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Abstract 

Reiter’s Default Logic is one of the most popular formalisms for describing default reasoning. 
One important defect of Default Logic is, however, the inability to reason by cases. Over the years, 
several solutions for this problem have been proposed. All these proposals deal with deriving new 
propositions through reasoning by cases. None, however, discuss the propositions that should no 
longer be derivable as a result of reasoning by cases. This paper discusses the latter subject. 
It shows that an intuitively plausible way of dealing with propositions that should no longer 
be derivable as a result of reasoning by cases, can have far reaching consequences. One of the 
consequenc’es is that disjunctions must be viewed as describing possible extensions. @ 1998 
Elsevier Science B.V. 
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1. Introduction 

Reiter’s Default Logic [ 141 is one of the most popular formalisms for describing 
default reasoning. Its popularity is the result of the simplicity of its formalism and the 
fact the default rules possess no contraposition. The contraposition is often undesirable 
for default rules. We ho not wish to co&Aude, for example; that John 
he may not drive a car. He might not own a driving license. In 
contraposition is valid, we can always use a free default rule 
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One important defect of Default Logic is, however, inability to reason by cases. A 
solution to this problem should enable reasoning by cases but may not result in intro- 
ducing a contraposition for some of the default rules. Several proposals have been made 

to extend Default Logic with reasoning by cases [ 1,4,9,13]. As Moinard shows [ 131, 
these approaches all introduce in one way or another some form of a contraposition. 
Moinard analyzes the problem, and presents a modified definition of a default extension 
that solves the problem. He also shows that a simple transformation of the default rules, 
makes it possible to realize reasoning by cases using Reiter’s original definition of an 
extension. Independently, Voorbraak [ 151 has proposed a similar transformation. 

One aspect that has been ignored by all solutions presented so far, are the conse- 
quences for the default rules that are applicable 2 if reasoning by cases is not possible. 
Consider for example the default theory (D, W) where 

w = {bird, penguin v ostrich} 

and 

D = bird : Texcepdird, can__y 

can fly 
9 

penguin : 7exceppenguin, 7can__y 
7can_jly 

penguin : ~exceppenguin, excep-bird 
excep-bird 

3 

ostrich : lexcep_ostrich, ~can-fly 

Tcan_Jly 
9 

ostrich : lexcep_ostrich, excepbird 

excepbird 

The reader can convince him/herself that through reasoning by cases we can derive 

excep-bird and ~can_.y. 

Hence the rule 

bird : TexceDAird, can-fly 

is no longer applicable. 
The above example shows that the application of a default rule can be blocked3 

through reasoning by cases. This is also intuitively plausible. Now suppose that in the 
above example we have penguin V eagle instead of penguin V ostrich. Then we can no 
longer derive excepbird through reasoning by cases. Hence, canfry is derivable. The 
question is whether this is correct. 

2 A default rule is applicable in an extension if its prerequisite belongs to the extension and its justifications 

are consistent with the extension. 

3 The application of a default rule is blocked in an extension if its prerequisite belongs to the extension and 
one of its justifications is inconsistent with the extension. 
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2. Reasoning by cases 

Through reasoning by cases, we can derive new conclusions. Suppose that we have 
two rules, one stating that penguins cannot fly and one stating that ostriches cannot fly. 
Then, knowing that the bird Tweety is a penguin or an ostrich, we should be able to 
conclude I:hat it cannot fly. 

To make things even more complicated, default rules can become inapplicable through 
reasoning by cases. Obviously, in the above example, we may not conclude that the bird 
Tweety can fly using the rule “birds can fly”. Since we only consider exceptional 
situations with respect to this rule, its application must be blocked. 

Reasoning by cases can also be viewed in another way. Every situation described by 
a disjunction can be considered separately. This is, for example, the normal procedure 
in natural deduction. In the above example, the application of the rule “birds can fly” 
will be blocked if we assume that Tweety is a penguin and if we assume that it is an 
ostrich. Clearly, the application of a default rule should be blocked if it is blocked in 

every case described by a disjunction. 
Should the application of a default rule also be blocked if it is blocked in only one 

case described by a disjunction? For example, may we conclude that the bird Tweety 
can fly if we know that it is either a penguin or an eagle? Some people working in the 
area of nonmonotonic reasoning will answer this question with yes.4 They argue that 
Tweety being a penguin is more exceptional than Tweety being an eagle. Therefore, if 
we only know that the bird Tweety is either a penguin or an eagle, we conclude that it 

can fly. 
Most people, however, will not agree with this line of reasoning. They argue that by 

stating tha.t the bird Tweety is either a penguin or an eagle, we introduce two situations 
with no preference between them. Therefore, both situations should be evaluated sep- 
arately. Furthermore, a conclusion should hold in every situation. Hence, we may not 

conclude Ithat the bird Tweety can fly because the rule describing that birds can fly is 
not applicable in case that Tweety is a penguin. So, if we have a default theory (D, W) 

where 

W = { bird( Tweety) , penguin( Tweety) V eagZe( Tweety) } 

and 

D = ~bir4-4 : Texcep_bird( x) , cun~Iy( x) 

\ canJly(n) 
, 

penguin(x) : ~excep-penguin( x) , -m2n_$y( x) 

-anfiy(x) 

penguin(x) : -exceppenguin( x) , excepbird( x) 

excepbird( x) 

then cun$y( Tweety) should not be derivable. 

4 Discussions at the Dutch German workshop on Non-Monotonic Reasoning ‘95. 
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The following example illustrates the reason for evaluating the situations described 
by a disjunction separately even better. Suppose that we have the following rules: 

l A person that injures another person must be punished. 

injures( x, y) : lexl (x, y) , mustdepunished( x) 

mustdepunished( x) 

l A person that injures another person in self defense should not be punished. 

selfdfence( x) A injures( x, y) : lex2( x, y) , lmustbepunished( x) 
lmust_bepunished( x) 

seZf_defence(x) A injures(x,y) : lex2(x,y),exl(x,y) 

exl(x,y) 

l A person that is dragged into a fight against his/her will, is acting in self defense. 

druggedinto-$ght( x) : lex3 (x) , self_defence( x) 

self-defence( x) 

Now suppose that John has injured Peter: 

injures(John, Peter) 

and that a reliable witness testifies that either John or Paul has been dragged into the 
fight against his will: 

draggedinto-jight( John) V draggedinto_fight( Paul). 

If we would not evaluate the situations described by the disjunction separately, we will 
conclude that John must be punished: 

must-bepunished( John). 

This would be most unfortunate for John if he was dragged into the fight against his 
will. 

Considering cases separately raises an important problem. How do we avoid consid- 
ering irrelevant cases? A tautology v V 17 introduces two cases. If we would use it for 
reasoning by cases, we can defeat any rule. Consider, for example, the default theory 

(D, W) where 

W = { bird( Tweety) } 

and 

D = 
{ 

bird(x) : Texcepbird(x), canfly 

c+Mx) 1. 

canJly( Tweety) is not a theorem of this default theory because of the tautology 

excep_bird( Tweety) V Texcep_bird( Tweety) . 
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A similar problem arises when we derive (p V r] from 4p. If we would use 77 for 

reasoning by cases, again we can defeat any rule. From the premise bird( Tweety), we 
can derive 

bird( Tweety) V excepbird( Tweety) . 

Clearly, we should not consider excepdird(Tweety) when reasoning by cases. Only 
if none of the constituents of a disjunction is derivable, we can be certain that the 
disjunction describes the alternative situations that are possible. 

When reasoning by cases we assume that one of the constituents of the disjunction 
holds. Furthermore, we can replace a conjunction by the set of its constituents. If we 
do this subsequently with every disjunction and every conjunction, we will end-up with 
a set of literals that imply all the propositions that we believe. The fact that we may 

only use a disjunction for reasoning by cases of which the constituents are not derivable 
and which is not a tautology, implies that the set of literals must be a minimal set. 
The minimal sets describe exactly the separate situations that we need for reasoning by 
cases. So, if we view a set of literals as describing an extension in Reiter’s definition, 
reasoning by cases becomes possible. Notice that as a consequence, a disjunction can 
be viewed as describing possible extensions. 

Definition 1. Let (D, W) be a default theory. 5 For any set of closed formulas S, let 

T(S) = {:ri,. . . , T,}. T E T(S) if and only if T is a smallest set, with respect to the 
subset relation c, of formulas satisfying following conditions: 

(1) W&T; 
(2) T is equal to the deductive closure of the set of literals6 that T contains; 
(3) if !y:Ply,,P.. E D, a E T and -pi,. . . , +I,,, $! S, then y E T. 

A closed set of formulas E is an extension of the default theory if and only if E E r(E) . 

Notice .that we get Reiter’s original definition if we replace Condition (2) by T = 
Th( T) . In that case r(S) will consist of exactly one set T. 

To illustrate the modifications made to Reiter’s default logic, consider a default theory 
(D, W) where 

W=.[aV-p} and D= 
a:6 7p:s y:4 
F,F,T}. 

To satisfy the first two requirements of Definition 1, an extension must contain (Y or -p. 
No extension will contain y or ~6, since propositions such as S V 18 and LY V -p V y 

already follow from LY and also from -/!I. Therefore, 6 V ~6 and ff V -p V y cannot 

introduce additional extensions. So, there are only two extensions 

El = Th({a,@) and EZ = Th({+,6}). 

s For simplicity, we will assume that the default theory is closed. Open default theories can either be dealt 

with as desctibed in [ 141, or by replacing D by the set B of ground instances of the rules in D. 

6 In first order logic, the formulas 3x ~0 and V.x q are also viewed as literals. 
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A side effect of reasoning by cases is that it can result in the absence of extensions. 

Consider for example a default theory (D, W) where 

W=8 and D={‘i”;l;“}. 

In Reiter’s Default Logic, the default theory has one extensions: E = Th( {a V p}). In 
the here presented default logic, the default theory has no extension because none of the 
cases CY and p is consistent with the two justifications of the default rule. 

The above defined extensions give all the descriptions of the world that we consider 
possible. Alternative descriptions arise because of disjunctions and because of default 
rules that block each other application (e.g., the Nixon diamond). We can, of course, 
consider each description of the world given by an extension separately. We can also 
look at the information on which all descriptions of the world agree. This informa- 
tion will be called the belief set and is often denoted as the skeptical view of the 

world. 

Definition 2. Let (D, W) be a default theory and let El, . . . , En be the corresponding 
extensions. Then the belief set B is defined as 

B=fjE;. 
i=l 

We can now apply the above presented results to the two examples given in the 
beginning of this section and see whether reasoning by cases behaves as is expected. 
Let us first consider the first example in which we only know that the bird Tweety 
is a penguin or an eagle. There are two minimal sets of literals that satisfy the 
premises: 

{ bird( Tweety) , penguin( Tweety) } and { bird( Tweety) , eagle( Tweety) }. 

In the former case, 

Th( { bird( Tweety) , penguin( Tweety) , 

~can$ly( Tweety) , excepbird( Tweety)}) 

is an extension. In this extension default rule 

bird(x) : lexcepbird( x) , cunJEy( x) 

canJly(n) 

is blocked since excepbird(Tweety) is derivable. In the latter case, however, it is the 
only applicable default rule. Hence, 

Th( {bird( Tweety), eugle( Tweety), can$y( Tweety)}) 

is an extension. Since we have one situation in which Tweety can and one in which it 
cannot ily, we may not conclude that it can fly. 
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In the second example, we also have two extensions. One for each case introduced 
by the disjunction 

draggedinto_jght( John) V draggedintoJight( Paul). 

El = Th( {injures( John, Peter), draggedinto_Jight(John) , 

selfdefence( John), exl (John, Peter), ~mustbepunished( John)}), 

Ez = Th( { injures( John, Peter), draggedinto_&ht( Paul), 

selfdfence( Paul), mustdepunished( John)}). 

Since in only one of the two situations John must be punished, we do not know whether 
John must be punished. Additional information should be collected to enable us to make 
a choice b’etween the two situations that are represented by the two extensions. 

3. Discussion 

To enable reasoning by cases in Default Logic, one important modification was re- 

quired; the view that disjunctions describe possible extensions. This raises the question 
concerning the consequences of this modification. 

Viewing a disjunction as describing possible extensions is an important deviation from 
the “normal” interpretation of a disjunction. In Default Logic multiple extensions arise 
because the application of one default rule blocks the application of another default rule 
and vice versa; e.g., the Nixon diamond. This can be interpreted as a disjunction stating 
that one of the default rules is applicable. For each case described by this disjunction 
we create an extension describing that case. 

For real disjunctions we can do the same. We can introduce an extension for each 
case described by a disjunction. Such an extension is equal to the deductive closure of 
the literals that it contains. It can therefore be viewed as a partial model in the logical 
sense. Hence, a disjunction describes possible partial models. 

A proposition is true with respect to the set of a partial model (the extensions) if it 
is true in each of the partial models. Therefore, the belief set represents the propositions 

that are true in all partial models. 
Another consequence of viewing disjunctions as describing possible extensions is that 

we can no longer represent a material implication LY -+ p by the disjunction ~a V p. 
Representing an implication be a disjunction would enable reasoning by cases using the 
implication. Clearly, cy + fi does not represent two possible extension; one in which 
Y(Y holds and one in which p holds. Instead, it represents that an extension satisfying 
(Y must also satisfy p and an extension satisfying -p must also satisfy TLY. Therefore, 
we need a new representation of a material implication. Default rules can be used 
for this purpose. We can represent a material implication cy + p by the two default 

rules: 

a. -p : - 
P 

and -. 
Tff 
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In the literature, several variants of Default Logic have appeared. Refer, for example, 
to [ 3,6,11]. These variants modify Default Logic in order to gain some desired property. 
They usually realize this by changing the third condition in Reiter’s definition [ 141 of 
the operator r. These changes are usually not affected by the view that disjunctions 

describe possible extensions. Therefore, the proposed modifications can also be applied 

to the default logic presented here. 

4. Reiter’s Default Logic 

Can we reformulate the here presented default logic in terms of Reiter’s Default 
Logic? If it is possible, we must ensure that an extension is equal to the deductive 
closure of the literals that it contains. To do this, a special set of default rules, called 
the hypotheses, can be used. These hypotheses ensure that one of the cases describe by 
a disjunction will hold. We have seen in Section 2 that not every disjunction may be 

used for reasoning by cases. Therefore, a restriction must be placed on the disjunctions 
for which we introduce hypotheses. 

H= 
1 

cYvp:+ avp:-wY aVPE ~ 

CY ’ P > 
_ . 

Here, 5 contains every disjunction cy V p such that for any 
if and only if A k (Y or n k p. So, a disjunction in 8 

set of literals A; n t_ (Y V p 
does not contain literals of 

which the truth values are irrelevant for the meaning of the disjunction. For example, 

((YAp)v(ffA+) $8. 
Since the set of hypotheses consists of non-normal defaults rules, we may wonder 

whether this can result in the inexistence of extensions. Unfortunately, the answer is 

yes. This is illustrated by the following default theory (D, W) where 

and W = {a V p}. 

Definition 1 gives us the extension Z’h( {a, p}). Reiter’s Default Logic, however, gives 
us no extension for the default theory (D U H, W). The reason is that p is derivable 
after applying the hypothesis 

and (Y is derivable after applying the hypothesis 

Since the derivation of /3 ((u), depends on the hypothesis, it should not block the 
application of the hypothesis. 

Although the addition of the set of hypotheses H to the set of default rules can result 
in the inexistence of an extension in Reiter’s Default Logic, if extensions do exist, then 
they are also extensions according to the above presented new default logic. 
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Theorem :3. Let (D, W) be a default theory. Then E is an extension of (D, W) accord- 

ing to Definition 1 if E is a Reiter-extension of the default theory (D U H, W). 

Proof. To prove the theorem, we must prove that for a fixed point E of the operator f, 
defined by Reiter, E E T(E) holds. 

Let E be a Reiter extension of the default theory (D U H, W). Clearly, E satisfies the 

first 
that 

0 
. 
0 
. 

. 

and the third condition of Definition 1. Furthermore, we can prove for every (D E E 

E contains a set of literals that imply rp by induction to the length of 40. 
Let cp be a literal. Then the set of literals in E contains (p. 

Let p = Q A p. Since r~( E) is deductively closed, {a, p) 2 E. 

Let +J = -(cu V p). Since rR(E) is deductively closed, {SLY, $} Z E. 

Let e = ff V p. If ff V p E 8, then, since E is a Reiter extension, there is a 
hypothesis adding either cy or p to r~( E) . Hence, cy E E or ,L3 E E. If LY V p q! 8, 

then, :since rR (E) is deductively closed, there is a 5 E rR (E) such that 5 k cz V p 

and 5 contains less atoms. Hence, 5: E E. 

Let~==(CuAp).If~cuV~PE8, then, since E is a Reiter extension, there is 
a hypothesis adding either SLY or -p to rR( E). Hence, TLY E E or -p E E. If 
-ff v-+3 $! a, then, since rR (E) is deductively closed, there is a 5 E rR (E) such 
that ,$ 1 icy V -/3 and 5 contains less atoms. Hence, 5 E E. 

Hence, there is a T E r(E) such that T C E. 

To show that E is a smallest set satisfying the three requirements of an element of 
r(E) , we will show that T satisfies the three requirements of rR (E) 

Since W c T, T satisfies the first condition of Reiter’s definition of an extension. 
Since T is deductively closed, T satisfies the second condition of Reiter’s definition 
of an extension. 

For each rule 

LP:Pl,...,Pm 
ED 

Y 

suchthataETand+l,..., +3n,$E, y~T.Let 

be a hypothesis with LY V /I E T and /3 $ E. According to Definition 1, there is 
a possibly empty set of literals n C T such that n k u V p. Since a V p E 8, 
A I_ CI. Hence, (Y E T. 

Hence, E q : rR(E) E r(E). q 

5. Closure properties 

Gabbay [7] has initiated the study of the closure properties of the nonmonotonic 

derivability relation ( k) [ 7,10,12]. Here, the nonmonotonic derivability relation is 
defined as 

W bo (o if and only if B is the belief set of (D, W) and q E B. 
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Gabbay [7] argues that there are three axioms that must be satisfied by all nonmono- 

tonic logics. 

Reflexivity. If P E W, then W kD q. 

Cautious Monotonicity. If W kD 40 and W b. $> then WU {CP) FD *. 

Cut. If W kD 4p and W U (40) i_D $, then W bD $. 

These axioms characterize the property called cumulutivity. 

We wish, of course, that all logical consequences of the set of premises are also 

derivable. 

Deduction. If W k p, then W 1-O p. 

This axiom implies Rejlexivity, it implies together with Cut the axiom Right Weaken- 

ing, and it implies together with Cautious Monotonicity and Cut the axiom Left Logical 

Equivalence. The latter two axioms have been proposed by Kraus, Lehmann and Magidor 
[ lo]. They also proposed an axiom characterizing reasoning by cases. 

Nonmonotonic logics satisfying Deduction, Cautious Monotonicity, Cut and Or are 

said to belong to system P. 
Like Reiter’s default logic, the here presented Default Logic is not cumulative [ 121. 

It inherits the absence of cumulativity from Reiter’s Default Logic. So, Cautious Mono- 

tonicity does not hold. To illustration this, consider a default theory (D, W) with the set 

of rules 

D= o:P P:r r:-P 
{ 7’7’ -$ > ’ 

If W = {a}, then we have one extension resulting in the belief set B = Th( (cu, p, y}). 

If, however, W’ = {a, y}, then we have two extensions resulting in the belief set 
B = Th( {a, y}). So, Cautious Monotonic@ does not hold for the here presented default 
logic. 

The absence of cumulativity is often seen as a defect of a logic. The underlying 
intuition is that there should be no difference between deriving that a proposition holds 
and observing that it holds. There is, however, an important difference between the two. 
We believe a derived proposition for some specific reason. An observed proposition, 
however, may be believed for the same reason as well as other reasons. So, an observed 
proposition need not represent the same information as a derived proposition (refer also 

to [21). 
The axiom Or, characterizes reasoning by cases. Nevertheless, it does not hold for 

the here presented default logic. The reason is that we may not use any disjunction. In 
Section 2, we have seen that we can block the application of any default rules if we 
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may use ta.utologies for reasoning by cases. The axiom Or does not exclude the use of 
tautologies for reasoning by cases. Hence, we need a more restricted axiom than Or. 

Restricted Or. 

As already defined, B contains every disjunction (Y V /3 such that for any set of literals 

A; _4 t- LY ‘J /3 if and only if A t- cy or A k /3. 

Theorem 4. Let (D, W) be a default theory. Then the belief set satisfies the following 

axioms: 
a Deduction 

if W k 40, then W ko p 

l cut 

~~u{~}~~~andW~o~,thenw~orl 

l Lefr Logical Equivalence 

~W’_WandW~oq,thenW’~orl 

l Right Weakening 

if’~r]---,)(LandW~o77,thenw~o~ 

l And 

iJ’W~oqandWt_vo~,thenw~oqA~ 

l Restricted Or 

ifwu{~}~,r],Wu{rlr}~,rlandcpVcCI~8,thenWu{~Vvrji)~~rl 

Proof. Deduction. The axiom: “if W k p, then W ko 40” immediately follows from 
requirements ( 1) and (2) of Definition 1. 

Cut. We will show that every extension E of the default theory (D, W) is also an 
extension of the default theory (D, W U {$}). Since B = ni Ei, for every extension E 
of the default theory (D, W U {@}), 77 E E holds. Hence, W /-o 77 will hold. 

Let E be an extension of the default theory (D, W). Since W ko Ij/, r/l E E. One can 
easily verify that E satisfies the three requirements of r(D,~U{s}) (E) that Definition 1 
gives for the default theory (D, W U {t,b}). 

Now suppose that E $! T(D,~~{~),(E). So, for some T E T(o,wu{g)j(E), T c E. 
Since W U (9) & T, W 2 T. One can easily verify that T also satisfies the other two 
requirements of T(o,w~ (E) that Definition 1 gives for the default theory (D, W). Since 
T c E, E $! r(o,w) (E). Contradiction. 

Hence, E E ~(D,w~{+}) (~3. 
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Left Logical Equivalence. Let E be an extension of (D, W). Since E is a deductively 
closed set, W’ G E. Therefore, E satisfies the three requirements of T(o,wJ) (E) that 
Definition 1 gives for the default theory (D, W’). 

Now suppose that E $ r (D,WJ) (E). So, for some T E T(o,w/) (E), T c E. Since T 

is a deductively closed set, W C T. One can easily verify that T also satisfies the other 
two requirements of T(o,w) (E) that Definition 1 gives for the default theory (D, W). 
Since T c E, E $ Tc~,w, (E). Contradiction. 

Hence, E E T(o,w~) (E) . 
Right Weakening. Since W kD 7, for every extension E, rl E E. Since k 77 -+ J.L and 

since E is deductively closed, p E E. Hence, W kD p. 
And. Since W k-D v, for every extension E, TJ E E. Furthermore, since W kD ,u, for 

every extension E, ,U E E. Therefore, for every extension E, (7, ,u} C E. Since E is 

deductively closed, q A J_L E E. Hence, W i_D 7 A p 
Restricted Or. We will show that every extension E of the default theory (D, W U 

{tp V ti}) is also an extension of the default theory (D, W U {p}) or the default theory 

(D, WU{G)). S ince B = ni E;, for every extension E of the default theory (D, WU{p)) 
and for every extension E of the default theory (D, W U {$}), v E E holds. Hence, 

W U {p V $} kD v will hold. 
Let E be an extension of the default theory (D, W U {q~ V fi}). Since (p V q E B 

and since E is a deductively closed set with respect to the literals that it contains, either 

pEEor$EE. 
Suppose that rp E E. Then E satisfies the three requirements of f (D,wu{~p)) (E) that 

Definition 1 gives for the default theory (D, W U {p}). 
Now suppose that E $ T(D,w~{+,)) (E). So, for some T E T(o,wu{+,l)(E), T C E. 

Since W U {p} & T, W U {p V @} C T. One can easily verify that T also satisfies 

the other two requirements of r(o,wu{Pv+))( ) E that Definition 1 gives for the default 

theory (D, W U (9 V $1). Since T c E, E $ ~~~~~~~~~~~~ (E). Contradiction. 

Hence, E E ~(D,w~{~P)) (~3. 

In a similar way, we can prove that E E Tco,~U{JI), (E) if Cc, E E. 0 

It is not difficult to verify that Deduction implies Reflexivity. Furthermore, And and 
Right Weakening imply Modus Ponens in the Consequent [lo]. 

6. Semantics 

The semantics for the here presented default logic is based on Etherington’s semantics 

[5] for Reiter’s Default Logic. The semantics proposed by Etherington uses sets of 
interpretations. The default rules are used to define a preference relation on the sets. 
The reason for defining a preference relation on sets of interpretations instead of a 
preference relation on interpretations is because we must be able to represent that a 
proposition is unknown; i.e., the proposition is true in one interpretation and false in 
another interpretation. We need this information for handling the justifications of a 
default rule. 
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We do not know the truth value of a proposition if it is true in one interpretation and 
false in another. But can we really say that LY is unknown if we know LY V p to hold? 
No, (Y is mknown only if /3 is known to hold. If p holds, the truth value of LY does not 

matter any more. In other words, any interpretation in which /3 is true, can be replaced 
by an interpretation that is identical except for the truth value of LY. 

Each case that we consider while reasoning by cases, can be interpreted as describing 

a situation in which a proposition either has a known truth value or is really unknown. 
So, in the context of the known propositions, there are no restrictions on the truth values 
that we assign to the unknown proposition. 

In Kleene’s strong three-valued semantics, the truth value unknown denotes that a 
proposition can either be true or false. Unfortunately, we can not use this semantics 
here because tautologies can have the truth value unknown. In the here defined default 
logic, taut~ologies hold. Therefore, we will use sets of two-valued interpretations where 
each set mimics one three-valued interpretation. 

Definition 5. A partial two-valued interpretation M is a set of two-valued interpreta- 
tions such that for some consistent set of literals _4: 

Definition 6. Let M be a partial two-valued interpretation and let 40 be a closed formula. 

Then M I= p if and only if for each I E M: I k q. 

Definition 7. Let S be a set of closed formulas. Then the models of S are defined as 
the largest partial interpretations satisfying S. 

Mod(S) = {M ) V’s0 E S(M 1 p),VN > M(3p E S(N #‘p>)}. 

Using the partial interpretations we can modify Etherington’s definitions. 

Definition 8. A default rule 

prefers N to M, M <a N, if and only if 

.MkCtcu; 
l M # lpi for 1 < i < m; 
l N is the largest, with respect to the subset relation C, partial interpretation such 

that JJ C M and N k y. 
If M # y; i.e., N c M, then 8 strictly prefers N to M, M <s N. 
A set of default rules D prefers N to M, M 60 N if and only if for some S E D: 

M 6~ N. <T, will be used to denote the transitive closure of <o. 

For a normal default theory (D, W) it suffices to consider the <o maximal partial 
interpretations N such that M <L N and M E Mod(W). N is a <o maximal 
partial interpretation if and only if for no partial interpretation P, N <D P holds. 
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The requirement M <T, N and M E Mod(W) guarantees that N is grounded in the 
premises. This restricts the <D maximal partial interpretation N that we consider. 

For non-normal default theories we must account for the fact that a rule may require 
the continued consistency of its justification without ensuring this itself. To handle this, 

Etherington introduces a stability condition. 
Here, we extend this stability condition to handle a problem specific to the here 

presented default logic. To illustrate the problem, consider the default theory 

({$},{aVb}). 
This default theory has a <D maximal partial interpretation satisfying a and b. However, 
the corresponding set of propositions Th( {a, b}) is not an extension. The consequent 
of the default rule also ensures that the disjunction a V b holds. Therefore, there is no 
need for a to hold. 

Definition 9. Let (D, W) be a default theory. Furthermore, let N be a <D maximal 
partial interpretation with respect to some M E Mod(W) ; hence, for some partial 

interpretation M, M E Mod(W) and M <$, N. 
N is stable for (D, W) if and only if there is a D’ C D such that: 

l M <;, M; 

a for each 7 E D’: JV # -p; for 1 < i 6 m; and 

l for no partial interpretation C with N c Is: L k P for each 

Given the stability requirement, we can now prove soundness and completeness. 

Theorem 10 (Soundness). Let (D, W) be a default theory and let E be an extension 

of (D, W). Let A be the set of literals in E. According to Dejinition 5, A determines a 

unique partial interpretation N; i.e., E = (~0 1 N + (p}. 
Then, N is stable for (D, W). 

Proof. Firstly, we will prove that there is a partial interpretation M E Mod(W) such 

that N 2 M. 
Let 

Then we will prove that for every partial interpretation L with N c L L M there is 
a default rule 8 E D’ and a partial interpretation P such that fZ <al P, N C P c L. 

Therefore, we may conclude that M <& N. 
Finally, we will prove that for no S E D there is a partial interpretation P such that 

N <a P. Hence, N is a <D maximal partial interpretation. N is also stable since for 
each 6’ E D’: N # -p for 1 6 i < m and since E = (40 1 JV + cp} is the smallest set 
satisfying the requirements of r(E). 
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Since W C_ E, there is a smallest set of literals _4’ G A such that V4p E W(A” k cp). 

According to Definition 5, A0 determines a unique partial interpretation M. Hence, 

&t E hd’(W). 

Let L with N c L C_ M be a partial interpretation. Furthermore, let A’ be a set 
of literals that determines the partial interpretation L. Finally, let E’ be the deductive 
closure of A’. Clearly, A’ C A and E’ = (4p 1 L k cp}. 

Suppost: that for no rule 

6’ = !y : Pl,...9Ptn ED, 

3 

Y 

C k a. Since L C M, W C E’. Furthermore, for every 

*= +I,..., Ptlz E D - D’, 
Y 

N b --@i for some 1 < i < m. So, for some 1 < i < m, +?i E E. Hence, E’ satisfies 
the three requirements Definition 1 gives for T(E). Therefore, for some T E r(E), 

T C E’. Smce T C E’ C E, E $! r(E). Contradiction. 

Hence, for some rule 

6’ = 1y . .Pl,...,Ptn E Dt 

, 

Y 

L k cr. 
Suppose that for no rule 

6,= y::1,...9 Pm E Dt 

Y 

such that a~ E E’, y E E - E’ holds. Since (Y E E’, a E E. Therefore, since E E r(E), 

y E E. Hence, since y $ E - E’, y E Et. Furthermore, since l G M, W C E’. Hence, 
E’ satisfies the three requirements Definition 1 gives for r(E). Therefore, for some 
T E r(E), T G E’. Since T c E’ C E, E fj! r(E). Contradiction. 

Hence there is a rule 

*,=~n%...J%n ED, 

Y 

such that L t= a, C # l/3; for 1 < i < m and y E E - E’. Let P be the largest 
partial interpretation such that N 2 P G C and 7J + y. Clearly, 8, C and P satisfy the 
conditions of Definition 8. Hence, L <sj P. 

Hence, for some M E hlod( W), M <& N. 
Since E’ is a fixed point of r, for no rule 

&‘:Pl ,...V 
“’ E D 

, 

Y 

if N /= LY and N # pi for 1 < i < m, then N # y. Hence, N is a <D maximal partial 
interpretation. 
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Since for each 

Y 
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E D’ : 

N # -0; for 1 6 i < m and since E = {q 1 N k cp} is the smallest set satisfying the 

requirements of r(E), N is stable for (D, W) . 0 

Theorem 11 (Completeness). Let (D, W) be a default theory and let a <D maximal 
partial interpretation N be stable for (D, W). Furthermore, let E = (4p 1 N /= cp}. 
Then, E is an extension of (D, W). 

Proof. Since JV is stable for (D, W), there is a (possibly infinitely long) sequence of 

rules Si, . . . , 8: E D such that 

MO 6s; . . . \a;, < M,=N and MoEMod( 

Since MO E Mod(W) and N C MO, W C: E. 
From the definition of a partial interpretation, it follows that E is deductively closed 

with respect to the set of literals that it contains. 
Finally, for each 

*= ff :P1*...7Pm ED 

Y 

if cy E E and -$3; $ E for each 1 < i < m, then, since N is a <D maximal partial 
interpretation, Y E E. Hence, E satisfies the three requirement of T(E) Definition 1 

gives for the default theory (D, W) . Therefore, for some T E r(E) , T C E. 
Let D’ = {al,,..., 8:) be the set stated by the stability condition. Since MO <g, 

M,i-1 <a; M,i <i, N, for each 

LY E E. Furthermore, since N is stable, for each 

,B; $ E for 1 < i 6 m. Finally, since N is stable, there is no partial interpretation C 

such that N c L and C k +J for each 

ff: Pl,...,Pnr 

Y 

Hence, E is a smallest set closed with respect to the set of literal it contains such that 

a:P1,...,Pnt 
ED' C E. 

Y 

Therefore, E C T. 
Hence, E is an extension of (D, W). 0 
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7. Related work 

Since R’eiter presented his Default Logic, several proposals have been made to enable 
reasoning by cases. The oldest proposal, by Besnard et al. [ 11, is to use ffee default 
rules 

:cy-+p -- 
ff+p* 

In a free default rule, the rule is actually described by a material implication in the 
consequent of the default rule. The default rule itself guarantees that the material im- 
plication i,s applied whenever this is consistently possible. Since reasoning by cases is 
not a problem using material implications, it is neither problem when using free default 

rules. 
Delgrande and Jackson [4] propose free default rules with additional justifications. 

They point out that semi-normal default rules are used to specify preferences between 
the default rules. To describe the same preferences using free default rules, they propose 
to use semi-normal free default rules 

:a-+p,y --. 
a -+ p 

Since a material implication possesses a contraposition, so does a rule described by 
a (semi-normal) free default rule. As we saw in the introduction this is not always 
desirable. When we wish to describe a rule that possesses no contraposition, a (semi- 
normal) free default rule is not a good candidate. 

Konolige [ 91 proposes a slightly modified free default rule 

to enable reasoning by cases. This default rule seems to enable reasoning by cases while 
avoiding the contraposition. The justification /3 blocks the introduction of the material 
implication whenever it can be used in a contraposition. Unfortunately, as is shown by 

Moinard [ 131, we get some “shadow contraposition”. The set of theorems of the default 
theory 

(1 :b 
--9 “-}, {lb v x}) 
a--+b a-+c 

contains the proposition ~a. 
Moinard [ 131 proposes a modified free default rule. To enable reasoning by cases, 

he translates a default rules 

ff:P to :aAPAy 

Y cy-+y . 

Voorbraak [ 151 proposes a slightly different but equivalent translation. He translates 

a:P to 
:aAP 
-. 

Y ff+Y 
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These translations enable reasoning by cases without contraposition or shadow contra- 

position. 
Moinard derives the translation from another approach to enable reasoning by cases. 

In this approach, sets of default rules are used in the definition of an extension. Suppose 
that LYI V . . ’ V a,, V 61 V . . . V 8, E E; and suppose that 

ffj Z pj 

yj ED. 

Then Ei+l = Th( Ei U (~1 V * . * V Y~Z V 61 V . . . V a,}), provided that certain conditions 

are met. Moinard shows that the conditions are: E ff -(aj A pj A rj) for 1 < j < m. 
Here Eo = Th( W) and E = Ui Ei. 

Although Moinard’s and Voorbraak’s solution to the problem of reasoning by cases 
avoids the problems with contraposition and shadow contraposition, it does not consider 
the cases described by a disjunction separately. As a consequence, a default rule may 
be applicable though it is not applicable in one of the cases described by a disjunction. 
As we have seen, this can result in counter intuitive conclusions. 

The ability to reason by cases also solves a related problem, applying a default rule 

in the context of disjunctive information lfi V 8. The intuition is that the default rule 
should not be applicable. Several solutions have been proposed for this specific problem 
[ 2,6,8]. The solution proposed by Gelfond et al. [ 81 also enables reasoning by cases 
under certain conditions. 

Gelfond et al. [8] introduce a new type of default rule with a special kind of 
disjunctive consequent 

ff:P1,...,Pn* 
Yl I...IYn . 

If such a default rule is applicable in an extension, then the extension must contain one 

of the consequences yi. As a result, the application of this default rule leads to multiple 
extensions 

To reason by cases and to solve the problem of applying a default rule in the context of 
disjunctive information, disjunctive information must be described by disjunctive default 
rules, So, instead of the proposition (p V t,b, we must use the disjunctive default rule 

There is one major objection against this approach. We must replace every disjunction 
by a disjunctive default rule. This even holds for implicit disjunctions such as -(PA+). 
Clearly, this is undesirable. Another objection against this approach is that default rules 
are normally considered describing background knowledge. In this approach, however, 
we must also use default rules for describing contingent facts describing implicit and 
explicit disjunctions. 
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8. Conclusions 

We have evaluated different proposals that have been made to enable reasoning by 
cases in Default Logic. These approaches all enable the derivation of new conclusions 

through reasoning by cases. None of the proposals, however, take into account the 
propositions that should no longer be derivable because of reasoning by cases. We have 
seen that, to avoid deriving intuitively implausible conclusions, an applicable default rule 
must also be applicable when reasoning by cases. To ensure this, the cases described 
by a disjunction must be considered separately. This forces us to view disjunctions as 
describing possible extensions. Reiter’s definition has been modified according to this 
view. This modification can also be applied to several variants of Default Logic that 

have been proposed in the literature. 
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