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Models used for Model-Based Diagnosis usually assume that observations, and predictions based on the
system description are accurate. In some domains, however, this assumption is invalid. Observations may
not be accurate or the behavior model of the system does not allow for accurate predictions. Therefore,
the accuracy of predictions, which is a function of the accuracy of the observed system inputs and the
behavior model of the system, may differ from the accuracy of the observed system outputs.

This paper investigates the consequences of using inaccurate values.! The paper will show that tradi-
tional notions of preferred diagnoses such as abductive diagnosis and minimum consistency-based diagno-
sis are no longer suited if the available data has different accuracies. A new notion of preferred diagnoses,
called maximal-confirmation diagnoses, is introduced.
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1 Introduction

Models used for Model-Based Diagnosis usually assume that ob-
servations, and predictions based on the system description are
accurate [28, 11, 26, 12, 5, 6, 10]. Here accuracy refers to the
uncertainty about the correct value.” This assumption is usually
not stated explicitly. The assumption implies that we can easily
compare predictions and observations. In domains where data
is inaccurate or where accuracy is not important, abstract values
such as {negative, positive} or {low, high} may sometimes be
used [39, 40]. Abstraction from specific values may reduce the
diagnostic precision and may therefore be undesirable. In that
case, representations that precisely express the inaccuracy, such
as inequalities or intervals of values [b, ub] may be used. Several
papers deal with consistency-based diagnosis given inaccurate
data [8, 18, 20, 22].

A practical problem in which we encountered the issue of in-
accurate data was diagnosis of temporal constraint violations in
Air Traffic Control (ATC). The temporal aspects of a plan in ATC
can be described by a Simple Temporal Network (STN) [14]. An
STN describes activities by start and finish events and the dura-
tion of activities by temporal constraints specifying lower and
upper bounds on the temporal distance between two events. Fig-
ure 1 gives an illustration. In order to apply Model-Based Di-
agnosis, the temporal constraints are viewed as behavioral con-
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!An initial version of the paper has been published in [29]

2 Accuracy refers to the fault margin of a value while precision refers to the
measurement resolution. A clock may for instance specify the time with a pre-
cision in seconds. This value need not be accurate, the clock may be running 2
minutes ahead or lagging 2 minutes behind.

straints of components and the occurrence of events as in- and
outputs of components [31].

In this problem domain, generally, predictions about the oc-
currence of events are less accurate than the observation of these
events. For instance, the duration of a fight may vary consider-
able because of weather conditions and congested airways. The
inaccuracy of clocks that are used to register the occurrence of
an event can usually be ignored. Nevertheless, observations may
still be inaccurate. If we do not monitor constantly the occur-
rence of an event but check at different time points whether the
event has occurred, our observation of the event’s occurrence
will still be inaccurate.
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Figure 1: A plan and the corresponding STN.
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The use of inaccurate values raises a number of problems
with respect to the notion of preferred diagnoses. Normally, min-
imal or minimum diagnoses are preferred assuming that com-
ponents fail independently and that fault-probabilities are low.
Abductive diagnoses are preferred to consistency based diag-
noses since an abductive diagnosis is not only consistent with
the observations made, but also explains the observed outputs of
the system under diagnosis. However, in order to apply abduc-
tive diagnoses, knowledge of how components of a system may
fail is required. If only partial knowledge about the normal and
abnormal behavior of components is available, a weaker form
of abductive diagnosis, called maximum-informative diagnosis
[30, 32] can be used. A maximum-informative diagnosis tries
to explain as many observed system outputs as possible. In all
cases, unlikely diagnoses may be preferred if inaccurate values
are used.

To give an illustration of the problem with minimum / min-
imal diagnoses, consider a minimal diagnosis A that enables us
to predict that some output value lays in the interval [3, 5], while
a non-minimal diagnosis A’ enables us to predict that the out-
put value lays in the interval [4, 8]. If we observe that the output
value actually lays in the interval [5, 7], then clearly A’ should
be preferred. The probability that the diagnosis A is correct is
much smaller than the probability that A’ is correct because in
the former case, 5 is the only value on which the prediction and
the observation agree, while in the latter case, they agree on the
interval [5, 7].

Abductive and maximum-informative diagnosis have other
problems. The predicted value of some output, given a diagnosis
A’, may be less accurate than the observed value of that output.
For instance, we may predict that the value of some output lays
in the interval [4, 8], while we observe that it lays in the interval
[5,7]. Though the observation confirms the prediction based on
A’, A’ is neither an abductive nor a maximum-informative di-
agnosis. Abductive and maximum-informative diagnosis require
that the predicted value of an output is at least as accurate as the
observed value. For instance, A’ is an abductive diagnosis if we
observe that the output value lays in the interval [3, 9], since in
that case the predicted interval [4, 8] implies the observed inter-
val [3,9].

Cordier [7] proposed to adapt the definition of an abductive
diagnosis to cope with observations that are more accurate than
the predicted output values. This paper, however, proposes a new
notion of diagnosis, called maximal-confirmation diagnosis. A
maximal-confirmation diagnosis is based on measuring to what
extent predictions of outputs, given a diagnosis, are confirmed by
the observations. A maximal-confirmation diagnosis therefore
refines the new definitions of abductive diagnosis proposed by
Cordier [7].

Maximal-confirmation diagnoses do not distinguish between
a diagnosis A’ that enables us to predict that an output value lays
in the interval [3, 7] and a diagnosis A" that enables us to predict
that an output value lays in the interval [—oo, +00] if we have
observed that the output value lays in the interval [5, 7]. The di-
agnosis A’ is more accurate than the diagnosis A”. Therefore,
we propose a second preference relation, namely maximal accu-
racy and confirmation diagnosis (mac-diagnosis).

The remainder of the paper is organized as follows. In the
next section, we start with introducing our diagnostic frame-
work. Section 3 discusses the problems with preferred diagnoses
and offers a solution in the form of maximal-confirmation and
mac-diagnosis. Section 4 discusses the computational complex-
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ity of identifying a maximal-confirmation and a mac-diagnosis.
In Section 5, a formal underpinning of the proposed solutions
is given. An application of maximal-confirmation diagnosis is
described in Section 6. Section 7 describes related work and
Section 8§ concludes the paper.

2 The diagnostic setting

Model-based diagnosis starts from a description of a system to be
diagnosed. The system description specifies the normal behavior
of the system and possibly also the abnormal behavior. There
are different ways to describe a system such as Bayesian Belief
Networks [38, 23, 43] and Discrete Event Systems [4, 35, 36, 2,
24]. Here, we focus on classical Model-Based Diagnosis (MBD)
[28, 11,26, 12,5, 6, 10], in which the system is described in first
order logic and either consistency-based reasoning or abductive
reasoning is used to identify possible diagnoses.

2.1 Classical Model-Based Diagnosis

MBD [28, 11, 26, 12, 5, 6, 10], describes a system of connected
components. Each component has a number of inputs and out-
puts. The values of a component’s outputs are a function of
the values of the component’s inputs and the component’s health
mode. A model of the component describes this function. The
description may be partial, but it will always contain the com-
ponents normal behavior; i.e., the behavior description given the
health mode ‘normal’.

In this paper we use an abstract description of the system in
which we do not specify the components of the system and their
behavior. Instead we assume that the system description Sd de-
scribes at least the normal behavior of the system and possibly
also the abnormal behavior. Moreover, we assume a set of candi-
date diagnoses D where each diagnosis A € D is a set of propo-
sition giving one possible description of the health modes of the
system’s components. Finally, we assume a set of possible ob-
servation sets O of the system. An observation set O € O is aset
of propositions describing the observations. Each observation in
an observation set O is a proposition o(x) describing a value of
an in- or output x of the system. Notice that we do not consider
uncertainty about which in- or output has been observed; i.e., we
do not consider observations such as: o(z) V o' (y) with = # y.
The triple Pd = (D, Sd, O) describes our problem domain.

In consistency-based diagnosis there is no need to distinguish
between observations of system inputs and observations of sys-
tem outputs. However, in abductive diagnosis it is important to
make this distinction. Therefore, we distinguish two subsets of
O, the set of observation sets of system inputs O™ and the set
of observation sets of system outputs (O°“¢. Note that system
inputs are sometimes denoted as the context because the system
inputs are set externally, for instance by the environment. In case
they are set by the environment, observations are needed to de-
termine their values. Without loss of generality, we assume that
all known values of system inputs are described by observations
of the system inputs.

When making observations O € O about the behavior of
the system, the observations made may not correspond with the
normal behavior of the system?:

A" USdUBUO = L

3% = L denotes that false is implied by ¥, in other words, that the set of
propositions X is inconsistent.
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Here the candidate diagnosis A™°" € D denotes the hypothe-
sis that every component behaves normally, and B denotes the
general background knowledge. If the expected behavior of the
system does not correspond with observations made, we would
like to identify the components that behave abnormally, giving
us the diagnosis problem: P = (Pd, O).

The two main forms of diagnosis are consistency-based diag-
nosis and abductive diagnosis. In consistency-based diagnosis,
we search for a diagnosis such that the system description and
the observations of systems are consistent [28, 11, 10].

Definition 1 Ler P = (Pd, O) be a diagnosis problem. More-
over, let A € D be a candidate diagnosis.
A is a consistency-based diagnosis of the diagnosis problem

P = (Pd,0) iff
AUSIUBUO £ L

Abductive diagnosis uses a stronger requirement. Given the
observed system inputs and a diagnosis, we must be able to ex-
plain the observed system outputs [26, 5, 27].

Definition 2 Ler P = (Pd, O) be a diagnosis problem. More-
over, let A € D be a candidate diagnosis. Finally, let the ob-
servations O be partitioned into observations of the system in-
puts O™ € O™ and system outputs O°** € O°“ such that
0= O'm U Oout'

A is an abductive diagnosis of the diagnosis problem P =
(Pd,O) iff

AUSdUBUO™ = O°ut
AUSdUBUO™ = |

It is not difficult to see that an abductive diagnosis is always
a consistency-based diagnosis. Suppose A is not a consistency-
based diagnosis. Then, for no semantic interpretation I, I =
A USdUBUO. Since A is an abductive diagnosis, A U Sd U
BU O™ £ | implies that there is an interpretation I such that
I = AUSdUBUO™. Moreover, since AUSdUBUO™ |= 0%,
I | O°“, Therefore, I = A U SdU B U O. Contradiction.
Hence, A is also a consistency-based diagnosis.

The converse does not hold. Abductive diagnosis requires
knowledge about the correct and incorrect behaviors of compo-
nents in order to explain the observations made in all circum-
stances. The descriptions of the incorrect behaviors of compo-
nents are called: fault models.

We say that the set of fault models is complete iff we
can make a prediction for any system output given a
diagnosis and observations of all system inputs.

In the absence of fault models, we cannot always determine an
abductive diagnosis. However, we are still able to determine a
consistency-based diagnosis.

Although a consistency-based diagnosis is, in general, not an
abductive diagnosis, there is one exception. If a complete set
of fault models is available, and if the set of possible values of
system in- and outputs do not overlap, then a consistency-based
diagnosis is an abductive diagnosis.

The set of possible observation sets O does not al-
low for overlapping values iff for every 0,0’ € O
and for every in- or output x such that o(x) € O
and o'(z) € O": if {o(x),0' ()} UB = L, then
B o(z) =o' (x).
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We cannot state that an in- or output has two different values
unless the values overlap. Therefore, a set of non-overlapping
values must be inconsistent.

Note that in case the set of observation sets O does not allow
for overlapping observations, we cannot use different accuracies
to describe a system in- or output. The following three proposi-
tions describe overlapping values:

value(x, [4,6]), value(x, [1, 8]), value(z, [5,9])

Proposition 1 A consistency-based diagnosis is an abductive di-
agnosis if the set of fault models is complete, if all system inputs
are observed and if the set of possible observation sets O does
not allow for overlapping observations.

Proof.
Let A be a consistency-based diagnosis: AUSdUBUO [~ L.

Suppose that A € D is no abductive diagnosis. Then: AU Sd U
BUO™ = O° with O = O™ U O°*. Since knowledge
about the systems behavior is complete (the set fault models is
complete) and since all system inputs are observed, there is an
O’ € 0°¥ such that: AUSdUBUO™ = O’ and O’ describes
a value for every system output. Clearly, for some output = and
o(x) € O°“, o (x) € O, and B [~ o(x) = o' (x). Therefore,
since set of observation sets O does not allow for overlapping
values, {o(x),0'(z)} UB = L. This implies that: A U .Sd U
BUO™UO° = 1. Hence, A cannot be a consistency-based
diagnosis, contradicting our starting point. g

In the literature, often a ‘non-overlapping values’ assumption is
used without specifying this explicitly.

2.2 Representing inaccurate values

In the examples we have represented inaccuracy by specifying
an interval of possible values. This is not the only possibility
of specifying inaccuracy. Other possibilities are: (i) an average
value together with some distance-value, (ii) if values are nor-
mally distributed, an average value and a standard deviation, (iii)
some abstract symbolic value such as ‘high’and ‘low’, (iv) fuzzy
sets, etc. In all cases, the representation of inaccurate values of
in- and outputs can be described by propositions.

The propositions describing inaccurate values of in- and out-
puts can be order with respect to the accuracy of the described
value. Propositions about accurate values imply propositions
about a less accurate values. For instance, value(z,[3,4]) im-
plies value(x, [2,8]) and value(x, [—o0, +00]) given sufficient
background knowledge about numbers. We use this property to
define an accuracy ordering over the set of observation sets.

Definition 3 Ler O be the set of possible observation sets and let
0,0" € O be two observation sets. Moreover, let B be general
background knowledge.

O is at least as accurate as O', denoted by O C O’
ffOUBEO.

Note that the accuracy ordering over O defines a lattice with
bottom element | and top element T. Since observations are
described by proportions, given our background knowledge B
describing which observations are possible, the bottom L and
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top T element of the lattice also correspond to false and true,
respectively.*

In order to guarantee the correctness of the maximal-confir-
mation diagnosis defined in the next section, we must enforce
some additional structure on the set of observation sets . Let
O = |J O be all the propositions about in- or outputs. Then we
require that for every output « that:

if o(x), o' (x) € O, then o(z) Ao’ (z) € O and o(z) A
-0'(z) € O.

Moreover, for every O C O:

O € O iff for no in- or output z: {o(z),0'(z)} C O

and o(z) # o (x).

2.3 MBD and uncertainty

Although the logical model used to describe a system does not
address uncertainty, it is possible to take into consideration the a
priori probabilities of faults before a diagnosis is made and the
a posteriori probabilities after a diagnosis is made given the ob-
servations [9]. Usually the relation between a logical representa-
tion and the probability that a proposition holds, is not specified
explicitly. Therefore, we first address this issue. We do not con-
sider a translation of MBD to a probabilistic framework such as
BBNs [16]. We only need the standard way of assigning proba-
bilities to logical propositions.
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Assuming that components fail independently, it is now easy
to verify that subset-minimal diagnoses should be preferred if
fault probabilities of components are less than 0.5. Let X de-
note all our knowledge about our diagnostic problem and let
Nor(A) denote the set of components of the system that be-
have normally according to the candidate diagnosis A. Then,
P(A %) > P(A’| X)if A and A’ are diagnoses of the system
and Nor(A’) € Nor(A). Moreover, cardinality-minimum di-
agnoses should be preferred if fault probabilities of components
are very small. Thatis, P(A | ¥) > P(A’ | ¥) if A and A’ are
diagnoses of the system and | Nor(A’)| < |Nor(A)].

3 Inaccurate predictions and observations

The use of inaccurate values implies that the ‘non-overlapping
values’ assumption is invalid. When using inaccurate values we
can state for instance that for some in- or output = both the propo-
sitions value(x, [2,4]) and value(z, [3,6]) hold. Of course, if
both propositions are true, the value of x must lay in the interval
[3,4].

3.1 Preferences and accuracy

Giving up the ‘non-overlapping values’ assumption has no influ-
ence on the definition of consistency-based and abductive diag-
nosis. However, it does influence the preferred diagnoses among
the set of consistency-based diagnoses. We will illustrate this

Probability theory assumes a probability distribution over some With a simple example shown in Figure 2. Suppose that Anna is

sample space. In case of propositional and first order logic, the
set of semantic interpretations is used as the sample space [34,
third edition, Chapter 13.2]. Over the set of interpretations Z,
we define a probability distributions p : Z — [0, 1] such that
> ez P(I) = 1. The probability of a proposition can now be
defined as the probability of the set of interpretations satisfying
the proposition. Formally,

Plp)= Y »()

€T I

Moreover, given our knowledge 3 describing our diagnostic prob-
lem, the a posteriori probability that ¢ holds is given by:

>rer 1o )
ZzeI,u:z p(I)

Note that the denominator normalizes the probability distribution
w.r.t. interpretations that satisfy our knowledge .

Generally, we do not know the probability distribution p :
T — [0,1]; i.e., the available knowledge about the probabilities
does not guarantee the existence of a unique probability distri-
bution. Although there is an extensive amount of literature ad-
dressing preferred probability distributions among the possible
probability distributions (see for instance [1, 19, 21, 33]), we
will not consider such preferences. Here, we will only consider
conclusions about probabilities of propositions that hold for any
probability distribution satisfying the knowledge (and assump-
tions) about the diagnostic problem.

Given the above described relation between probabilities and
propositions, the validity of preferred diagnoses can be proved.

Pp|X) =

“4Note that the join-operator, which is often denoted by ‘V’, does not corre-
spond with the logical \VV-operator because we do not consider uncertainty about
which output has been observed; i.e., we do not consider observation such as:
o(z) V o' (y) with z # y.

flying from Paris to Amsterdam. We know that the flight takes
60 to 70 minutes. Moreover, getting from Schiphol airport in
Amsterdam to Anna’s home takes 30 to 35 minutes. The offi-
cial boarding time of Anna’s plane is scheduled at 9:30. Every
aircraft that departs from an airport in Europe is assigned slot
for takeoff by EUROCONTROL in Brussel. We know that the as-
signed slot for takeoff in Paris is from 10:00 till 10:15. If the
airplane does not depart in the assigned slot because of an inci-
dent such as a passenger no-show, a new slot has to be requested
and the next available slot will be from 10:30 till 10:45. This
new slot is our fault model for the takeoff-action of the airplane.

at home
[30,35]

boarding

{[10:00,10:15]

takeoff debarking
Ao N

flight __-="traveling
e to home
/[12:00,13:00]

[9:30,9:30){

B or L or
/ [10:30,10:45] .-~ [12:00,12:20]

Figure 2: Anna’s traveling schedule.

Based on this information we can predict that Anna will ar-
rive at home between 11:30 and 12:00 if no incident occurs. Now
suppose that we check just before 12:00 whether Anna is at home
and we do it again at 13:00. The first time she has not yet arrived
but the second time she has. So, we know that Anna arrived at
home between 12:00 and 13:00. Assuming that no incident oc-
curred and that the airplane departed from Paris in the designated
slot; i.e., our diagnosis states that everything went as planed, the
prediction of Anna arriving at home between 11:30 and 12:00 is
consistent with the observation that she arrived at home between
12:00 and 13:00. Hence, this is a consistency-based diagnosis.
But is it a probable diagnosis?

Of all the possible takeoff times, flight durations and trav-
eling times from the airport to Anna’s home, there is only one
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possible scenario that is consistent with our observation, namely,
that the plane’s takeoff time is at 10:15, the flight duration is
70 minutes and the travel time to her home is 35 minutes. The
probability that this is what has happened is not very high.

Abductive diagnosis gives a different answer to our diagnos-
tic problem. Only an incident that forces the plane to depart
in the next available time slot from 10:30 till 10:45 can explain
our observation. If the plane departs in the next time slot, Anna
will arrive at home between 12:00 and 12:30, which explains
our observation of arriving at home between 12:00 and 13:00.
Note that abductive diagnosis allows for all the uncertainty that
is present in problem description. This suggest that the diagno-
sis in which the plane’s uses the takeoff slot from 10:30 till 10:45
is more probable. Therefore, in this example it is reasonable to
prefer the abductive diagnosis although it is neither a minimum
nor minimal consistency-based diagnosis.

Now suppose that we made a more accurate observation about
Anna’s arrival at her home. If our second check was not at
13:00 but at 12:20 and if she was at home when we checked at
12:20, then abductive diagnosis cannot explain our observation
that Anna arrived at home between 12:00 and 12:20. Although
fault models are available, we cannot explain the observation be-
cause the observation is more accurate than any prediction we
can make. However, the observation confirms the prediction of
Anna arriving at home between 12:00 and 12:30 if the plane de-
parted at the next time slot because of some incident.

Observations that confirm the predictions based on a diag-
nosis, maximizes the possible scenarios that are allowed by the
uncertainty in the problem description. This suggests that the
diagnosis in which an incident causes the plane to use the take-
off slot from 10:30 till 10:45 is to be preferred to the minimum
consistency-based diagnosis in which there is no incident. The
observation only confirms one of the predicted possible values,
namely Anna arriving at home at 12:00, in case of the mini-
mum consistency-based diagnosis. The prediction is only par-
tially confirmed if no incident delaying the takeoff has occurred.

3.2 Maximal-confirmation diagnosis

The idea that is put forward in this section is to prefer maximal-
confirmation diagnoses. This preference is motivated by the fact
that (7) some minimum / minimal diagnoses can be very unlikely,
and (if) abductive diagnoses may not be possible even if com-
plete information about the faulty behavior is available. Con-
cerning the latter, since abductive diagnosis is only possible if
observations are sufficiently inaccurate, confirmation of the pre-
dictions made is a better criterium. Of course, we must also be
able to deal with partial confirmations.

We will use the accuracy ordering on the set of observa-
tion sets defined in Subsection 2.2 to give a general definition
of maximal-confirmation diagnoses, which is not limited to in-
tervals of values. We say that a set of observations O strongly
confirms a set of predicted values O’ iff O C O’; i.e., the ob-
servations O imply the predicted system outputs O’. A set of
observations O weakly confirms a set of predicted values O’ iff
O’ C O. We can also define a notion of partial confirmation. A
set of observations O partially confirms a set of predicted values
O'iff LCOANO, 0 Z O and O’ IZ O. Figure 3 gives an il-
lustration using one observed output and three predictions given
three diagnoses. The accuracy is described by intervals.

It is clear that there are different degrees in which an obser-
vation can confirm a predicted value. The accuracy order over

471

0] —m==mm  observation
Pred(A) @ strongly confirmed
Pred(A’) ;;— partially confirmed
Pred(A”) g

weakly confirmed

— R

Figure 3: Different confirmation degrees.

the set of possible observation sets O can be used to order di-
agnoses with respect to the degree of confirmation. To measure
the degree of confirmation, given a diagnosis, we determine all
possible values of the system outputs that agree with the obser-
vations made. This corresponds to the meet of observations and
the predicted output values. Of course, we must use the most ac-
curate predictions for the output values. The most accurate pre-
diction may only be confirmed by some observations while the
least accurate prediction is confirmed by any observation. There-
fore, the most accurate predictions will give us the most relevant
information.

CD(A) = O A Pred(A)

where O°“! is a set of observations and Pred(A) is the set of the
most accurate predicted output values of the system.

Pred(A) = O iff
O c Oout’
AUSdUBUO™ = O, and
forno O’ € 0O°“: O’ C O and AU SdUBUO™ = O

Note that CD(A) = O°“! if the predictions are strongly con-
firmed by the observations, and that CD(A) = Pred(A) if A is
an abductive diagnosis. Also note that if for some output, the ob-
served value does not agree with a predicted value, CD(A) = L.
In that case A is no consistency-based diagnosis.

The confirmation degree C'D(-) can be used to define the
maximal-confirmation diagnoses. We prefer those diagnoses that
maximize the predicted set of possible output values that agree
with the observations made.

Definition 4 Letr P = (Pd, O) be a diagnosis problem.
A is a maximal-confirmation diagnosis of the diagnosis prob-
lem P = (Pd,O) iff

1. L CD(A),
2. for no diagnosis A': CD(A) C CD(A').

Note that an abductive diagnosis need not be a maximal-
confirmation diagnosis, or vice versa. A maximal-confirmation
diagnosis is however always a consistency-based diagnosis.

Proposition 2 Let A be a maximal-confirmation diagnosis of
the diagnosis problem P = (Pd, O).

Then A is also a consistency-based diagnosis of diagnosis
problem P = (Pd,O).

Proof. Suppose that A is no consistency-based diagnosis. Then
AUSdUBUO™UO° = L. This implies that A U Sd U
BUO™ = Vo@)eom —o(z). Hence, for some o(z) € O°“,
AUSdUBUO™ = —o(x).

Let o' (x) € Pred(A). Since o' (x)A—o(x) € 0,0 = (Pred(A)—
{'(z)} U {'(z) A —o(x)}) € O. Since L T Pred(A), © C
Pred(A). Moreover, since A U SdUBU O™ = —o(x), AU
SdUBUO™ = ©. Hence, Pred(A) is not the most accurate
prediction of the output values. Contradiction. O
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3.3  Maximal accuracy and confirmation diagnosis

Every diagnosis A that is strongly confirmed by the observations
has the same degree of confirmation. The degree of confirma-
tion of these diagnoses corresponds to the degree of confirma-
tion of a diagnosis that exactly predicts the observations made.
The question is whether diagnoses that are strongly confirmed by
the observations are all equally preferred. To answer this ques-
tion, consider again the plan for Anna’s travel from Paris to her
home. Suppose that we have a second fault model for the takeoff.
The takeoff may be postponed for an unknown period of time if
the preflight check fails. So, in case of a preflight check failure,
Anna may arrive at home between 11:30 and oco. Clearly, our
observation that Anna arrived at home between 12:00 and 12:20
also confirms the diagnosis which the preflight check failed as is
illustrated by Figure 4. Both diagnoses, the diagnosis in which
an incident causes the plane to use the next takeoff slot and the
diagnosis in which a preflight check fails, are strongly confirmed
by our observation that Anna arrived at home between 12:00 and
12:20. Therefore, both diagnoses have the same confirmation
degree. The difference between the two diagnoses is that the
prediction based on the diagnosis in which an incident causes
the plane to use the next takeoff slot is more accurate. This
diagnosis can therefore more easily be disconfirmed. In other
words, observing that Anna arrived at home between 20:10 and
20:50 does not confirm an incident that causes the plane to use
the next takeoff slot but still strongly confirms a preflight check
failure. This clearly shows that there is a difference between the
two diagnoses. We therefore propose a second ordering princi-
ple, preferring diagnoses that give the most accurate predictions.
Together, this results in preferring maximal accuracy and confir-
mation (mac-) diagnoses.

O 7—‘7

Pred(next takeoff slot)

Pred(preflight check failure) 4———7 +00

11:30 12:00 12:20
12:

30

Figure 4: Strongly confirmed, different accuracies.

Definition 5 Let P = (Pd, O) be diagnosis problem.
A is a maximal accuracy and confirmation diagnosis (mac-
diagnosis) of the diagnosis problem P = (Pd, O) iff

e A is a maximal-confirmation diagnosis,

e for no maximal-confirmation diagnosis A’:
Pred(A’) C Pred(A).

4 Computational complexity

Maximal-confirmation diagnosis is a special case of consistency-
based diagnosis. Friedrich et al. [17] proved for consistency-
based diagnosis that deciding whether there exists a diagnosis for
a diagnosis problem is already NP-complete if fault models are
introduced in a Horn clause system description. Since the exis-
tence of a maximal-confirmation diagnosis implies the existence
of consistency-based diagnosis, finding a maximal-confirmation
diagnosis is NP-hard in general.
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et al. [3] have determined the computational complexity of sev-
eral classes of abduction problems. Relevant for us are the inde-
pendent, monotonic and incompatible abduction problems. An
abduction problem is an independent abduction problem iff the
set of hypotheses H explains the same data as the union of the
data explained by each individual hypothesis h € H. An abduc-
tion problem is monotonic iff a larger set of hypotheses explains
at least the same data. An abduction problem is an incompat-
ible abduction problem iff some combination of hypotheses is
not allowed.

We can establish a relation between maximal-confirmation
diagnosis and abduction by giving an new interpretation to the
function e(H) = D, which denotes that the set of hypotheses
H explains the data D [3]. We replace the set of hypotheses by
a diagnosis A and the data by a the set of observations. Now,
the function e(A) = O denotes that the predictions based on
the diagnosis A are partially confirmed by the observations O.
Given this interpretation, the results and algorithms for classes of
independent, monotonic, and incompatible abduction problems
also apply to the corresponding classes of confirmation diagnosis
problems. Identifying the best explanation of an abduction prob-
lem corresponds to identifying a maximum-confirmation and mac-
diagnosis. Three other classes identified by Bylander et al., namely
cancelation, the best small plausibility criterion, and the ordered
abduction problems have no corresponding confirmation diagno-
sis problems. The inaccuracy caused by one element of a diag-
nosis will not cancel the inaccuracy caused by another element.
Moreover, the plausibility of a diagnosis (hypotheses) depends
on the confirmation degree and not on predefined preferences
over hypotheses.

To summarize, the paper of Bylander et al. [3] implies the
following results:

Class of Condition to achieve
problems Finding all Finding a Finding a maximal
confirmation  confirmation confirmation or
diagnoses diagnosis mac-diagnosis
Independent NP P ?
Monotonic NP P ?
Incompatible NP NP NP

The table shows that generally, finding a maximal-confirmation
diagnosis is an NP-hard problem. It also shows that Bylander et
al. do not specify a general result in case diagnoses are ordered.
The computational complexity of ordered diagnoses depends on
the fault models.

Either and Gottlob [15] studied the complexity of logic-based
abduction. Since we placed no restrictions on the expressiveness
of propositional or first-order logic w.r.t. the specification of the
system description, their complexity results are also relevant for
identifying a maximum-confirmation and mac-diagnosis. Either
and Gottlob show that in case an unrestricted propositional the-
ory is used for specifying the system description, the computa-
tional complexity lays at the second level of the polynomial hi-
erarchy. The use of priorities may raise the computational com-
plexity to the third level of the polynomial hierarchy.

Fortunately, we normally do not need an unrestricted propo-
sitional theory for describing a system. Often the above men-
tioned function e(A) = O specified by the system description
can be computed in polynomial time. In that case, the the com-

Abductive diagnosis is a special case of maximum-confirmationplexity results of Either and Gottlob do not apply. Hence, the

diagnosis. Therefore, in the worst case, identifying a maximal-
confirmation diagnosis is at least as hard as abduction. Bylander

complexity result of Bylander et al. more relevant for maximal-
confirmation and mac-diagnosis.
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The complexity of identifying a maximal-confirmation or a
mac-diagnosis might be reduced by offline compilation of the
system description. For instance Ordered Binary Decision Dia-
grams might be exploited for the efficient computation of maximal-
confirmation and a mac-diagnoses [41]. Further research in this
area is required.

There are also special cases in which a maximal-confirmation
and a mac-diagnosis can be identified in polynomial time. The
example in Section 6 gives an illustration.

5 A probabilistic justification of preferred diagnoses

One of the motivations of preferring maximal-confirmation di-
agnoses is because they are expected to be more probable than
other diagnoses. We will now give evidence for this preference.

Normally, we prefer the most probable diagnoses given the
observation made. Using some general assumptions, this leads
to preferring minimal or minimum diagnoses. The assumptions
are:

e fault probabilities of components are less than 0.5 or are very
small, respectively;

e components fail independently;

e the predicted value of a system output is either equal to an
observation or is unknown.

Using inaccurate values, the third assumption is no longer
valid. Instead, the probability that the actual value of a system
output corresponds with the observation made, is important. As
we have seen in the first part of the example in Subsection 3.1, of
all the values that were possible according to the prediction, only
one value was allowed by the observation. As a result the proba-
bility that this diagnosis is correct will be low whatever its a pri-
ori probability. Diagnoses that allow for more overlap between
predictions and observations will have a higher probability. The
following derivation shows this formally>:

P(A10)= P(O]8)- 55 M
— P(O | Pred(D)) - P(Pred(A) | A) - % @)
— P(Pred(A) | O) - % - P(Pred(A) | A) - % 3)
— P(Pred(A) | O) - P(Pred(A) | A) - % @)
— P(CD(A) | O) - P(A | Pred(A)) 5)

In the above derivation, the following issues should be noted:

1. The conditional probability P(O | Pred(A)) in equation 2
is conditionally independent of the diagnosis A.

. The conditional probability P(Pred(A) | O) in equations 3
and 4 is equal to confirmation probability P(CD(A) | O) in
equation 5 since Pred(A) A Ot = CD(A).

. By preferring maximal-confirmation diagnoses, Definition 4,
we maximize the confirmation probability:
P(CD(A) | O) > P(CD(A") | O)iff CD(A") E CD(A)

SNote that every probability below is conditionalized w.r.t. the knowledge
Sd U B. To improve readability, the knowledge Sd U B is not mentioned explic-
itly. We write for instance P(A | O) instead of P(A | O, Sd U B).
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4. If observed and predicted values are accurate, P(CD(A) | O)
will either be O or 1, corresponding to whether A is an ab-
ductive diagnosis.

5. The explanation probability P(A | Pred(A)) in equation
5 expresses the conditional probability that A is a diagno-
sis given the system outputs Pred(A) that can be explained
by A. If the observed and predicted values are accurate, the
diagnosis is an abductive diagnosis and the explanation prob-
ability is the probability that the abductive diagnosis is cor-
rect.

Since Pred(A) describes the system outputs given a diagno-
sis A, clearly, P(Pred(A) | A) = 1. Hence, the explanation
probability can be written as:

___P®»)

P(A| Pred(A)) = P(Pred(A))

(6)
Let ~A denote the diagnosis covering all diagnoses that are
mutually independent of A. Then:

P(Pred(A)) = P(A) + P(Pred(A) | -A) - P(=A)  (7)

Equations 6 and 7 imply that the explanation probability
P(A | Pred(A)) is equal to 1 if there is no diagnosis A’
that is mutually independent of A such that P(Pred(A) |
A’) > 0. This is the case if A is the least accurate diagno-
sis which results in predicting the value unknown for every
system output. Moreover, this may be the case if the diag-
nosis A is sufficiently accurate and no other diagnosis can
(partially) explain Pred(A).

Note that a less accurate diagnosis results in a less accurate
prediction Pred(A). This will increase the chance that other
diagnoses can (partially) explain Pred(A) and thereby de-
crease P(A | Pred(A)). However, if diagnoses become less
and less accurate, then, eventually, P(A | Pred(A)) will
start to increase and will become equal to 1 for the least ac-
curate diagnosis.

5.1 Discussion

To maximize the probability of a diagnosis A given the obser-
vations Oj; i.e. maximizing P(A | O), we have to maximize
both the confirmation probability and the explanation probabil-
ity. By preferring strongly confirmed diagnoses, we maximize
P(CD(A) | O).

The explanation probability A is maximal if there is no mutu-
ally independent diagnosis A’ that can partially explain Pred(A).
This is the case if A is the least accurate diagnosis. Moreover, it
might be the case if A is a sufficiently accurate diagnosis. The
former diagnosis, which always exists, does not provide us with
any useful information. The latter diagnosis does provide useful
information, but may not exist.

The usefulness (or utility) of a diagnosis increases with its ac-
curacy. Without numerical utility values, we cannot make exact
statements about which diagnoses to prefer. However, a maximal
accuracy and confirmation diagnoses seems to balance the util-
ity and probability of a diagnosis. In other words, mac-diagnoses
seem to maximize the expected utility.

If w(A) is the utility of the diagnosis A, then the expected
utility is:
Eu(A)

P(A]O)-u(A)
P(CD(A) | 0) - P(A | Pred(A)) - u(A)
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The term P(A | Pred(A)) - u(A) is fixed given a diagnosis A.
It only depends on the structure of the system to be diagnosed.
The utility of a diagnosis increases with the accuracy of the diag-
nosis. We assume that the increase of the utility is the dominant
factor and therefore that P(A | Pred(A)) - u(A) is a mono-
tonic function in the accuracy of A. This gives us an incentive to
prefer more accurate diagnoses.

The confirmation probability P(CD(A) | O) is an indepen-
dent factor in the expected utility of A. The confirmation proba-
bility monotonically decreases in the accuracy of A if the obser-
vations weakly or partially confirm the diagnosis. Since the in-
accuracy of the observations will generally be small with respect
to the whole range of observable values, we assume that the de-
crease of P(CD(A) | O) in the accuracy of A dominates the
increase of P(A | Pred(A)) - u(A). Therefore, mac-diagnoses
maximize the expected utility of a diagnosis, which justifies our
preference for mac-diagnoses.

5.2 Additional preference

Do minimum or minimal diagnoses play no role in diagnosis
problems with inaccurate observations?

To answer this question, suppose that A1, ..., Ay are mac-
diagnoses Moreover, suppose that these mac-diagnoses exactly
confirm the observations O; i.e., Pred(A;) = O. In other words,
Aq,..., Ay are the least accurate abductive diagnoses. Then
the confirmation probability is equal to 1 and the explanation
probability can written as:

_ P(A) N
YR P

since P(Pred(A;) | Aj) = P(O | Aj) = P(Pred(A;) | Aj) =
1. Here, « is a normalization factor, which is the same for every
diagnosis A; with i € {1,..., k}. Therefore, the mac-diagnoses
can be ordered with respect to their a priori probability. Hence,
we may prefer the minimum or minimal diagnoses among the
mac-diagnoses.

P(A; | Pred(A;)) P(A;)

6 An application

This section illustrates the use of mac-diagnoses in the identifi-
cation of constraint violations in a Simple Temporal Networks
(STN) [14]. This illustration generalizes the maximum confir-
mation diagnoses of STNs proposed by Roos & Witteveen [31].

6.1 Simple Temporal Networks

An STN (&,C) describes a plan and its schedule by a set of
events £ and a set of constraints C over the events. Events denote
such things as the start start(s) of a plan step s and the finish
finish(s) of s. The constraints are used to specify the durations
of plan steps, the precedence relations between plan steps, and
the plan’s schedule. It is also possible to specify requirements
such as the requirement that a plan step that must start within x
minutes after the finish of its preceding plan step.

To describe a constraint, we associate a variable ¢, with each
event e € £. These variables take values in some dense time
domain T7me. We assume 7%me to be a total order with element
0 and maximum element co. A constraint ¢ € C specifies the
allowed temporal difference between two events: b < t, —te <
ub where e and ¢’ are events in &, Ib,ub € Time and 0 < [b <
ub.
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Relating an STN to a traditional plan description Pl = (S, <),
the duration of a plan step s € S is described by 0 < b <
Lfinish(s) — tstart(s) < ub. A precedence constraint s < s is
described by 10 < Lgiari(s) — tfinish(s) < ub. Note that in the
standard interpretation of a precedence constraint, (b = 0 and
ub = oo.

A schedule is a placement of events on the timeline. To de-
scribe a schedule we need a special event ‘0’ marking start of the
timeline; i.e., {g = 0. This enables us to schedule the period in
which an event e € &£ should take place: b < t, — to < ub;i.e.:
b <t.<ub

6.2 Constraint violations and candidate diagnoses

Unforseen circumstances may cause the violation of constraints
of an STN. To indicate the degree in which a constraint ¢ = (Ib <
te —ter < ub) € C is violated, we replace the constraint ¢ by:

Ib<te—te —b6.<ub ®)

Note that 6, = 0 corresponds with the normal ‘behavior’ of a
constraint while each §. # 0 corresponds with a different fault
model of the constraint.

A diagnosis specifies exactly whether and how much each
constraint is violated. If a constraint ¢ is violated, then there of-
ten exists an interval [, u] such that for each v € [I, u] there is
a maximal-confirmation diagnosis specifying 6. = v. We there-
fore introduce a generalized diagnosis in which we can spec-
ify multiple constraint violations: (6. € [l,u]) € A. This
generalized diagnosis specifies a cartesian product of maximum-
confirmation diagnoses®:

A e {U{éc_v} (6. € [lu)) e Ave [z,u]}

ceC

Maximum confirmation diagnoses cannot decrease the accu-
racy of the predictions. Therefore, maximal-confirmation diag-
noses will always be mac-diagnoses. This also implies that in
case a prediction is more accurate than an observation involving
the same events, the observation can only weakly confirm the
prediction given a maximal-confirmation diagnosis. We could
modify the Equation 8 to decrease the accuracy of a constraint.
Because we introduced generalized diagnoses, we can express
multiple accurate constraint violations. This makes it unneces-
sary to be able to express a single inaccurate constraint violation.

Below, a candidate diagnosis A will be a generalized diagno-
sis containing a proposition ¢, € [, u] for every constraint ¢ € C.
A™" will be used to denote the diagnosis in which no constraint
is violated. So, for every constraint ¢ € C, (d. € [0,0]) € A",

6.3 Observations

During the execution of a plan observations can be made. These
observations may pertain to the time difference observed be-
tween two events ¢ and ¢’ as specified in the plan or may pertain
to the time at which a certain event e € £ takes place.

We assume that the first type of observation is described by
some constraint a < t, — tes < b indicating that we have ob-
served that event e occurred at least a time steps, but within b
time steps after ¢’.

The use of intervals to describe multiple constraint violations is a general-
ization w.r.t. [31].
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The second type of observation is given by a constraint a <
te—to < bindicating that e occurred after a time units but before
b time units have been passed (after the occurrence of the time
reference event ‘0’). The set of observations containing these
constraints is denoted by O.

6.4 Semantics

The constraints of an STN place restrictions on the way a plan
may be executed; the execution schedule. An execution sched-
ule for the set of events £ of an STN (£,C) is a function o :
£ — Time.” We say that an execution schedule o satisfies the
constraints C U O given the generalized diagnosis A, denoted by
cECUOUA,Iff

e forevery (Ib <t.—to <ub) € O,lb<o(e)—o(e) <ub
holds,

o for every (Ib < t, — tor < ub) € C and for every v € [I,u]
with (0. = [l,u]) € A, Ib < o(e) — o(e’) — v < ub holds.

The identification of an allowable execution schedule is called a
Simple Temporal Problem (STP) [14].

We say that a constraint ¢ : a < t. — to < b is entailed by
a set of constraints C, denoted by C' |= ¢, iff every allowable
schedule for C satisfies c.

Given a constraint ¢ = (a < to — ter < b) we say that
d =(a <t.—te <V)is atightening of ¢, denoted by ¢’ |= ¢
iff a < a < b <b. There is a sound and complete derivation
procedure (|-) for determining the most tightened constraint ¢ =
(a < to —te < b) entailed by a set of constraints C' [37]. That
is: C' |- ciff C' |= c. We can derive in polynomial time the most
tightened constraint between all pairs of events [42, 25].

6.5 Diagnosis

If an STN (&, C) is not compatible with a set O of observations
given the diagnosis A™°"; i.e., no execution schedule exist for
CUO given A™°", some constraints in C must have been violated.
We need to identify a new diagnosis A to restore the compat-
ibility between plan and observations. By preferring maximal-
confirmation diagnosis we maximize the probability of a diag-
nosis.

To identify violated temporal constraints of an STN (€,C),
we view the constraints C as components of the system under
diagnosis, and the events £ as the in- and outputs of the com-
ponents. An event e € £ may be part of more than one con-
straint. Each of these constraints enforces a restriction on the
occurrence of e with respect to some event ¢’; i.e., we can de-
rive a constraint between e and ¢’ using different paths through
the constraint graph. It is important to note that each constraint
derived using a path from €’ to e determines one or more diag-
noses involving the constraints on the path. Here, we assume that
at most one constraint on each path between pairs of observed
events will be violated.

Let (I < te — ter < u) € O be an observation, let the
sequence of constraints cy, ..., c; be an undirected path from
event ¢’ to event e in the constraint graph defined by the con-
straints C, and let (Ib < t. — tor < ub) be the most tightened
constraint that can be predicted for this path from €’ to e. From a

7Note that an execution schedule differs from scheduling constraints. An
execution schedule is a semantic notion similar to an interpretation of first order
logic. It describes when events are actually executed.
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temporal perspective, a constraint ¢; on the path points towards
e or towards ¢’. Let p™ denote the constraints in {cy,...,cx}
pointing to e and p~ the remaining constraints in {c1,...,ct},
which point towards ¢’. Since we assume that only one constraint
¢ = (¥ < ten —ten < y) on the path is violated, if ¢ € p* and if
the observation is more accurate than the prediction, then we can
easily show that 6, = v is an element of a maximal-confirmation
diagnosis for every v € [u — ub, | — Ib]. Moreover, we can show
that . = v is an element of a maximal-confirmation diagnosis
for every v € [l — lb,u — ub] if the prediction is more accu-
rate than the observation and if there is only one path from €’ to
e. Note that the restriction of only one path is necessary since
multiple paths will result in dependencies between the paths if
the observation weakly confirms the prediction given a diagno-
sis. Therefore, we assume that there is only one path between
the events mentioned in an observation in case the prediction
along the path is more accurate than the observation. Under this
assumption,

de € [min(l — b, u — ub), max(l — lb,u — ub)]

is an element of the generalized diagnosis A ifc € p™. If c € p~
however, then under the same assumption,

de € [—max(l — Ib,u — ub), —min(l — Ib, u — ub)]

is an element of a generalized diagnosis A. Moreover, for every
constraint ¢’ € {c1,...,cx} — {c} onthe path, (6. € [0,0]) € A
must hold.

Paths between observations (I < t. — ter < u) € O may
partially overlap. Our requirement that at most one constraint
on a path between a pair of events mentioned in an observation
may be violated implies that a constraint that is on multiple paths
must ensure a maximal-confirmation diagnosis for each path on
which it occurs. Let (6. € [l1,u1]), ..., (0c € [ln,un]) be the
requirements of the paths on which the constraint c occurs. Since
for each value v € [l;,u;], 6 = v is a maximal-confirmation
diagnosis for the path determining é. € [l;, u;], we should use
the intersection of all intervals [I;, u;]. So,

3 Up }]

provided that max{ly,...,l,} < min{us,...,u,}. If, how-
ever, max{ly,...,l,} > min{uy,...,u,}, then the constraint
¢ cannot be violated in a maximal-confirmation diagnosis given
our assumption that at most one constraint on each path is vio-
lated.

It is not difficult to create constraint graphs in which we have
an exponential number of paths between two events. Just con-
sider a constraint graph that forms a clique. In real applications,
the number of paths that we must consider is usually limited.
Moreover, there always exist maximal-confirmation diagnoses
that can be determined in polynomial time. For instance, for
each observation (I < t. — to» < u) € O, mark every constraint
(r < te —ter < y) € C as being violated if necessary. Given
these violated constraints, we do not need to consider every path
from event €’ to e. It suffices to predict the most tightened con-
straint from €’ to ¢, which can be determined in polynomial
time [42, 25].

de € [max{ly,...,l,}, min{uy,..

6.6 An example

Consider the plan in Figure 5 together with the observations:
11:05 < t5 — tg < 11:20 and 10:46 < tg — to < 11 : 00. If the
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plan is executed normally, then the constraints entail: 10:35 <
ts —tp < 11:03 and 10:27 < tg — ty < 0o, of which the former
is inconsistent with the corresponding observation.

(612 12533

©)

[14,23]
@ 1 (2) 11:05<t, -1, <11:20

[9:50,9:55]

observations
10:46<t;—t,<11:00

[13,0]
[10,15]

Figure 5: Maximal accuracy and confirmation diagnosis.

In this example, we have the requirement d. € [17,30] for a
constraint c on the path from event 0 to event 5, and the require-
ment §,. € [—00, 19]® for a constraint ¢ on the path from event 0
to event 6. Using the requirements, we can determine two mini-
mum (single fault) maximal-confirmation diagnoses and another
four minimal (double fault) maximal-confirmation diagnoses.

A1={01,0€[17,19],62,1=03,2=05,3=054,2=056,4=[0,0] }
Ao={02,1€[17,19],01,0=03,2=05,3=04,2=0¢,4=10,0] }
As3={03,2€[17,30],04,2 €[—00,19],81,0=02,1=05,3=06,4=10,0
Ay={03,2€[17,30],06,4 € [—00,19],01,0=02,1=05,3=04,2=[0,0
17,30], I,
(17,30],

A5={85,3€[17,30],04,2 €[—00,19],81,0=02,1=03,2=06,4=0,0
Ag={05,3€[17,30],06,4 € [—00,19],01,0=02,1=03,2=04,2=[0,0

1}
I}
1}
1}

Note that in diagnoses Ag,...,Ag we could also assume that

the constraints ¢4 2 and ¢g 4 are not violated; i.e., d4 2=0d6 4=[0,0].

7 Related work

The use of inaccurate values in diagnosis is related to, but differs
from the use of value abstraction [39, 40] and domain abstrac-
tion [13]. Abstraction enables us to focus on the relevant aspects
while ignoring other details. We may abstract from the specific
values of the in- and outputs of a system. Although the abstracted
values do not accurately describe the actual in- and output val-
ues, the inaccuracy is irrelevant if the abstract values suffices to
make a diagnosis. If, however, the abstract values are insufficient
for making a diagnosis, the inaccurate values should be used.

Reasoning with intervals or inequations is closely related to
the use of inaccurate values. Several authors have studied rea-
soning with intervals and inequations in a diagnosis system. See
for instance, [8, 20, 18]. Reasoning with intervals and inequa-
tions turns out to be a source of computational overhead because
in- and outputs of components may have multiple values. One
cannot simply ignore the intervals or inequations that are sub-
sumed by other intervals or inequations. Each derived interval
or inequation may be supported by different sets of assumptions
about the health modes of components. Considering the conse-
quences of all derived intervals or inequations together with the
underlying assumptions may result in a combinatory explosion.
Fortunately, for diagnosis, it is not always necessary to consider
all derived intervals or inequations. Unnecessary computations
can be avoided by ignoring derived intervals and inequations as
long as there is no evidence that they cannot be ignored, and by
identifying minimal conflicts using the derivation tree for a de-
rived inconsistency [22].

Cordier [7] has addressed consequences of using inaccurate
values for abductive diagnosis. The proposed notion of maximal-
confirmation diagnosis generalizes her modified definitions of

8Unrestricted negative values in a diagnosis are usually not possible in real
application domains. In this example we ignore this issue.
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abductive diagnosis by (i) providing a measure of confirmation,
and (if) using this measure to order the diagnoses.

The idea of ordering diagnoses w.r.t. the degree of confir-
mation was first proposed by Roos and Witteveen [31]. They
describe diagnosis of a Simple Temporal Network [14], a for-
malism for representing a plan together with the temporal con-
straints on plan execution. Diagnosis of temporal constraint vio-
lations raised a number of issues among which the confirmation
of observations. This paper extends previous work in several di-
rections. First, a general framework for diagnosis when using
inaccurate values is introduced. Second, inaccuracy need not be
described by intervals. Third, maximal-confirmation instead of
maximum-confirmation diagnoses are introduced. Fourth, mac-

diagnoses are introduced. Finally, a formal justification of maximal-

confirmation and mac-diagnoses is given.

Diagnosis using Discrete Event Systems [4, 35, 36, 2, 24] and
Bayesian Belief Networks [38, 23, 43] are forms of abductive di-
agnosis. Therefore, one could apply maximal-confirmation and
mac-diagnosis to DESs and BNNs. In a BBN, system outputs
are represented by variables. The domains of these variables
should be extended to enable the representation of inaccurate
values. In a DES, system outputs are observable events gener-
ated by the system. Inaccuracy in this context means uncertainty
about which event has been observed. Hence, we would need a
representation for this form of uncertainty.

BNNSs offer the possibility to encode the relation between
an inaccurate prediction and an observation using a conditional
probability. Although we may use maximal-confirmation diag-
nosis in BBNSs, if we can determine the conditional probability
of some observation given an (inaccurate) prediction, there is no
need for considering maximal-confirmation or mac-diagnosis.

8 Conclusion

This paper studies the consequences of using inaccurate data
in classical Model-Based Diagnosis (MBD). Models used for
Model-Based Diagnosis usually assume that observations and
predictions based on the system description are accurate. In
some domains, however, this assumption is invalid.

The use of inaccurate values raises a number of problems
with respect to the notion of preferred diagnoses. Normally, min-
imal, minimum, abductive or maximum-informative diagnoses
are preferred among the consistency-based diagnoses. We have
seen that in case observations and predictions of the system’s be-
havior are inaccurate, these preferences are no longer adequate.
Instead, the paper argues for preferring maximal-confirmation
diagnoses, and maximal-confirmation and accuracy diagnoses.

To summarize, a general framework for diagnosis when us-
ing inaccurate values is introduced. The inaccuracy need not be
described by intervals in this framework. Problems with mini-
mum / minimal and abductive diagnoses are demonstrated and
a solution in the form of maximal-confirmation diagnoses and
maximal-confirmation and accuracy diagnoses is presented. A
formal justification of maximal-confirmation and mac-diagnoses
is given. Moreover, the application of the results to diagnosis of
Simple Temporal Networks is discussed.

Acknowledgement I thank the anonymous reviewers for their
many valuable suggestions.
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