning by
cases in Default Logic. These approaches all enable the derivation of new conclusions
through reasoning by cases. None of the proposals, however, take into account the
propositions that should no longer be derivable because of reasoning by cases. We have
seen that, to avoid deriving intuitively implausible conclusions, an applicable default rule
must also be applicable when reasoning by cases. To ensure this, the cases described
by a disjunction must be considered separately. This forces us to view disjunctions as
describing possible extensions. Reiter’s definition has been modified according to this
view. This modification can also be applied to several variants of Default Logic that
have been proposed in the literature.
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