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ABSTRACT
This paper addresses decentralized multi-project scheduling
under uncertainty. The problem instance we study is the
scheduling of airport ground handling services, where air-
craft turnarounds can be seen as multiple projects, ground
handling services as activities, and service providers as re-
sources. In this environment aircraft requiring ground han-
dling services and the corresponding service providers are
self-interested autonomous parties. Moreover, the environ-
ment is well-known for its large number of disturbances.

We employ a heterogeneous multiagent scheduling frame-
work with two types of autonomous agents representing air-
craft and ground service providers respectively. We use on-
line scheduling to cope with uncertainty in the release time
of project: the uncertainty in aircraft arrival time at an air-
port. To balance the interests of the two types of agents in
this heterogeneous multiagent system, we propose a market-
based mechanism to assign time slots to aircraft turnaround
activities. We study the use of this mechanism in a cooper-
ative and a non-cooperative setting.

In a dynamic environment such as airport ground han-
dling, the execution of project schedules may be invalidated
by various disruptions. As a result project agents may incur
high costs if they have to reschedule some of their activi-
ties. The insertion of slack time between activities is a well
known solution. The delay cost incurred by inserting slack
should balance the expected costs of rescheduling some ac-
tivities. Since in a dynamic multiagent system it is hard to
analytically calculate optimal slack time between activities,
we propose that agents determine these slack time using a
co-evolutionary learning approach.

Experiment show that our decentralized scheduling ap-
proach scores on average as high as well-established OR-
based heuristics, and that slack times to keep a schedule
stable can be learned.
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1. INTRODUCTION
Aircraft turnaround defines the process of servicing an

aircraft while it is on the ground between two connecting
flights. Airport Ground Handling (AGH) refers to the plan-
ning, scheduling, and control of all aircraft turnarounds at
an airport. During turnaround, an aircraft must undergo a
whole set of ground handling activities consisting of disem-
barking/embarking passengers, unloading/loading luggage,
maintenance checks, fueling, cleaning, catering, and so on.
Many of these activities are handled by independent ground
service providers. The interest of the service providers need
not be in line with the one of aircraft. This makes scheduling
the activities in AGH a challenging task.

An aspect that makes AGH scheduling even more chal-
lenging is the highly dynamic environment. The actual ar-
rival time of an aircraft is often different from that foreseen
in the original flight plan. Moreover, there are uncertainties
during the execution of ground handling activities due to un-
foreseeable events such as machine breakdown. As a result,
ground handling activities may take longer time than ex-
pected, invalidating a schedule that optimally assigns time
slots to activities (the baseline schedule). Failing to meet
the baseline schedule will induce rescheduling costs, which
may include resource re-setup cost, inventory cost or various
organizational costs.

The scheduling of AGH is an instance of a multi-project
scheduling problem (MPSP) [12]. Project scheduling is con-
cerned with the allocation of resources over time to perform
a collection of activities [5]. In multi-project scheduling, the
activities belong to multiple independent projects. In mod-
ern day industry, such a multi-project environment seems
to be more common than a single-project environment. In
the case of AGH scheduling, each aircraft turnaround is a
separate project in a MPSP. The ground service providers
that perform the activities of the aircraft turnarounds are
the resources of the MPSP.

Aircraft and ground service providers at an airport are in-
dependent self-interested parties. Aircraft wish to minimize
the time of their turnarounds. These objectives need not be
in line with the objectives of ground service providers to level
their resource utilization, i.e., to avoid peaks of activities.



We propose a heterogeneous multiagent system (MAS) in
which aircraft and ground service providers are modelled
as autonomous agents: project agents and resource agents,
respectively. The projects agents make their scheduling de-
cisions independently of each other, they negotiate with re-
source agents over the time slots and associated prices for
performing their activities. The slot prices depend on the
load of the resources while the costs of performing activities
for project agents are also related to the flow times of the
projects.

In order to handle the uncertainty in project release time,
we present an online scheduling scheme that reduces the
risk of re-scheduling by starting the scheduling process of a
project when it is released. In online scheduling, projects
are scheduled in an incremental way. This may lead to sub-
optimal schedules compared to an offline approach. To com-
pensate for the inefficiencies that result from pure online
scheduling, we investigate a cooperative online scheduling
scheme. A project agent may reduce the cost of a time slot
by cooperating with projects agents that have already re-
served the resource for their activities during this time slot.

In a dynamic environment such as AGH, the execution
of the project schedules may be invalidated by various dis-
ruptions that change the durations of activities. As a result,
project agents may incur high costs if they have to reschedule
some of their activities. In this context, the addition of slack
time between activities is a well known solution. The delay
cost incurred by the addition of slack time should balance
the expected costs of rescheduling some activities. Since in
a dynamic MAS it is hard to analytically calculate optimal
slack time between activities, we propose that agents acquire
these slack time using a co-evolutionary learning method.
The empirical results appear to validate our claims.

The remainder of this paper is organized as follows. In
Section 2, we provide a formal description of the MPSP in
the presence of execution uncertainty. Section 3 describes
the MAS solution framework, presents our online multiagent
scheduling scenario, and describes the evolutionary learning
approach employed by project agents to determine a slack
time distribution across its activities. Section 4 analyzes
some empirical experimental results. The related work and
the contribution of this paper is discussed in Section 5. Fi-
nally, the paper is concluded in Section 6.

2. THE SCHEDULING PROBLEM
A MPSP is a generalization of job shop scheduling prob-

lem [4] and can be described as follows.

• A MPSP consists of M projects sharing K types of
resources;

• Each project i ∈ {1, . . . ,M} consists of Ni activities
ai,j with j ∈ {1, . . . , Ni};

• Two fictitious activities ai,0 and ai,Ni+1 are added for
representing the ‘start’ and the ‘end’ of project i;

• Precedence constraints ≺ describe execution orders for
pairs of activities of the same project: ai,j ≺ ai,k;

• Each project i has a release time tri , from which activ-
ities can be started;

• Each activity ai,j has a non-preemptive processing du-
ration pi,j ;

• Each activity ai,j requires an amount rk
i,j of resource

type k ∈ {1, . . . ,K} for its completion.

A solution to a MPSP is a schedule S = {si,j | 1 ≤ i ≤
M, 1 ≤ j ≤ Ni} specifying the start time si,j of each activitie
ai,j . Not every assignment of start times constitutes a valid
schedule. First, the schedule must respect the precedence
constraints ≺. Second, specific scheduling objectives, such
as minimizing the total flow time of projects or the variations
in resource utilizations, must be realized.

In the AGH context, the projects in MPSP are managed
by independent autonomous parties. These autonomous
parties have conflicting preferences concerning the sched-
ule of their own activities. To respect the autonomy of the
parties, each with their own private objectives, a decentral-
ized approach is preferred by those parties to a centralized
solution concept in which all information is accessible and
shared. Hence, we need a MAS approach in which agents ne-
gotiate a schedule. Moreover, the ground service providers
who manage resources are also autonomous parties having
their own preferences. The preferences need not be in line
with the preferences of project agents. So the MPSP we are
interested in is different from other multi-agent scheduling
approaches (e.g., [1, 7, 15, 10]) in the sense that it con-
sists of independent projects agents and of independent re-
source agents. The detailed MAS scheduling framework is
described in Section 3.

The highly dynamic environment is an important aspect
of AGH. This aspect manifests itself as the uncertainties
in the project release times and in incidents that influence
the duration of activities. As was pointed out in the in-
troduction, we cope with uncertainties in the release times
of projects by using an online scheduling approach. That
is, we wait for scheduling a project until it is actually re-
leased. The choice for online scheduling completely elim-
inates the release time uncertainties. However, there are
potential drawbacks. Scheduling online reduces the amount
of available information and it can result in losing oppor-
tunities for better allocation of resource to activities. We
argue that the dynamics of the AGH domain are so high
that it is not warranted to schedule too far beyond a short
horizon. For all practical purposes, we can assume that the
release times tri for i ∈ {1, . . . ,M} are fixed.

Online scheduling does not offer a solution to incidents
influencing the processing durations of activities, unless we
wait with assigning time slots to activities until all preced-
ing activities have finished. In AGH the time scale on which
services are required by aircraft makes such an approach
impractical. The ground service providers need some prepa-
ration time in order to provide their services. Therefore we
have to model incidents that may influence the processing
of activities.

Various types of incidents may happen during the execu-
tion of ground services, such as (a) resource inefficiency of
ground service provider(s), (b) no show of passengers, (c)
breakdown of machineries, etc. All these incident types will
influence the execution of related ground services, and will
consequently cause the prolongation of the activity process-
ing durations to a certain extent. In the paper we inves-
tigate the resource inefficiency incident of ground service
providers. We use the following incident model:

• A resource type k may subject to an efficiency decrease
during a time window [tIC

s , tIC
e ];



• the inefficiency factor or efficiency drops is denoted δ (0 ≤
δ ≤ 1), which literally means that this resource can only
serve 1− δ of its full strength;

• activities already scheduled on resource k during this time
window (i.e, {ai,j |rk

i,j > 0∧ si,j < tIC
e ∧ tIC

s < si,j + pi,j})
will have longer activity processing durations;

• the duration extension of an influenced activity is: text
i,j =

pi,j · δ/(1− δ).

3. MULTIAGENT SCHEDULING
We use a multiagent scheduling approach in order to en-

able the aircraft (project agents) and the ground service
providers (resource agents) to consider their personal in-
terests in making scheduling decisions. Each project agent
PAi is responsible for a project i consisting of a set of activi-
ties, while information about internal precedence constraints
among activities of other projects are hidden from them.
Activities in these projects need certain resources provided
by the resource agents for their completion. Each resource
agent RAk is responsible for a resource type k; it receives
the resource requirement request concerning a certain activ-
ity from a project agent; and it negotiates with the latter
project agent the start time of this activity.

Before we can discuss how project and resource agents
come to an agreement on the utilization of resources, we
first have to discuss the different agent objectives and the
cost model of scheduling each individual activity.

3.1 Objectives and Cost functions
Each agent in the multiagent scheduling will try to achieve

its own objective. The objective we consider for resource
agents is the well-known resource levelling objective. Re-
source levelling strives for minimizing the resource usage
variation over time. This objective is often achieved by min-
imizing the sum of the squared utilization cost [13].

fRAk (S) = cuk ·
∞∑

t=0

u2
t,k(S) (1)

in which cuk > 0 is the resource utilization cost of resource
type k per discrete time interval, and ut,k is the utilization
of resource k during the discrete time interval labelled by
t according to the schedule S. The utilization of resource
type k at t is defined as:

ut,k(S) =
∑

si,j∈S|si,j≤t<si,j+pi,j

rk
i,j

In order to create an incentive for project agents to reserve
time slots that do not create resource utilization peaks, the
measure fRAk (S) will be used to determine the price of re-
serving a time slot on a resource.

Each project agent has as its objective the completion of
all its activities as early as possible for a reasonable resource
price. Project agents are therefore trying to minimize an-
other type of objective functions than resource agents. This
function is a trade-off between the makespan of a project
and the the costs of reserving time slots on resources for
the project’s activities. We define the objective function
of a project agent PAi as the sum of project’s delay cost,
i.e., cdi · dli(S), and the total resource utilization cost of the

project’s activities, i.e.,
∑Ni

j=1 rc(ai,j , S):

fPAi(S) = cdi · dli +

Ni∑
j=1

rc(ai,j , S) (2)

Here, dl denotes the project delay compared to schedule
without resource constraints, cdi denotes the delay cost per
discrete time interval, and rc(ai,j , S) denotes the resource
utilization cost of activity ai,j given a schedule S. Let k be
the resource type needed by ai,j (i.e., rk

i,j > 0), the resource
utilization cost rc(ai,j , S) is therefore a price set by resource
agent RAk.

We now discuss how to divide the cost function fRAk (S)
over individual activities requiring resource type k. The
online scheduling approach we employ is an incremental
approach in which the order of scheduling projects is de-
termined by the release times tri . We label the index of
projects by the order of their release times such that, for all
i, j ∈ {1, . . . ,M}, i < j if tri < trj . Furthermore, in order to
schedule the activities of a project without backtracking, an
activity ai,j can only be scheduled if all preceding activities
w.r.t. ≺ have been scheduled. It means that activities of
a project are also scheduled incrementally. Therefore, when
an activity ai,j of project i is to be scheduled, the sched-
ule Si,j−1 = {s1,0, . . . , si−1,Ni−1+1, si,0, . . . , si,j−1} ⊆ S of
activities a1,0, . . . , ai,j−1 of the projects 1, . . . , i is already
fixed. Therefore, a project agent will use the marginal re-
source utilization cost MCRAk (ai,j , S

≤i,j) of resource agent
RAk as the cost rc(ai,j , S) for scheduling ai,j at si,j .

MCRAk (ai,j , S
≤i,j) = cuk

si,j+pi,j∑
t=si,j

[u2
t,k(S≤i,j)−u2

t,k(S≤i,j−1)]

(3)
Besides deciding on the distribution of the resource uti-

lization cost over activities, we must also decide how to dis-
tribute the delay cost of a project over activities causing the
delays. The online incremental scheduling approach makes it
possible to determine the marginal delay dlm(ai,j , S) caused
by scheduling an activity ai,j .

dlm(ai,j , S) = est(ai,Ni+1, S
≤i,j)− est(ai,Ni+1, S

≤i,j−1)

Here, the function est(ai,Ni+1, S
≤i,j) denotes the earliest

possible start time of the fictitious activity ai,Ni+1 given
the current schedule S≤i,j . That is, it denotes the earliest
possible finish time of project i given the current schedule
S≤i,j . To summarize, the marginal cost of the project agent:

MCPAi(ai,j , S
≤i,j) = MCRAk (ai,j , S

≤i,j) + dlm(ai,j , S)
(4)

Remark By choosing the same resource utilization cost per
discrete time interval cuk for all resource types k and the same
delay cost cdi for all projects, we can view them as weights,
especially if we also ensure that cuk + cdi = 1. By varying
the resource and delay cost between 0 and 1, we can either
emphasize resource levelling or project delays.

3.2 Market-based scheduling mechanism
Based on the cost functions derived in the previous sub-

section, we now propose an market-based mechanism for
scheduling the projects’ activities. We describe in the fol-
lowing the communication scenario between project agent
PAi and resource agent RAk concerning a slot reservation
of the activity ai,j on resource type k.



1. Project agent PAi starts to schedule activity ai,j when
all preceding, w.r.t≺, activities of ai,j have been sched-
ule. PAi sends the resource requirement (including
est(ai,j , S

≤i,j−1), pi,j and rk
i,j) to the corresponding

resource agent RAk.

2. RAk by receiving this request uses its own pricing
model (i.e., marginal cost function (3)) on the resource
requirements to calculate a list of offers, starting from
est(ai,j , S

≤i,j−1); RAk then sends this list of offers to
project agent PAi.

3. PAi receives this list of offers, and adds the potential
marginal delay cost to these slots prices (i.e., function
(4)). it selects the cheapest slot for scheduling activity
ai,j and informs resource agent RAk about its selec-
tion.

4. RAk acknowledges this decision made by PAi, and
schedules ai,j on this selected slot, and keeps listening
to the new upcoming requests from project agents.

5. PAi will move on to schedule the next activity.

With this interactive agent negotiation scheme, we suc-
cessfully distribute the decision making responsibilities and
concerns to individual and different types of agents, and the
overall schedule of all projects emerges (see Section 4).

3.3 Cooperative scheduling
In the above scheduling scenario, project agents commu-

nicate only the information necessary to make a slot reserva-
tion, no additional information is revealed. We denote this
mechanism a non-cooperative scheduling scheme. In a coop-
erative scheduling scheme, both project and resource agents
are willing to share part of their personal information to each
other, under the condition that they don’t suffer any loss
from information sharing. Being cooperative is not contra-
dictory to the selfish nature of individual agents; it appears
to be beneficial not only for common good but also for the
selfish individuals in a non zero-sum game [2], as in AGH.

To illustrate the cooperative agent scheduling scheme, we
introduce the term secure time window for each scheduled
activity. This secure time window starts from the latest
scheduled completion time of this activity’s predecessors,
and ends by the earliest scheduled starting time of its suc-
cessors. Any slot shifting within this secure time window
will not cause any further delay of the project that the ac-
tivity belongs to. By knowing the secure time windows of
activities, resource agents are given more flexibilities to shift
the slots for decreasing the resource levelling value.

Let us illustrate this agent cooperation scheme with an
example in Figure 1, in which a time line of resource type k
is presented. Assuming that resource agent RAk managing
such resource type and the resource unit utilization cost cuk =
1 . Activity B (rk

B = 2, pB = 5) has been scheduled on
this resource at the time window [3, 8), the current resource
levelling value is 5 × 22 = 20. A newly arrived activity A
(rk

A = 2, pA = 4) is requesting the slot price starting from
4 (cf. Figure 1:original). According to the pricing model
of resource agents presented in equation 3, the slot price of
[4, 8) is: 4× (42 − 22) = 48 (cf. Figure 1:option 1).

In the cooperative scheduling scheme, project agent PAB

which manages activityB is willing to reveal some additional
information to resource agent RAk. For instance, when all

original

option 1

3 4 50 1 2 9 10 116 7 8 12 13

B

A

3 4 50 1 2 9 10 116 7 8 12 13

3 4 50 1 2 9 10 116 7 8 12 13

3 4 50 1 2 9 10 116 7 8 12 13

option 2

option 3

Figure 1: Activity A to be scheduled on a resource

the direct successors of activityB are scheduled (might be on
other resources), RAk will be informed a secure time window
of activity B. In Figure 1, the black dots on the resource
time line are indicating the secure time window of activity B.
Option 2 in Figure 1 illustrates the case where B is shifted
backward to [2, 7), and A is scheduled on [4, 8), this shifting
will result in a lower total resource levelling: 3×22+3×42 =
60, therefore, the marginal cost of scheduling activity A is
only: 60 − 20 = 40. Instead of shifting B backward, in
Figure 1 option 3, B is shifted forward to [6, 11), which
gives an even lower marginal cost of scheduling activity A:
5× 22 + 2× 42 − 20 = 32.

In this cooperative scheduling scheme, by providing more
information to resource agents, project agents are not suffer-
ing any loss but helping resource agents for a lower levelling
value. Subsequently, cheaper slot options are provided to
other project agents.

3.4 Learning slack time to handle incidents
So far we have presented a heterogeneous MAS for schedul-

ing AGH services. This multiagent scheduling approach is
capable of handling uncertainties in the release times of
projects (the aircraft’s arrival times) but not in handling
incidents that influence the normal processing durations of
activities (the ground handling services).

In the domain of AGH the execution of ground handling
services can be disrupted by events such as no show of pas-
sengers, resource inefficiency, machine breakdown, and so
on. As a result the processing durations of activities may
increase. The increase of some of these processing durations
can invalidate the schedule of other activities in the same
project, forcing the project agent to reschedule its activi-
ties. The cost of rescheduling can be high since resource
capacity may already be reserved by other projects. A well
known solution to this problems is the insertion of slack time
between activities. This slack time must guarantee that in
case an incident occurs during one activity, succeeding ac-
tivities can still start as planned. Of course, the insertion of
slack time between activities comes with a price — higher
delay cost for the projects.

An important question that the project agents have to
address is how much slack time should be added after each
activity. If a project agent adds too much slack time, the
delay cost will become unnecessarily high. If the project



agent adds not enough, it may have to reschedule some of
the activities and incur high resource cost because of that.
Thus, the project agent has to balance the delay cost of
adding slack time and the expected resource rescheduling
cost when the slack time is insufficient in some cases. In
other words, the project agent has to minimize the sum of
these two costs.

Analytically determining the optimal slack time to be in-
serted after an activity is an impossible task. In order to ful-
fill this task agents must know not only the frequency with
which incidents occur, but also the resource requirement of
other project agents. To make things worse, other project
agents may at the mean time be pursuing their own optimal
slack times. Hence, determining optimal slack time becomes
a strategic game with no prior information about the project
agents’ payoff matrix. By playing the game the agents can,
however, gain some information about their own rewards,
although these rewards still depend on the employed strate-
gies by the other agents.

Many multiagent learning techniques require that the pay-
off matrix is known by the agents. Techniques that can still
be used when the payoff matrix is not known in advance
are for instance Evolutionary Game Theory [17], Nash Q-
Learning [6] and Genetic Algorithms using co-evolution [14].
In all cases convergence to a stable state is an important is-
sue. The authors have chosen to use Genetic Algorithms
(GAs) because (i) we are interested in a proof of concept,
i.e., can appropriate slack times be learned, and (ii) we ex-
pect GAs to be less sensitive for requirements that must be
met to guarantee convergence.

We employ a GA learner within each project agent. There-
fore, project agents are co-evolving their individual strate-
gies in a multi-project scheduling environment. In our co-
evolutionary learning, we assume that project agents use the
same problem specific encoding for an individual I of the
populations used by their GA. An individual Ii of project
agent i is represented by a vector of Ni real numbers and is
denoted as:

Ii = (αi,1, . . . , αi,j , . . . , αi,Ni) (5)

The scaling factor αi,j ∈ [0, 1] in Ii determines the slack
time tslk

i,j to be inserted behind activity ai,j . The slack time

tslk
i,j can be computed as the product of αi,j and the activity

processing duration pi,j : tslk
i,j = αi,j · pi,j

1. Each individ-
ual is thus transformed to a uniquely determined slack time
configuration.

In order to determine the fitness value f(Ii) of each in-
dividual Ii, we need to run simulations with incidents dis-
rupting the execution of certain activities. While making
scheduling decisions, each project agent will take the slack
time configuration into account. When an incident occurs
during the execution of activity ai,j , and causes a duration
extension text

i,j , three different situations may arise:

1. text
i,j ≤ tslk

i,j ;

2. text
i,j > tslk

i,j but none of the succeeding activities’ sched-
ule is invalidated;

3. text
i,j > tslk

i,j and some schedules of succeeding activities
are invalidated.

1We restrict the length of slack time to be less than the
activity processing duration. This constraint can be relaxed
by increasing the upper bound of α value.

PAi handles the first two situations by simply requiring
additional resources for the extended period. For the third
situation, PAk does a complete rescheduling of the rest un-
processed activities.

The fitness of an individual is determined by the sum of
the actual project delay cost cdi ·dlIC

i and the actual resource
utilization costs of all activities

∑Ni
j=1 rc

IC(ai,j , S) when the
project is completed.

f(Ii) = cdi · dlIC
i +

Ni∑
j=1

rcIC(ai,j , S) (6)

GA starts by computing an initial population, i.e., the
first generation, containing individuals with random α val-
ues. After computing the fitness of all individuals by sim-
ulation, we can apply the usual genetic operators such as
selection, crossover and mutation. By scheduling ground
handling services repeatedly, GA whould create new gen-
eration of individuals that represent improved slack time
configurations.

4. EXPERIMENTAL RESULTS
The performance of our proposed online multiagent schedul-

ing approaches are first evaluated in a deterministic envi-
ronment. We compare the generated schedules with those
of some well known priority-based centralized heuristic ap-
proaches. The comparison has been made for both the case
where project agents are non-cooperative and cooperative.
The tests have been performed in an airport specialized
MPSP (see Section 4.1).

Next we simulate a dynamic airport situation where cer-
tain service providers may suffer some resource inefficiency
incidents during a period of time. Slack time needs to be
added for activities related to such incidents in order to ab-
sorb the disruptions. We studied in this dynamic environ-
ment the performance of the genetic learning method em-
ployed by each project agent for approximating an optimal
slack time distribution (see Section 4.2).

4.1 Experiments for deterministic problems
We can distinguish a few types of aircraft turnaround pro-

cedures based on the differences in aircraft models (Boeing
747, Airbus 320, etc), aircraft usages (cargo or passenger air-
craft) and docking locations (terminal gate or remote stand).
Different turnaround procedures may require different sets
of ground handling activities. For instance, the precedence
relations among activities may be different; same type of ac-
tivities may require different types and amounts of resources;
moreover, activity processing durations may also be different
in different turnaround procedures. However, ground han-
dling activities performed in the same type of turnaround
procedure share a large scale of similarities.

Based on these observations, in our experiments, we have
simulated an airport environment with 10 types of aircraft
turnaround procedures. For each type of these procedures,
we have created 10 identical aircraft instances. Therefore,
we have a simulated airport environment with 100 aircraft
requiring ground handling services. Aircraft arrive at the
airport with a random order and with a frequency of every
5 minutes (release frequency).

Such an airport specialized MPSP instance is constructed
by using 10 single-project instances (J301 1 → J301 10)



from the benchmark Project Scheduling Problem Library
— PSPLib [8]. These 10 project instances stand for 10
different types of aircraft turnaround procedures. Each of
project instances consists of 30 activities, each of which can
be used to represent a ground handling service and requires
one of the 4 types of resources for execution. These shared
4 types of resources can be considered as ground handling
service providers. The optimal schedules without resource
constraints for these 10 projects range from 31 to 60, which
resembles an aircraft turnaround duration in actual situa-
tion.

Schedules are made in a deterministic environment and
the proposed two multiagent scheduling approaches are com-
pared with the following three priority-rule based centralized
heuristic methods.

• First Come, First Served (FCFS),

• Maximum Total Work Content first (MAXTWK),

• Shortest Activity from the Shortest Project (SASP).

The later two heursitics are proved to be more effective
compared to other heuristics when the objective is to min-
imize the mean project delay in MPSP [9]. In the central-
ized heuristic methods, the differences in three methods are
the priority rule(s) applied in selecting an eligible activity.
For deciding the activity start times, they all use the same
heuristic — choose the start time resulting in the minimum
combined marginal cost function (4). By decreasing gradu-
ally the value of cdi and therefore increasing ck if cdi +cuk = 1,
the problem will switch from a time-optimization problem
to a resource-optimization problem.

In multiagent scheduling methods, resource agents use the
marginal resource cost function (3) as their pricing model.
We achieve switching from reducing project delay time to
resource levelling by gradually decreasing the delay cost per
time units cdi . Recall that project agents are concerned
about the delay incurred by scheduling an activity. Choos-
ing a high cdi value emphasizes a time-based objective, while
a low cdi stresses a resource-based objective.

3

3.2

3.4

3.6

3.8

4

4.2

0

2000

4000

6000

8000

10000

12000

14000

To
ta

l r
es

o
u

rc
e 

le
ve

lli
n

g
M

ill
io

n
s

To
ta

l p
ro

je
ct

 d
el

ay
s

Time-Resource Ratio

fcfs:dl maxtwk:dl sasp:dl non-cooperative:dl cooperative:dl

fcfs:rs maxtwk:rs sasp:rs non-cooperative:rs cooperative:rs

Ci
d

Figure 2: Various approaches in solving AGH prob-
lem with bi-criteria objectives

We demonstrate the experimental results in two different
perspectives with two figures. Figure 2 shows the trends of

total project delay (cf. left y-axis and bars in the diagram)
and total resource levelling (cf. right y-axis and lines in
the diagram) with respect to the change of emphasis from
resource-optimization to time-optimization (x-axis). For all
five scheduling approaches, it holds that with the increase of
delay cost per time unit cdi , the total project delay decreases,
while the resource levelling value increases.

Comparing the five scheduling methods, from the time
perspective, we observe that MAXTWK and SASP heuris-
tic perform the best; and our online multiagent scheduling
approaches (both non-cooperative and cooperative) lead to
a sub-optimal results compared with these two heuristics.
They only outperform the naive FCFS heuristic. However,
with respective to the resource levelling measures, multia-
gent scheduling in non-cooperative scheme results in lower
resource levelling than MAXTWK and SASP heuristics when
the resource-based objective is emphasized (a relatively low
cdi ). The total resource levelling is even significantly im-
proved in the multiagent cooperative scheduling scheme.
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Figure 3: Trade-offs between time and resource

Figure 3 shows the trade-off between project delays and
resource levellings. In all solution methods, the higher total
project delay goes (cf. x-axis), the less total resource level-
ling value (cf. y-axis) will be paid. Non-cooperative online
multiagent scheduling approach provides a schedule that is
of comparable quality as the centralized heuristic methods.
Moreover, by letting self-interested agents behave cooper-
atively, given the same total delay, we can even lower the
resource levelling value. Therefore, with the same project
delays, cooperative online agent scheduling approach can
achieve the least resource levelling value, which means that
it outperforms all other heuristics w.r.t the total cost of the
projects.

4.2 Experiments for dynamic problems
In order to evaluate the proposed co-evolutionary learning

scheme for assigning slack time distribution across ground
handling activities, we have simulated a dynamic problem
instance. In such a dynamic situation one of the ground
service providers (resources) will suffer an incident of re-
source inefficiency (δ = 0.2) within a certain period of time
(30 minutes in our simulation). In consequence, all aircraft



ground handling activities that have been scheduled for us-
ing such a resource during this time period will have to ex-
tend their processing durations.
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Figure 4: Incidents due to resource inefficiency

Figure 4 shows the concept of this simulated situation,
where the timeline shows a schedule fragment of this prob-
lematic service provider. Multiple aircraft have already made
their reservations for using such a resource during this time
frame. Within this time frame, 6 aircraft were released se-
quentially with a release frequency of every 5 minutes. When
the time arrives at the point 30, the simulated incidents oc-
cur, causing a drop in efficiency of the service provider 20%
of its full strength. This incident renders the original sched-
uled activity processing duration insufficient for completion.
Project agents try to insert slack time in between activities
to avoid rescheduling. They do so by “co-evolving” the slack
time distributions as proposed in section 3.4.

We implemented our genetic learning algorithm used by
each project agent with two different parameter settings —
Dejong Settings [3] and a customized parameter setting:

• population size: 150

• tournament selection size: 5

• chance of crossover: 0.6

• crossover type: uniform

• mutation type: Gaussian mutation

• mutation rate: 0.01

Figure 5 shows the learning curves of all 6 aircraft with
two sets of parameters. The horizontal axis represents and
number of generations and vertical axis shows the average
fitness value of each generation. As observed in Figure 4,
later arrived aircraft (such as aircraft 5 and aircraft 6) have
more activities that fall into this incident zone than other
aircraft. The learning results reflect the consequence of these
incidents by the difference in fitness levels: later arrived air-
craft suffer more disturbance than earlier ones. These learn-
ing curves show that such online co-evolutionary learning
methods is capable of readily absorbing the uncertainties in
the execution of the project activities and converge rapidly
to a stable situation. Comparing two genetic algorithm pa-
rameter settings, the customized setting performs slightly
better than the standard “Dejong Settings” in the sense of

Figure 5: The learning curves of aircraft

stability and speed of convergence. The parameter setting
for genetic algorithms influences the performance of learning
significantly. Due to the fact that the chromosome of each
individual in our genetic encoding consists of 30 real values,
a relatively large population size would give the possibility
of a wider search radius in a more explored search space to
avoid local optima. Parameter refinement in co-evolutionary
learning can be found in [14].

5. RELATED WORK
Many works published in the area of project scheduling

make reference to the scheduling of a single project under
resource limitations and time constraints [13, 4]. Scheduling
multiple projects starts to draw more and more research
attention both in OR and AI communities [12, 10, 1].

Using multiagent systems for solving decentralized schedul-
ing problems is observed in recent research [15, 7, 10, 1]. In
the project scheduling field, Lee et al. [10] have proposed a
MAS for short-term rescheduling of resources shared by mul-
tiple projects. Confessore et al. [1] proposed a multi-agent
model and a combinatorial auction mechanism for schedul-
ing a multi-project problem. In both of their works, a coor-
dinator agent is proposed for solving the resource conflicts by
allocating the shared resource time slots to project agents.
Our heterogeneous MAS model differs from these work in
the sense that different types of resources, having each their
own interests, are also modelled as agents. These resource
agents make in turn their decisions based on their own inter-
ests. These decisions may conflict with those of the project



agents, which are subject to their own objective functions
that are influenced by those of the resource agents. Allowing
different types of agents to cooperate by sharing additional
private information helps both resource and project agents
to attain higher objective function levels.

Methods for generating a stable baseline schedule have
been proposed for scheduling single project in the presence
of activity disruptions. We observe two heuristic meth-
ods which add slack time in front of activities to protect
the activity starting times. Adapted Float Factor (ADFF)
heuristic [11] generates a stable baseline schedule under the
condition of ample resources, and Resource Flow-Dependent
Float Factor (RFDFF) heuristic [16] extends ADFF for the
problem with limited resource capacities. These approaches
scatter the time buffer for project makespan through out
the baseline schedule. Our method is different from these
two heuristics in two perspectives. First, our method in-
serts slack time at the end of activities instead of in front of
them. This creates an incentive of associating longer slack
time to those activities that have a higher probability of
being disrupted. Second, our method allows the project
agents to acquire this slack time distribution by means of
co-evolutionary learning under a dynamic situation with dis-
turbance during activity execution.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a heterogeneous MAS so-

lution framework for scheduling AGH services in a dynamic
environment. This AGH scheduling problem forms an in-
stance of decentralized MPSP under uncertainty. A pro-
posed market-based mechanism in such MAS for negotiat-
ing an acceptable resource time slot provides heterogeneous
agents the possibility of making independent decisions based
on their own objectives and preferences. An online schedul-
ing scheme completely eliminates the risk of rescheduling
under the uncertainties of aircraft arrival times. In the ex-
periments, we observe that such an incremental scheduling
scheme leads to a sub-optimal solution compared to some of-
fline heuristic approaches. We try to compensate the ineffi-
ciencies resulted from the online scheduling by letting agents
behave cooperatively — revealing additional information to
other agents. The experimental results of such cooperative
online scheduling scheme show a comparable performance as
the one of the best centralized scheduling heuristics.

In addition, inserting slack time at the end of every ac-
tivity has been chosen to be the method of absorbing the
possible disruptions caused by incidents. In order to fulfill
the task of assigning appropriate slack time for all activi-
ties under certain incidents, a genetic learning algorithm is
employed by each project agent to approximate the stable
situation, multiple agents are therefore co-evolving the so-
lution in a shared environment. The empirical experiments
we conducted in one incident situation show that our on-
line co-evolutionary learning method is capable of readily
absorbing the uncertainties in the execution of the project
activities and converge to a stable situation.

Further research we envision is needed to empirically model
in terms of agents the utilization costs of dynamic and finite-
capacity resources of service providers; flow time delay costs
and resource usage price for different types of aircraft; proba-
bility and severity of the different incident classes. As a con-
sequence our MAS solutions will acquire upon evolutionary
learning or other learning methods for the different incident

classes.
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