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Abstract 

Roos, N., A logic for reasoning with inconsistent knowledge, Artificial Intelligence 57 
(1992) 69-103. 

In many situations humans have to reason with inconsistent knowledge. These inconsis- 
tencies may occur due to not fully reliable sources of information. In order to reason 
with inconsistent knowledge, it is not possible to view a set of premisses as absolute 
truths as is done in predicate logic. Viewing the set of premisses as a set of assumptions, 
however, it is possible to deduce useful conclusions from an inconsistent set of premisses. 
In this paper a logic for reasoning with inconsistent knowledge is described. This logic 
is a generalization of the work of Rescher [12]. In the logic a reliability relation is used 
to choose between incompatible assumptions. These choices are only made when a con- 
tradiction is derived. As long as no contradiction is derived, the knowledge is assumed 
to be consistent. This makes it possible to define an executable deduction process for 
the logic. For the logic a semantics based on the ideas of Shoham [14,15] is defined. 
It turns out that the semantics for the logic is a preferential semantics according to the 
definition of Kraus, Lehmann and Magidor [9]. Therefore the logic is a logic of system 
P and possesses all the properties of an ideal nonmonotonic logic. 

1. Introduction 

In many situations humans have to reason with inconsistent knowledge. 
These inconsistencies may occur due to sources of  information which are 
not fully reliable. For example, in daylight information about the position 
of  an object coming from your eyes is more reliable than the information 
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about the position of the object coming from your ears. But even reliable 
sources, such as domain experts, do not always agree. 

To be able to reason with inconsistent knowledge it is not possible to 
view a set of premisses as absolute truths, as in predicate logic. Viewing 
a set of premisses as a set of assumptions, however, makes it possible to 
deduce useful conclusions from an inconsistent set of premisses. As long 
as we do not have it proven otherwise, the premisses are assumed to be 
true statements about the world. When, however, a contradiction is derived, 
we can no longer make this assumption. To restore consistency, one of the 
premisses has to be removed. To be able to select a premiss to be removed, 
a reliability relation on the premisses will be used. This reliability relation 
denotes the relative reliability of the premisses. 

In the following sections ! will first describe the propositional case. After 
describing the propositional case, I will describe how to extend the logic to 
the first-order case. 

2. Basic concepts 

The language L, which will be used to express the propositions of the 
logic, consists of the propositions that can be generated using a set of 
atomic propositions and the logical operators -~ and 4 .  When in this paper 
the operators A and v are used, they should be interpreted as shortcuts: i.e. 

A fl for ~ (a  ~ -~fl) and a v fl for -~a ~ ft. 
To be able to reason with inconsistent knowledge, I will consider premisses 

to be assumptions. These premisses are assumed to be true as long as we do 
not derive a contradiction from them. If, however, a contradiction is derived, 
we have to determine the premisses on which the contradiction is based. The 
premisses on which a contradiction is based are the premisses used in the 
derivation of the contradiction. When we know these premisses, we have to 
remove one of them to block the derivation of the contradiction. To select 
a premiss to be removed, I will use a reliability relation. This reliability 
relation denotes the relative reliability of the premisses. It denotes that one 
premiss is more reliable than some other premiss. Clearly the relation must 
be irreflexive, asymmetric, and transitive. I do not demand this relation to 
be total, for a total reliability relation implies complete knowledge about the 
relative reliability of the premisses. This does not always have to be the case. 

A set of premisses 27 is a subset of the language L. On the set of premisses 
27 a partial reliability relation ~ may be defined. Together they form a 
reliability theory. 

Definition 2.1. A reliability theory is a tuple (Z, -<) where Z c_ L is a finite 
set of premisses and --< c_ (Z × Z ) is an irreflexive, asymmetric, and transitive 
partial reliability relation. 
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Using the reliability relation, we have to remove a least preferred premiss 
of the inconsistent set, thereby blocking the derivation of  the contradiction. 

Example 2.2. Let 27 denote a set of premisses, 

Z = {1. ~0, 2. (p ~ y~, 3 . - ~ ,  4. c~} 

and ~ a reliability relation on Z: 

-~ = {(3, 1), (3,2)}. 

From Z, y /can  be derived using premisses 1 and 2. Furthermore, a contra- 
diction can be derived from ~u and premiss 3. Hence, the contradiction is 
based on the premisses 1, 2, and 3. Since premiss 3 is the least preferred 
premiss on which the contradiction is based, it has to be removed. 

Three problems may arise when trying to block the derivation of  a con- 
tradiction. 

Firstly, we have to be able to determine the premisses on which a contra- 
diction is based. These are the premisses that are used in the derivation of  
the contradiction. To solve this problem, justifications are introduced. Such 
a justification, called an in-justification, describes the premisses from which 
a proposition is derived. 

Secondly, a premiss that has been removed may have to be placed back 
because the contradiction causing its removal is also blocked by the removal 
of  another premiss. This may occur because of  some other contradiction 
being derived. 

Example 2.3. Let Z be a set of  premisses, 

z = A 

and let -< be a reliability relation on Z given by 

From c~ and -,a A-~fl we can derive a contradiction causing the removal 
of  a. From -,a/x -,fl and fl we can also derive a contradiction causing the 
removal of  -,a A -,ft. When -~a A -,fl is removed, it is no longer necessary 
that a is also removed from the set of  premisses to avoid the derivation of  
a contradiction. 

To solve this problem, another kind of  justifications is introduced. This 
type of  justification is called an out-justification. An out-justification de- 
scribes which premiss must be removed when other premisses are still 



72 A logic for reasoning with inconsistent knowledge 

assumed to be true. It is a constraint on the set of premisses we assume to 
be true. 

Thirdly, there need not exist a single least reliable premiss in the set 
of  premisses on which a contradiction is based. This can occur when no 
reliability relation between premisses is specified. In such a situation we 
have to consider the results of  the removal of every alternative separately. 

Choosing a premiss to be removed implies that we assume the alternative 
to be more reliable. Since the reliability relation is transitive, making such 
a choice influences the reliability relation defined on the premisses. 

Example 2.4. Let 27 = {a, b,-~a,-~b} be a set of premisses and let -< = 
{(a,-~b), (b,-~a)} be a reliability relation on 27. Since a and -~a are in 
conflict and since there is no reliability relation defined between them, we 
have to choose a culprit. If we choose to remove a, -~a is assumed to be 
more reliable. Therefore, ~b is more reliable than b. Hence, since b and -~b 
are also in conflict, b must be removed. 

As is illustrated in the example above, the premisses removed depend on 
the extension of  the reliability relation. Therefore, in the logic described here, 
every (strict) linear extension of  the reliability relation will be considered. 

Different linear extensions of  the reliability relation can result in different 
subsets of  the premisses that are assumed to be true statements about 
the world (that can be believed). The set of theorems is defined as the 
intersection of  all extensions of  the logic. 

As mentioned above two kinds of  justifications, in-justifications and out- 
justifications, will be used. The in-justifications are used to denote that a 
proposition is believed if the premisses in the antecedent are believed, while 
the out-justifications are used to denote that a premiss can no longer be 
believed (must be withdrawn) when the premisses in the antecedent are 
believed. 

Definition 2.5. Let 27 be a set of  premisses. Then an in-justification is a 
formula, 

P =~ ~0, 

where P is a subset of  the set of  premisses 2~ and ~ E L is a proposition. 
An out-justification is a formula: 

P ~ ,  

where P is a subset of  the set of  premisses X and ~ is a premiss in 27, but 
not in P. 
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3. Characterizing the set of theorems 

In this section a characterization, based on the ideas of  Rescher [12], 
is given for the set of  theorems of  a reliability theory. As is mentioned in 
the previous section, linear extensions of  the reliability relation have to be 
considered. For each linear extension a set of  premisses that can still be 
believed can be determined. This set can be determined by enumerating 
the premisses with respect to the linear extension of the reliability relation, 
starting with the most reliable premiss. Starting with an empty set D, if a 
premiss may consistently be added to the set D, it should be added. Otherwise 
it must be ignored. Because the most reliable premisses are added first, we 
get a most reliable consistent set of premisses. 

Definition 3.1. Let (27,--<} be a reliability theory. Let al, a2 . . . . .  am be some 
enumeration of  27 such that for every k < j ,  aj -.< ak. Then D is a most 
reliable consistent set of premisses if and only if: 

D = Din, Do = 0 

and for 0 < i < m 

= ~Di U (ai}, 
Di+l [Di, 

if Di U {ai} is consistent, 

otherwise. 

Let A be the set of  all the most reliable consistent sets of  premisses that 
can be determined. 

Definition 3.2. Let (27, -~) be a reliability theory. Then the set ,4 of  all the 
most reliable consistent sets of premisses is defined by: 

A = {D t D is a most reliable consistent set 
of  premisses given some enumeration of  27}. 

The set of  theorems of  a reliability theory is defined as the set of  those 
propositions that are logically entailed by every most reliable consistent set 
of  premisses in A. 

Definition 3.3. Let (2:,-.<) be a reliability theory and let A be the corre- 
sponding set of  all the most reliable consistent sets of  premisses. Then the 
set of theorems of (27, -<) is defined as: 

Th((27,-~>) = ~ Th(D). 
DE.A 



74 A logic Jor reasoning with inconsistent knowledge 

4. The deduction process 

In this section a deduction process for a reliability theory is described. 
Given a strict linear extension -~' of  the reliability relation -~, the deduction 
process determines the set of premisses that can be believed. 

Remark 4.1. Instead of starting a deduction process for every strict linear 
extension of  -<, we can also create different extensions of  -~ when a contra- 
diction not based on a single least reliable premiss is derived. This approach 
results in one deduction tree instead of  a deduction sequence for every linear 
extension of -<. 

Instead of  deriving new propositions, only new justifications are derived. 
These justifications are generated by the inference rules. The reason why 
justifications instead of  propositions are derived, is that the propositions 
that can be believed (the belief set) depend on the set of premisses that 
can still be believed. Since this set of premisses may change because of 
new information derived, the belief set can change in a nonmonotonic way. 
The justifications, however, do not depend on the information derived. 
Furthermore, they contain all the information needed to determine the 
premisses that can still be believed and the corresponding belief set. 

Starting with an initial set of justifications J0, the deduction process 
generates a sequence of  sets of  justifications: 

Jo, Jl,  J2 . . . . .  

With each set of justifications Ji there corresponds a belief set Bi. So we get 
a sequence of  belief sets: 

Bo, BI,B2 . . . . .  

Although for the sets of justifications there holds: 

Ji ~ Ji+l,  

such a property does not hold for the belief sets. Because a belief set Bi is 
determined by a reason maintenance system using the justifications Ji, the 
belief set can change in a nonmonotonic way. Goodwin has called this the 
process nonmonotonicity of  the deduction process [8]. According to Good- 
win this process nonmonotonicity is just an other aspect of  nonmonotonic 
logics. 

In the limit, when the set of all justifications Jo~ has been derived, the 
corresponding belief set Bo~ will be equal to an extension of the reliability 
theory. Goodwin called this process of  deriving the set of  theorems the 
logical process theory of a logic [8]. The logical process theory focuses on 
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the deduction process of a logic. In this it differs from the logic itself, which 
only focuses on derivability, i.e. logics only characterize the set of  theorems 
that follows from the premisses. 

A deduction process for the preference logic starts with an initial set of 
justifications J0. This initial set J0 contains an in-justification for every 
premiss. These justifications indicate that a proposition is believed if the 
corresponding premiss is believed. 

Definition 4.2. Let S be a set of premisses. Then the set o f  initial justifica- 
tions Jo is defined as follows: 

Each set of justifications Ji, i > 0, is generated from the set Ji-l  by 
adding a new justification. How these justifications are determined depends 
on the deduction system used. In the following description of the deduction 
process I will use an axiomatic deduction system for the language L, only 
containing the logical operators ~ and -~. 

Axioms. The logical axioms are the tautologies of a propositional logic. 

Because an axiomatic approach is used, justifications for the axioms 
have to be introduced. Since an axiom is always valid, it must have an 
in-justification with an antecedent equal to the empty set. An axiom is 
introduced by the following axiom rule. 

Rule 4.3. An axiom ~ gets an in-justification ~ =~ ~o. 

In the deduction system two inference rules will be used, namely modus 
ponens and the contradiction rule. Modus ponens introduces a new in- 
justification for some proposition. This justification is constructed from the 
justifications for the antecedents of modus ponens. 

Rule 4.4. Let  ~o and ~o --, ~ be two propositions with justifications 

P ~ ~o and Q ~ ( ~ o ~ , ) ,  

respectively. Then the proposition g/gets an in-justification (P u Q) =~ ~. 

While modus ponens introduces a new in-justification, the contradiction 
rule introduces a new out-justification to eliminate a contradiction. 
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Rule 4.5. Let ~o and -~(o be propositions with justifications P ~ ~o and Q 
-~o, and let q = min(P  u Q) where the function rain selects the minimal 
element given the extended preference relation -~'. Then the premiss ~ gets 
an out-justification ( ( P u Q ) /q ) ¢p rl. 

In order to guarantee that the current set of believed premisses will 
approximate a most reliable consistent set of  premisses, we have to guarantee 
that the process creating new justifications is fair, i.e. the process does 
not forever defer the addition of some possible justification to the set of 
justifications. 

Assum0tion 4.6. The reasoning process will not defer the addition o f  any 
possible justification to the set o f  justifications forever. 

If a fair process is used, the following theorems hold. (The proofs are 
given in Appendix A.) The first theorem guarantees the soundness of the 
in-justifications, i.e. the antecedent of  an in-justification logically entails the 
consequent of the in-justification. The second theorem guarantees the com- 
pleteness of the in-justifications, i.e. if a proposition is logically entailed by 
a subset of  the premisses, then there exists a corresponding in-justification. 
Finally, the third and fourth theorems guarantee respectively the soundness 
and the completeness of the out-justifications. 

Theorem 4.7 (Soundness). For each i >t 0: 

i f  P ~ ~o E Ji, then 

P C_ X and P ~ ~o. 

Theorem 4.8 (Completeness). For each P c_ S: 

i f  P ~ ~o, then 

there exists a Q c_ P such that for some i >I 0: Q ~ ~0 E Ji. 

Theorem 4.9 (Soundness). For each i >1 0: 

i f  P #. ~o ~ J,, then 

(Pu{tp})c_2" and ( P u { ~ } ) is not satisfiable. 

Theorem 4.10 (Completeness). For each P c_ X: 

i f  P is a minimal unsatisfiable set o f  premisses and ~o = rain(P), 
where the function rain selects the minimal element given the 
extended preference relation -~', then 
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for  some i >i O: P / ~o ¢~ ~o E Ji. 

Given a set of justifications, there exists a set of  the premisses that can 
still be believed. Such a set contains the premisses that do not have to 
be withdrawn because of  an out-justification. Suppose that J, is a set of  
justifications derived by a reasoning agent and that ,4 c_ 27 is the set of  
the premisses that are assumed to be true by the reasoning agent. Then for 
each premiss ~ such that for some out-justification P ~ q E Ji there holds 
that P c C_ A, one may not believe ~. The set of  premisses that may not be 
believed given a set of  justifications Ji, is denoted by Out i (A) .  

Definition 4.11. 

Outz (S)  = {¢o I P ¢" ~o ~ Ji, and P c_ S}. 

The set of  premisses A must, of  course, be equal to the set of  premisses 
obtained after removing all the premisses we may not believe, i.e. A = 
27 -- O u t i ( A ) .  The set of  premisses that satisfy this requirement is defined 
by the following fixed point definition. 

Definition 4.12. Let 27 be a set of  premisses and let Ji be a set of  justifica- 
tions. Then the set o fpremisses  Ai that can be assumed to be true is defined 
as: 

Ai = S - Outi (Ai) .  

Property 4.13. For every i, the set Ai exists and is unique. 

After determining the set of  premisses that can be believed, the set of 
derived propositions that can be believed can be derived from the in- 
justifications. This set is defined as: 

Definition 4.14. Let Ji be a set of  justifications and Ai be the corresponding 
set of  premisses that may assumed to be true. The set of  propositions Bi 
that can be believed, the belief  set, is defined as: 

Bi = {~  I P =~ ~ ~ Ji and P c_ A }. 

Property 4.15. For each ~o ~ Bi " 

Ai ~- ~o. 

Let J ~  be the set of all justifications that can be derived. 
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Definition 4.16. 

J ~ = U J i .  
i >~O 

The corresponding set of  premisses that can be believed and the belief set 
will be denoted by d ~  and B~,  respectively. 

Property 4.17. d ~  is maximal consistent. 

Property 4.18. 

B~ = Th(do¢), 

where Th(S) = {~o [ S F- ~o}. 

The following theorem implies that the characterization of  the theorems 
of  the logic, given in the previous section, is equivalent to the intersection 
of  the belief sets that can be derived. 

Theorem 4.19. Let (Y,, -<) be a reliability theory. Then there holds: 

A = {A~ [ for some linear extension of-<, A~ can be derived}. 

Corollary 4.20. 

Th( (Y,, -<)) = ~'~{B~ I f  or some linear extension of-<}. 

5. Determination of the belief set 

In this section I will describe the algorithms that determine the set of  pre- 
misses that can be believed and the belief set, given a set of  out-justifications. 
The first algorithm determines the set L/~ given the sets of  justifications Jr. To 
understand how the algorithm works, recall that the consequent of  an out- 
justification is less reliable than the premisses in the antecedent. Therefore, 
if the consequent of  an out-justification P ~ q~ is the most reliable premiss 
to be removed, because we still belief the premisses in the antecedent P, 
removing ~0 will never have to be undone. After having removed ~ we can 
turn to the next most reliable consequent of  an out-justification. 

The time complexity of  the algorithm below depends on the for and the 
repeat loop. The former loop can be executed in O (n) steps where n in the 
number of  out-justifications. The latter loop can be executed in O(m ) steps 
where m in the number of  premisses in _r. Therefore, the whole algorithm 
can be executed in O (n.  m) steps. 
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begin 
/ l i :=  S;  
repeat 

q~ ~ max(Z) ;  

Z : =  S l ~ ;  
for each P ~ qJ E Ji do 

if PC_Ai 
then Ai:=  Ai/cp; 

until Z = O; 
return Ai; 

end. 

Using the in-justfications, the belief set Bi c a n  be determined in a straight- 
forward way. Clearly, Bi c a n  be determined in O(n)  steps where n is the 
number of in-justifications. 

begin 
Bi = 0; 
repeat 

P =~ q~ ~ J,; 
Ji : =  Ji - {P ~ ¢0}; 
if PC_A i 
then Bi :=  Bi U {~}; 

until J~ = 0; 
return Bi; 

end. 

6. The semantics for the logic 

The semantics for the logic is based on the ideas of Shoham [14,15]. 
In [14,15] he argues that the difference between monotonic logic and non- 
monotonic logic is a difference in the definition of the entailment relation. 
In a monotonic logic a proposition is entailed by the premisses if it is true in 
every model for the premisses. In a nonmonotonic logic, however, a propo- 
sition is entailed by the premisses if it is preferentially entailed by a set of  
premisses, i.e. if it is true in every preferred model for the premisses. These 
preferred models are determined by defining an acyclic partial preference 
order on the models. 

The semantics for the logic differs slightly from Shoham's approach. Since 
the set of  premisses may be inconsistent, the set of models for these premisses 
may be empty. Therefore, instead of defining a preference relation on the 
models of the premisses, a partial preference relation on the set of  semantical 
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interpretations for the language is defined. Given such a preference relation 
on the interpretations, the models for a reliability theory are the most 
preferred semantical interpretations. The preference relation used here is 
based on the following ideas. 

• The premisses are assumptions about the world we are reasoning about. 
• We are more willing to give up believing a premiss with a low reliability 

than a premiss with a high reliability. 

Therefore, an interpretation satisfying more premisses with a higher relia- 
bility (-~) than some other interpretation, is preferred (r-) .  

Example 6.1. Let 34 and A/" be two interpretations. Furthermore, let 34 
satisfy a and fl, and let JV satisfy fl and y. Finally, let a be more reliable 
than 7, 7 -< a. Clearly, we cannot compare 34 and Af using the premiss ft. 
34 and A/" can, however, be compared using the premisses a and 7. Since a 
is more reliable than 7, Af does not satisfy a, and 34 does not satisfy 7, we 
find that A4 must be preferred to A/'. 

Definition 6.2. An interpretation 34 is a set containing the atomic proposi- 
tions that are true in this interpretation. 

Definition 6.3. Let 34 be a semantical interpretation and let X be a set of 
premisses. Then the premisses P r e m ( 3 4 )  c_ 27 that are satisfied by M are 
defined as: 

P r e m ( 3 4 )  = {~ I ~o E S and 34 ~ ~0} 

Definition 6.4. Let (2:,-~) be a reliability theory. Furthermore, let r- be a 
preference relation on the interpretations. For all interpretations 34 and A/" 
there holds: 

M F-A/" if and only i f P r e m ( M )  ~ P r e m ( H )  and for every ~0 E 
(Prem (34)  - Prem (A/')), there is a ~t E (Prem (Af) - Prem (34)  ) 
such that ~o -~ q/. 

Given the preference relation on the interpretations, the set of models for 
the premisses can be defined. 

Definition 6.5. Let (2:, 4) be a reliability theory and let Modr-((27,-<)) de- 
note the models for the reliability theory. Then 

M E M o d e  ((27,-<)) if and only if there exists no interpretation 
AT such that M F- X.  
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Now the following important theorem, guarantees the soundness and the 
completeness of the logic. 

Theorem 6.6. Let (27,-<) be a reliability theory. Furthermore, let .4 be the 
corresponding set of  all most reliable consistent sets of  premisses. Then: 

Modr-((27,~)) = U Mod(A~) ,  

where Mod(S)  denotes the set of  classical models for a set of  propositions S. 

7. Some properties of the logic 

In this section I will discuss some properties of the logic. Firstly, I will re- 
late the logic to the general framework for nonmonotonic logics described by 
Kraus, Lehmann, and Magidor [9]. Secondly, I will compare the behaviour 
of the logic when new information is added with G~irdenfors' theory for 
belief revision [6 ]. 

7.1. Preferential models and cumulative logics 

In [9] Kraus et al. describe a general framework for the study of non- 
monotonic logics. They distinguish five general logical systems and show 
how each of them can be characterized by the properties of the consequence 
relation. Furthermore, for each consequence relation a different class of 
models is defined. The consequence relations and the classes of models are 
related to each other by representation theorems. 

The consequence relation relevant for the logic discussed here is the 
preferential consequence relation of system P. I will show that the preference 
relation on the semantic interpretations, described in the previous section, 
corresponds to a preferential model as described by Kraus et al. 

Lemma 7.1. Let (27, -4) be a reliability theory. Furthermore, let 

~ = {M LM ~o`}, 

27' = 27 u {o`}, 

~ '  = ( ~  ~ G / o ,  x _r /o` ) )  u {(~,,o`) I ~, ~ z / o ` } .  

Then M ~ Modr-, ( (,,T,', -<') ) i f  and only i f  .M E ~ and for no Af E ~: A/I l -  N. 
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Theorem 7.2. Let (27,-4) be a reliability theory. (S, l, <) is a preferential 
model for (Z,-4) i f  and only [f S is the set of  all possible interpretations for 
the language L, l : S --. S is the identity function, and for each :~'I,H E S: 

3A < N if  and only i f  Af r- M. 

Now I will relate the consequence relation of  system P to the logic. To 
motivate  the relation I will describe below, recall that c~ ~ ~ should be 
interpreted as: " i f  c~, normally fl". Hence, if  we assume a, we must assume 
that a is true beyond any doubt.  To realize this, we must add c~ as a premiss. 
Furthermore,  a must be more reliable than any other premiss, otherwise we 
cannot  guarantee that  c~ is an element of  the set of  theorems Th((27,-<)). 
It is possible that a is an element of  the original set of  premisses. In that 
case we should use the most reliable knowledge source for a premiss, i.e. 
the assumption that a is true beyond any doubt. I f  a is indeed an element 
of  Boo, we must prove t h a t / / w i l l  also be an element of  Th((Y,, 4)). 

Theorem 7.3. Let W = (S, l, <) be a preferential model for (2,  -4). Then the 
following equivalence holds: 

b" w ~ if  and only if  

27' = Z u 

-<' = (-< × u I ¢o Z / a } ,  

,8 E Th( (Z', -<') ). 

Corollary 7.4. Let W = (S , I ,<)  be a preferential model for (27,-4). Then: 

Th((Z,-4)) = {a l  b,w a}. 

7. 2. Belief revision 

In [ 6 ], G~irdenfors describes three different ways in which a belief set can 
be revised, viz. expansion, revision, and contraction. Expansion is a simple 
change that follows from the addit ion of  a new proposition. Revision is a 
more complex form of  adding a new proposition. Here the belief set must be 
changed in such a way that the resulting belief set is consistent. Contraction 
is the change necessary to stop believing some proposition. For each of 
these forms of  belief revision, G~irdenfors has formulated a set of  rationality 
postulates. 

In this subsection I will investigate which of  the postulates are satisfied by 
the logic. To be able to do this, the set of  theorems of  a reliability theory is 
identified as a belief set as defined by G~irdenfors. Here expansion, revision, 
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and contraction of  the belief set K, with respect to a proposition a, will be 
denoted by K + [a],  K* [a],  and K -  [a],  respectively. 

7.2.1. Expansion 
To expand a belief set K with respect to a proposition a, a should be 

added to the set of premisses that generate the belief set. Since the logic 
does not allow an inconsistent belief set, a can be added if the belief set 
does not already contain -~a. Otherwise, the logic would start revising the 
belief set. Adding a to the set of  premisses, however, is not sufficient to 
guarantee that a will belong to the new belief set. Take for example the 
following reliability theory. 

S = {1. a/x/~, 2.-~a/x/L 3. a/x-~/3, 4.-~a/x/~}, 

-< = { ( 3 , 2 ) ,  (4, 1)}. 

Clearly, adding a to X does not result in believing a. Hence, the second 
postulate for expansion is not satisfied. To guarantee that a belongs to the 
new belief set, we have to prefer a to any other premiss. If, however, we 
prefer a to every other premiss in the example above, the third postulate 
for expansion will not be satisfied. Hence, expansion of  a belief set is not 
possible in the logic. The reason for this is that the reasons for believing a 
proposition in a belief set are not taken into account by the postulates for 
expansion. Because of  this internal structure, revision instead of  expansion 
takes place. 

7. 2.2. Revision 
For revision of a belief set K with respect to a proposition a, we have to 

add a as a premiss and prefer it to any other premiss. With this implementa- 
tion of the revision process, some of the postulates for revision of  the belief 
set with respect to a are satisfied. The postulates not being satisfied relate 
revision to expansion. Expansion, however, is not defined for the logic. 

Theorem 7.5. Let  belief  set K = Th((Z,-.<)) be the set o f  theorems o f  the 
reliability theory (S,-.Q. Suppose that K* [a] is the belief  set o f  the premisses 
S u (a} with reliability relation: 

~' = (-.< ~ ( Z / a  x S / a ) )  u ((q,,a) I ~o e £ / a } ,  

i.e. K* [a] = { i l i a  ~ w  fl} where W is a preferential model  for  (Z,-~). Then 
the fol lowing postulates are satisfied: 

( 1 ) K* [ a ] is a belief  set. 
(2) a E K* [a]. 
(6) I f  F- a +--, fl, then K*[a]  = K*[fl]. 
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Contraction 
It is not possible to realize contraction of  a belief set in the logic in a 

straightforward way. To be able to contract a proposition ~ from a belief set 
K, we have to determine the premisses on which belief in this proposition is 
based. This information can be found in the applicable in-justification that 
supports the proposition a. When we have determined these premisses, we 
have to remove some of them, i.e. for each linear extension of  the reliability 
relation, we must add the following out-justifications to J ~  

{P/~o ¢, ~o ] e ~ a E Joo, and ~0 E m i n ( e ) } .  

Unfortunately, this solution, which requires a modification of the logic, can 
only be applied after J ~  has been determined. Furthermore, only the most 
trivial postulates (1), (3), (4) and (6) will be satisfied. 

8. Extension to first order logic 

The logic described in the previous sections can be extended to a first- 
order logic. To realize this we have to replace the propositional language L 
by a first-order language, which only contains the logical operators -~ and ~ ,  
and the quantifier V. Furthermore we have to replace the logical axioms for 
a propositional logic by the logical axioms for a first-order logic with modus 
ponens as the only inference rule. We can for example use the following 
axiom scheme, which originate from [5]. 

Axioms. Let ¢0 be a generalization of  ~u if and only if for some n >/ 0 and 
variables xl . . . . .  xn: 

Vxl . . . . .  Vxn ~. 

Since this definition includes the case n = O, any formula is a generalization 
of  itself. 

The logical axioms are aU the generalizations of  the formulas described 
by the following schemata: 

(1) tautologies; 
(2) Vxg(x)  --, ~( t )  where t is a term containing no variables that occur 

in ~0; 
(3) Vx(~ -~ ~u) ~ (Vx~ ~ Vx~u); 
(4) ~ ~ Vx~ where x does not occur in ~. 

Finally, we have to replace the definition of  the semantical interpretations 
by a definition for the semantical interpretations of  a first-order logic. 
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When these modifications are made we have a first-order logic for rea- 
soning with inconsistent knowledge. For this first-order logic all the results 
that can be found in the preceding section also hold. 

9. Related work 

In this section I will discuss some related approaches. Firstly, the relation 
with of Rescher's work will be discussed. Rescher's work is closely related to 
the logic described here. Secondly, the relation with Poole's framework for 
default reasoning, which is a special case of Rescher's work, will be discussed. 
Thirdly, the difference between paraconsistent logics and the logic described 
here will be discussed. Finally, the relation with truth maintenance systems, 
and especially de Kleer's ATMS, will be discussed. 

9.1. Hypothetical reasoning 

In his book Hypothetical Reasoning [ 12 ], Rescher describes how to reason 
with an inconsistent set of  premisses. He introduces his reasoning method, 
because he wants to formalize hypothetical reasoning. In particular, he 
wants to formalize reasoning with belief contravening hypotheses, such 
as counterfactuals. In the case of counterfactual reasoning, we make an 
assumption that we know to be false. For example, let us suppose that 
Plato lived in the Middle Ages. To be able to make such a counterfactual 
assumption, we, temporally, have to give up some of our beliefs to maintain 
consistency. It is, however, not always clear which of our beliefs we have to 
give up. The following example gives an illustration. 

Example 9.1. 
Beliefs: 

(1) Bizet was of French nationality. 
(2) Verdi was of Italian nationality. 
(3) Compatriots are persons who share the same nationality. 

Hypothesis: Assume that Bizet and Verdi are compatriots. 

There are three possibilities to restore consistency. Clearly, we do not 
wish to withdraw (3), but we are indifferent whether we should give up ( 1 ) 
or (2). 

To model this behaviour in a logical system, Rescher divides the set 
of  premisses into modal categories. The modalities Rescher proposes are: 
alethic modalities, epistemic modalities, modalities based on inductive war- 
rant, and modalities based on probability or confirmation. Given a set of  
modal categories, he selects Preferred Maximal Mutually-Compatible subsets 
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(PMMC subsets) from them. The procedure for selecting these subsets is as 
follows: 

Let Mo . . . .  , Mn be a family of modal categories. 

(1) Select a maximal consistent subset of  M0 and let this be the set So. 
(2) Form Si by adding as many premisses of  Mi to Si-i as possible 

without disturbing the consistency of Si. 
(3) Sn is a PMMC subset. 

Given these PMMC subsets, Rescher defines two entailment relations. 

• Compatible Subset (CS) entailment: a proposition is CS-entailed if it 
follows from every PMMC subset. 

• Compatible Restricted (CR) entailment: a proposition is CR-entailed 
if it follows from some PMMC subset. 

It is not difficult to see that Rescher's modal categories can be represented 
by a partial reliability relation on the premisses. For all modal categories 
Mi and Mj, i < j, there must hold that each premiss in Mi is more reliable 
than any premiss in Mj. Given this ordering, from Definition 3.1 it follows 
immediately that the PMMC subsets are equal to the most reliable consistent 
sets of  premisses. 

9. 2. A framework for default reasoning 

The central idea behind Poole's approach is that default reasoning should 
be viewed as scientific theory formation [10]. Given a set of facts about the 
world and a set of  hypotheses, a subset of  the hypotheses which together 
with the facts can explain an observation has to be selected. Of  course, this 
selected set of  hypotheses has to be consistent with the facts. A default 
rule is represented in Poole's framework by a hypothesis containing free 
variables. Such a hypothesis represents a set of  ground instances of  the 
hypothesis. Each of  these ground instances can be used independently of  
the other instances in an explanation. An explanation for a proposition ~0 is 
a maximal (with respect to the inclusion relation) scenario that implies ~0. 
Here a scenario is a consistent set containing all the facts and some ground 
instances of  the hypotheses. 

This framework can be viewed as a special case of Rescher's work. Poole's 
framework consists of only two modal categories, the facts M0 and the 
hypotheses M1. Since Rescher's work is a special case of  the logic described in 
this paper, so is Poole's framework. Poole, however, extends his framework 
with constraints. These constraints are added to be able to eliminate some 
scenarios as possible explanations for a formula ~0. A scenario is eliminated 
when it is not consistent with the constraints. 
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The constraints can be interpreted as describing that some scenarios are 
preferred to others. Since in the logic described in this paper a reliability 
relation on the premisses generates a preference relation on consistent sub- 
sets of  the premisses, an obvious question is whether the preference relation 
described by the constraints can be modeled with an appropriate reliabil- 
ity relation. Unfortunately, the answer is "no". This is illustrated by the 

following example. 

Example 9.2. 
Facts:  ~o and ~. 
Defaul ts :  ~ ~ ~, ~ --, ~ ,  ~u ~ - ~ ,  ~U ~ ft. 

Cons tra in t s :  -~ (a  A fl ), -~ (-~a A -~fl ). 

Without the constraints this theory has four different extensions. These 
extensions are the logical consequences of  the following scenarios. 

& = {~, ~,, ~ --, ~, ~ - ,  ~ } ,  

s2 = {~, ~,, ~ , - * - ~ ,  ~ , -~ /~} ,  

$3 = {~,~, ,~0-- ,  ~, ~ , -~  p},  

s4 = {~0, ~,, ~0 --, ~fl,  ~, ~ ~ } .  

Only the first two scenarios are consistent with constraints. If this default 
theory has to be modeled in the logic, a reliability relation has to be specified 
in such a way that {$1,$2} = .4. To determine the required reliability 
relation on the hypotheses, combinations of  two scenarios are considered. 
To ensure that Sl 6 .4 and $3 ¢ .4, ~o --, -~fl has to be more reliable than 

~ ft. To ensure that $2 6 .4 and $4 ¢ .4, ~u ~ fl has to be more reliable 
than ~0 ~ -~fl. Hence, the reliability relation would be reflexive, violating 
the requirement of irreflexivity in a strict partial order. This means that not 
every ordering of explanations in Poole's framework can be modeled, using 
the logic described in this paper. 

Although Poole's framework without constraints can be expressed in the 
logic described in this paper, the philosophies behind the two approaches 
are quite different. Poole's work is based on the idea that default reasoning 
is a process of selecting consistent sets of hypotheses, which can explain a set 
of  observations. The purpose of the logic described in this paper, however, 
is to derive useful conclusions from an inconsistent set of  premisses. 

9.3. P a r a c o n s i s t e n t  logics 

Paraconsistent logics are a class of  logics developed for reasoning with 
inconsistent knowledge [1]. Unlike classical logics, in paraconsistent logics 
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there need not hold --, (~0 A-~0 ) for some proposition ~0. Hence, an inconsistent 
set of  premisses is not equivalent to the trivial theory; it does not imply the 
set of all propositions. 

Unlike the logic described in this paper, a paraconsistent logic does not 
resolve an inconsistency. Instead it simply avoids that everything follows 
from an inconsistent theory. To illustrate this more clearly, consider the 
following reliability theory, without a reliability relation: 

r = A 

In the logic described in this paper, all maximal consistent subsets will be 
generated: 

{~Afl} and {--flAy}. 

In a paraconsistent logic the proposition fl will be contradictory but the 
propositions a and y will consistently be entailed by the premisses. 

The difference between the two approaches can be interpreted as the 
difference between a credulous and a skeptical view of knowledge sources. 
With a credulous view of a knowledge source, we try to derive as much 
as is consistently possible. According to Arruda [ 1], scientific theories for 
different domains, which conflict with each other on some overlapping 
aspect, are treated in this way. With a skeptical view of a knowledge source, 
we only believe one of the knowledge sources that support the conflicting 
information. So if part of  someone's statement turns out to be wrong, we 
will not believe the rest of  his/her statement. Although a credulous view of 
knowledge sources seems to be acceptable for scientific theories for different 
domains, a skeptical view seems to be better for knowledge based systems, 
which have to act on the information available. 

9.4. Truth maintenance systems 

In the logic justifications are introduced. Unlike the justifications used in 
Doyle's JTMS [4] or de Kleer's ATMS [3], the justifications in the logic 
are part of  the deduction process. They follow directly from the require- 
ment for the deduction process (Section 2). Therefore, the justifications are 
different from the ones introduced by Doyle and de Kleer. In an (A)TMS 
the justifications describe dependencies between propositions, while in the 
logic the in-justifications describe dependencies between propositions and 
premisses and the out-justifications describe dependencies among premisses. 
The in-justifications of the logic, however, can be compared with the labels 
in the ATMS [3]. Like a label, an in-justification describes from which 
premisses a proposition is derived. The out-justifications have more or less 
the same function as the set nogood in the ATMS. As with an element from 
the set nogood, the consequent and the antecedents of an out-justification 
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may not be assumed to be true simultaneously. Unlike an element of the 
set nogood, an out-justification describes which element has to be removed 
from the set of  premisses (assumptions). 

Because in-justifications and labels are closely related, it is possible to 
describe an ATMS using a propositional logic. Let (A, N, J)  be an ATMS 
where: 

• A is a set of assumptions, 
• N is a set of  nodes, and 
• J is a set of  justifications. 

We can model the ATMS in the logic using the following construction. Let 
A U N be the set of  propositions of the logic. Furthermore, let the set of 
premisses ~ be equal to A U J ,  where the justifications J are described by 
rules of the form: 

Pl A ""  A Pn ---* q. 

Finally, let every justification be more reliable than any assumption. Then 
the set .A is equal to the set of  maximal (under the inclusion relation) 
environments of an ATMS. Furthermore, for any linear extension of the 
reliability relation the label for a node n E N is equal to the set: 

{ P I P ~ n E J o o  and for n o Q = ~ n E J o o :  Q c P } .  

The set of  nogoods is equal to the set: 

{ (PU{p})  r A I  P : ~ P E J o o  and for n o Q # q E J o o :  
( Q u { q } ) r A c  ( P U { p } ) t A } .  

10. Applications 

In the previous sections a logic for reasoning with inconsistent knowledge 
was described. In this section two applications will be discussed. 

10.1. Unreliable knowledge  sources 

In situations where we must deal with sensor data the logic described in 
the previous sections can be applied. To be able to reason with sensor data, 
the data has to be translated into statements about the world. Because of 
measurement errors and misinterpretation of the data, these statements can 
be incorrect. This may result in inconsistencies. These inconsistencies may 
be resolved by considering the reliability of the knowledge sources used. To 
illustrate this consider the following example. 
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Example 10.1. Suppose that we want to determine the type of an airplane 
by using the characteristic of  its radar reflection. The radar reflection of 
an airplane depends on the size and the shape of plane. Suppose that we 
have some pattern recognition system that outputs a proposition stating 
the type of  plane, or a disjunction of possible types in case of uncertainty. 
Furthermore, suppose that we have an additional system that determines 
the speed and the course of  the plane. The output of this system will also be 
stated as a proposition. Given the output of  the two systems, we can verify 
whether they are compatible. If a plane is recognized as a Dakota and its 
speed is Mach 1.5, then, knowing that a Dakota cannot go through the sound 
barrier, we can derive a conflict. Since the speed measuring system is more 
reliable than the type identifying system, we must remove the proposition 
stating that the plane is a Dakota. 

In this example, the reliability relation can be interpreted as denoting 
that if two premisses are involved in a conflict the least reliable premiss 
has the highest probability of  being wrong. Since the relative probability is 
conditional on inconsistencies, information from one reliable source cannot 
be overruled by information from many unreliable knowledge sources. For 
example, the position of  an object determined by seeing it is normally 
more reliable than the position determined by hearing it, independent of  the 
number persons that heard it at some position. Notice that fault probabilities 
have no meaning because faults are context dependent. The positions where 
you hear an object can be incorrect because of reflections and the limited 
speed of  sound. Usually, these factors cannot be predicted in advance. 

10.2. Planning 

Another possible application for the logic can be found in the area of 
planning. In [7] Ginsberg and Smith describe a possible worlds approach 
for reasoning about actions. What they propose is an alternative way of 
determining the consequences of  an action. Instead of  using frame axioms, 
default rules, or add and delete lists. They propose to determine the nearest 
world that is consistent with the consequences of  an action. The advantage 
of  this approach is that we do not have to know all possible consequences 
of  an action in advance. For example, in general, we cannot know whether 
putting a plant on a table will obscure a picture on the wall. Hence, if we 
know that a picture is not obscured before an action, we may assume that 
it is still not obscured after the action when this fact is consistent with the 
consequences of  the action. 

Example 10.2. Figure 1 can be described a set of premisses. This set of 
premisses is divided in to three subsets, viz. the domain constraints, the 
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Fig. 1. Living-room. 

structural facts, and the remaining facts. The domain constraints are: 

(1) o n ( x , y ) A y ~  z ~ - w n ( x , z ) ,  

(2) on(z,y)  Az  ~ x A y ~ floor ~ -~on(z,y), 

(3) rounded(x) ~ -~on(x,y), 

(4) duct(d) A 3x.on(x,d) ~ blocked(d), 

(5) 3x.on(x, table) ~ obscured(picture), 

(6) blocked (duct 1 ) A blocked (duct2) ~ stuffy (room). 

The structural facts are: 

(7) rounded(bird), 

(8) rounded(plant), 

(9) duct(ductl ), 

(10) duct(duct2), 

(11 ) in(bottom-shelf, bookcase), 

(12) in(top-shelf, bookcase). 

The situational facts are: 

(13) on(bird, top-shelf), 

(14) on (tv, bottom-shelf), 

(15) on (chest,floor), 

(16) on (plant, duct2), 

(17) on(bookcase,floor), 

(18) blocked(duct2), 

(19) -,obscured(picture), 

(20) -~stuffy (room). 
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Clearly, the situational facts are less reliable than the structural facts and 
the domain constraints. Furthermore, facts added by recent actions are on 
average more reliable than facts added by less recent actions. 

Now suppose that we move the plant from duct2 to the table. This can be 
described by adding the situational fact on(plant,  table). From the new set 
of  premisses we can derive two inconsistencies: 

and 

{ 3x .on (x, table) ~ obscured(picture), 

-~ obscured (picture), on (plan t, table) } 

{ [ o n ( z , y ) / x  z # x / x  y # floor] - .  ~ o n ( z , y ) ,  

on (plant, duct2 ), on (plant, table) }. 

The least reliable premisses in these sets of premisses are respectively the 
facts -,obscured(picture) and on(plant,  duct2). Hence, they have to be re- 
moved from the set of premisses. 

II. Conclusions 

In this paper a logic for reasoning with inconsistent knowledge has been 
described. One of  the original motivations for developing this logic was 
based on the view that default reasoning is a special case of reasoning with 
inconsistent knowledge. To describe defaults in this logic, such as Poole's 
framework for default reasoning, formulas containing free variables can be 
used. These formulas denote a set of  ground instances. If  we do not generate 
these ground instances, bu t - -by  using unification of  terms containing free 
variables--we reason with formulas containing free variables, we can derive 
conclusions representing sets of  instances. This would seem to be a very 
useful property. 

Since, in the logic described here a default rule can only be described 
by using material implication, a default rule has a contraposition. It is 
possible, however, that the contraposition may not hold for default rules. 
For example, the contraposition of  the default rule, "someone who owns a 
driving licence, can drive a car", is not valid. A better candidate for default 
reasoning would be Reiter's default logic [11] or Brewka's approach [2]. 

Although it is likely that the logic is not suited for default reasoning, 
it is suited for reasoning with knowledge coming from different and not 
fully reliable knowledge sources. For this use of  the logic, it seems plausible 
that the logic satisfies the properties of system P. As was shown in the 
examples described in Section 10, the reliability relation can be given plau- 
sible probabilistic and ontological interpretations. Furthermore, the current 
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bel ief  set with respect to the inferences made  can be determined efficiently. 
One important  disadvantage is that, given a set o f  premisses containing 
many  inconsistencies and insufficient knowledge about  the relative reliabil- 
ity, the number  of  possible bel ief  sets can become exponential  in the number  
minimal  inconsistencies detected. 

Appendix A. Proofs 

Theorem 4.7 (Soundness) .  For each i >1 0: 

i f  P =~ ~o E Ji, then 

P c_ 27 and P ~ q~. 

Proof. By the soundness of  proposit ional  logic, 

if  P ~- (o, then P ~ ~0. 

Therefore,  we only have to prove that for each i >/ 0: 

if  P ~ ~0 E J/, then P c_ Z: and P ~- ~o. 

We can prove this by induct ion on the index i of  Ji. 

Basis: For i = 0: 

{ ~ o } ~ 0 E J o  if and only if  ~0E27. 

Therefore,  {~o} ~- ~0. 
Induction step: Suppose that P =~ ~0 E Jk+l- Then P ~ ~0 E Jk+l if and 

only if P ~ ~0 E Jk or P =~ ~0 has been added by Rule 4.3 or 4.4. 

• I f  P =~ ~0 E Jk, then, by the induct ion hypothesis,  P c_ 27 and P ~- ~0. 
• I f  P =~ ~o is in t roduced by Rule 4.3, then it is an axiom. Therefore, 

P = 0 and F- ~0. 
• I f  P =~ q~ is in t roduced by Rule 4.4, then there exist Q =~ ~ E Jk 

and R =~ (~u --* ~o) E Jk. Therefore,  P = (Q u R) .  According to the 
induct ion hypothesis,  we have: 

Q, R C_27, 

Q~-~,,  

R ~- ~t ~ ~o. 

Hence,  

P C__ 27 and P ~- (p. [] 
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Theorem 4.8 (Completeness) .  For each P c__ S:  

i f  P ~ ~o, then 

there exists a Q c_ p such that for some i >1 0: Q ~ oo ¢ Ji. 

Proof. Let P c_ 27 and P ~ ~o. By the completeness of  first-order logic, we 
have: 

if  P ~ ~0, then P F- ~o. 

Since P F- ~0, there exists a deduct ion sequence (~0o,{ol . . . .  ,{on) such that 
~o~ = f: and for each j -< n: ei ther 

• ~o; E P,  or 
• ¢pj is an axiom, or 
• there exist ~ok and ~0i with k, l < j and ~0t = {ok ~ ~0j. 

The theorem will be proven,  using induct ion on the length n o f  the deduct ion 
sequence. 

Basis: For  n = 1, (q~l) is the deduct ion  sequence for P F- q~. 

• I f  q~t ~ P, then {~ol} =~ q~l ~ Jo. 
• I f  ~o1 is an axiom, then there exists some io >/ 0 such that: 

J/o = Jio-t U {0 ~ ~Oo} and 0 ~ q~o is added by Rule 4.3. 

Hence,  the theorem holds for deduct ion  sequences o f  length 1. 
Induction step: Let (¢o,q~ . . . . .  q~m+~) be a deduct ion sequence for P ~- 

~0m+ 1, 

• I f  ~Om+l ¢ P, then {~Om+l} ~ ~0m+l ~ J0- 
• I f  ~0m+l is an axiom, then there exists a n  im+l such that: 

&~+, = &m+,--1U{0=~ ~0m+l} and 0=~ q~m+l is added by Rule 4.3. 

• I f  there exist ~ok and ~ot with k , l  < m + 1 and ~ol = ~ok ~ ~Om+b then, 
by the induct ion hypothesis,  there exists some ik and some i: such that: 

R ~ ~o k ¢ Ji~, 

S =~ ({O k --* {Om+l) G Jit, 

R, Sc_P .  

Because o f  the fairness Assumption 4.6, there must  exist a n  im+l with 
it ,  ii < im+l such that: 

( R U S  ~ ~Om+~) e J/'rn+l" 
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Hence there exists s o m e  im+l such that Q =~ ~Om+ 1 e Jim+l and Q _c P. [] 

Theorem 4.9 (Soundness). For each i >i 0: 

i f  P ¢, ~o 6 Ji, then: 

(P u {~o}) c_ 27 and (P u {~o}) is not satisfiable. 

Proof. The theorem will be proven using induction to the index i of the set 
of  justifications Ji. 

Basis: For i = 0 the theorem holds vacuously, because there is no P ¢, 
~o e Jo. 

Induction step: Suppose that P ¢~ ~o 6 Jk+l. We have that P ¢, ~o e Jk +1 
if and only if P ~ ~o e Jk or P ¢, ~o has been added by Rule 4.5. 

• If P #, ~o E Jk, then, by the induction hypothesis, (P U {~0}) c_ 27 and 
(P U {~0}) is not satisfiable. 

• If P ¢, ~0 is introduced by Rule 4.5, then there exist R ~ ~u E Jk and 
Q =~ - ~  6 Jk such that: 

~o = m i n ( Q u R )  and P =  (RuQ)/~0.  

By Theorem 4.7: 

R, Q c _ S ,  

R k  ~u and Q k - ~ u .  

Hence (PU {~0}) c_ S,  and (PU {~o} ) is inconsistent. Since inconsistency 
implies unsatisfiability: 

(PU{~o})c_S and (PU{~0}) is not satisfiable. [] 

Theorem 4.10 (Completeness). For each P c_ S: 

i f  P is a minimal unsatisfiable set of  premisses and ~o = rain(P), 

then for some i >1 O: P/~o ¢~ ~o E Ji. 

Proof. Let P be a minimal unsatisfiable subset of  S with ~o = min(P).  Since 
P is a minimal unsatisfiable set, P is a minimal inconsistent set. Therefore, 
there exists a proposition ~ such that: 

P ~ - ~  and P k - ~ .  

By Theorem 4.8 there exists a j, k 1> 0 such that: 

S ~ u e J j ,  so_P,  
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T ~ ¢ ~ ,  7 c ~  

Hence,  (S U T) c_ P. 
Since P is minimal  inconsistent: 

(S u T) = P. 

Because of  the fairness Assumpt ion 4.6 there exists an l > j ,  k such that: 

( P / ~ )  ~ ~o ~ J~. [] 

Property 4.13. For every i, the set Ai exists and is unique. 

Proof. 
Existence: Let fi0 c ~1 C ' ' '  C ~k be a sequence of  sets of  premisses such 

that: 

• £ = ~ o ,  
• ~j+l = ~j - {¢o} where ~o is the most  reliable premiss in Oj such that 

P C, ~o and P C_ Oj. 

Then, by induct ion on the index of  the sequence, we can prove that: 

z - Outi (6 j )  c_ 6j. 

Outi(~j+~ ) such that 
Suppose that ~ E 

miss such that P ¢, 
Contradict ion.  

Hence,  ~, ¢ ~j and, 

Basis: For j = 0, clearly, there holds S, - Outi (t~o) c ~o. 
Induction step: Let the induct ion hypothesis  hold for l ~< j .  
If Z - Outz (~j) c ~j, then there exists a most  reliable ~0 6 Oj such that 

P ~ 0  and P c_ Oj. 
Now suppose that 2 7 -  Outi(t~j+l) ~= ~j+l. Then there exists a ~u 

6j. Then ~/ = ~o. Since ~o is the most  reliable pre- 
q~ and P c_ dj, P c_ dj+l .  Hence, ~/ E Outi(dj+l) .  

by the construct ion of  fij, (p -<' ~.  Since ~u ¢ fij, by the 
induct ion hypothesis,  ~u e Out(~j) .  Therefore, there exists a Q ¢, ~u ¢ Ji such 
that Q c_ fij. Since q~ -<' q/, Q c_ ~j+l.  Hence, q /~  Outi(~j+l).  Contradiction.  

Hence, X - Outi (~9+1) c_ ~j+l. 

Let k be the highest index in the sequence. Then there does not exist 
a ~o ~ fik such that P ¢~ ~o E Ji and P c ~ .  Hence, X -  Outi(6k) = ~k, 
otherwise there would exist a ~0 E t~k such that P ¢, q~ E J~ and P c_ ilk- 
Hence,  there exists at least one AI such that: 

Ai = Z -  Outi(Al).  
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Uniqueness: Suppose Ai is not unique. Then there exist at least two 
different subsets Ai,A~ C • satisfying Definition 4.12. Let ~0 be the most 
reliable proposition in 27 such that: 

¢p ([ Ai and ~ E A~. 

Hence, there exists a P # ~ E Ji. By Theorem 4.10 we have: 

P U {~} is unsatisfiable. 

Therefore, there exists a minimal inconsistent set of  premisses Q with 
~o = m i n ( Q ) .  Since ~o ~ Ai and ~0 E A[, there exists a q/E Q such that: 

~, ~ A ~, g / l i d : ,  q~ -~ ~,. 

Hence, ~ is not the most reliable proposition in 27 such that ~ ¢ Ai and 
E A[. Contradiction. 
Hence Ai is unique. [] 

Property 4.15. For each ~o E Bi: 

Ai F- ~o. 

Proof. Suppose q~ E Bi. Then there exists a P =~ ~0 E Ji such that P c_ Ai. 
Therefore, by Theorem 4.7, P F- ~0 and P c_ Ai. 

Hence, A ~- ~0. [] 

Property 4.17. A~ is m a x i m a l  consistent. 

Proof. Suppose that Aoo is inconsistent. Then there exists a minimal incon- 
sistent subset M of Ao~. Let ~ = r a i n ( M ) .  Then by Theorem 4.10 there 
exists an i with 

Hence P # ~ E Jo~. Because P c_ Ao~, ~ g Ao~. Contradiction. 
Suppose that some Ao~ is not maximal consistent. Then there exists a 
~ ( X -  Ao~) such that {~} U Ao~ is consistent. Since ¢ E ( X -  Ao~), 

~p E Outo~ ( A ~ ) .  Therefore, there exists a P ~ ~ E Jo~ such that P c_ Ao~. 
Since P ~ ~ E J~ ,  P U {~} is inconsistent. Hence Ao~ U {~} is inconsistent. 
Contradiction. [] 

Property 4.18. 

B ~  = Th(Ao~), 

where T h ( S )  = {~o I S ~- ~o}. 



98 A logic lbr reasoning with inconsistent knowledge 

Proof. According to Property 4.15: 

if ~o E B s ,  then A,s I-- ~o. 

Suppose there exists a ~o such that: 

~o~Boo and ¢ETh(As). 

Since q~ E Th(As) ,  A s  F- ~o. By Theorem 4.8 there exist some i and some 
P =~ ~o E Ji such that: 

PC_As.  

Therefore, there exists a P ~ ~0 E J s  such that: 

PC_As.  

Hence, by Definition 4.14: ~o E B s .  Contradiction. 
Hence B s  = Th(As) .  [] 

Theorem 4.19. Let {X, ~} be a reliability theory. Then there holds: 

A = {As  [ for some linear extension of-<, A s  can be derived}. 

Proof. Let As  be a set of  believed premisses given a linear extension -<' 
of -<. Furthermore, let a~ . . . .  ,am be an enumeration of X such that for 
every aj -d ak: k < j .  Clearly, given this enumeration of X, As  will satisfy 
Definition 3.1. 

Let D be a most reliable consistent set of  premisses given an enumeration 
al . . . . .  an of  27. Furthermore, let -~' be a linear extension of  -4 such that for 
each k < j: ~j ~'  ak. Observe that for each ~0 ~f D there exists a minimal 
inconsistent set {a~,,... ,  a,o} with ij < ij+l and q~ = ai,. Hence, by Theorem 
4.10 and by the definition of  the extended reliability relation -<': 

({ah, . . . ,a i~} @ ai.) E J s .  

Let D c_ X be a set satisfying Definition 3.1. Now suppose that 

D ¢ X - Ou t s (D) .  

Hence, there exists a most reliable premiss ~o E 27 such that either 

~oED and ~oEOut s  

o r  

~o¢D and ~o~Outo~. 
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If ~0 E Outoo, then for some P ~ ~0 E J~ there holds P c_ D. Since P c_ D 
and since ~ E D, D is inconsistent. By Definition 3.1, however, D must be 
consistent. Contradiction. 

If q~ ~ Outoo, then for no P ~ ¢ E Joo there holds P c_ D. Hence, for each 
P #, q~ E J ~  there exists a ~u e P such that ~ ~ D. Since ~ ~ D, according 
to Definition 3.1, D U {~u} is inconsistent. Furthermore, by Definition 3.1 
there exists a minimal inconsistent set of  premisses Q containing ~0 such 
that: 

Q/~ c_c_ D, Q = {all . . . . .  O'in} with i j  < i j+ l .  

Therefore ~ = ai, and Q / ~ / ~  ~ E J~. Hence, ~ ¢ Outoo(D). Contradic- 
tion. [] 

Theorem 6.6. Let (Z',-<) be a reliability theory. Furthermore, let .4 be the 
corresponding set o fa l l  most reliable consistent sets of premisses. Then: 

ModE((S,,-.<))= LJ Mod(A~), 
A~EA 

where Mod(S) denotes the set of classical models for a set of propositions S. 

Proof. The proof of  

ModE((Y,,-<)) = U Mod(Aoo) 
A ~ E A  

can be divided into the proof of  the soundness: 

U M°d(A°°) c_ ModE((S,-<)) 
A~  E,A 

and the proof of the completeness: 

ModE((2j,-.<l) c_ U Mod(zi~) 
zJ ~ E ,A 

of the logic. 

Completeness: Suppose that for some Zloo E ,4 and some M E Mod(zJoo): 

A4 ~ Modr- ( (S, -~1 ). 

Then there exists an interpretation A/" such that M ~- Af. According to 
Proposition 4.17, since Prem(M) = /1~: 

Aoo ~ Prem(A/'). 

Let ~ ~ ,4oo be the most reliable premiss according to the linear extension 
--<' of  --<, such that q~ E (Aoo - Prem(A/') ). Now by Definition 6.4 there exists 
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a ~/ ~ (Prem(A/') - A ~ )  such that q~ -<' ~u. Since ~u ~ A~, there exists a 
P #~ ~u E J ~  such that P c_ A~. Now, P ~ Prem(A/'), otherwise Prem(A/') 
would be inconsistent. Hence, there exists a It c P such that: 

lz E (Aoo - Prem(N)  ). 

Since P # g/~ J~ ,  ~, -<'/z. Hence, q~ <'  ~ -<' p. Contradiction. 
Hence, 

LJ Mod(Aoo) c_ Modr-((X, ~) ). 
A~EA 

Soundness: Suppose there exists a structure 34 ~ Modr  ((Z, -<) ) such that 
for each linear extension -<' of  -< there holds: 

Prem (34) # Z - Out~ (Prem (M)  ). 

Then we have the following two cases. 

Case 1. There exists a ~0 such that 

(o E Prem(M)  and (o ~. Z -  Out~(Prem(34)  ). 

Hence, there exists a P # ~ c J ~  such that P c_ Prem(M) .  Because 
P c Prem (34), Prem (34) is inconsistent. Contradiction. 

Case 2. There exists a ~a such that: 

~o fL P r e m ( M )  and ~o E X -  O u t ~ ( P r e m ( M )  ). 

Then Prem(34) U {(o} is either consistent or inconsistent. If it is consistent, 
then we have for each structure A/" c Mod(Prem(M)  u {~0}) that ,A4 
A/'. Contradiction. Hence Prem(34)U {~0} is inconsistent. Therefore, there 
exists at least one minimal inconsistent subset of  Prem(34)U {~0}. Let P 
be such a minimal inconsistent subset. Suppose that ~0 = rain(P). Then 
by Theorem 4.10 there exists a P/~o ¢, ~o. Since P/~  c_ Prem(.M), ~o f[ 
Z - Out~ (Prem(.M)).  Contradiction. Hence ~o # min(P) .  

Let MIN be the set of all the premisses rain(P) for each minimal incon- 
sistent subset P of  Prem ( M ) U  {~o}. Since ~o is in each minimal inconsistent 
set P and q~ # min(P) ,  for each q ~ MIN  there holds: 

q -</~o. 

Clearly, the set (Prem(JVl) U {~o}) - M I N  is consistent. Let 

A/" E Mod( (Prem (34) U {~o} ) - MIN).  

Because for each q c ( P r e m ( M ) -  Prem(.N')) there holds ~/ 4 '  ~0, and 
because ~0 6 (Prem(A/') - P r e m ( 3 4  )) we have: AA V A/'. Contradiction. 
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U Mod(Ao~). [] 
Ao~ E at 

Lemma 7.1. Let (Y,, -<) be a reliability theory. Furthermore, let 

2 =  {M IM ko`}, 

Z" = S u {o`}, 

-4  = (..-< r (z. /o` x z / o ` ) )  u {<~,o`) I ~ ~ -r /o,} .  

Then A4 E ModE, ( (Z', W) ) i f  and only i f  M E ~ and for no A/" E ~ : .M ~- Af. 

Proof. 
Case 1. Suppose that A/[ E ~ and Af g 2, i.e. M ~ o  ̀ and A/" g: o .̀ Then, 

by Definition 6.3, 

Prem(M)  # Prem(A/'). 

Therefore, o  ̀ E ( P r e m ( M ) - P r e m ( A f ) ) ,  and for each ~0 E (Prem(A/ ' ) -  
Prem (.M ) ) there holds: 

~0 --<' o .̀ 

Hence, by Definition 6.4, for each A4 E ~ and Af ~ 2: 

A/" r- '  A4. 

Case 2. Suppose that A4, A/" E 2. Since A4, X ~ o`, we have that for each 
~o E (Prem(.M) - Prem(Af) ) and for each g/E (Prem(Af) - Prem(A4) ): 

• ~0 -< ~ if and only if ~0 -<' ~u, and 
• g/-< ~ if and only if ¢/-<' ~. 

Hence, for each M/l, Af E 2: 

A f [ - ' M  if and only if A l l - A 4 .  

Hence, .M E Modr,((Y,' ,-<')) if and only if A4 E ~ and for no X E 2: 
M E N ' .  [] 

Theorem 7.2. Let (Z,-<) be a reliability theory. (S, l, <) is a preferential 
model for (Z,-.<) i f  and only i f  S is the set o f  all possible interpretations for 
the language L, l : S ~ S is the identity function and for each M , A f  E S: 

M < Af i f  and only i f  .IV" V M .  
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Proof. Since the relation ~ defines a strict partial order on interpretations, 
so does < on S. Since l is a function from S to S, 1 assigns a single "world" 
to each state. 

Suppose that < is not smooth. Then by Lemma 7.1 for some proposition 
~, and some M E ~ there holds neither that A4 E ModE, ((Z',-<')), nor does 
there exist an H E ModE, ((Z', -4) ) such that jr4 Z Af. 

Since A4 ¢ Modr-,((Z',-<')), there must exists an £1 such that .M F- £1. 
Suppose that for some £i with i >~ 1 there does not exist an £i+~ such that 
£i E £i+1. Then £i E Mod E, ((X',-<')). Contradiction. Hence, there exists 
an infinite sequence M f- £1 ~ £2 ~ ' '. 

For each £1 there exists a N C Z': F/ = Prem(£~). Suppose that for some 
j < i: ~ = ~ .  Then £j  Z £i. Contradiction. Hence, for each £i and £j 
with i ¢ j we have ~ ¢ Fj. 

Let k = IT'(Z')[. Then {Fl . . . . .  Fk} = P(Z' ) .  But there also holds that 
Nk + t E 7' ( * ) .  Contradiction. Hence, < is smooth. 

Hence, (S, l, <) is a preferential model according to the definition of  Kraus 
et al. [9]. 

Theorem 7.3. Let W = (S, l, <) be a preferential model for {Z, -4). Then the 
following equivalence holds: 

a ~w  fl i f  and only if  

z" = z u {a}, 

-4' = (-4 r ( z / ,~  × z / a ) )  u {(o,,a) I q' ~ Z / a } ,  

fl E Th((U,',-<')). 

Proofi According to Theorem 6.6 we have that fl E Th((Z', -4')) if and only 
if for each M E Modc,((Z',-4')): M ~ ft. 

Therefore, by Lemma 7.1: fl E Th((X' ,~'))  if and only if for each A4 E 
min(~): 3,4 ~ ft. 

Hence, by the definition of  the nonmonotonic entailment relation ~ we 
have: 

f lETh((Z ' , -C))  i f a n d o n l y i f  a ~ w f l .  [] 

Theorem 7.5. Let belief set K = Th(IZ,-< )) be the set of theorems of the 
reliability theory IZ,-4). Suppose that K* [aJ is the belief set of  the premisses 
-~ u {a} with relmbility relation: 

-~' = (-< ~ ( z / a  × z / a ) )  u { ( ~ , a )  I ~0 E Z / a } ,  

i.e. K*[a]  = {fl [ c~ ~ w  fl}, where W is a preferential model for (X,-4). 
Then the following postulates are satisfied: 
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( 1 ) K *  [ a ] is a b e l i e f  se t ,  
(2) a E K* [a], 
(6) I f  F- a ~ ~ ,  t h e n  K*[a]  = K*[fl]. 

Proof. Postulate ( 1 ) follows from Property 4.18 
Postulate (2) follows from a ~ w a (reflexivity). 
Postulate (6) is a result of 

a ~ f l ,  a ~ w  7 (left logical equivalence). [] 
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