
MOTION-BASED OBJECT SEGMENTATION

IN VIDEO SEQUENCES

Dissertation

to obtain the degree of Doctor at
Maastricht University,

on the authority of the Rector Magnificus,
Prof. dr. Rianne M. Letschert

in accordance with the decision of the Board of Deans,
to be defended in public

on Thursday 28 March, 2019 at 14:00 hours

by

Wei ZHAO

Supervisor:

Prof.dr.ir. R.L.M. Peeters

Co-supervisor:

Dr.ir.ing. N. Roos

Assessment Committee:

Prof.dr. G.B. Weiss (chair)
Dr. S. Asteriadis
Prof.dr. K. Coninx (Hasselt University)
Prof.dr. T. Gevers (University of Amsterdam)
Prof.dr.ir. J.C. Scholtes

The research reported in this thesis was financially supported by the China Scholarship
Council (under the grant No. 2011607073), and the Department of Data Science and Knowl-
edge Engineering, Maastricht University.

Printed by Optima Grafische Communicatie, Rotterdam
ISBN 978-94-6361-251-7
© Wei Zhao, 2019, Maastricht, The Netherlands
Cover design and drawing © Wei Zhao, 2019

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior permission of the author.

To my beloved parents.

CONTENTS

1 INTRODUCTION 1
1.1 Object Detection and Recognition . 2

1.1.1 Definitions . 2
1.1.2 Applications . 3
1.1.3 Challenges . 9

1.2 Problem Statement and Research Questions 10
1.3 Thesis Outline . 12

2 OVERVIEW OF VIDEO OBJECT SEGMENTATION 15
2.1 System Composition . 15
2.2 Feature Extraction . 16

2.2.1 Histogram of Oriented Gradients 18
2.2.2 Scale Invariant Feature Transform 18
2.2.3 Speeded-Up Robust Features . 19
2.2.4 Local Binary Patterns . 19
2.2.5 Features from Accelerated Segment Test 20

2.3 Segmentation . 20
2.3.1 Image-based Segmentation . 21
2.3.2 Motion-based Segmentation . 23
2.3.3 Semantic Image Segmentation. 27

2.4 Classification . 28
2.4.1 Object Representation . 28
2.4.2 Classification . 29

2.5 Conclusion . 30

3 PRELIMINARIES 31
3.1 Optical flow . 31

3.1.1 The Method of Horn and Schunck 32
3.1.2 The Method of Lucas and Kanade 33

3.2 Scale-Invariant Feature Transform . 37
3.3 Camera Geometry . 40

3.3.1 3D Rigid Body Motion . 40
3.3.2 Projections. 41
3.3.3 2D Affine Transformation . 42

3.4 Singular Value Decomposition . 43
3.5 Statistical Methods . 43

3.5.1 Expectation-Maximization Algorithm 44
3.5.2 Bayesian Updating . 44

3.6 Support Vector Machines . 45

i

ii CONTENTS

4 SYSTEM FRAMEWORK 49
4.1 Overview . 49
4.2 Data Sets . 52
4.3 Feature Extraction and Motion Estimation 55
4.4 Motion-based Segmentation . 56
4.5 Segmentation without Motion . 58
4.6 Conclusion . 58

5 FEATURE EXTRACTION AND MOTION ESTIMATION 61
5.1 Introduction . 61
5.2 Pixel-based Motion Estimation . 62
5.3 Feature-based Motion Estimation. 63
5.4 Visualization of the Motion Data . 65

5.4.1 Two-frame Optical Flow . 66
5.4.2 Sparse Point Tracking . 68
5.4.3 Dense Point Tracking . 70

5.5 Conclusion . 73

6 2D MOTION SEGMENTATION 75
6.1 Introduction . 75
6.2 2D Motion Segmentation . 76

6.2.1 Parametric Motion Model . 77
6.2.2 Segmentation based on Two-frame Motion 78
6.2.3 Segmentation of a Sequence of Frames 81
6.2.4 Reliability Measurement . 83
6.2.5 Camera Movement. 84

6.3 Evaluation of the Methodology . 85
6.3.1 Datasets . 86
6.3.2 Evaluation Metrics . 87

6.4 Experimental Results . 89
6.4.1 Parameter Configuration. 90
6.4.2 Segmentation on Flawless Data . 93
6.4.3 Segmentation on Realistic Data . 95

6.5 Conclusion . 104

7 3D MOTION SEGMENTATION 107
7.1 Introduction . 107
7.2 3D Motion Consistency . 108

7.2.1 Analysis . 108
7.2.2 Application . 111
7.2.3 Error Analysis . 112

7.3 Experiments . 113
7.3.1 Improving the Segmentation Quality. 113
7.3.2 Recovering the 3D Rigid Body Motion 120

7.4 Conclusion . 120

CONTENTS iii

8 LEARNING STATIC SEGMENTATION FROM THE MOTION SEGMENTATION RESULTS 123
8.1 Introduction . 123
8.2 The Learning Data . 125
8.3 Static Object Segmentation . 125
8.4 Object Identification . 126
8.5 Experiment . 128

8.5.1 Static Object Segmentation . 128
8.5.2 Object Classification . 129

8.6 Conclusion . 132

9 CONCLUSIONS AND FUTURE WORK 135
9.1 Conclusions on the Research Questions. 135

9.1.1 System Design . 135
9.1.2 Feature Extraction and Motion Estimation 136
9.1.3 Motion Segmentation . 137
9.1.4 Learning from the Motion Segmentation. 139

9.2 Future Research. 140

REFERENCES 142

SUMMARY 165

ADDENDUM: VALORIZATION 169

ABOUT THE AUTHOR 173

LIST OF PUBLICATIONS 174

1
INTRODUCTION

How to make artificial intelligence see and interpret the real world like a human being,
has been a fascinating task since the beginning of research in computer vision. Humans
can perceive the external world by their visual system, which consists of the eyes, parts
of the brain, and the pathways connecting them [2, 20, 122]. The eyes can capture the
light entering the cornea and transform it to electric visual signals. The brain acts as a
processing and interpretation unit of the visual signal from the eyes. Studies in computer
vision try to mimic the process of human vision, where the camera is equivalent to the eyes
and the computer fulfils the processing function of the human brain [90, 101, 176]. Robot
vision is part of the broader field of computer vision, it mainly focus on the techniques that
are applicable for robots. The ultimate goal of robot vision is to enable robots to perceive
the external visual world and understand it in an intelligent way, so to help them perform
various tasks by acting and interacting with their environment [117].

Although the study of computer vision is inspired by the mechanism of biological vi-
sion, the intrinsic processes of human vision and computer vision systems are still dif-
ferent because of hardware constraints of computers. Researchers have revealed that the
human eye system has the capability of continuously receiving the equivalent of about 10
megabits of visual information per second, while much of the information is redundant
[135]. The redundant data is compressed by the visual cortex and sent to the correspond-
ing part of the brain. The human brain can interpret the compressed data and abstract
the information in an effective way. Tasks that the human vision system can perform in
seconds will take many hours even in the most advanced supercomputer. Moreover, the
architectures are different between the human neuronal system and electronic computers
so that some mechanisms of human vision are simply not applicable o electronic comput-
ers [273]. Although perceptual psychologists and neuroscientist have made some achieve-
ments in the field of cellular neuroscience, neural circuits, cognitive neuroscience, etc.,
the mystery of visual information processing in the human brain remains for a good deal
unrevealed, especially on the high level of human vision system signals [163, 191]. By send-
ing visual signals through nerves and between parts of the brain, the brain does all of the
complex tasks of processing, analyzing and understanding the visual information [101].

1

1

2 CHAPTER 1. INTRODUCTION

The common goal of either computer vision or robot vision is to extract “information”
from visual sources. Plenty of approaches and algorithms have been developed in these ar-
eas, based on studies and theories in the fields of psychology, artificial intelligence, statis-
tics, geometry, physics and mathematics [113, 227, 263]. Research in industrial robot vi-
sion has made progress because the visual environment of such applications is predictable
and controllable. Techniques for applications such as automatic assembly, components
inspection, surveillance, etc., have been widely used in modern society. Meanwhile, re-
searchers focus on developing intelligent systems that can deal with dynamic environ-
ments, in a robust way which provides a basis for autonomous robots operating in natural
environments.

1.1. OBJECT DETECTION AND RECOGNITION
Recognizing the constituent objects in observed scenes is one of the primary tasks of any
vision system. The terminology “object recognition” in psychology is the ability to per-
ceive an object’s physical properties (such as shape, colour and texture) and then apply
to semantic attributes to the object, which includes the understanding of its use, previ-
ous experience with the object and how it relates to others [81]. The human vision system
has the ability of carrying out such tasks effortlessly and very quickly, despite the fact that
these objects may vary somewhat in form, colour, texture, etc. For example, a soccer player
is able to perceive the ball and discriminate the team-mates from the counterparts in front
at a glance, which enables him to make decisions about the next move. During a very short
moment, this player carries out a series of recognition tasks:

1. Processing the visual signals perceived by the eyes to extract visual features such as
colours, shapes, motion characteristics, etc.

2. Segmenting out the things of interest.
3. Labelling the segmented things to their categories based on empirical knowledge.

The tasks are the fundamental research issues of recognition in computer vision, which
is one of the most challenging topics in this area and attracting extensive research. How-
ever recognition of common objects in computer vision is quite beyond the capability of
artificial systems proposed so far. Why is recognition so difficult for a computer or a robot?
That is because of variation in the world. Objects presented in natural scenes show vari-
ation within their categories, but also between categories. Moreover, the appearance of
one object can vary due to changes in pose, illumination, texture, deformation, and under
occlusion. These variations make it unlikely that a common method for recognition un-
der different conditions in computer vision can be developed at present. Researchers are
mostly dedicated to develop schemes and algorithms to meet specific requirements and
constraints of different applications. Substantial success has been achieved in detection
and recognition of specific objects, such as handwritten digits, fingerprints, faces, and road
signs [124, 160, 213, 235, 269]. Meanwhile, significant development has also been made for
developing schemes of object recognition in more generic situations [174, 234, 246].

1.1.1. DEFINITIONS
Visual object recognition in computer vision depends on many aspects, such as process-
ing input images or videos, learning object representations, analysing perceived scenes,

1.1. OBJECT DETECTION AND RECOGNITION

1

3

Detection Recognition

 Ball

Robot

Car

People

Figure 1.1: The generic pipeline of object detection and recognition

locating the objects, classification of objects, etc. [11, 89, 189, 227]. The recognition prob-
lem in computer vision is broken down into many sub-fields, and the terminologies varies
subtly in different applications [11]. In this thesis, we use a fairly general definition of “ob-
ject detection”, which refers to determining the location and scale of all object instances,
if any, that are present in an image [227, 246]. The objects are to be detected no matter
the viewpoint, against a cluttered background, or with partial occlusions [227]. “Object
recognition” in this thesis means object class recognition, which includes determining the
classes of object instances present in the scene [227]. Figure 1.1 illustrates the general con-
ceptions of object detection and recognition used in this thesis.

1.1.2. APPLICATIONS
Techniques and algorithms used for object detection and recognition differs, due to the
requirements in applications. Successes have been achieved in specific domains. We will
present some representative applications in this section.

Facial Recognition Systems
Facial recognition is a common instance of specific object detection. It aims at identify-
ing or verifying a person from a digital image or a video frame from a video source. For
given images or videos, the face recognition system aims to detect the regions of faces and
recognize the faces using a stored database of faces [275].

A face is an important biometric, which shows distinctive and measurable character-
istics that are used to label and describe individuals. Face perception is a routine task for
humans, thus the recognition of human faces is an inevitable topic for developing machine
vision systems. Given a static image from a sequence of images, a generic face recognition
system is able to detect the face region (see Figure 1.2a) and identify the face automati-
cally. Face detection is usually related to the topic of image processing and segmentation,
while the identification of a face is generally a recognition problem. Inspired by the human
vision system, face recognition techniques generally contain solutions for the following
three tasks [227]:

1

4 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.2: Face detection based on facial features [169]: (a) Face detection in different scale. (b) Principal facial
features (in white +) located.

• Extracting the local features of the face image.
• Representing the face with a model of the extracted features.
• Performing classification on the representations.

In early research in this field, the problem of face recognition was treated as a 2D pat-
tern recognition problem. In such approaches, explicit local facial features, such as eyes,
nose, and mouth are first located (see Figure 1.2b), and the face image is represented based
on the geometry of local features, such as distances and positions [31, 86, 131, 264]. Tech-
niques such as graph matching and principal component analysis are used in the devel-
opment of geometry based methods. The geometric feature-based methods are robust to
the changes in illumination [95]. However, the performance of such approaches strongly
relies on the accuracy of registration of local facial features, which becomes the bottleneck
of these approaches.

Many recent approaches are developed based on the eigenfaces [170, 241], which takes
a holistic approach to face recognition. Such approaches represent the facial image as a
projection on lower-dimensional subspaces called eigenfaces [227]. Statistic techniques
provide powerful solutions for this problem, such as kernel principal component analysis
(kernel-PCA), kernel linear discriminant analysis (kernel-LDA), discrete cosine transform
(DCT), hidden Markov model (HMM), Fourier transforms (FT) and Support Vector Ma-
chines (SVMs) [42]. Artificial Neural Networks are another successful tool for patter recog-
nition problems. Techniques as Deep Neural Networks (DNNs), Multilayer Perceptrons
(MLPs) and Self-Organizing Maps (SOMs) are widely used in modern face recognition ap-
proaches [227]. There are also many hybrid approaches which use both statistical pattern
face recognition techniques and neural networks [187, 203].

3D face recognition emerged recently, with the purpose of building a 3-dimensional
geometry of the human face for recognition. It has been shown that the approaches us-
ing 3D face models can achieve higher accuracy in recognition than their 2D counterparts
[227], because 3D methods are better at capturing and explaining the full variability of fa-
cial appearance in a wide range of viewing angles. The performance of 3D face recognition
is strongly limited by the technique of acquiring the 3D information accurately. Some ap-
proaches use 3D sensors to capture the 3D points on the face [31]. Other approaches use
multiple cameras to recover the 3D points based on multiple view geometry [164]. More-
over, multiple images from different angles from a common camera can also to be used to

1.1. OBJECT DETECTION AND RECOGNITION

1

5

create the 3D model with significant-processing [45]. Nowadays 3D face recognition is an
active research topic in the field of face recognition.

Great progress has been made in the field of face recognition since the pioneers started
do research on recognizing human faces using computers in the 1960’s [59]. During the
last 50 years, thousands of techniques and algorithms have been developed to address
different requirements of applications. Nowadays, face recognition is not only a research
topic in laboratories, but it can be found in a variety of commercial applications, such as
consumer-level photo applications, human–computer interaction (HCI) systems, identity
verification, desktop login, parental controls, and patient monitoring as well as security
[227]. Although great improvements have been made in face recognition, building a com-
puter system comparable to the human vision system is still an on-going research area.
More descriptions and discussions about this topic can be found in a number of surveys
and books [1, 101, 227].

Human Activity Recognition
The goal of human activity recognition is to automatically analyse ongoing activities from
an unknown video (i.e. a sequence of image frames) [6]. The terminology “activity” refers
to a sequence of human body movements, which are performed by one or more agents
who could be interacting with each other in a constrained manner [240]. In some vision
literature, the terms “action” and “activity” are used interchangeably. In this work, we use
the concepts proposed by Aggarwal and Ryoo [6], who categorize the general “activity” into
four levels:

1. Gestures are elementary movements of a person’s body part, such as “shaking an
arm” or “raising a leg”.

2. Actions are activities of a single person, which are composed of a series of gestures,
such as “walking” and “running”

3. Interactions refer to the human activities that involve two or more persons and/or
objects, such as “two persons fighting” or “one person bouncing a ball”.

4. Group activities are those performed by conceptual groups composed of multiple
persons and/or objects, such as “a group of persons marching”.

Figure 1.3 shows some examples of different human activities.
The task of activity recognition is challenging mainly due to variations in motion per-

formance, recording settings and inter-personal differences. Human activities are com-
plex and highly diverse. At low-level, gesture recognition needs to address the tasks of
detecting human parts (faces, hands, arms, etc.) and analysing their motions [5]. For high-
level activity recognition, i.e. actions, interactions and group activities, there are intra-class
variations and inter-class variations. For instance, a simple walking movement can differ
in speed and stride length. The inter-class variations are caused by the anthropometric
differences between individuals, such as on the boundary between “running” and “walk-
ing”. Besides, changes of the environment, occlusion, illumination, viewpoint and cam-
era settings are issues which influence the appearance of activities, thus affect the activity
recognition. Since activities are segmented in time, the temporal variations also become
a challenge of activity recognition problem. Moreover, the acquisition of “ground-truth”

1

6 CHAPTER 1. INTRODUCTION

(a)

(b)

(c)

(d)

Figure 1.3: Examples of different level of activities: (a) Gesture: a hand waving [161]; (b) Action: one person
walking [210]; (c) Interaction: kicking [206]; (d) Group activities: crossing the road [63].

training data is challenging, because the collection and the labelling of training data are
laborious tasks.

Activity recognition is closely related to other research topics, of which two are the
most significant: vision based human motion estimation and human/pedestrian detec-
tion. Human motion analysis focuses on the recovery of human poses and motions from
image sequences. Human activity recognition is generally addressed a classification prob-
lem. Human or pedestrian detection is a related area to human activity recognition. Since
a broad range of research and techniques are related to this topic, variations of taxonomies
of human activity recognition methodologies are proposed according to different criteria
in existing survey papers. Some researchers use a taxonomy based on the hierarchy of
“activity” categories, which correspond with different levels of vision tasks. Some use a
functional taxonomy with the subsequent phases. More information about this work can
be found in a number of surveys [6, 62, 190, 240].

Although strategies and techniques vary in different human activity recognition sys-
tem, the two parts: image representation and activity classification, are present in ev-
ery vision-based activity recognition approach. The general design of a human activity
recognition system follows a bottom-up construction, which involves a process of inter-
preting the images from low-level visual features to high-level semantic interpretations.
Vision techniques from different levels of processing are related to different parts of the

1.1. OBJECT DETECTION AND RECOGNITION

1

7

human activity recognition system [5, 6, 32]. At the lower levels there are modules such as
background–foreground segmentation, feature tracking, object detection. Techniques and
algorithms of optical flow, feature extraction, tracking, background subtraction, spatio-
temporal filters, etc., are developed as solutions for these modules [120]. At the mid-
level there are gesture and action recognition modules, where the motions can be rep-
resented as trained templates or with certain parametric models. Approaches such as hid-
den Markov models (HMMs), Linear Dynamical Systems (LDSs) and Nonlinear Dynamical
Systems, etc., are used for modelling the actions (or gestures) [240]. At a high level, the rea-
soning engines encode the semantic activities (interactions and group activities) based on
lower level action primitives [6]. In order to model complex activities, researchers success-
fully developed tools based on graphical Models, such as Belief Networks, Petri Nets, etc.
Syntactic and logic-based approaches are other active branches in this field.

Solutions to activity recognition are applicable to domains of visual surveillance, video
retrieval, human–computer interaction, motion sensing games, and so on. One of the
most commercially viable applications is retrieval of consumer content such as sports
videos. Effective recognition of human behaviour is quite helpful in creating computers
that can better interact with humans, of which the Kinect for Xbox is a successful example.

Vision based Mobile Robot Navigation
For mobile robots, the ability to navigate in the environment is crucial. Navigation can
roughly be described as the process of determining a suitable and safe path between a
starting and a goal point for a robot travelling between them [34]. Thus a navigation system
needs to address two fundamental issues: determining the path to the goal point, and
the avoidance of obstacles, for which the acquisition of environment information is an
essential issue. A variety of sensors are used for acquiring environment information, such
as sonar, position sensing device (PSD), laser, radar, and cameras.

In particular, many researchers focus on vision based navigation using visual sensors,
such as photometric cameras and laser-based range finders. Cameras are the most popu-
lar visual sensors in applications because they have the advantage of providing extensive
visual information while having low weights, small sizes, and low costs [80]. Solutions of
vision-based navigation are applied to a wide range of areas, such as autonomous ground
vehicles (AGVs), unmanned aerial vehicles (UAVs/drones), assistant robots, robots for ex-
ploration, etc. Figure 1.4a and 1.4b show examples of indoor and outdoor robots respec-
tively.

Vision based navigation of mobile robots aims at building a map or some other model
of the environment around the robots by analysing the images or videos from visual sen-
sors. Typically, navigation involves three tasks: environment interpretation, localization
and path planning. The interpretation of the environment includes the process of extract-
ing information from the surrounding environment. The environment is perceived in the
form of geometric information, such as landmarks, object models or environment maps,
in two or three dimensions. Localization finds the agent’s position within the map or the
model. Path planning involves the determination of a sequence of actions aimed at ac-
complishing some goal.

The biggest challenge of vision based navigation is in handling the variations of the en-
vironment, including illumination changes, weather conditions, time or season changes

1

8 CHAPTER 1. INTRODUCTION

(a) Route of an indoor cleaning robot [197] (b) An outdoor robot [10]

Figure 1.4: Examples of mobile robots operated in different environment

and dynamic obstacles. Therefore, the representation of the environment significantly af-
fects the performance of localization and path planning.

Schemes of vision-based navigation vary according to the requirements and character-
istics of applications they are designed for. For instance, autonomous underwater vehicles
have to cope with the special characteristics of light propagation undersea which the au-
tonomous ground vehicles do not meet. De Souza and Kak [73] structured vision-based
navigation in two main categories: indoor navigation and outdoor navigation. Bonin-Font
et al. [34] divided the vision navigation system in those that need prior knowledge of the
whole environment and those that perceive the environment while they navigate through
it.

Map-Based Navigation consists of providing the robot with a model of the environ-
ment. For some navigation systems, a complete map of the environment is required be-
fore the navigation starts (map-using systems). Other systems are able to explore the en-
vironment and automatically build a map of it (map-building systems) [34]. Map-based
navigation can improve the precision in localization that at the cost of consuming more
computational resources, time and storage. Thus they are mostly used in indoor environ-
ments, which are usually smaller and simpler than outdoor environments. The environ-
ment models may contain different degrees of detail, varying from a complete CAD model
of the environment to a simple graph of interconnections or interrelationships between
the elements in the environment. Research on 3D metric environment representations
has grown fast in recent decades. Localization of map-based navigation is achieved by
tracking and matching of some known features (landmarks), where techniques of feature
detection and matching, low-level image processing, etc., are involved in this topic.

For mapless navigation systems, knowledge of the environment is acquired by process-
ing the images or videos obtained by visual sensors in real-time. During the last decades
new vision techniques have been used to vision-based navigation systems. Optical flow
estimation provides an efficient way to analyse the apparent motion features of image pix-
els. Researchers have built numerous mapless navigation systems by combining optical
flow with other techniques, which has been categorized as a big group by Bonin-Font et al.
[34]. Some approaches represent the environment objects by appearance-based models,
where the localization is achieved by image segmentation and matching algorithms and
object recognition techniques. New navigation strategies arise with the development of
new techniques for tracking moving elements (corners, lines, object outlines or specific

1.1. OBJECT DETECTION AND RECOGNITION

1

9

regions) in a video sequence. More details about these categories of vision-based naviga-
tion are available in a number of surveys and books on this topic [34, 73, 237]

1.1.3. CHALLENGES
Although progress has been made, object detection and recognition remains an open
problem today. There are real applications on the consumer market that have contributed
to our daily life, as well advanced applications that are presented in laboratory nowadays.
In general, researchers are pursuing a robust, accurate and high performance approach,
which remains a great challenge today. The difficulty of the object detection and recogni-
tion problem comes from the challenges on the different levels of the process. The typical
challenges in an object detection and recognition system are as follows:

Appearance Changes of Objects
The appearance of an object in the image varies due to the following reasons:

1. Illumination changes
In natural scenes, light always changes due to the dynamic environment we live in.
The sunlight varies during the day in outdoor scenes, while illuminations can also
changes in indoor scenes. Illumination strongly affects intensities of pixels in the
images or videos, which lead to changes in the appearance of objects. Shadows and
their changes caused by illumination make the problem even more complicated.

2. View point changes
The appearance of objects varies between different view points. Even humans can
suffer the vision paradox problem in some situations. Handling the change of ob-
jects between different view points is an essential issue in object detection and
recognition.

3. Pose variation
The pose variation of an object causes the appearance to change, and sometimes
leads to self-occlusion.

4. Deformation
Deformation is a change of the shape or size of an object due to some factors, such as
an applied tensile (pulling) force or temperature changes. Usually the deformation
is negligible for a rigid object, but it can be substantial for non-rigid objects.

5. Occlusion
Objects can be occluded dynamically due to location changes and movements of
objects in the scene. It is a challenge to discriminate the objects that are occluded
and to recognize their locations.

6. Clutter
The presence of background clutter increases the difficulty to segment out the ob-
jects. It is even more challenging to detect an object in camouflage.

1

10 CHAPTER 1. INTRODUCTION

Noise
Images and videos are recorded by cameras, which are usually superimposed with noise
due to the intrinsic properties of a camera system. For example, the sensor noise and
compression artifacts are two typical types of noise. Noise contaminate the visual signal,
which may affect the performance of a vision system.

Motions
Natural scenes always contain movements. Motions present in a scene affect the video
processing and object detection in the following ways:

• The camera equipped by a mobile robot could be unstable. The movement of a cam-
era could affect the videos and introduce noise.

• Objects present in a scene can also move in different ways. The motion characteris-
tics (speed, orientation, etc.) of the objects play an important role in detection.

• Some movements, like waving trees and moving clouds, are not welcome in detect-
ing foreground objects (such as in a vehicle detection system). Background clutter
therefore can increase the difficulty of detecting foreground objects.

Scale, Orientation and Shape Changes
Some objects vary in scale, orientation and shape during time (e.g. non-rigid objects).

In recent years, the several of the above mentioned challenges have been successfully
addressed by deep neural networks for specific applications areas of computer vision [12,
138, 145, 265]. There still remain challenges and application areas where more research is
required [188, 276]. One of these is motion-based image segmentation [26, 158].

1.2. PROBLEM STATEMENT AND RESEARCH QUESTIONS
The objective of this thesis is to segment out moving objects using motion information
available in a video. With robot soccer as an application domain in mind, we mostly deal
with rigid body motions and videos recorded by a monocular camera. The challenge is that
we do not assume knowledge of the number of objects present, the appearances of these
objects and their motion models. The background could be cluttered, and the camera can
either be static or undergo a general 3D rotation and translation.

We choose not to use some black-box approach such as (deep) neural networks to ad-
dress our research objective since we wish to gain a clear understanding of how motion
information can be exploited. In other words, we prefer a glass-box or explainable AI ap-
proach. This implies that we will not focus on learning based approaches despite the re-
cent successes of deep neural networks in computer vision. This also avoids the need for
a large set of annotated motion-based training data. The results of our research may be
beneficial to choose a learning-based approach in future research. There exist different
neural networks architectures, which may encode specific algorithms; e.g., a convolution
algorithm. Knowledge about how motion information can be used for segmentation, may
help to choose the appropriate neural network architecture.

We aim at segmenting out the moving objects based on the motions occurring in a
video, as shown in Figure 1.5. This is a process of interpreting the low-level visual informa-

1.2. PROBLEM STATEMENT AND RESEARCH QUESTIONS

1

11

Video: a sequence of images

Input

Unknown information (to be solved)

Objects

How many?

Where?

What?

Pixel intensity

Pixel position

Photometric cues

Geometric cues

Direct information

Motion of
scene points

Indirect information

Figure 1.5: The objective of our research is to interpret the low-level information (pixel properties) to high-level
information (object descriptions), by recovering the implicit information (motion).

tion, which contains redundancy and in this form is meaningless for scene understanding,
to high-level descriptions of the scene contents. Since motion information is implicit in a
video, our research focuses on the acquirement, analysis and utilization of motion data.
Multiple tasks are involved in accomplishing this research objective. These tasks are ad-
dressed by the following research questions:

Research Question 1 How to design a framework for motion based video object segmen-
tation?

Our research attempts to develop an overall approach that can automatically segment out
and track the moving objects from video sequences. This is a complex problem that in-
volves several sub-tasks and cannot be solved straightforward. The problem solving pro-
cess can be generally divided into three stages: the motion estimation, motion segmenta-
tion and object classification, where each stage depends on the stage before. Therefore,
we need to consider the effectiveness of the solutions both from a local and a global per-
spective. For example, suppose solution A can achieve better performance than solution
B in motion estimation, but the motion segmentation based on solution A is worse than
that based on solution B. Then A to be abandoned because it is locally optimized but not
optimized globally. In this thesis, we will set up an effective framework for the problem
solving process.

Research Question 2 How to extract and represent motion data from a video sequence?

The input video sequence consists of consecutive digital images, also called frames. A dig-
ital image is a discretization of a projection of the 3D world space. The motions occurring
in the 3D real world cause the changes in the 2D images, that are taken at different times,
i.e. the 2D image motions. For the task of segmenting out moving objects, it is essential to
obtain accurate image motions [41]. It is challenging to obtain accurate estimates of im-
age motion because illumination changes, occlusion, etc., also lead to changes in image
frames. To extract the motion data from a video sequence, the fundamental issue is how to
represent the motion? We can describe the motions between images by the movements of
pixels, as pixels are the smallest elements in an image. We can also track local features that
are visually unique in a video sequence. Moreover, the image alignments (image deriva-
tives, optical flow, point correspondences) largely affect the quality of obtained motion
data [155]. We will investigate the types of motion data that can be extracted from a video
sequence, and evaluate which type is beneficial in which way to motion segmentation.

1

12 CHAPTER 1. INTRODUCTION

Research Question 3 How can the objects be segmented out based on the motion infor-
mation restricting to 2D consistency in the images?

Given the estimated motions in a video sequences, it is possible to divide the images
into multiple components, each being a group of pixels (or feature points) that follow the
“same” motion. This task is called motion segmentation in computer vision [41]. Motion
segmentation is affected by the accuracy of estimated motions, the camera models used
for projection, motion models used to describe the “same” motion [155]. Since we focus
on the motion segmentation in video sequence, we will investigate the design of a segmen-
tation algorithm based on the acquired 2D motion data extracted from a video sequence,
by addressing the following questions?

• What are the effects of camera projection model?
• How to model the motions that are extracted from a sequence accurately?
• For the video sequences containing multiple objects under different motions, how

to determine the number of objects?

To investigate the influences of motion estimation on this stage of the overall frame-
work, we will further evaluate the segmentation algorithm with respect to different motion
estimation approaches.

Research Question 4 How to retrieve 3D motion consistency based on the 2D motion
data?

The estimated motions in the image frames of the sequence are 2D projections of the true
motions in 3D scene. Segmentation based on the 2D motions ignores the effects caused by
projection, such as depth discontinuities, perspective effects, etc. These effects can break a
3D motion into different 2D motions, and therefore the object associated with the 3D mo-
tion is sometimes segmented into more than one region. This is called over-segmentation
[155]. To explore the usage of 3D motion models, we will investigate to retrieve the 3D mo-
tion consistency based on the 2D motion information and projection geometrics, and to
improve the segmentation results.

Research Question 5 How to segment out objects from static frames using moving infor-
mation from videos?

In a video, the objects may move in some frames and be static in others. Segmenting from
motion information implies that these object can only be detected when they move. How
can we segment out these objects when there is no motion detected? Those frames seg-
mented by motion provide the hints. We can learn object features from the segmented
frames and then use this knowledge to segment out static objects from new frames with-
out motion information.

1.3. THESIS OUTLINE
This thesis is organized as follows.

• In Chapter 2, we provide a general overview of related work in object segmentation
from videos.

1.3. THESIS OUTLINE

1

13

• In Chapter 3, an introduction of the basic techniques and algorithms related to our
research is provided.

• In Chapter 4, we address the first research question. We design a framework for un-
supervised video object segmentation based on motion. This framework addresses
the process of acquiring and analysing the motion information from a video se-
quence, including the estimation of motion data, segmentation based on motion,
and learning from motion. The influences of intermediate steps of this process, such
as the choice of motion data types, the techniques used for analysing the motion
data, will be investigated and evaluated in Chapters 5 and 6.

• In Chapter 5, we investigate the approaches for extracting motion data from a video
sequence, which answers the second research question. We generate three types of
motion data from the input videos, i.e. the two-frame pixel movements, the sparse
point trajectories and the dense point trajectories. The influences of three different
data types are explored in Chapter 6, since they are used as the input data for the
motion segmentation algorithms.

• In Chapter 6, we propose a motion segmentation algorithm, which can deal with all
three types of obtained motion data. We investigate the influences of different mo-
tion data types on the motion segmentation results. We also discuss the evaluation
methodology used.

• In Chapter 7, the fourth research question is addressed. We investigate the 3D mo-
tion consistency based on the obtained 2D motion data. We also discuss the utiliza-
tion of 3D motion consistency for motion segmentation.

• In Chapter 8, we investigate the solution to the fifth research question. We inves-
tigate the segmentation of objects from static images, by learning from the motion
segmentation results.

• In Chapter 9, we summarize our findings and the characteristics of our approach
and discuss the directions of future work.

2
OVERVIEW OF VIDEO OBJECT

SEGMENTATION

Remarkable success has been achieved in computer vision research owing to the develop-
ment of computing devices and neuroscience. Numerous sophisticated techniques and
algorithms have been proposed for object detection and recognition under various con-
ditions and circumstances. Schemes and strategies vary in different object detection and
recognition systems, for example, properties and features of interest are different for in-
door and outdoor scenes. Nevertheless there exist common modules involved in any de-
tection and recognition system. In this chapter, we will introduce the essential compo-
nents of object detection and recognition systems and review the leading state-of-the-art
techniques performed in each area.

2.1. SYSTEM COMPOSITION
In an object detection and recognition system, some basic activities are involved as shown
in Figure 2.1 [9, 100]. The image processing refers to the low-level processing on pixels,
such as noise removal, where the outputs are still images. This thesis focuses on the last
three activities; i.e. feature extraction, segmentation and classification.

Feature extraction aims at extracting higher-level descriptors from images based on
salient features rather than pixels [101]. Segmentation is the task of partitioning images
into regions of interest [227]. Classification assigns input data to different categories [227].
Given processed input images, any object detection and recognition system could contain
the three activities, or some subset of them [227]. The stages for implementing these ac-
tivities are not fixed because they can be used to solve different problems under different
schemes. For example, features can be extracted based on segmentation results [195, 238],
while segmentation can be applied starting from the feature points [54, 98, 146, 154]. More-
over, classification algorithms can be used to recognize the detected objects [84, 138, 213],
while object detection can also be achieved by classification algorithms in a top-down sys-
tem [51, 141, 183, 212].

15

2

16 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

Object
Detection

and
Recognition

Systems

Image Acquiring

Image Processing

Feature Extraction

Segmentation

Classification

Figure 2.1: Basic components of an object detection and recognition system

Generally, approaches of object detection and recognition from images follow three
types of paradigms: bottom-up, top-down and hybrid [35]. In a bottom-up paradigm, the
objects are detected by analyzing and segmenting the images from low-level image data.
This scheme is usually used for unsupervised or semi-supervised tasks where additional
information about objects is not provided. Top-down approaches analyze the images from
a high (semantic) level, and are used in applications of detecting particular objects. In
systems with more sophisticated requirements, a combination of the two paradigms often
is more powerful [13, 276].

2.2. FEATURE EXTRACTION
Feature extraction addresses the problem of transforming “raw” pixels into a reduced set of
features. It is an essential step in pattern recognition, machine learning, image processing
and computer vision. When the input data is too large and redundant, feature extraction
techniques aim to obtain the most relevant information from the input data and represent
that information in a lower dimensional space [139]. In this section, we focus on feature
extraction in computer vision, including the major types of features, techniques of feature
extraction, and some examples of applications.

A common problem in computer vision applications is to discover the semantic con-
cepts from input images. However, processing of the raw image data is laborious and time-
consuming for most sophisticated vision algorithms. Feature extraction provides one way
of dimensionality reduction, which plays an important role in most vision applications,
such as image alignment, image classification, object detection and tracking, recognition,
3D scene reconstruction, robot localization, etc. The performance of such applications
significantly depends on the selection of features.

Generally, image features can be categorized into two categories: global features and

2.2. FEATURE EXTRACTION

2

17

(a) Global features encode the whole image into
single descriptors.

A

B

A B C

C

(b) Local feature descriptors are computed
multiple-times for small regions in an image.

Figure 2.2: Image features: Global vs. Local

local features. Global features (e.g., color and texture) aim to describe an image as a whole
and can be interpreted as a particular property of the image involving all pixels [114]. Local
features are representations of some salient regions in the image, such as corners, interest-
ingly shaped patches, viewpoint invariant structures, etc. These local features are usually
called keypoints or feature (interest) points. Figure 2.2 illustrates the basic concept of im-
age representation with global and local features.

The global features represent the image by one multidimensional feature vector, whose
values are computed by measuring the image attributes such as intensity, color, texture, or
shape. Global features are compact and fast to compute, while the requirement of mem-
ory is relatively small. These advantages make global features good for applications on a
large datasets, such as image retrieval and scene recognition [114]. Moreover, global fea-
tures are also useful in classification tasks where a rough segmentation of the object of
interest is available [179]. However, for applications like object detection and image reg-
istration (an image processing technique used to align multiple scenes into a single inte-
grated image), global features meet their limitations. It is impossible for global features to
distinguish foreground objects from the background or to find corresponding parts of two
images, because they are invariant to significant transformations and sensitive to clutter
and occlusion. These limitations can be overcome by introducing some extra steps, such
as image segmentation algorithms and sliding window strategies.

Local features are distinctive and stable, while they are invariant to some transforma-
tions and local changes of illuminations. Properties of local features enable researchers to
find image correspondences regardless of occlusion, changes in viewing conditions, or the
presence of clutter [227]. Such advantages make local features perform well in various ap-
plications, such as object detection and recognition, image registration, stereo matching,
video stabilization, etc. Moreover, local features have been used to generate descriptions
of image contents for image retrieval and scene recognition tasks. They can even achieve a
higher performance than global features in large-scale image search [114]. However, appli-
cations using local features usually need a significant extra amount of memory compared
to global features.

In practice, there are no strict rules for utilizing global or local features. The global fea-
ture descriptor can be applied on parts of an image, while the local features are also able
to represent the whole image. In some applications, the combination of global and local

2

18 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

features is more beneficial. “Good” features should meet the requirements and constraints
of a certain application. The truth is that a “good” feature for one application can be use-
less in the context of a different problem. For applications such as image classification,
camera calibration and object tracking/recognition, it is important to find features which
are robust to changes in brightness or viewpoint and to image distortions (e.g. noise, blur,
or illumination) [114]. For real time applications, features need to be fast to compute. For
navigation applications, the feature descriptor must be robust to clutter and occlusion.
In the literature, a rich variety of feature extraction methods have been proposed to meet
specific requirements [106, 139, 167, 242]. In this thesis, we focus on feature extraction
techniques, which have been successfully applied in object detection and recognition ap-
plications. A brief description of the state-of-art feature descriptors is given immediately
below.

2.2.1. HISTOGRAM OF ORIENTED GRADIENTS
The Histogram of Oriented Gradients (HOG) proposed by Triggs and Dalal [70] measures
the orientation and strength of image gradients within an image region. The basic idea of
HOG is that local object appearance and shape within an image can be described by the
distribution of intensity gradients or edge directions. It uses a block-pattern for normaliz-
ing gradient histograms in cells of an image to compute the feature descriptor.

HOG is invariant to small shifts and rotations, and has been widely used in object de-
tection and recognition applications, such as pedestrian detection and video surveillance,
face detection and recognition, etc.[196, 227]. The limitation of HOG features is that they
are not able to represent richer patterns.

2.2.2. SCALE INVARIANT FEATURE TRANSFORM
The Scale Invariant Feature Transform (SIFT) algorithm detects and describes local fea-
tures in images, which was proposed in [151]. It has proved to be an efficient and robust
way of detecting points of interests, which is useful in object detection and recognition
[152]. The standard SIFT algorithm has four steps:

1) identification of potential keypoints from “scale-spaces”,
2) keypoint localization,
3) orientation assignment,
4) keypoint description.

In the SIFT algorithm, a scale-space is first generated from the original to ensure scale
invariance and potential keypoints are detected from the scale-space using the difference-
of-Gaussian (DoG) [136, 148]. Then the bad key points are eliminated in the second step.
In the third step, the orientation is calculated for each keypoint in order to make it rotation
invariant. In the last step, the feature vector of a keypoint is constructed based on the
orientation histograms computed in the third step.

SIFT features are invariant to image scaling and rotation, and robust to large amounts
of pixel noise [152]. Because of the scale-invariant properties and the high distinctive fea-
ture expression, SIFT features are usable in object recognition [151, 227].

Compare to many other descriptors of that period, the standard SIFT descriptor has
been shown better matching performance [167]. The limitation of standard SIFT is that the

2.2. FEATURE EXTRACTION

2

19

Figure 2.3: SIFT keypoints are invariant to affine transformations

computation of feature vectors is complicated and slow. Moreover, it is only invariant to
minor affine changes (within 50 degrees). A number of variants and extensions of standard
SIFT have been developed in recent decades, for more robustness and distinctiveness with
scaled-down complexity [22, 132, 167, 171]. Nowadays, SIFT has become one of the most
popular local feature extraction techniques used in computer vision tasks.

2.2.3. SPEEDED-UP ROBUST FEATURES
The Speeded-Up Robust Features (SURF) detector-descriptor algorithm is an efficient al-
ternative to SIFT [21]. It is developed for the purpose of achieving a higher speed for local
feature detection and description than SIFT methods. The SURF algorithm is based on the
SIFT algorithm and follows a similar scheme of keypoint detection and description. The
differences are:

1) The localization of potential keypoints is achieved using integral images, which is
faster than DoG in SIFT.

2) The orientation is computed by the Haar wavelet in horizontal and vertical direc-
tions for a neighbourhood, instead of computing gradient histograms as in SIFT.

3) The feature vector is constructed based on the summation of Haar wavelet re-
sponses, which results in a descriptor with a total of 64 dimensions.

In short, the new characteristics of SURF improve the speed in every step compared
to SIFT. Analysis shows it is 3 times faster than SIFT while performance is comparable to
SIFT [21]. However SURF is not fully affine invariant, it is not good at handling viewpoint
change. Moreover, it is not as stable as SIFT. A detailed comparison of the two methods
can be found in [130].

2.2.4. LOCAL BINARY PATTERNS
Local Binary Patterns (LBP) is a texture operator which builds the spatial structure of a
texture by creating the ordering relationship of each center pixel and its neighboring pix-
els [114, 178]. LBP features are invariant to monotonic transformations of the gray-levels,
which makes it robust to illumination changes. Another advantage is its computational
simplicity. Due to these advantages, LBP has become a popular approach for many appli-
cations, such as texture classification, real-time recognition, etc.

LBP also has some limitations. It is not invariant to rotation and also not robust on flat

2

20 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

image areas. Several variations of LBP have been proposed to increase the applicability of
LBP. A survey of different versions of LBP can be found in [40].

2.2.5. FEATURES FROM ACCELERATED SEGMENT TEST
The Features from Accelerated Segment Test (FAST) algorithm was proposed by Rosten
and Drummond [201] based on the Smallest Univalue Segment Assimilating Nucleus (SU-
SAN) corner detector [220]. Experiments have shown that corners are important for the
human vision system, and that removing the corners from images impedes human recog-
nition. Corners in feature extraction techniques correspond to areas in 2D images with
high curvature, and can be found at various types of junctions, on highly textured surfaces,
at occlusion boundaries, etc.

SUSAN provides a criterion to identify a corner, by comparing the similarity of a centre
pixel and the pixels in its circular neighbourhood [220, 242]. FAST compares pixels on a
circle of fixed radius around the point, and determines whether it is a corner based on the
definition of the SUSAN corner. Instead of testing all pixels in the neighbourhood, FAST
uses a strategy to test fewer pixels, which increases the processing speed.

The FAST corner detector has proved to be faster than many existing detectors, which
makes it suitable for real-time video processing applications [201]. However, it also suffers
from some disadvantages: it is not robust to noise and not invariant to scale changes, and
it depends on a threshold.

2.3. SEGMENTATION
Segmentation is the process of dividing the input data into groups of interest, where each
group contains the data points with similar attributes. This problem is known as cluster
analysis in statistics, which has been studied extensively [227].

Research in image segmentation rose with the development of computer vision since
the 1960s [199, 227]. Image segmentation is the essential step between low-level image
processing and high-level image analysis (semantic representation of features, objects,
and scenes). The objective of image segmentation is to partition an image into regions
of interest, which are meaningful to the subsequent processes on higher levels. Early re-
search on image segmentation addressed a single image, where visual attributes (intensity,
colour, edge, texture shape, etc.) and their spatial relationships, were taken into consid-
eration. Such image based segmentation can detect precise contours of feature regions.
However, such approaches often lack the ability of locating a specific object without ad-
ditional information because an object can be split into several regions corresponding to
different appearance properties.

In recent decades, there is a rising need of segmenting out moving objects from back-
grounds in videos due to the development of video processing applications. A video, which
is composed of a sequence of consecutive images, provides additional cues of temporary
variations such as the motion in the scene. Motion based segmentation aims at segment-
ing images into parts corresponding to their motions. Thus motion segmentation is able to
segment out the objects of salient motions using proper motion models. However, motion
based segmentation algorithms are plagued by fundamental limitations associated with
motion estimation: occlusion and aperture problems [227].

2.3. SEGMENTATION

2

21

Nowadays, image based and motion based segmentation techniques are both used for
object detection and recognition systems. Image based segmentation algorithms are often
used in detecting particular objects, where the descriptions of such objects are given in ad-
vance. For example, in a face recognition system, segmentation algorithms may generate
separately regions as skin, eyes, nose and lip. These sub-regions can be merged together
to get a face region if a model of a face (which describes the face features and their spatial
relationship) is provided [269]. Motion segmentation is suited for detecting objects with
salient motions where the category of present objects is unknown, for instance in robot
navigation and video surveillance [270]. A brief review of the state-of-art techniques for
image based segmentation and motion based segmentation is given in subsections 2.3.1
and 2.3.2.

2.3.1. IMAGE-BASED SEGMENTATION
Techniques and algorithms for image based segmentation vary considerably because re-
search in this field has explored different directions. A common criterion divides segmen-
tation algorithms into two categories according to the basic properties used for segmen-
tation: discontinuity and similarity [101]. In the first category, algorithms aim to detect
the discontinuous properties in an image, i.e. the edges, to extract contours explicitly. Seg-
mentation algorithms in the second category aim to detect regions with similar properties.
Figure 2.4 shows some examples of image segmentation based on different properties. In
this section, we will introduce some principal approaches in both categories, as well as
techniques combining the two kind of properties.

Query & Ground Truth

(a) taxi car

Region/Detector/Combined Dataterms

building

67.2%

Initial Region/Detector

50.8% 92.5%

Combined System
taxi
car
building
road
sky
fence
sidewalk
streetlight
truck
person
mailbox
van
window
trash can
manhole
traffic light

(b) car window wheel

59.7%

31.6% 77.3%

car
window
wheel
building
road
sky
tree
sidewalk
tail light
parking meter
headlight
door
fence
column
wall
sign
windshield

(c) bed picture wall

19.4%

61.5% 74.0%

bed
picture
wall
sea
mountain
curtain
window
sky
ceiling
painting
floor
pillow

(d) toilet plate wall

30.9%

24.8% 69.4%

toilet
plate
wall
floor
mirror
person
pot
glass
cup
tree
painting
counter top
towel
trash can

Figure 2.4: Some image segmentation examples: (a) segmentation of color-texture regions [72], (b) semantic
segmentation using per-exemplar detectors [230], (c) mean-sift based segmentation of a landscape image [65],

(d) segmentation based on contour detection [14]

EDGE-BASED SEGMENTATION

Edge-based segmentation methods find the edges between the regions and determine the
segments as regions within these edges, based on edge detection techniques. Edges are

2

22 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

local changes in the image intensity, which are useful to distinguish boundaries of objects
or homogeneous regions in a scene. Segmentation based on edges often relies on detecting
high quality edges. Edge detection is an active research area in which many techniques and
algorithms have been developed that are perceptive to certain types of edges.

A common type of edge detection techniques uses a gradient operator to identify lo-
cations of large intensity changes. The most important ones in this class are the Robert
operator, the Sobel operator, and the Prewitt operator [215, 219]. These methods are effi-
cient for detecting edges and their orientations. They are also sensitive to noise because of
using first order derivative operators.

Some approaches use second order derivatives to detect edges based on a Laplacian
filter. However they are extremely sensitive to noise and no directional information about
the edge is given [101]. The Marr and Hildreth combine a Laplacian detector with Gaussian
filtering for edge detection, which aims to reduce the noise from images before the edge
detection process [56]. Marr-Hildreth method is known as the Laplacian of Gaussian (LoG)
operator for edge detection, which is more likely to find the correct places of edges because
it tests a wider area around the pixels [41, 159]. The disadvantage is its malfunctioning at
corners, curves and areas where the grey-level intensity function varies [215, 219].

The edge detection technique proposed by Canny [52] uses a Gaussian filter for image
smoothing, and adopts a double thresholding strategy for detecting and linking edges. The
canny detector ensures good noise immunity and at the same time detects true edge points
with minimum error. It outperforms most of the gradient and Laplacian methods, but it is
limited in real-time applications by its higher computational complexity [159, 215, 219].

THRESHOLDING

Thresholding is the simplest segmentation technique, which separates an image into re-
gions with thresholds based on the distribution of pixel values (intensity values or color).
The key problem of thresholding is how to automatically determine an adequate threshold
value to separate out desired objects. Thresholding can be viewed as a statistical decision
problem which objective is to minimize the average error incurred by assigning pixels into
two or more groups [101].

Segmentation can be done by thresholding using global information (e.g. the grey-level
histogram of the whole image) or local information [110]. For global thresholding, thresh-
old values are computed over the whole image. Another type of thresholding technique
uses adaptive threshold values for different local areas, while different strategies are pro-
posed to choose local areas and determine the proper threshold.

Based on the information the algorithm manipulates, thresholding segmentation tech-
niques and algorithms can be categorized into six groups as follows [214]:

1) histogram based methods,
2) clustering based methods,
3) entropy based methods,
4) attribute based methods,
5) spatial methods using higher-order probability distributions, and
6) local methods of adaptive threshold values.

Descriptions and comparisons of these techniques can be found in the literature [110, 181,
214].

2.3. SEGMENTATION

2

23

Thresholding is effective in segmenting images where the contrast between object and
background is significant. However, image segmentation based on thresholding often fails
to detect shape coherence because it is based on pixel-level attributes. Regions (or objects)
of complex texture can be divided into multiple parts in thresholding based segmentation.
Moreover, the performance of thresholding methods is sensitive to noise and non-uniform
illumination. Image smoothing techniques such as Gaussian filtering, and edge detectors
are often used to improve thresholding [101].

REGION-BASED SEGMENTATION

Region-based segmentation algorithms aim to find the regions directly according to the
similarity properties of image pixels. Such algorithms aim to separate regions in which
the pixels have similar values, where the selection of the similarity criterion plays an im-
portant role. Region-based segmentation techniques can be divided into two categories
according to the strategy used for generating regions, i.e. region growing (merging) and
region splitting and merging [101].

The region growing approaches follow a bottom up scheme, which groups pixels and
small regions into larger regions based on pre-defined criteria. The basic region growing
starts by choosing a set of “seeds” and the regions are grown by adding in neighbouring
pixels that are similar to their own “seeds” [3]. The seed points can be selected either by
a human or automatically, by avoiding areas of high contrast (large gradients). Lin et al.
proposed an algorithm which can generate the seeds automatically [147]. Region growing
techniques are conceptually simple and can achieve good segmentation results accord-
ing to defined properties. They are, however, local methods and suffer from the initial
seed-point problem, which means that different sets of initial seed points cause different
segmentation results. The fast scanning algorithm [74] was developed to address the initial
seed-point problem. It scans the whole image and determines if one can merge pixels into
an existing clustering, thus seed points are not needed. This approach is good at matching
shapes of real objects in an efficient way.

Another category of algorithms first divides an image into a set of disjoint regions and
then merges and/or splits the regions, based on distinguishing the homogeneity of the
image [119]. A combination of region merging and splitting was developed to avoid over-
segmentation. The advantage of such approaches is that the image can then be segmented
properly according to the demands of applications by giving splitting criteria. The limita-
tion is that blocky segments might be produced [101].

2.3.2. MOTION-BASED SEGMENTATION
A video sequence has much richer information than a single image. Motion is a primary
feature in video, which carries a lot of information in spatiotemporal relationships be-
tween image objects [41]. In addition, image properties have a high correlation in the
direction of motion, for example the color of a moving car keeps the same in images of
the video sequence. Motion based segmentation techniques take advantage of these char-
acteristics to locate regions or objects according to the motion information.

The procedure of a motion based segmentation application consists of two basic tasks:
motion estimation and motion segmentation [41]. The motion estimation task aims to esti-
mate the motion information by identifying interest points in images and measuring how

2

24 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

where x is the object to be classified (usually the pixel), w1..wc

are the c classes (usu-
ally background or foreground), P (w

j

|x) is the “a posteriori probability”, p(x|w
j

) is the
conditional density, P (w

j

) is the “a priori probability” and
P

c

i=1 p(x|wi

)P (w
i

) is the
“density function”. MAP classifies x as belonging to the class w which maximizes the
“a posteriori probability”. MAP is often used in combination with other techniques. For
example, in [8] is combined with a Probabilistic Data Association Filter. In [9] MAP is
used together with level sets incorporating motion information. In [10] the MAP frame-

Figure 1. Example of image sequence and its image difference result. Sequence taken from [30].(a) Motion segmentation based on image difference [33]

(b) Motion segmentation based on layers [140]284 T. Brox and J. Malik

Fig. 2. Frames 0, 30, 50, 80 of a shot from Miss Marple: Murder at the vicarage. Up
to frame 30, there is hardly any motion as the person is sitting. Most information is
provided when the person is sitting up. This is exploited in the present approach. Due
to long term tracking, the grouping information is also available at the first frames.

Given the pairwise distances between trajectories, we can build an a�nity
matrix for the whole shot and run spectral clustering on this a�nity matrix [5,6].
Regarding the task as a single clustering problem, rather than deciding upon a
single-frame basis, ensures that trajectories that belong to the same object but
did not exist at the same time become connected by the transitivity of the
graph. An explicit track repair as in [7] is not needed. Moreover, since we do not
assume the number of clusters to be known in advance and the clusters should
be spatially compact, we propose a spectral clustering method that includes a
spatial regularity constraint allowing for model selection.

In order to facilitate progress in the field of object-level segmentation in videos,
we provide an annotated dataset together with an evaluation tool, trajectories,
and the binaries of our approach. This will allow for quantitative comparisons
in the future. Currently the only reasonably sized dataset with annotation is
the Hopkins dataset [8], which is specialized for factorization methods (sparse,
manually corrected trajectories, all trajectories have the same length). The new

(c) Motion segmentation based on particle filters [49]

(d) Motion segmentation based on manifold clustering [236]

Figure 2.5: Examples of motion segmentation

2.3. SEGMENTATION

2

25

they move. Next a motion segmentation algorithm is used for partitioning the interest
points into groups with similar motions.

MOTION ESTIMATION

Given a sequence of images, motion estimation aims to determine the motion of image el-
ements, such as pixels, interest points, or regions [41, 101]. It is a typical technique in video
processing, and has been widely applied in various applications, such as video compres-
sion and motion segmentation. Depending on the goals of motion estimation, algorithms
of motion estimation show a rich diversity. In this thesis, we focus on motion estimation
techniques for motion-based segmentation.

Since motion is described as changes between image frames, motion estimation tech-
niques are based on comparing the similarity and dissimilarity of image features. The
typical challenges of motion estimation are occlusions and illumination changes. A va-
riety of schemes and solutions have been developed to detect motions in video sequences,
which can be divided into 2 categories: pixel-based methods and feature-based methods
[123, 233].

The pixel based methods are also called “direct” methods, because they aim at recov-
ering the motion of each pixel directly from measurable image quantities [123]. Most pixel
based methods are based on the “brightness constancy constraint”, which is derived from
the observation that the intensity values of a small region usually remains the same while
its location may change [29]. The block matching algorithm, phase correlation, optical
flow estimation and maximum a posteriori (MAP) estimation are typical approaches in this
category [41]. Among them, optical flow estimation is one of the most popular techniques
of motion estimation, for which a number of algorithms have been developed [118]. Horn
and Schunck proposed a global constraint of smoothness and the computation of opti-
cal flow is formulated as a global energy minimization problem [118]. Lucas and Kanade
proposed the local uniformity constraint and solved the optical flow using a coarse-to-fine
approach [153]. The Horn-Schunck and Lucas-Kanade methods are at the core of two ma-
jor directions of research for optical flow estimation, while both approaches have been
extended by many researchers [8, 29, 30, 47, 108, 224]. There are several surveys of opti-
cal flow techniques in the literature [91, 165, 227], where more details can be found. Pixel
based methods can achieve a high accuracy for recovering the pixel motions, and provide
the advantage of accounting for subtle image details. However detection of long-range mo-
tion is difficult because the brightness constraint is only valid in limited situations (when
the surfaces can be approximated as Lambertian) [46].

Feature based methods focus on establishing point correspondences between images
by feature matching [233]. These methods first localize specific feature points, which
should have good discriminative properties and there should be a high probability that
the same point is selected in both images [242]. Therefore, the extraction of features plays
an significant role in establishing accurate point motion [168, 233]. Popular feature de-
tectors, such as HOG, SIFT and SURF, see Section 2.2, are widely used in capturing large
motions [40, 46, 142, 216, 233]. Feature based methods can track salient feature points
across multiple frames, thus they can handle arbitrary large displacements as long as the
features can be tracked. However, the established motion vectors are often very sparse be-
cause the local feature descriptors are reliable only at salient locations and are locally rigid
[257].

2

26 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

In recent decades, many researchers have extensively worked on extending the sparse
matching of features to dense matching of features [15, 18, 46, 76, 142, 149, 207, 226,
250, 252, 257]. Some methods compute dense point motion by matching descriptors
extracted in from local regions (generally square), which is computationally expensive
[15, 18, 46, 149, 257]. Some other approaches combine feature matching with optical flow
techniques to extract dense long-term trajectories from a video sequence [207, 226, 252].
Nowadays, feature matching techniques are also used to improve the optical flow estima-
tion in some approaches [142, 250]. Some researchers propose to use a neural network to
learn to estimate the optical flow between two images [76].

MOTION SEGMENTATION

Strategies and techniques for motion segmentation differ from that developed for image
segmentation because of the distinct property of motion vectors compared to other image
features (intensity, color, texture, etc.). Generally, the goal of motion segmentation is to
partition the tracked points (or pixels) from multiple moving objects into different groups
based on their motions [41], which can be considered as a clustering problem. Thus prin-
ciples and achievements in other research areas, such statistics, machine learning, data
analysis, etc., contribute to the development of motion segmentation approaches. A vari-
ety of schemes and strategies have been proposed in the literature for solving the motion
segmentation problem [36, 121, 217, 247, 259, 260, 270].

According to the type of motion representation, motion segmentation algorithms can
be divided into pixel based and feature-point based [271, 272]. Pixel-based motion estima-
tion directly recovers image motion at each pixel, so they are also called direct methods
[123, 228]. Thus segmentation algorithms based on pixel-wise motion vectors are able
to segment out precise regions of objects. Pixel-based motion estimation is sensitive to
environment variations, such as illumination variation, occlusion [123, 233], etc. Con-
sequently, pixel based segmentation is also sensitive to environment variation. Feature
based motion estimation tries to detect and track a set of salient feature points, which re-
sults in a sparse matrix describing the trajectories of these points [233]. An object is then
represented by a group of feature points. Segmentation based on feature points is in gen-
eral able to handle occlusion [270]. A variety of schemes and strategies has been developed
for motion segmentation in both categories. In this section we will review some state-of-
the-art techniques and algorithms.

Zappella et al. divided the existing approaches into the following groups: image differ-
ence, statistical, wavelets, optical flow based methods, layers based methods and man-
ifold clustering [270]. Figure 2.5 shows some examples of motion segmentation tech-
niques. This division is not meant to be tight, in fact some of the algorithms could be
placed in more than one category [271]. Image difference is one of the simplest techniques
which computes the segmentation by thresholding the pixel-wise intensity difference be-
tween two consecutive images [57, 64]. Statistical approaches regard the segmentation
as a clustering (or classification) problem where each pixel (point) is assigned a class la-
bel. Techniques in statistics, such as Maximum A Posteriori (MAP), Particle Filter (PF) and
Expectation Maximization (EM), are commonly used in pixel-wise motion segmentation
[192, 193, 259]. These approaches can deal with multiple objects and occlusions. Some
methods exploit the usage of wavelets for reducing noise and analyzing frequency compo-

2.3. SEGMENTATION

2

27

nents of images. These wavelets-based methods are often used as a complementary part
for improvement of other approaches, such as image difference and optical flow [61].

Optical flow estimation is a traditional method to compute pixel-wise motion. Ap-
proaches based on optical flow aim to segment moving objects by analysing discontinu-
ities in the optical flow field [36, 36, 67, 182, 254]. Optical flow based motion segmentation
can deal with 2D motions and segment the objects from the background. However, these
methods are sensitive to noise, computationally expensive, and perform poorly in long-
term analysis, which make them not able to deal with real time applications.

Layer based techniques aim to divide images into layers with uniform motion, while
each layer is associated with a depth level and a transparency level that determines the
behaviour of the layers in case of overlapping [48, 140, 225, 253, 270]. Approaches in this
category are quite robust to occlusion.

Manifold clustering, or subspace clustering in some literature, is a new trend in mo-
tion segmentation, which is mainly used on feature based motion trajectories, i.e. feature
points tracked over multiple frames. These algorithms assume that the rigid-body motion
of each object can be projected to a linear subspace [236]. Agglomerative Lossy Compres-
sion (ALC) proposed by Ma et al. [156] segments the trajectories by minimizing a cost
function. The Local Subspace Affinity (LSA) method proposed by Yan and Pollefeys [266]
estimates the subspaces by building an affinity matrix, which is able to deal with artic-
ulated, non-grid and non-degenerate motions. Vidal and Hartley [247] use generalized
principal component analysis (GPCA) to cluster projected trajectories based on the fact
that trajectories of rigid and independent motions generate subspaces of at most dimen-
sion four. Elhamifar and Vidal developed a sparse representation to cluster trajectories
from multiple linear or affine subspaces [79]. Manifold clustering techniques generally
perform well in segmenting rigid motions. Some of them can be adapted for estimating
3D motion models. A common limitation of these methods is the need for a sufficiently
large set of complete trajectories, which is a challenge. This drawback can be compen-
sated, to some extent, by introducing matrix completion algorithms to recover missing
data [218, 268]. However the quality of trajectories is still the major bottleneck of these al-
gorithms. Moreover, most of the subspace clustering algorithms require knowledge about
the number of subspaces.

2.3.3. SEMANTIC IMAGE SEGMENTATION
In recent decades, semantic image segmentation approaches have developed rapidly in
computer vision research. Traditional image segmentation approaches, based on low-level
cues, partition an image into “coherent” regions, which may not be semantically mean-
ingful [227]. Semantic image segmentation, which attempts to segment an image into
different objects and parts with semantic meaning, is a more challenging problem. The
semantic segmentation problem is ill-posed because the definition of “objects” or “mean-
ingful parts” is ambiguous. Moreover, how to effectively represent the “objects” is also a
challenge [276]. Therefore, as of today semantic segmentation largely remains an open
issue and solutions vary with respect to the problem definition. In early research, some
approaches addressed segmentation and recognition simultaneously, by searching the im-
age locations based on a learned model [24, 84, 143, 172, 183]. Over the past two decades,
semantic segmentation based on a self-training framework has boosted [60, 98, 150, 184].

2

28 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

There are several surveys reviewing the semantic segmentation approaches in the litera-
ture from different points of view [103, 276].

2.4. CLASSIFICATION
Object recognition refers to determining the categories of detected object instances, which
is a classification problem. Classification is a supervised task, which is achieved by com-
paring the candidates with models/representations of known objects. Classification meth-
ods are widely used in object recognition systems [227]. Classification techniques can also
be used in some detection tasks. For example, to detect a specific object in an image, we
can divide the image into small patches and apply classifiers on each of the patches to find
the target object [98, 141]. Moreover, classifiers are also helpful for tasks such as feature
extraction and segmentation [126, 138, 255].

Objects in computer vision are regarded as higher-level features compared to the vi-
sual features and keypoints discussed in Section 2.2. The object representation defines the
composition and structure of an object based on low-level features. A good representation
of an object is crucial for an efficient and robust object recognition system. A brief review
of representation models is given in subsection 2.4.1.

A variety of classifiers has been developed in the literature with the help of theories and
techniques from statistics, geometry and topology, pattern recognition, machine learning,
etc. In subsection 2.4.2, we will introduce some classical classifiers. For a particular classi-
fier, various versions have been proposed to meet different requirements in applications.
Surveys and introductions of these approaches are available in a large volume of literature
[11, 89, 227, 246].

2.4.1. OBJECT REPRESENTATION
An object present in an image, covers part of the image, thus we can represent the object
by describing the features of this patch of the image. To represent the objects with fea-
tures, we need to analyze the relationships of features based on their appearance, shapes,
spatial information, etc. The basic components of object models can be either pixels or
detected feature points. Researchers have proposed several important criteria for object
representation: scope, uniqueness, stability, sensitivity, and accessibility [116].

Methods of object representation fall into two categories according to the information
used for modeling: geometry or appearance [234]. Geometric representations describe the
3D geometric relationships between the parts of an object. There are point models, edge
models, surface models and volumetric models [87]. Geometric methods used for object
representation and recognition have been well developed since it has been an active topic
in computer vision and graphics. Most geometric methods are object centered, i.e. the
information about the position of shape elements is affixed to a single-object coordinate
system [174, 234].

Appearance-based approaches only use the appearances of objects, which are cap-
tured by different two-dimensional views of the objects of interest [202]. Such approaches
aim to describe an object with its appearance features and their relationships using fea-
ture descriptors introduced in Section 2.2. Based on the applied features, appearance-
based representations can be divided into local and global approaches. Dimensionality

2.4. CLASSIFICATION

2

29

reduction techniques, such as principal component analysis (PCA), independent compo-
nent analysis (ICA) and non-negative matrix factorization, etc., are often applied on global
features for object representation [202]. A common local approach is to construct the fea-
tures and their relationships in the form of graph [19]. A codebook based approach, which
is based on the Bag of Words (BoW) technique [128], uses clustering techniques to obtain
high-dimensional feature vectors for a classifier. It became popular due to its simplicity
and efficiency, as well as robustness to clutter, occlusion, viewpoint change, and even non-
rigid deformations [69]. Deformable Part Models (DPM) represent an object by a collec-
tion of parts arranged in a deformable configuration. Approaches combining a DPM and
a sliding-window technique can detect complex objects, and research shows they achieve
state-of-the-art results on difficult benchmarks such as the PASCAL datasets [83, 183]. In
the last two decades, deep learning also has shown outstanding performance on image
classification tasks. Deep Neural Networks (DNN) are able to learn more complex models
efficiently without the need of hand-designed features [138].

2.4.2. CLASSIFICATION
Classification is the process of classifying observations into a given set of categories. It
has been a key concept in computer vision because many vision problems can be viewed
as a classification task. Over the years many classification methods have been developed.
An overview can be found in the book [77]. In this section, we focus on the approaches
and techniques which have been widely used in object recognition applications. Choosing
an appropriate classifier is a complex problem, where the feature descriptor, the object
representation and the size of the training set must all be taken into consideration.

Naive Bayes classifiers The probabilistic framework proved to be a convenient tool in
classifier design. Naive Bayes (NB) classifiers are based on conditional probabilities and
Bayes’ Theorem [198]. NB is known as a fast and space efficient classifier, and not sensitive
to irrelevant features [205]. However, NB requires the independence of features.

Support vector machines Support vector machines (SVMs) are the most popular
method in traditional object detection systems [205]. SVMs are examples of so-called
kernel-based classification methods [37]. Combined with sliding window and local fea-
ture techniques such as HOG, SIFT and SURF, it performs well in human face detection
and pedestrian detection [227].

Decision trees Decision trees (DT) are non-parametric approaches based on hierarchi-
cal rules [77]. DTs determine the class of an object by creating a tree according to the at-
tributes of object descriptors. DTs are fast to compute and can address non-linearity [205].
They are sensitive to noise.

Neural Networks Neural Networks is a state-of-the-art technique, and have been used
in object recognition systems for decades [227]. Their attraction lies in their ability to parti-
tion the feature space using nonlinear boundaries for classes. They use a non-parametric
approach. Neural networks are utilized not only for classification but also for automatic

2

30 CHAPTER 2. OVERVIEW OF VIDEO OBJECT SEGMENTATION

feature learning (from the raw data of the image) [209]. One of the popular approaches is
to use Convolutional Neural Networks (CNN) [93, 127, 194]. CNNs have achieved remark-
ably performance for hand-written digit recognition [27]. There is a variety of classifiers
based on CNNs, such as Deep CNN and Recurrent Neural Networks [138, 261]. The perfor-
mance of NNs depends upon the network structure and the amount of training examples.
Generally, a large number of examples are needed to achieve good performance, which
make the training stage a time consuming task [107]. One has to balance the trade-off
between computation and accuracy in the applications of NNs.

2.5. CONCLUSION
Object detection and recognition bridges the low-level image processing and high-level
vision tasks. It is applied in a wide variety of applications. Each of these applications
has specific requirements, such as: the detection of particular object instances or gen-
eral object detection from multiple categories, processing on-line or off-line, robustness
to occlusions, invariance to rotations, detection under different view points, etc. For ex-
ample, a face detection and recognition system needs to identify the objects from the class
of “face”. A navigation system needs to identify the present object instances, which are
from a range of classes. Nevertheless, these applications have a common purpose, i.e., to
extract object information from input images. Therefore, there are common components
in current object detection and recognition systems.

In the previous sections we introduced the key components and related techniques of
a common object detection and recognition system. These techniques were developed to
address the basic problems existing in any object detection and recognition system. In
this thesis, we develop a system for the purpose of moving object detection and recog-
nition from a video sequence. It is designed for detecting moving objects from multiple
categories. We focus on motion estimation and motion segmentation for moving object
detection. We also investigate how the results of moving object detection can be used to
identify objects in static images. In the following chapter, we will discuss the set up of our
approach, solutions to the common key problems, and the applied techniques.

3
PRELIMINARIES

In this chapter, we focus on the fundamental concepts, algorithms and necessary equa-
tions needed for our research. Since our research focuses on moving object detection in a
video sequence, a variety of techniques and approaches are of interest. Sections 3.1 and 3.2
present two approaches related to motion detection and estimation. Section 3.3 intro-
duces the basic geometry of camera projection and the transformation from 3D rigid-body
motion to 2D image motion. Section 3.4 provides a brief introduction to the singular value
decomposition. In Section 3.5, two fundamental statistics techniques are presented: the
expectation maximization (EM) algorithm and Bayes theorem. The EM algorithm is widely
used for data clustering and Bayes theorem is a powerful tool for sequential updating. An
efficient classifier called support vector machine is explained in Section 3.6.

3.1. OPTICAL FLOW
Optical flow is a successful approach to motion estimation, and has been one of the most
active research domains in computer vision. Optical flow is defined as the distribution of
apparent velocities of brightness patterns in an image sequence [118]. In this section, we
will introduce the basic concepts and original formulation of optical flow estimation.

The estimation of optical flow is based on the assumption that the intensity of a pixel,
corresponding with a point on an object surface, does not change significantly when the
object or the camera is moving. This is called brightness constancy [96].

Let I (x, y, t) be the intensity of a pixel at position (x, y) and at time t . Suppose this
pixel is translated to position (x +¢x, y +¢y) at time t +¢t . Based on the assumption of
brightness constancy we then have that

I (x +¢x, y +¢y, t +¢t) = I (x, y, t) (3.1)

Expanding the left-hand side of Equation (3.1) with a first-order Taylor series, we find

I (x +¢x, y +¢y, t +¢t) = I (x, y, t)+ Ix¢x + Iy¢y + It¢t +O2 (3.2)

31

3

32 CHAPTER 3. PRELIMINARIES

Figure 3.1: (a) The aperture problem. v = (u, v) is the true displacement (velocity) from t to t 0. Only its normal
component vn can be estimated, but the tangential component vt cannot. (b) Equation (3.3) yields a line in the

(u, v) space of equal intensities; the true velocity vector v is on this line.

where Ix and Iy denote the spatial and It the temporal first-order partial derivatives of I .
The notation O2 represents all the terms in ¢x, ¢y and ¢t of order 2 and higher; they are
assumed negligible for small displacements.

Combining Equation (3.1) and Equation (3.2), and defining the velocity vector by
(u, v) = (¢x

¢t , ¢y
¢t), we obtain the equation of optical flow (u, v) per pixel:

Ix u + Iy v + It = 0 (3.3)

This is an equation in two unknowns and can not be solved for u and v directly; this
is known as the aperture problem, as visualized in Figure 3.1. As a result, we can only
uniquely recover the component in the direction of the spatial image gradient, while the
motion that is orthogonal to the spatial image gradient direction cannot be estimated ac-
curately in a local region.

In practice, we will be dealing with discretized information: images that consist of pix-
els and which are recorded (sampled) at discrete moments in time. Without loss of gener-
ality, we can choose the time unit to equal the sampling time (the reciprocal of the frame
rate), whence ¢t = 1. We will use this convention in the rest of the thesis. The brightness
constancy relation Equation (3.1), then takes the form

I (x +u, y + v, t +1) = I (x, y, t) (3.4)

The pixel coordinates x and y , but also the velocity components u and v , may or may not
attain integer values, depending on the model that is used.

3.1.1. THE METHOD OF HORN AND SCHUNCK
To resolve the redundancy in Equation (3.3), additional constraints should be introduced.
Horn and Schunck [118] proposed the spatial smoothness constraint, which is used as the
fundamental basis of most optical flow estimation techniques. The spatial smoothness
constraint comes from the observation that neighboring points on objects have similar
velocities and the velocity field of the brightness patterns in the image varies smoothly
almost everywhere [118]. In this approach, the estimated optical flow field is the solution
which also shows the most smoothness.

3.1. OPTICAL FLOW

3

33

Horn and Schunck use the square of the magnitude of the gradient of the velocity (de-
noted by the first-order partial derivatives ux , uy , vx , vy of u and v) to measure the spatial
smoothness at each pixel (x, y). Then the optical flow estimation becomes the problem
of minimizing the sum of the squared errors in the equation for the rate of change of im-
age brightness. As squared velocity allows for an energy interpretation, an energy function
with a penalty term, related to the brightness constancy assumption and the smoothness
constraint respectively, is defined over the image domain as follows:

e =
œ

(eb +∏ec)dx dy

=
œ

((Ix u + Iy v + It)2 +∏(u2
x +u2

y + v2
x + v2

y))dx dy (3.5)

Here eb = (Ix u + Iy v + It)2 denotes the energy mismatch at a location (x, y) regarding the
brightness constancy assumption, ec = u2

x+u2
y+v2

x+v2
y measures the change in the velocity

(non-smoothness of the optical flow) at (x, y), and ∏> 0 is a balancing parameter; integra-
tion takes place over the spatial image domain. This set-up uses a continuous model for
the spatial dimension, which needs to be discretized depending on the pixel density (res-
olution) of actual images. The optical flow is then solved by minimizing the expression in
Equation (3.5). Horn and Schunck’s solution is global, because the computation of the flow
vector at a specific location is based on the entire image. It results in dense flow fields, but
is also known to be sensitive to noise.

3.1.2. THE METHOD OF LUCAS AND KANADE
Lucas and Kanade [153] proposed a local method based on the spatial coherence assump-
tion, which assumes that neighboring pixels move coherently and (largely) share the same
flow. Thus Equation (3.3) must hold in good approximation within the neighborhood of
each pixel. For example, if we use the pixels within a 5£ 5 window around a given pixel
(x, y) as its neighborhood ≠(x,y), there are 25 equations to build for each pixel. We then
can build an error function for the pixels within the neighborhood ≠(x,y) of the chosen
pixel:

E(x,y)(u, v) =
X

(x0,y 0)2≠(x,y)

(Ix (x 0, y 0)u + Iy (x 0, y 0)v + It (x 0, y 0))2 (3.6)

Then the optical flow (û, v̂) of the chosen pixel at (x, y) can be solved by minimizing the
error function:

(û, v̂) = argmin
u,v2R

E(x,y)(u, v) (3.7)

The Lucas-Kanade (LK) method provides a simple but efficient solution to estimate the
optical flow locally. However, it can only be used reliably when the pixel motion between
two images is small enough for the spatial coherence assumption to hold. In practice, true
flow vectors in a neighborhood could be inconsistent for some pixels, which then causes
errors in estimation. Lucas and Kanade assign a weight to each neighbor to diminish the
importance of distant neighbors, thus aiming to decrease the estimation error. Usually,
such weights are set by a Gaussian function of the distance between the neighbor pixel
and the center pixel. Then the weighted error function at (x, y) becomes:

3

34 CHAPTER 3. PRELIMINARIES

E w
(x,y)(u, v) =

X

(x0,y 0)2≠(x,y)

w(x 0 °x, y 0 ° y)(Ix (x 0, y 0)u + Iy (x 0, y 0)v + It (x 0, y 0))2 (3.8)

where w(x, y) is the Gaussian weight function.
There are many improved versions of LK optical flow estimation, to obtain more accu-

rate flow estimates of large displacements. We will briefly discuss the affine LK model, the
iterative optimization method, and the pyramidal computation of optical flow.

AFFINE LUCAS-KANADE OPTICAL FLOW ESTIMATION

The basic LK method of optical flow estimation assumes that a pixel and its neighbors
in a local window all undergo the same translation. However, when for instance rotation
occurs, a single translation vector (u, v) is inadequate to represent the motion patterns of
all the pixels in the local window. Generally, an affine motion model with a rotation matrix
and a translation vector is more accurate to represent the all the pixel motions [29, 88].
Equation (3.9) specifies such an affine motion model, which is used to jointly describe the
movements of all pixels within a local window≠, for one time step:

µ
x +u
y + v

∂
=

µ
1+a1 a2

a4 1+a5

∂µ
x
y

∂
+

µ
a3
a6

∂
for (x, y) 2≠ (3.9)

Here (x, y) denotes a pixel position (within the window≠) in one image, and (x+u, y +
v) denotes its new position in the next image. The two coordinates u and v constitute the
flow vector of this pixel. As illustrated in Figure 3.2, u and v now vary over the neighbor-
hood≠. It directly follows from Equation (3.9) that u and v are affine functions of x and y
given by

u(x, y) = a1x +a2 y +a3

v(x, y) = a4x +a5 y +a6
(3.10)

By substituting Equation (3.10) into Equation (3.8), we obtain the modified error func-

Figure 3.2: A window of 3£3 pixels undergoing a rotation. The optical flow vector clearly varies with the pixel
locations.

3.1. OPTICAL FLOW

3

35

tion below:

E(x,y)(a) =
X

(x0,y 0)2≠(x,y)

(w(x 0 °x, y 0 ° y)(Ix (x 0, y 0)(a1x 0+a2 y 0+a3)

+ Iy (x 0, y 0)(a4x 0+a5 y 0+a6)+ It (x 0, y 0))2)
(3.11)

This function depends on 6 unknowns (the entries of a = (a1, a2, a3, a4, a5, a6)), which cor-
respond to the 6 parameters of the affine motion model. The goal is to estimate the optical
flow (u, v) at the center (x, y) of ≠ according to Equation (3.10), by first finding the best
estimate of a that minimizes this error. By minimizing this weighted least-squares crite-
rion, the optimized estimates of the parameters are obtained; this can e.g. be achieved by
setting the first-order partial derivatives of Equation (3.11) with respect to each parameter
equal to zero and solving the corresponding system of equations. Then, a minimum of six
pixels is at least required for obtaining a unique solution. Once the affine model param-
eters are determined for a pixel, the corresponding flow vector at (x, y) is computed from
Equation (3.10).

ITERATIVE OPTIMIZATION

Recall that the basic LK approach is based on a first-order Taylor approximation, which
neglects the higher-order terms denoted by O2 in Equation (3.2); which is only valid when
movements are small enough. To obtain a more accurate estimate of the optical flow in
case of larger displacements, we can use a coarse-to-fine strategy based on an iterative
procedure similar to Newton’s method [39, 43, 153].

Suppose we already have an estimate (û, v̂) of the true optical flow (u, v) for a pixel at
location (x, y), with residual (±u ,±v):

u = û +±u

v = v̂ +±v
(3.12)

Then the left-hand side of Equation (3.4) can be written as:

I (x +u, y + v, t +1) = I (x + û +±u , y + v̂ +±v , t +1) (3.13)

This suggests that we can generate a warped image J , by applying the estimated motion
(û, v̂) to each of the pixels of I (x, y, t), which gives

J (x + û, y + v̂ , t) = I (x, y, t) (3.14)

The brightness constancy equation between the warped image J (x + û, y + v̂ , t) and
I (x +u, y + v, t +1) then is as follows:

I (x + û +±u , y + v̂ +±v , t +1) = J (x + û, y + v̂ , t) (3.15)

which can be viewed a function of the residual vector (±u ,±v). Then this residual vector
can again be solved by the Lucas-Kanade method. The estimates of residual flows (±̂u , ±̂v)
are subsequently used to further refine the optical flow estimates:

ûnew = û + ±̂u

v̂new = v̂ + ±̂v
(3.16)

3

36 CHAPTER 3. PRELIMINARIES

Scale 0

Scale 1

Scale 2

Scale 3

Original Image

1/2 resolution

1/4 resolution

1/8 resolution

Figure 3.3: The pyramidal representation of images. Images at a larger scale are more smoothed and have lower
resolution.

This new optical flow estimate can be used to re-warp the original image I (x, y, t) again
– and then to estimate a new residual flow. This procedure can be applied in an iterative

manner until
q
±̂2

u + ±̂2
v is smaller than a threshold.

PYRAMIDAL COMPUTATION OF THE OPTICAL FLOW

The Lucas-Kanade optical flow computation is based on local uniformity, thus the estima-
tion accuracy is related to the size of the local window. Normally, a smaller window will
lead to higher accuracy, because the chances then are smaller that it contains pixels that
move in different patterns. On the other hand, for a larger window size the estimated op-
tical flow is expected to be less sensitive to variations, such as light changes and large dis-
placements that exceed the window size. In this sense, a larger local window is preferable
to obtain a more robust estimate of optical flow. Therefore, there is a natural trade-off be-
tween accuracy and robustness when choosing the window size [39]. To address this prob-
lem, one can construct an image pyramid, which consists of multi-scale representations
of a given image. The images in the pyramid have increased smoothing but decreased res-
olution when going from a smaller to a larger scale. When we go up in the pyramid, small
motions are removed and large motions take the role of small motions. We first estimate
the LK optical flow on the largest scale (at the top of the pyramid), then propagate and re-
fine the resulting motion flows by applying the LK algorithm again on the next scale down.
This procedure continues by going down the pyramid until we arrive at the smallest scale
(the original image scale) [42]. In this way, the pyramidal LK method is able to properly
track larger motions than the basic LK algorithm.

Given a pair of images, we first establish a set of pyramidal representations for each
image, in the same way as illustrated in Figure 3.3. An image pyramid consists of multiple
images of different resolution—all arising from the same single original image. The layers
(scales) in a pyramid of L +1 scales are numbered from 0 to L, from bottom to top as in-
dicated, where the image at scale 0 is the raw image. The image in each layer is obtained
by smoothing and sub-sampling the image at the previous (lower) scale, using a scaling
factor; thus the resolution of the images decreases as long as the scale increases. A variety

3.2. SCALE-INVARIANT FEATURE TRANSFORM

3

37

of different smoothing kernels can be used for generating pyramids [4, 50].
The flow vectors are first computed by the iterative affine Lucas-Kanade algorithm,

starting at the top scale L. The results are then propagated to the lower scale L °1 as the
initial guess of the flow vectors, which are then further refined with the iterative affine
Lucas-Kanade algorithm at scale L°1. This procedure runs iteratively down to scale 0.

The pyramidal scheme of optical flow estimation can achieve high accuracy and ro-
bustness for relatively large pixel motions, i.e. when the displacement of a pixel is slightly
larger than the local window size. However, it still suffers from the common limitation of
optical flow methods — they can be erroneous because the brightness constancy or ve-
locity smoothness assumptions can be violated. Thus the ability of dealing with large dis-
placements is limited for the pyramid algorithm. Moreover, the depth of the image pyra-
mid, the choice of L, affects the quality of estimated optical flow.

3.2. SCALE-INVARIANT FEATURE TRANSFORM
The scale-Invariant Feature Transform (SIFT) is an algorithm to detect and describe local
features in images, which was proposed by David Lowe [151]. Lowe’s method transforms
the image into a large collection of local features, each of which is invariant to image scale
(feature size) and rotation, and with partial invariance to affine distortion, noise and il-
lumination changes. It is proved to be an efficient and robust way of detecting points of
interest, which is useful in object detection and recognition [152].

The original SIFT algorithm involves two stages: feature detection and description.
The feature detection refers to the process of locating salient features in image, which is
achieved with the help of a scale space. The SIFT description represents the features in a
manner invariant to scaling and rotating. This property makes it possible to match cor-
responding interest points between different images. The SIFT algorithm works well for
tasks such as object categorization, texture classification and image alignment.

There are four main steps which constitute the SIFT algorithm according to Lowe [151]:

1) scale-space extrema detection,
2) keypoint localization,
3) orientation assignment, and
4) keypoint description.

Scale-space Extrema Detection
This first step attempts to identify the potential feature points over images of different
scales. To obtain scale invariance, a scale space is constructed by applying Gaussian blur
filters to the original image at different octaves and scales. An image pyramid is built and
each level in the pyramid is called an octave. The image resolution decreases when the oc-
tave number increases in the pyramid. At each octave, a group of images is composed by
blurring the raw image on different levels, where each such level is called a scale. Octaves
and scales are indexed starting from 0, as shown in Figure 3.4. The number of octaves and
scales are defined by the user in the implementation. Lowe [152] suggests that 4 octaves
and 5 blur levels are ideal for the algorithm.

Suppose original image is I (x, y) for a scale space of No octaves and Ns scales, then
we define the image at scale s (s = 0,1, . . . , Ns) and octave o (o = 0,1, . . . , No) as L(x, y,æo

s),

3

38 CHAPTER 3. PRELIMINARIES

Sc
al

e
0

Gaussian blur images
Difference of

Gaussian (DOG)

Octave 0
image size: 512×512

Octave 1
image size: 256×256

Octave 2
image size: 128×128

Sc
al

e
1

Sc
al

e
2

Sc
al

e
3

Figure 3.4: An example of scale space which consists of 3 octaves and 4 scales per octave. The image resolution
halves from an octave to the next. Each octave has 4 images blurred by a Gaussian function with increasing

scales.

where æo
s is the blur level. L(x, y,æo

s) is generated by computing the convolution of the
original image I (x, y) with a Gaussian kernel G(x, y,æo

s) as Equation (3.17),

L(x, y,æo
s) =G(x, y,æo

s)§ I (x, y) (3.17)

The Difference-of-Gaussian (DoG) images are generated by computing the difference
of adjacent Gaussian-blurred images per octave, as Equation (3.18). Figure 3.4 illustrates
the DoG images in the example scale space.

D(x, y,æo
s) = L(x, y,æo

s+1)°L(x, y,æo
s) (3.18)

The key locations are obtained by detecting the local maxima and minima of the DoG
images over scales and octaves. One pixel in a DoG image is compared with its 8 neighbors
as well as 9 pixels in next scale and 9 pixels in previous scale, as shown in Figure 3.5. If this
value is the minimum or maximum of all these points then this point is an extrema.

Keypoint Localization
The keypoint candidates detected in previous step contain points of low contrast and
points on the edge. Both kinds of points are sensitive to noises thus they are regarded
as unstable. Such points are eliminated in this step. The low contrast points can be found

3.2. SCALE-INVARIANT FEATURE TRANSFORM

3

39

scale s-1

scale s

scale s+1

image

Figure 3.5: The search area of one pixel (the dark blue lattice) contains 26 adjoining pixels (the light blue lattices)
in DoG space.

by simply checking their intensities. If the absolute value of the DoG image at a detected
point is less than a threshold value, it is rejected as a low contrast point. Since the im-
age intensity gradient will be big across the edge and small along the edge, a 2£2 Hessian
matrix is used to reject the edge points based on the Harris corner detector [111]. This
Hessian matrix is computed at the location and scale of a point. If the ratio between the
largest and the smallest eigenvalues of the Hessian matrix is larger than a threshold, the
corresponding point is rejected as an edge point.

Orientation Assignment
The keypoints are located at different octaves and scales. Next, the keypoints are assigned a
consistent orientation to achieve invariance to image rotation. Given a keypoint located at
(x, y) in the image L(x, y,æo

s) at scale s and octave o, the calculation of orientation is based
on the image intensity gradient magnitude in a neighborhood around its location. Without
loss of generality, we simplify the notation of L(x, y,æo

s) to L(x, y) because æo
s is fixed once

the keypoint is chosen. Then the gradient vector at (x, y) is approximately proportional to
(L(x +1, y)°L(x °1, y),L(x, y +1)°L(x, y °1)). Its magnitude m(x, y) and its orientation
(angle) µ(x, y) are then computed as follows:

m(x, y) =
q

(L(x +1, y)°L(x °1, y))2 + (L(x, y +1)°L(x, y °1))2

µ(x, y) = atan2((L(x, y +1)°L(x, y °1))/(L(x +1, y)°L(x °1, y)))
(3.19)

An orientation histogram with 36 bins covering 360 degrees is created and the highest
peak of the histogram is selected as the orientation of the keypoint. Note that if there
is another peak that ranks above 80% of the highest peak in the orientation histogram,
a new keypoint at the same location but of different orientation is created as well. This
contributes to stability of matching.

Keypoint Description
The last step is to build a descriptor for each keypoint. The SIFT descriptor is generated
from a statistical analysis of the gradient magnitude in the neighborhood of keypoints.
By dividing the neighborhood into sub-blocks, a set of histograms is computed to form
the SIFT descriptor. Typically the SIFT method takes a 16£16 neighborhood around each
keypoint and divides it into 16 sub-blocks of size 4£ 4. For each sub-block a histogram

3

40 CHAPTER 3. PRELIMINARIES

of 8 bins is generated. This histograms of all sub-blocks are used to form a vector of 128
elements, which is the keypoint descriptor.

3.3. CAMERA GEOMETRY
Videos are obtained by cameras, which map the 3D world to 2D images. In this thesis, we
are interested in the geometry of camera projection and the relationship between 3D rigid
body motion in the real world and 2D motion in images and videos.

3.3.1. 3D RIGID BODY MOTION
In kinematics, a rigid body is an idealization of a body that does not deform under the
action of applied forces. Formally it is defined as a collection of particles with the prop-
erty that the distances between the particles remain unchanged during the motions of the
body [162]. In the real world a perfectly rigid body does not exist, but for many objects,
the deformation is negligible compared to the overall motion of the body. Based on this
rigid body approximation, all particles that define the object undergo the same motion
model, which is called a rigid transformation [38]. Such a rigid transformation is an affine
transformation in 3D space, which can be decomposed into a 3D rotation followed by a
translation. Suppose a particle moves from (X ,Y , Z) to (X 0,Y 0, Z 0), then its motion can be
modelled as 2

4
X 0

Y 0

Z 0

3

5= R

2

4
X
Y
Z

3

5+ t (3.20)

where R is a 3D rotation matrix and t is a translation vector. A rotation matrix R in 3D space
can be parameterized as in Equation (3.21). The translation vector t = (t1, t2, t3)> indicates
displacements in the directions of the three standard coordinate axes.

R = Rz ('z)Ry ('y)Rx ('x)

=

2

4
cos'z °sin'z 0
sin'z cos'z 0

0 0 1

3

5

2

4
cos'y 0 sin'y

0 1 0
°sin'y 0 cos'y

3

5

2

4
1 0 0
0 cos'x °sin'x
0 sin'x cos'x

3

5 (3.21)

where 'z 2 (°º,º], 'y 2 [°º
2 , º2], and 'x 2 [°º

2 , º2] are yaw, pitch, and roll angles respec-
tively. By matrix multiplication, we have

R =

2

4
cos'x cos'y cos'x sin'y sin'z ° sin'x cos'z cos'x sin'y cos'z + sin'x sin'z
sin'x cos'y sin'x sin'y sin'z +cos'x cos'z sin'x sin'y cos'z °cos'x sin'z

°sin'y °cos'y sin'z °cos'y cos'z

3

5

(3.22)
For simplicity, we use the notation ri j to indicate the element of R in the i th row and j th

column in Equation (3.22), thus R is represented in the rest of the chapter by:

R =

2

4
r11 r12 r13
r21 r22 r23
r31 r32 r33

3

5 (3.23)

3.3. CAMERA GEOMETRY

3

41

3.3.2. PROJECTIONS
A physical camera projects the 3D world onto a 2D image according to some projection
model. In general, the lens system in a real camera is too complex to be modelled in detail
in practice. Instead, simplified camera models have been developed for different applica-
tions depending on given assumptions.

GENERAL PERSPECTIVE PROJECTION

Perspective projection provides an idealized mathematical model of a real camera, which
is widely used in computer vision applications. It is based on the assumption that the
camera is small enough compared to the viewed scenes in most situations.

Y

X

ZO

(x,y)
R

r
x

y

o

f

Zc

ccc Z
f

Y
y

X
x

),,(ccc ZYX

(a) The general perspective projection of a
pinhole camera model

(b) The parallel projection of an
orthographic camera

Figure 3.6: Camera models: (a) perspective projection; (b) orthographic projection.

A general perspective projection maps a point in 3D space to a point on the 2D image
plane. Figure 3.6a shows the simplest central-projection camera model: the pinhole cam-
era model. The X Y Z coordinate frame is centered at the camera, with the Z -axis being the
principal axis of the camera. The projected image plane locates at the focus plane, and is
characterized by the x y coordinate frame. The origin of image frame o is the projection of
the camera center O on the image plane. A point (X ,Y , Z) in the camera frame is mapped
to the point (x, y) in the image frame by:

∑
x
y

∏
= f

Z

∑
1 0 0
0 1 0

∏2

4
X
Y
Z

3

5 (3.24)

ORTHOGRAPHIC CAMERA MODEL

Assuming the camera has an infinite focal length f , the points in the camera frame are
mapped to the image by parallel lines, which is illustrated in Figure 3.6b.

In the orthographic camera model, a point (X ,Y , Z) is mapped to an image point (x, y),
eliminating the Z -coordinate. A general orthographic projection from the camera frame
to the image frame has the form:

∑
x
y

∏
=

∑
1 0 0
0 1 0

∏2

4
X
Y
Z

3

5 (3.25)

3

42 CHAPTER 3. PRELIMINARIES

3.3.3. 2D AFFINE TRANSFORMATION
The natural scenes of 3D objects are projected to a sequence of 2D images by the camera.
A point (particle) on the surface of an object is mapped to a pixel in the image through the
camera model. Assume a point moves from (X ,Y , Z) to (X 0,Y 0, Z 0) in camera space, which
are mapped to the 2D points (x, y) and (x 0, y 0) in two different images, using a perspective
camera as in Equation (3.24), then we have the following relationships:

∑
x
y

∏
= f

Z

∑
1 0 0
0 1 0

∏2

4
X
Y
Z

3

5= f
Z

∑
X
Y

∏
(3.26)

∑
x 0

y 0

∏
= f

Z 0

∑
1 0 0
0 1 0

∏2

4
X 0

Y 0

Z 0

3

5= f
Z 0

∑
X 0

Y 0

∏
(3.27)

Substituting these two equations and Equation (3.23) into Equation (3.20), we have
∑

x 0

y 0

∏
= Z

Z 0

∑
r11 r12
r21 r22

∏∑
x
y

∏
+ f Z

Z 0

∑
r13
r23

∏
+ f

Z 0

∑
t1
t2

∏
(3.28)

In case of an orthographic camera, the factors f
Z and f

Z 0 equal 1, and Equation (3.28)
becomes ∑

x 0

y 0

∏
=

∑
r11 r12
r21 r22

∏∑
x
y

∏
+Z

∑
r13
r23

∏
+

∑
t1
t2

∏
(3.29)

Equation (3.29) reveals that all points belong to an object have the same transformation
matrix regarding their 2D images based on an orthographic camera. The translation vector
varies for different points because it is affected by Z . Suppose the center point of an object
is (X0,Y0, Z0), the component Z can be written as Z0 +±Z . Thus for all points belonging to
the object, the differences of the translation part in Equation (3.29) is determined by ±Z ,
as Equation (3.30) shows.

∑
x 0

y 0

∏
=

∑
r11 r12
r21 r22

∏∑
x
y

∏
+

∑
t1
t2

∏
+Z0

∑
r13
r23

∏
+±Z

∑
r13
r23

∏
(3.30)

Normally, the fast frame rate of a video makes that the changes between two consec-
utive frames are relatively small, which enables the human eyes to perceive the continu-
ity of its content. In this case, the changes caused by the component ±Z are small, and
Equation (3.29) approximates a 2D affine transformation, which holds for all points on an
object. Therefore, we can assume that when a moving object in 3D space is projected to
a video sequence through an orthographic camera, the movements of the image points
belonging to the object preserve their continuity in the 2D video frames.

Based on the affine motion assumption, a 6-parameter affine transformation model is
able to describe the motion of an object between two consecutive frames, which can cap-
ture the motions of translation, scaling, and rotation in the 2D plane. If a point is detected
at position x = (x, y)> in one frame and at position x0 = (x 0, y 0)> in the next frame, then
Equation (3.31) is assumed to hold in a good approximation for all points belonging to the
same object.

x0 = Ax+b; (3.31)

3.4. SINGULAR VALUE DECOMPOSITION

3

43

where A =
£a11 a12

a21 a22

§
, and b = [b1 b2]>.

Given a group of points belonging to the same object together with their motion vec-
tors, we can recover the affine model of the object by solving Equation (3.31) for all points
jointly. At least 3 points with independent motion vectors are needed to compute the affine
matrix because there are 2 equations and the same 6 unknowns for each point. Given an
affine model of a moving object, we can determine whether a point belongs to the object
by checking its motion with the affine model.

3.4. SINGULAR VALUE DECOMPOSITION
Singular value decomposition is a technique to factor a matrix [166]. It provides a useful
way to analyze the rectangular matrices.

For any matrix M 2 Rm£n of rank r , there exist orthogonal matrices Um£m and Vn£n
and a non-negative diagonal matrix ßm£n such that

M =UßV > (3.32)

Such a factorization is called a singular value decomposition of the matrix M . If the non-
zero singular values (æ1,æ2, . . . ,ær) are arranged in non-increasing order along the diag-
onal of ß. The columns of U and V are called the left and right singular vectors of M
respectively. The SVD has some basic properties:

• The sequence of singular values is unique for any M .
• The columns of V are the eigenvectors of M>M .
• The columns of U are the eigenvectors of M M>.
• The rank of matrix M is equal to the number of nonzero singular values.

The SVD provides a useful way of analyzing matrix and is applicable in many fields. It
is used for computing the pseudoinverse of a matrix, solving homogeneous linear equa-
tions, solving least squares problems, principle component analysis and dimensionality
reduction, etc. [99, 133, 134, 251]. Applications of the SVD in computer vision exists
in every field, such as face recognition, 3D reconstruction, data compression, and so on
[44, 137, 173, 227, 244]. In the field of motion segmentation, SVD is useful for the factor-
ization of motion matrix.

3.5. STATISTICAL METHODS
A common problem in computer vision is that one is given a collection of measurements
(image, feature positions, motion fields, etc.), and one has to estimate the values of some
unknown structure or parameters (camera motion, object shape, etc.). These problems are
called regression problems because we are trying to estimate a continuous quantity from
noisy inputs, as opposed to a discrete classification task [27]. In computer vision, they
are called inverse problems, which is the opposite of the forward problem as in computer
graphics, because they involve estimating unknown model parameters instead of simulat-
ing the forward formation equations [227].

To address the inverse problem, the statistical models and methods provide power-
ful tools. Approaches based on statistical inference have been extensively developed with

3

44 CHAPTER 3. PRELIMINARIES

varying degrees of success over the last decades. In this section, two kinds of statistical
methods are discussed.

3.5.1. EXPECTATION-MAXIMIZATION ALGORITHM
The expectation-maximization (EM) algorithm [71] is an effective and popular technique
of solving maximum likelihood estimation (MLE) problems when the given data is incom-
plete. It has been widely used for statistical estimation problems with missing data, as well
as for mixture estimation problem which can be posed in a similar form.

Assume a model with parameters µ is associated with a given set of observed data
X = x1, x2, . . . and some unobserved latent variables (or missing data) Z = z1, z2, We
may want to estimate two things: (1) the parameters and (2) the latent variables. The EM
algorithm is intuited by the fact that each of these two steps is easy assuming that the other
one is solved.

The basic idea of the EM algorithm is to find the parameter µ that maximizes the likeli-
hood L(µ | X,Z) = P (X,Z | µ) in an iterative procedure. By starting with some initial guesses,
the EM algorithm alternatively executes two steps to update the estimation of parameters
by increasing the expected value of logL(µ | X,Z) until it converges to a local maximum, as
shown in Equation (3.33),

µi+1 = argmax
µ

EZ|X,µi [logL(µ;X,Z)]

= argmax
µ

X

z
P (Z | X,µi) logL(µ;X,Z) (3.33)

The component EZ|X,µi [logL(µ;X,Z)] is defined as a function Q(µ | µi), which is con-
structed conditioned on the distribution of the hidden variables with respect to the ob-
served data and the current estimation of the parameters. The construction of Q(µ | µi) is
called the expectation step (E-step) and the computation of µi+1 is called the maximization
step (M-step).

A variant of the EM algorithm, which simply estimates the latent variable Z in the E-
step instead of computing the conditional distribution P (Z | X,µi) over all possible values
of Z, is called classification EM [58, 104]. The two basic steps of classification EM in the i th

iteration are:

Classification step: find Zi = argmaxZ P (Z | X,µi);
Maximization step: compute µi+1 = argmaxµ P (Zi ,X | µ);

The classification EM is usually faster to converge and easier to implement than the
original EM, thus it is widely used in practice. One of the famous applications of classifi-
cation EM is k-means clustering [211].

3.5.2. BAYESIAN UPDATING
Bayes’ theorem is part of a fundamental probabilistic theory proposed by Bayes and
Laplace in the 18th century [23]. It has been developed and applied by statisticians and
philosophers in a variety of research areas, such as human cognition, neural computation,

3.6. SUPPORT VECTOR MACHINES

3

45

machine learning, etc.[115]. Bayes’ theorem provides a rule to update the belief of a hy-
pothesis H given some observed data D, which can be described by

P (H|D) = P (D|H)P (H)
P (D)

(3.34)

where P (D) is the marginal likelihood of D, which acts as a normalizing constant. So we
can understand Bayes’ theorem as a form of proportionality between the posterior and the
prior times the likelihood, as Equation (3.35).

P (H |D) / P (D |H)P (H) (3.35)

The conditional probability P (D |H) is called the likelihood. P (H) is the prior probability
and describes the information we have about the hypothesis H before observing the data
D. After the data is observed, the prior distribution is updated to the posterior probability
P (H |D) according to Equation (3.35).

Suppose that the observed data arrives sequentially, e.g. (D1,D2, . . . ,DN). Assume also
that the observed data is conditionally independent of the hypothesis H. Then the com-
putation of the posterior given all observed data can be written as

P (H | D1,D2, . . . ,DN) / P (D1,D2, . . . ,DN |H)P (H)

= P (D1, . . . ,DN°1 |H)P (DN |H)P (H)

/ P (D1, . . . ,DN°1 |H)P (H | DN)

(3.36)

In Equation (3.36), P (H | DN) is the posterior having observed DN , and it can be used
as the new “prior” for the remaining data (D1, . . . ,DN°1). Thus we can update the prior
and compute the new posterior iteratively when new data is observed. The process of
improving the prior probability to the posterior probability is called Bayesian updating.

The essential characteristic of Bayesian methods is their explicit use of conditional
probabilities for quantifying uncertainty in inferences based on statistical data analy-
sis [53]. Bayes’ theorem provides a powerful tool for solving problems in model es-
timation, decision making, missing data inference, prediction, learning of parameters,
etc.[17, 53, 205].

3.6. SUPPORT VECTOR MACHINES
Support vector machines (SVMs) introduced by Boser, Guyon and Vapnik [37], are super-
vised learning models for classification and regression analysis. The main idea behind the
SVM is the construction of an optimal hyperplane that separates the given patterns. SVM
can be used both for linear and for non-linear classification, which will be briefly discussed
in this section.

Linear SVMs
Given a set of N example points xi from two classes A+ and A°, each associated with
a class label yi (yi 2 {1,°1} where 1 and -1 indicate the class A+ and A° respectively),
the dataset can be written as {(x1, y1), . . . , (xN , yN)}. Assume the data is linearly separable;

3

46 CHAPTER 3. PRELIMINARIES

Maximize
margin

wTx+b=0 wTx+b= -1

wTx+b=+1

(a) Linearly separable data

wTx+b=0
wTx+b= -1

wTx+b=+1

(b) Non-linearly separable data

Figure 3.7: Linearly separable and non-linearly separable data.

i.e. there exists a hyper plane which separates the positive from the negative examples.
Figure 3.7 illustrates linearly separable and non-separable situations.

As shown in Figure 3.7, a linear separating hyperplane is a set of points x satisfying
w>x+b = 0, where w is the normal vector to the hyperplane and b is the bias. The data
from each class is bounded by a parallel bounding plane w>x+ b = +1 or w>x+ b = °1.
Thus it gives the following constraints for all data point,

w>x+b ∏+1, for x 2 A+
w>x+b ∑°1, for x 2 A°

(3.37)

Combined with the label description, we have

yi (w>xi +b) ∏ 1, for i = 1, . . . , N (3.38)

When two classes are linearly separable, there normally a family of separating hyper-
planes, as well as bounding planes, between the two classes. According to the statistical
learning theory [243], the optimized bounding planes are those with a maximal margin be-
tween them. Thus SVMs search for the separating hyperplane by maximizing the margin
between two bounding planes, which can be formulated as a convex optimization prob-
lem as shown in Equation (3.39).

min
1
2
kwk 2

2

subject to yi (w>xi +b) ∏ 1, for i = 1, . . . , N
(3.39)

For non-separable data, we can define a “soft margin” between the bounding planes by
introducing a nonnegative slack variable for each data point,

yi (w>xi +b) ∏ 1°ªi , for i = 1, . . . , N (3.40)

The 1-norm of the slack variables
PN

i=1 ªi is called the penalty term. Then the optimiza-

3.6. SUPPORT VECTOR MACHINES

3

47

tion problem of SVMs for non-separable data becomes:

min(
1
2
kwk 2

2 +C
NX

i=1
ªi)

subject to yi (w>xi +b) ∏ 1°ªi ,

ªi ∏ 0 for i = 1, . . . , N

(3.41)

there C is a positive parameter to balance the weight of the penalty term, which can be
determined with a tuning procedure [68].

Equation (3.41) is a standard convex quadratic program, which is called the primal
problem. It turns out that in most cases the primal problem can be solved more easily in
its dual formulation, as shown in Equation (3.42) [68].

max(
NX

i=1
Æi °

1
2

NX

i , j=1
Æi yi x>

i ·x jÆ j y j)

subject to
NX

i=1
yiÆi = 0, and 0 ∑Æi ∑C f or i = 1, . . . , N

(3.42)

Nonlinear SVMs
The nonlinear situation can be handled by mapping the data into a higher dimensional
space as shown in Figure 3.8. Suppose the input data in space Rn is mapped to a higher
dimensional feature space F by some mapping ©. Thus the data point xi is mapped to
©(xi) for i = 1, . . . , N . Then SVMs can be applied to the mapped data for classification. This
approach can easily increase the additional computational complexity due to the compu-
tation of a mapping and the generated higher dimensional data.

6 Yuh-Jye Lee, Yi-Ren Yeh, and Hsing-Kuo Pao

Feature map

nonlinear pattern in data space approximate linear pattern in feature space

Fig. 2. The illustration of nonlinear SVM

w =
mX

{i|ui>0}

y

i

u

i

x

i

. (11)

The dual variable u

i

corresponds to a training point x
i

. The normal vector w
can be expressed in terms of a subset of training data points (called support
vectors) which have a corresponding dual variable u

i

that is positive. By the
Karush-Kuhn-Tucker complementarity conditions [2, 21]:

0 u

i

? y

i

(w>
x

i

+ b) + ⇠

i

� 1 � 0
0 C � u

i

? ⇠

i

� 0 , for i = 1, 2, . . . ,m,

(12)

we can determine b simply by taking any training point, x
i

such that i 2 I :=
{k| 0 < u

k

< C} and obtain:

b = y

i

�w

>
x

i

= y

i

�
mX

j=1

(y
j

u

j

hx
j

,x

i

i) . (13)

Kernel Trick

From the dual SVM formulation (10), we know that all we need to know about
h i

Figure 3.8: Transform linearly non-separable data to linearly separable data.

Boser, Guyon and Vapnik suggested to apply the kernel trick, which avoids the explicit
nonlinear map© [37]. Note that only the dot product between the input data vectors x>

i x j
is needed in the dual SVM formulation as shown in Equation (3.42). If we know the dot
product of the mapped data©(xi)>©(x j) for all i , j 2 (1, . . . , N), it is possible to solve the dual
problem in the feature space F without computing the mapped data explicitly. Suppose
we have a kernel function K (xi ,x j) =©(xi)>©(x j), then the dual nonlinear SVM is given by

3

48 CHAPTER 3. PRELIMINARIES

max(
NX

i=1
Æi °

1
2

NX

i , j=1
Æi yi K (xi ,x j)Æ j y j)

subject to
NX

i=1
yiÆi = 0, and 0 ∑Æi ∑C for i = 1, . . . , N

(3.43)

Given the training data (and kernel functions in the nonlinear cases), we can obtain the
predicted separating hyperplane (w,b) by solving the SVM formulations (linearly separable
data for Equation (3.42) and nonlinear for Equation (3.43)). Then we can formulate the
classifier as

f (x) = sign(w>x+b) (3.44)

SVMs became popular because of their good performance in many computer vision
tasks, such as face and character recognition, image segmentation, image classification,
etc. Experimental results have shown that the SVM can achieve higher performance than
K-Nearest-Neighbor(KNN), Hidden Markov models (HMM), particular Artificial Neural
Networks (ANN), Naive Bayes (NB) and Decision Trees (DT) in image classification and
other classification tasks. Although the speed of the learning period of a SVM is typically
slower than for DT, NB and KNN, it can compute as fast as the other algorithms in the
classification stage.

4
SYSTEM FRAMEWORK

In this chapter, we investigate the general pipeline and propose a framework for segment-
ing out moving objects from video sequences. Our system processes videos, which consist
of sequences of consecutive images. Specifically, the proposed system focuses on process-
ing and analysing the “motion” information in the video sequence in an unsupervised way.

Given a sequence of successive images, which captures a dynamic scene containing
multiple moving objects, the system should be able to determine the number of moving
objects in the sequence, and extract the locations and representations of these objects. In
this chapter, we introduce the design of the proposed system and briefly describe the main
modules.

4.1. OVERVIEW
Object detection approaches can broadly be classified into 3 main streams: top-down,
bottom-up and a combination of both [35]. The top-down approach processes images
starting from the highest level, by analyzing semantic information from a global pipeline.
A top-down scheme for object detection typically includes two stages: a learning stage for
obtaining global descriptors of objects, and a verifying stage to localize (segment out) the
hypothesized objects from images based on the knowledge obtained in the training stage
[24, 51, 183, 193]. Bottom-up approaches focus on local features, which analyze the videos
from low-level information (such as contrast, color, intensity, orientation, texture, and mo-
tion). Approaches based on a bottom-up scheme first segment the images into salient re-
gions that are relatively homogeneous. A recognition process is then used to classify the
regions to corresponding object classes [7, 28, 36, 55, 217]. The top-down approach can of-
ten detect the precise object regions, but for this it requires a large amount of training data.
The bottom-up approach can be applied to any image sequence without prior knowledge,
but it can not solve the ambiguities of objects. For example, an object can be segmented
into parts due to the discontinuities of local features in these parts, and two objects may
be merged if they have similar appearance. Some approaches combine the top-down and
bottom-up processing within a single scheme, which is inspired by the achievements of

49

4

50 CHAPTER 4. SYSTEM FRAMEWORK

the human recognition system [78]. These methods utilize both global and local features to
improve the segmentation accuracy and recognition performance. A variety of approaches
are proposed based on particular strategies of combining the two schemes, involving var-
ious techniques, such as feature extraction, motion analysis, data clustering and machine
learning, etc. [35, 144, 186, 239, 274]. There is no general answer to the question: “What is
the best method for moving object detection?”, nor a standard methodology for evaluating
the methods. The underlying reason for this is that the detection of objects is complicated
and varies subtly in different situations.

In this thesis, we address the problem of moving object detection in a video sequence,
without giving prior knowledge of the objects. The detection of moving objects mostly re-
lies on the motion information which is implied in the changes between images. A bottom-
up strategy is applicable for detecting regions with “coherent” motion. To clarify this issue,
we employ the following definition of a moving object:

• A moving object moves independently of other objects in the scene.
• A moving object can move in some frames of the sequence and can be present in

the following frames without movement. If an object has moved in some frames, it
should always be detected in the rest of the video sequence

• A moving object can be a combination of several parts that undergo different relative
motions but move together. For example, a walking person is regarded as an moving
object, even though his legs and arms move differently.

• The background region including all static objects is also regarded as an object, of
which the motion reflects the camera movement.

Objects satisfying these conditions should be segmented out. Due to a lack of prior knowl-
edge of the scene objects, we can not immediately distinguish between the background
and foreground objects. The fourth definition above emphasizes the fact that the static
background can only move as a result of the camera motion. If the regions of moving
objects and background are separated correctly, it is usually fairly easy to tell their classes
through a classification step. Therefore, our goal is to segment the video frames into mean-
ingful regions, each corresponding to a moving foreground object or the background. To
avoid any ambiguity in the rest of the thesis, the term “foreground moving object” is used
to denote the object moving independently from background (such as a walking person,
a moving car, etc.), and the term “moving object” can refer to either a foreground moving
object or the background.

We propose a moving object detection system, that can automatically segment out the
moving objects from a video which contains multiple rigid objects moving independently,
either with a static or moving camera. The proposed system consists of a bottom-up
scheme of segmenting out moving objects based on their motions and a top-down pro-
cess of tracking the detected objects in case they stop moving. It does not require prior
knowledge of the objects present in the video (i.e., the number of objects and descriptors
of the objects), nor is it dependent on any predefined object models at the image level. As
described in Chapter 2, there are three fundamental issues in the design of a motion based
detection system: motion estimation, motion segmentation, and segmentation without
motion. These three issues correspond to the three main modules of our system, as shown
in Figure 4.1.

4.1. OVERVIEW

4

51

Feature
extraction

Tracking of
features in

successive frames

Motion estimationMotion estimation

Finish when the last
frame pair is

processed

Initialization:
Grab the first pair

of frames

Motion segmentationMotion segmentation

Estimate moiton
models

Assign features
to models

Iteratively
refinement

Go to the next pair
of frames

Extract motion
vectors of current

frame pair

Feature extraction

Segmentation of static objectsSegmentation of static objects

Learn object model

Assign features to
object models

Input data:
a static frame from
the same video

Objects:
segments of features in
the frames

Motion Data:
a set of vectors consisting
of the positions of feature
points in the video frames

Objects:
segments of features in
the frames

Input Data:
a sequence of Video frames

Figure 4.1: The framework of our system. The picture shows at the top, from left to right, the extraction of
motion information. The picture shows in the middle, from right to left, the motion-based segmentation

process. The picture shows at the bottom, from left to right, the segmentation of objects that are no longer
moving using information learned when they were moving.

Motion estimation is considered as a low level vision problem because it processes
pixels or local features. In this thesis, we extract 2D motion information from a video,
which is more challenging than motion estimation between two images. The choice of an
adequate motion estimation approach is important because the acquired data is used as
the input of the next module: motion segmentation. 2D motion estimation determines the
movements of image elements in the two dimensional image plane. However, the scenes
and objects in the real world are three dimensional.

Motion segmentation based on 2D motion data is challenging because the consistency
of 3D motions could be broken in 2D images due to the camera projection. Motion seg-
mentation solves the problem of detecting objects from a video sequence when they are
moving. These objects should also be detected when they are no longer moving. Based on
the obtained information from motion segmentation, we investigate static object detec-
tion in the last module.

Because the proposed method is a combination of solutions to different sub-tasks,
there is neither a benchmark data set, nor a universal evaluation methodology, for it. To
address this issue, we choose specific videos from several benchmark datasets based on
the description in Section 1.2. The performances of individual modules in the system, i.e.,
the motion segmentation and object detection, are measured by different metrics based

4

52 CHAPTER 4. SYSTEM FRAMEWORK

on the data acquired from the given videos.
In Section 4.2, a brief description of the data sets used in the experiments is given.

Section 4.3 presents the problem and the solution of motion estimation in our system.
The motion segmentation based on the results of motion estimation, is introduced in Sec-
tion 4.4. Section 4.5 gives a brief discussion of static object segmentation based on motion
segmentation results.

4.2. DATA SETS
In line with the problem definition in Section 1.2 and the above mentioned moving objects
definition for segmentation in this thesis, the proposed system aims to process videos that
satisfy the following conditions:

1. There are multiple objects moving independently in the video;
2. The objects can only be rigid bodies or articulated rigid-bodies.
3. The camera can move or be stationary;
4. Any motion can take place on a subsequence of a video;

Based on these principles, we chose specific videos from several benchmark datasets.
To evaluate the performance of the various stages of the proposed system, the ground truth
segmentation is provided for the given data. Descriptions of the used datasets are provided
in the remainder of this section.

ROBOCUP 2014
We chose 7 videos from one of the competition videos of Robocup 2014 1. Videos in
this dataset record scenes of robots playing football. Foreground moving objects in these
videos are robots and balls. The camera can be stationary or moving. Each video in this
dataset has a length of 31 frames. These videos are standard HD (1280£720 pixels). We
generated a pixel accurate segmentation mask for every video frame. Figure 4.2 illustrates
some frames and segmentation masks of a video in the dataset. The frame rate is 25 fps.

A SUBSET OF CDNET 2014 DATASET

The CDnet 2014 data set is a benchmark dataset for change detection [256]. It provides
videos with different kinds of objects captured in a variety of situations, including some
extreme conditions, such as videos captured by infrared cameras, videos in the night with
low-visibility of objects, videos with a very low frame rate, etc. We chose 16 videos that
satisfy the above mentioned conditions, from the category Baseline. These videos include
scenes of moving pedestrians and moving cars with unchanged global illumination. The
camera can move slowly or be stationary. Each video has a length of 31 frames, with a
frame rate from 24 to 30 fps. Each video in this dataset has a resolution of 320£240 pixels.

This dataset also provides pixel accurate masks of moving and static regions for each
frame, including the curves of motion boundaries. However, individual moving objects
are not distinguished, as illustrated in the second row of Figure 4.3. Based on the provided
ground truth data, we generated the required segmentation masks, by assigning different
values to regions of different objects and eliminating the motion boundaries, as illustrated
in the third row of Figure 4.3.

1
https://www.youtube.com/watch?v=dhooVgC_0eY

4.2. DATA SETS

4

53

Figure 4.2: Some frames from a video in the Robot soccer videos, along with the segmentation masks. Objects
with different motions are annotated in different colors.

Figure 4.3: A video of a traffic scene refers to CDNet 2014: the first row shows some frames in the video; the
second row displays the annotations of corresponding frames provided by the dataset; the third row gives the

generated segmentation masks .

HOPKINS155 DATASET

The Hopkins155 dataset is a benchmark dataset built for evaluating feature based motion
segmentation [236]. It contains 50 videos, which are divided into three categories. The
category named “checkerboard” contains several objects covered with a uniform checker
board surface, which make 3D rotations and translations. Videos in this category are cap-
tured by a handhold camera. The camera can be in one of four conditions: stationary,
translating, rotating, or a combination of translating and rotating. The “traffic” sequences
contain moving vehicles in outdoor traffic scenes. The remaining sequences which con-
tain motions constrained by joints, head and face motions, people walking, etc., are put in
the category named “others”. Videos in the last two categories are taken using either a sta-
tionary or a moving camera. The resolution varies between 320£240 pixels and 720£480
pixels.

4

54 CHAPTER 4. SYSTEM FRAMEWORK

Figure 4.4: Examples of three videos from Hopkins155 dataset: each row illustrates four frames of a video, as well
as the provided feature points. The last frame of a row shows the trajectories of the points in the provided data.

Points and trajectories are marked by different colors according to the provided segmentations.

Table 4.1: The information of 155 sequences in Hopkins155 dataset [236]. The table shows for each of the
aforementioned category, the number of sequences, the average number of tracked features and the average

number of frames, for videos with two and three moving objects respectively.

2 Motions 3 Motions
Seq. Points Frames # Seq. Points Frames

Checkerboard 78 291 28 26 437 28
Traffic 31 241 30 7 332 31
Others 11 155 40 2 122 31

All 120 266 30 35 398 29

The dataset provides video sequences along with the feature points extracted and
tracked in all frames for each video, as illustrated in Figure 4.4. The provided trajectories
are manually corrected, thus they are regarded as the true motion of these feature points.
The Hopkins 155 dataset also provides the ground-truth segmentation of the trajectories
for each sequence. For each video sequence, several subsequences of point trajectories
are extracted based on the number of moving objects, see [249]. There are in total 155 se-
quences of point trajectories for the Hopkins155 videos. Table 4.1 gives some information
of the provided motion sequences.

FREIBURG-BERKELEY MOTION SEGMENTATION DATASET (FBMS-59)
The Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59) is a benchmark dataset
for motion segmentation [177]. It consists of 59 videos, including videos of traffic scenes,
animals moving and people walking. The length of the video sequences varies from 18
to 719 frames. The resolution of the videos varies between 350£288 pixels and 960£540

4.3. FEATURE EXTRACTION AND MOTION ESTIMATION

4

55

Figure 4.5: Some frames along with their segmentation annotations of 2 videos from the FBMS-59 dataset.

pixels. This dataset provides pixel-accurate segmentation annotation of moving objects
for some key frames in a sequence, as illustrated in Figure 4.5. A total of 720 frames is
annotated in the dataset.

4.3. FEATURE EXTRACTION AND MOTION ESTIMATION
Given a video sequence, the first step is to extract motion information from the input
video frames for our system. As mentioned in Subsection 2.3.2, motion estimation ap-
proaches generally fall into two categories: pixel-based methods and feature-based meth-
ods [41, 123, 228, 233]. There are two corresponding representations of motions. The
pixel-based methods compute the per-pixel correspondences between two images and
represent the motions as a collection of displacement vectors, which can be called the
motion (or displacement) field [228]. The feature-based methods determine correspond-
ing feature points over multiple frames. The trajectory of a feature point is represented as
a vector consisting of its locations in the frames in which it has been tracked.

A variety of motion estimation approaches have been proposed in the literature and
applied in different areas. The choice of motion estimation approach in our system is re-
lated to the motion segmentation algorithm used in the next step. The design of motion
segmentation algorithm must take the motion representation into consideration because
it uses the motion data as inputs. Segmentation based on feature trajectories can be more
reliable than the segmentation based on pixel motion fields, since feature trajectories can

4

56 CHAPTER 4. SYSTEM FRAMEWORK

provide more information on the motions in a video than two-frame motions [49]. How-
ever, segmentation based on pixel motion fields provides per-pixel precise regions, which
carry more information of the object than a few of feature points obtained by feature-based
motion segmentation approaches.

In this thesis, we first address the problem of obtaining motion information in a video
sequence, and the obtained motion data is used as input to the motion segmentation mod-
ule. As we proposed a motion segmentation algorithm that can be generally applied to
both two-frame motions and feature trajectories, which will be described in Chapter 5, the
motion estimation approach in our system is a user choice. We will investigate the differ-
ences of segmentation results based on different types of motion data, that are obtained
from different motion estimation approaches. In Chapter 5, we will introduce three rep-
resentative motion estimation approaches from the two categories, i.e., the pixel-based
methods and the feature-based methods, and apply the chosen approaches to obtain dif-
ferent types of motion data.

4.4. MOTION-BASED SEGMENTATION
Suppose a scene containing multiple rigid moving objects is captured by a moving camera.
We investigate the issue of detecting moving regions in the video sequence. This research is
based on the assumption that the foreground objects are rigid bodies, and each is accom-
panied by a unique motion pattern [121]. The object detection is therefore the problem of
segmenting out the moving regions with respect to their motion coherence.

The motion estimation module produces a collection of points (or pixels) and their
motion information in a sequence. Generally, if we know the number of objects and how
they move, the segmentation can be achieved by simply assigning each point to the mo-
tion model it fits. However, it is unrealistic to acquire such information for a dynamic scene
under unpredictable variations. Our goal is to find a solution for more general situations,
i.e., the number of moving objects and their motion patterns are all unknown. Thus the
motion segmentation module in our system is required to segment the video frames into
a number of motion regions using the detected motion data and their implied geometric
properties, while no additional information of the scene motions is available. Thus mo-
tion segmentation needs to address three issues given the feature points (pixels) and their
motions:

1. How to determine the number of moving objects in the data?
2. How to determine the motion pattern of each object in the data?
3. How to assign each point to a related object?

Motion segmentation is difficult: not only because of the above issues, but also due
to the complexity of camera projection and three-dimensional motions. An image is a 2D
mapping of the 3D scene obtained by camera projection, in which we lose one dimension
[113]. The 3D motion of a scene object gives rise to the 2D motion of corresponding re-
gions in image plane. Motion segmentation based on the 2D motion in images is called 2D
motion segmentation [155]. Research has shown 2D motion segmentation is effective for
the static scenes with simple motions, i.e., the camera or a scene object undergoes a single
3D motion [155]. However, when the scene is dynamic, i.e., there are multiple motions, the
2D motion segmentation approaches often fail to give correct segmentations [155]. This

4.4. MOTION-BASED SEGMENTATION

4

57

happens because the 3D geometric continuity may be lost in the 2D motion fields after
camera projection [157, 236]. For example, a moving object could be broken into different
2D motion fields, because of depth discontinuities, occlusions, perspective effects, etc. (as
shown in Figure 4.6).

Segmentation based on 3D motion consistency is meaningful since most of the appli-
cations need to address dynamic scenes. 3D motion segmentation mainly focuses on the
issue of recovering 3D motion consistency from the 2D motion data in an image sequence
[155].

(a) The moving vertical bar is partly
occluded by the horizontal bar.

(b) The detected motion of the vertical
bar is inconsistent.

Figure 4.6: An example of a moving object that is broken into two parts because of occlusion.

Another problem is that motion data often contains noise due to the errors produced in
feature extraction and motion estimation [41, 106]. For example, there can be inaccuracies
in the observation of feature points. Points can be mismatched between two frames due
to the similarity of repetitive patterns. The environment changes, such as illumination
changes, occlusion, etc., can cause errors in pixel motion estimation.

Over the past 30 years, considerable progress has been made in the field of motion
segmentation and a variety of techniques and algorithms have been proposed to meet dif-
ferent requirements [7, 155, 232, 248, 262]. In this thesis, we focus on the motion segmen-
tation of dynamic video sequences and we investigate the segmentation using different
types of motion data. The two motion estimation methods discussed in Section 4.5 pro-
vide two types of motion data, each having its own merits and limitations. Our purpose
is to develop a motion segmentation algorithm which can use the motion information be-
tween successive frames and in a long sequence of frames. We investigate motion seg-
mentation with respect to both 2D motion consistency in the image plane and 3D motion
consistency in world space. The algorithm should be applicable for both pixel-based and
feature-based motion data and be able to deal with missing data.

In Chapter 6, we will propose a motion segmentation algorithm based on 2D motion
consistency. We will evaluate the performance of our algorithm using different types of
motion data. We will also compare our approach to some state-of-the-art methods using
data from benchmark datasets. In Chapter 7, we will discuss 3D based motion segmenta-
tion, and evaluate its performance in experiments.

4

58 CHAPTER 4. SYSTEM FRAMEWORK

4.5. SEGMENTATION WITHOUT MOTION
Motion segmentation groups together pixels or feature points with respect to their 2D (or
3D) motion consistency. The segmentation of images intends to produce meaningful in-
formation of the scene, since each segment can correspond to individual surfaces, objects,
or natural parts of objects in the scene. However, motion segmentation can only deal with
motion data. We can not segment out a stationary object from the background based on
its motion because the points on the object share the same motion with the points in the
background.

If an object is moving in some frames and is present without movement in the next
frames of a video sequence, we can apply motion segmentation on the frames where it is
moving and obtain the segmentation annotations of these frames. Can we use this infor-
mation to segment the other frames in which the object is present? This can be regarded
as a supervised segmentation task, which learns a segmentation model from the training
images, to segment the other images under similar conditions.

In this thesis, the training images are the frames annotated by the motion segmen-
tation algorithm, and the objective images to be segmented are those in which the ob-
jects stop moving. The training data is limited in amount and biased, because the images
to be segmented and images with annotations are from the same video sequence. But it
also implies that the appearance of an object will not change largely in the images of the
video. Thus learning a segmentation model from these training images is likely to be pos-
sible. Nevertheless, this problem is difficult because the knowledge is “imperfect”, since
segmentations obtained by motion segmentation are not as accurate as the ground-truth
data. Moreover, the evaluation and comparison of our method with other methods is com-
plicated because of the variations in definitions of objects and ground truths. In general,
for segmentation without motions, the system has to address the following problems:

1. How to represent an object?
2. How to learn a segmentation model from the obtained segmented images?

In Chapter 8, non-moving object segmentation is investigated by learning the motion
segmentation results.

4.6. CONCLUSION
In this chapter, we concretized some of the research goals of the thesis and proposed a
system design for detecting moving objects from videos, which tackles research question
1. The proposed system processes video sequences, to turn low-level image features (pix-
els) into semantic level information (objects). Without any prior knowledge of the objects
present in the videos, the key idea is to make use of the motion information implied in the
video sequences. The proposed detection system extracts the motion information from
a video sequence, and then uses it for segmenting images into regions of objects. Due to
the complexity of motions in the real world, defining the moving objects in a video se-
quence is a difficult and ambiguous problem [26, 94]. We define the moving objects to
be detected based on the assumption that the objects can be segmented out based on
their motions, see Section 4.1. We chose videos that contain defined objects from several
benchmark datasets, to evaluate the proposed system. The chosen datasets are described
in Section 4.2.

4.6. CONCLUSION

4

59

The proposed system contains three main modules: motion estimation, motion seg-
mentation, and segmentation without motion. The motion estimation module processes
the image pixels to extract motion data, which captures the spatial and temporal aspects
of image points. Motion segmentation is then applied to separate the image points into
subsets based on their motion information, and each subset represents an object mov-
ing in the scene. Segmentation without motions deals with the images when no motion
information is obtained, by learning a segmentation model from the images segmented
by motion. We discussed the problems to be solved in each module and provided a brief
introduction of the solutions, in sections 4.3 to 4.5.

In the following chapters, each module will be introduced in more detail, including
their solutions to the corresponding problems and evaluations of their performance.

5
FEATURE EXTRACTION AND

MOTION ESTIMATION

The first step of our system is to extract the motion data from a video sequence. A digital
video can be represented as a time-varying sequence of images, called frames. Consec-
utive frames in a video are visually similar because of temporal coherence. The changes
between frames are observed as “apparent motion” in the 2D image plane, and caused
by the relative 3D motions between the camera and the objects in the scene. Motion es-
timation refers to determining the underlying motions, either 2D planar motions or 3D
motions, from a video.

This chapter addresses the problem of estimating the 2D image-plane motion that is
observed in a video sequence. As mentioned in Section 4.3, 2D motion estimation can
be approached as the estimation of pixel-wise correspondence, or the estimation of im-
age feature displacement. There are two corresponding categories of motion estimation
methods, i.e. “pixel-based” and “feature-based”. In Section 5.1, a brief introduction to the
motion estimation problem is given. Then we present three methods, one is “pixel-based”
and two are “feature-based”, in Sections 5.2 and 5.3. In Section 5.4, we use these methods
for obtaining motion data from a video sequence. We will show the differences between
the data obtained by the chosen methods, by visualizing the results. The obtained data
can be analyzed and processed further by the motion segmentation algorithms in the next
chapter.

5.1. INTRODUCTION
“Motion estimation” in literature may refer to the 2D planar motion in the projected im-
age plane or to the 3D motion in the world space [228]. In this thesis, we use this term to
denote 2D motion estimation in the image plane. Thus our purpose is to determine the
projected motion of 3D points on the 2D image plane, by locating the projected positions
in different video frames. Motion estimation viewed in this way is therefore a problem of
estimating frame-to-frame correspondences in a video. Efficient and accurate motion es-

61

5

62 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

timation is challenging because the video sequences contain noise caused by the camera
and the dynamics of the real world. For instance, illumination changes, background move-
ments, shadows, camouflage effects (photometric similarity of objects and background)
and ghosting artifacts (delayed detection of a moving object after it has moved away), etc.
[41, 129].

Motion estimation approaches can generally be categorized into pixel-based and
feature-based, as introduced in Subsection 2.3.2. Pixel-based methods produce dense mo-
tion fields at the pixel level, and therefore keep track of subtle image details. However,
these methods are sensitive to noise and lighting variations, and can not deal with oc-
clusion. Feature-based methods allow for detecting large displacements and long-term
trajectories over multiple video frames. The long-term point trajectories contain more
motion information than the motion field of one video frame. Because feature points are
tracked over multiple frames in a video, such long term analysis decreases the motion’s
intra-object variance relative to the inter-object variance [177]. Estimation of point tra-
jectories relies mostly on feature selection and tracking techniques, which can be divided
into sparse tracking and dense tracking methods based on the sparsity of tracked features
The sparse feature tracking only focus on salient features in the video, which improves the
computational efficiency of motion segmentation. However, a sparse set of feature points
reduces the precision of representations of the segmented objects. A dense set of feature
points carries more information of the processed images than a sparse set of points. How-
ever, accurate estimation of dense point trajectories needs more computational resources.
The density of trajectories can be controlled by sub-sampling the detected feature points.

The result of motion estimation is called “motion data” in this thesis. The motion data
forms the input of the motion segmentation algorithms, which will be addressed in the
next chapter. The type of motion data; i.e. dense motion fields, sparse trajectories and
dense trajectories, as well as the quality of the data, influences both the type of motion
segmentation algorithms that can be used, and the quality of the segmentation result. For
each type of motion data, several algorithms have been proposed in the literature. To com-
pare the motion segmentation algorithms in the following chapters, one algorithm is cho-
sen for each type of motion data. Algorithms that are often used in the literature were
selected. The following sections describe the algorithms that were chosen, and their char-
acteristics.

5.2. PIXEL-BASED MOTION ESTIMATION
Pixel-based methods compute the pixel-wise correspondences between two images, and
result in a 2D motion vector field for all pixels. Most contemporary pixel-based motion
estimation methods are based on optical flow techniques. As introduced in Section 3.1,
optical flow is a well-known technique to compute the motion of pixels between two
images. Over decades of development, significant progress has been made and a va-
riety of approaches have been proposed. For nice reviews of this field, see the papers
[16, 91, 165, 223]. In this thesis, we are only interested in the type of motion data that
can be obtained from a video. Therefore, we choose a widely used approach, the pyra-
midal LK method based on affine motion approximation that has been described in Sub-
section 3.1.2, to compute the optical flows between frames. This method is a successful
improvement of the classic LK method, which can handle larger displacements.

5.3. FEATURE-BASED MOTION ESTIMATION

5

63

(a) Pixel-wise optical flows (b) Sparse point trajectories (c) Dense point trajectories

Figure 5.1: The point correspondences between frames of a hypothetical w.r.t. three motion estimation methods
[207].

An optical flow algorithm computes the motion field between two images. Given a
video sequence, this method can be applied sequentially to pairs of frames in the se-
quence. In this way, the motion data extracted from a sequence is formed as a series of
two-frame motion vectors, which describes the instantaneous velocity of each pixel from
each frame [97, 207, 229]. These motion vectors are temporally discontinuous over frame
pairs in a sequence, as illustrated in Figure 5.1a [97, 207], because a pixel of a frame need
not be map exactly to a pixel position in the next frame.

Optical flow-based approaches require that the illumination remains similar between
two consecutive frames and the frame-to-frame displacements are not too large. These
constraints are usually met for videos captured in daily scenes by a digital camera, such
as an outdoor scene in daylight, or an indoor scene in unchanged illumination. In such
situations, the observed optical flows can be reliable estimations of the actual 2D motions
in the image plane [229].

5.3. FEATURE-BASED MOTION ESTIMATION
Feature-based methods extract and track local features from multiple images [123, 233].
As defined by Tuytelaars and Mikolajczyk, a local feature is “an image pattern which differs
from its immediate neighborhood” [242]. An extracted feature is associated with an unique
descriptor and its location in the image, which we call the feature point. Feature-based
motion estimation establishes the correspondences of feature points by matching their
feature descriptors, which results in a set of point trajectories [97]. Due to occlusion, a
point might be unobserved in some frames. Moreover, errors in feature extraction and
matching can also lead to missing data in the process of tracking feature points. Thus
the trajectories might have different lengths, see Figures 5.1b and 5.1c. The missing data
increases the difficulty of estimating a precise motion model.

The quality of obtained trajectories is affected by feature extraction and tracking tech-
niques. “Good” feature points should have discriminative properties and there should be a
high probability that the same point is selected in multiple images [242]. Only a few feature
points can be extracted from an image based on this criterion. There is a range of whole
feature extraction approaches in the literature, a brief overview is given in Section 2.2.

5

64 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

Feature-based motion estimation generally falls into two categories: the sparse track-
ing approaches, and the dense tracking approaches. Sparse tracking is the traditional
method, which builds the point correspondences based on descriptor matching. Only a
sparse set of salient features that have unique descriptors can be tracked. These meth-
ods are more likely to generate wrong motions than optical flow based methods, because
the geometric constraints between matched points are missing [46]. More recently, some
methods apply the geometric constraints on local features, to solve the dense matching
problem. In the dense tracking methods, point correspondence is built based on both
descriptors and geometric constraints. Thus much denser and more accurate point trajec-
tories can be established, than for sparse tracking approaches.

SPARSE POINT TRACKING

Motion estimation based on sparse tracking normally has two main stages: feature detec-
tion and tracking. Similar to Section 5.2, we chose a popular method for obtaining sparse
trajectories. We use the scale-invariant feature transform (SIFT) to extract feature points,
and a matching strategy based on the Euclidean distance measure is used for tracking the
detected feature points [152].

As introduced in Section 3.2, SIFT is a well-developed algorithm for object detection
and recognition. SIFT features are invariant to image scaling and rotation, and partially
invariant to affine distortion, noise and illumination changes. Moreover, they are tested to
be robust to large amounts of pixel noise. The SIFT descriptor is highly distinctive, and is
therefore suited for feature matching. These properties make them easy to be tracked in
images and usable for object recognition. The SIFT detection and description is described
in Section 3.2 in more detail.

The movements of SIFT feature points can be identified by matching the correspond-
ing feature points of two frames. This can be done by computing the similarity of two
feature points. The matching algorithm in [152] is used. There, the similarity of two points
is measured by the Euclidean distance of their feature descriptors. A point in an image is
matched to its nearest neighbor, which is defined as the feature point with minimum Eu-
clidean distance for the SIFT descriptor, in another image. Nevertheless, matches could
be incorrect for some points when they have similar descriptors. This often happens for
points located in a cluttered background. To eliminate the “bad” matches, a reliability
measure is evaluated for every match, as in [152]. Based on the observation that the clos-
est neighbor is usually significantly closer than others for a correct match, the reliability
of a match is defined by the ratio of the distance between a point and its nearest neighbor
and the distance between the point and its second nearest neighbor. Matches with reliabil-
ities that are greater than a chosen threshold are considered to be incorrect. The threshold
value provided by [152] is used in the experiments described in this thesis. Furthermore,
the random sample consensus (RANSAC) is used on top of it to discard “bad” matches [85].

Starting from the first frame, all detected points are tracked by matching them with
points in the next frame. If a point is tracked in multiples frames, a trajectory is established
for it. Tracking of a point is stopped if no reliable match can be found in a frame.

DENSE POINT TRACKING

Dense tracking approaches often combine the basic ideas of optical flow and feature track-
ing, by applying geometric constraints (as in optical flow estimation) on local features, to

5.4. VISUALIZATION OF THE MOTION DATA

5

65

solve the dense matching problem [149, 207, 226, 257].
We use the approach proposed in [226], to obtain dense trajectories from video se-

quences. This method is based on one of today’s high quality variational optical flow meth-
ods [46]. It selects pixels located at the areas of significant structures in the first video frame
as the initial points, because areas without any structure are problematic for tracking. In
addition, one can reduce the density of initial points by spatially sub-sampling the pixels.
Each of the selected points is tracked to the next frame by using the large displacement
optical flow algorithm (LDOF) in [46]. LDOF is a technique that integrates the optical flow
constraints and feature matching to estimate the point correspondences. Each point in
the initial set is assigned a descriptor based on the local features within a neighborhood
centered at this point. The feature descriptor is computed by the histograms of oriented
gradients (HOG) [70]. HOG features have proved to be faster than SIFT features in compu-
tation in [46].

The computation of optical flow at the selected points is based on brightness con-
straints, smoothness assumption and descriptor matching [46, 47, 70]. Starting with the
first frame, the selected points are tracked to the next frame by using the estimated opti-
cal flow field. The tracking should be stopped when a point gets occluded. As in [226], a
forward-backward consistency checking of optical flow is used to detect occlusions. For
those points located at the motion boundary, the estimated optical flow is less accurate
[258]. Therefore, points on motion boundaries are no longer tracked [226]. Besides the
tracked points propagated from the previous frame, new points are also initialized in each
frame in the tracking process to fill the empty areas, using the same strategy as for the first
frame [226].

5.4. VISUALIZATION OF THE MOTION DATA
As discussed above, there are two representations of motion data that can be obtained,
either a series of two-frame motion vectors or a set of point trajectories. The point trajec-
tories can be sparse or dense, using different kinds of tracking methods. Therefore three
types of motion data, i.e. two-frame motion vectors, sparse trajectories and dense trajec-
tories, can be extracted from a giving video. In this chapter, we chose three motion estima-
tion methods for obtaining these three types of motion data from the video sequences. As
introduced in Section 4.2, four datasets were chosen to evaluate the proposed system. The
chosen motion estimation methods are applied to the videos to obtain motion data that
can be processed by the motion segmentation algorithms in the next chapter.

As we only aim to demonstrate how the methods work and which kind of data they
produce here, we visualize the results to show the differences of the three data types. For
demonstration, we chose 6 videos that were captured in different scenes with different mo-
tions. In Figure 5.2, we display an example frame for each of the 6 videos. The results of
optical flow, sparse trajectories and dense trajectories are shown and discussed in Subsec-
tions 5.4.1 to 5.4.3 respectively.

5

66 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

(a) Highway (240*320 px)

(d) cars1 (480*640 px)

(b) people1 (480*640 px)

(e) tennis (380*530 px) (f) lion1 (405*720 px)

(c) robots (720*1280 px)

Figure 5.2: Frames from 6 videos in the dataset: (a) “highway” is from CDnet 2014; (b)“robots” is from Robocup
2014; (c) “people1” and (d) “car1” are from “Hopkins 155”; (e) “tennis” and (f) “lion1” are from FBMS-59.

5.4.1. TWO-FRAME OPTICAL FLOW
As mentioned in Section 5.2, we used a pyramidal optical flow method to extract opti-
cal flow fields from a video sequence [39] (one can find a quantitative evaluation of this
method in [16]). The parameters are set to the values suggested by [39], with a window size
of 7, a pyramidal level of 4, and 100 as the maximum number of iterations.

To visualize the obtained motion vectors, a color coding scheme proposed in [16] is
used. Each flow vector is coded to a HSB color value based on its direction and magnitude,
as shown in Figure 5.3. Based on the color coding scheme, a two-frame optical flow field
can be visualized as a colored image. Figure 5.4 illustrates the optical flows extracted from
6 successive frames of each of the 6 videos.

Figure 5.3: Color coding of the flow vectors: each pixel denotes a flow vector where the orientation and
magnitude are represented by the hue and saturation of the pixel, respectively [16].

5.4. VISUALIZATION OF THE MOTION DATA

5

67

(f) “lion1” video

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

(e) “tennis” video

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

(c) “people1” video

Frame 1

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

(a) “highway” video

people1

(b) “robot” video

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

(d) “car1” video

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Figure 5.4: For each video, 6 successive frames are shown in the upper row; the obtained optical flow fields
between two successive frames are shown in the bottom row, using the color coding method in [16].

5

68 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

5.4.2. SPARSE POINT TRACKING
SIFT detection and tracking algorithms, introduced in Section 5.3, are used to detect a
sparse set of point trajectories from a video sequence. We used the VLFeat library for SIFT
detection [245]. For SIFT feature detection in each image, the edge threshold is set to 10 as
in [152], and the peak threshold is set to 2. Figure 5.5 illustrates the detected feature points
in two successive images of a video. Points between two images are linked by descriptor
matching. The points that are successfully matched are drawn in cyan, and the points that
are not matched are drawn in yellow. Table 5.1 gives the statistics for the detected points
and matches in Figure 5.5.

frame 1 frame 2

frame 1 frame 2

frame 1 frame 2frame 1 frame 2

frame 1 frame 2

frame 1 frame 2

Figure 5.5: For each of the 6 videos, a pair of successive frames with the detected SIFT points are illustrated.
Points in cyan are success matches between the two frames, and the yellow ones are not matched.

of points frame 1 frame 2 matches

highway 190 200 159

cars1 689 670 337

people1 419 427 211

tennis 362 341 234

lion1 1159 1176 806

robot 1001 988 761

Table 5.1: The number of points and matches in two successive frames (Figure 5.5), based on SIFT tracking.

5.4. VISUALIZATION OF THE MOTION DATA

5

69

(e) “tennis”

frame 5 frame 10 frame 20 frame 30

(c) “robots”

frame 5 frame 10 frame 20 frame 30

(f) “lion1”

frame 5 frame 10 frame 20 frame 30

frame 5 frame 10 frame 20 frame 30

(b) “people1”

frame 5 frame 10 frame 20 frame 30

(a) “highway”

(d) “car1”

frame 5 frame 10 frame 15 frame 20

Figure 5.6: The sparse trajectories extracted from 6 example videos. For each video, the tracked points together
with their trajectories in four frames at different time steps, are illustrated. Trajectories are drawn in different

colors based on their lengths, using a color map shown on the right side for each video.

5

70 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

If a point is successively matched in multiple frames, its trajectory is constructed by its
positions in these frames. Tracking of a point is stopped if no match can be found. The
length of a point trajectory is calculated as the number of frames in which the point is con-
tinuously tracked. Figure 5.6 illustrates the tracked points with their trajectories in frames
at particular time steps (frame indices). These trajectories can have different lengths, be-
cause a point tracked in a frame at time step t (i.e. frame index t) can be first observed in
any frame before t . To show the differences in length, the trajectories are drawn in different
colors corresponding to these lengths. Figure 5.7 shows the number of all trajectories and
the number of complete trajectories detected at frame t when processing a video sequence
of 31 frames.

t
5 10 15 20 25 30

N
um

be
r

of
 tr

aj
ec

to
rie

s
at

 fr
am

e
f t

0

50

100

150

200

250

300

350

400

450

500

All detected trajectories
Compelete trajectries

Figure 5.7: Using the SIFT tracking method, the numbers of all trajectories and of complete trajectories detected
at frame ft when processing a video of 31 frames are given, for t 2 [1,30]. A complete trajectory at frame t means

this feature point is tracked over all frames from f0 to ft .

5.4.3. DENSE POINT TRACKING
Dense point trajectories are obtained by the dense tracking method in [226], which has
been introduced in Section 5.3. This method initializes a dense field of points in each
frame by choosing and subsampling pixels in the areas of rich structures, and then tracks
these points by computing the large displacement optical flow using the algorithm in [46].
All parameters are set to the values given in [226].

Figure 5.8 illustrates the points in two successive images of a video. Points that are
successfully matched are drawn in cyan, and the points that are not matched are drawn in
yellow. Table 5.2 gives the statistics of the detected points and matches in Figure 5.8.

Figure 5.9 illustrates the tracked points with their trajectories in different frames of a
sequence based on the dense tracking method. These trajectories are also shown in colors
corresponding to these lengths, using the same color mapping strategy as for sparse point
trajectories in Subsection 5.4.2. Figure 5.10 shows the number of all trajectories and the
number of complete trajectories detected at frame t when processing a video sequence of
31 frames.

5.4. VISUALIZATION OF THE MOTION DATA

5

71

frame 2frame 1

frame 2frame 1

frame 2frame 1frame 2frame 1

frame 2frame 1

frame 2frame 1

Figure 5.8: For each of the 6 videos, a pair of successive frames with the initial dense points are illustrated.
Points in cyan are success matches between the two frames, and the yellow ones are not matched.

of points frame 1 frame 2 matches

highway 372 378 337

cars1 1305 1326 1235

people1 1443 1438 1390

tennis 782 803 779

lion1 1609 1617 1581

robot 3240 3260 3197

Table 5.2: The number of points and matches in two successive frames, based on dense points tracking.

5

72 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

(c) “robots”

(f) “lion1”

(e) “tennis”

(b) “people1”

(d) “car1”

(a) “highway”

frame 5 frame 10 frame 20 frame 30

frame 5 frame 10 frame 20 frame 30

frame 5 frame 10 frame 20 frame 30

frame 5 frame 10 frame 15 frame 20

frame 5 frame 10 frame 20 frame 30

frame 5 frame 10 frame 20 frame 30

Figure 5.9: The dense trajectories extracted from 6 example videos. For each video, the tracked points together
with their trajectories in four frames at different time steps, are illustrated. Trajectories are drawn in different

colors based on their lengths, using a color map shown on the right side for each video.

5.5. CONCLUSION

5

73

t
5 10 15 20 25 30

N
um

be
r

of
 tr

aj
ec

to
rie

s
at

 fr
am

e
f t

0

200

400

600

800

1000

1200

1400

All detected trajectories
Compelete trajectries

Figure 5.10: Using the dense tracking method, the numbers of all trajectories and of complete trajectories
detected at frame ft when processing a video of 31 frames are given for t 2 [1,30]. A complete trajectory at frame

t means this feature point is tracked over all frames from f0 to ft .

5.5. CONCLUSION
This chapter discussed the problem of extracting motion data from a video sequence. Be-
cause it is the first step of our video analysis system, the obtained motion data substantially
affects the performance of following tasks, since it will be used as the input data of the next
module. We discussed three types of motion data that can be extracted from a video, i.e.
the optical flow fields, sparse point trajectories and dense point trajectories. Three meth-
ods are selected for obtaining the three types of data respectively. We chose 6 example
videos to visualize the results.

Figure 5.4 shows that the two-frame optical flow can reflect the actual 2D motion over
a short period (between two successive frames in a regular video whose frame rate is about
24 fps) with a high accuracy. The motion vectors within an object show high similarity if
the object undergoes a major translation, as in video Figure 5.4.(a) and in some frames
of video Figure 5.4.(c) and Figure 5.4.(d). However, the motion coherence of pixels within
an object can be inconspicuous if the object moves in an articulated way, as in the video
of Figure 5.4.(e) where the robot only moves one leg in some frames, and in the video of
Figure 5.4.(f) where the lion plays with branches by moving its legs, while the tail and head
move in different ways. Moreover, the motion vectors can be inaccurate for pixels on a
texture-less surface, as the car body in video Figure 5.4.(b).

Figure 5.6 shows that the long-term trajectories of points on the same object show
higher similarity than two-frame motion vectors. When the number of tracked frames in-
creases, these trajectories of points on the same object become more similar, as shown
in the results from frame 5 to frame 30 in Figure 5.6. However, the extracted points are
mainly located on the areas that have obvious local structures. Many points are miss-
ing in the regions with insignificant structure, such as the legs of people in Figure 5.4.(c)
and Figure 5.4.(d), the floor in Figure 5.4.(c) and Figure 5.4.(d), and the lion’s body in Fig-
ure 5.4.(f). Moreover, the number of “complete” trajectories decreases when the number

5

74 CHAPTER 5. FEATURE EXTRACTION AND MOTION ESTIMATION

of tracked frames increases, as shown in Figure 5.7, because many points are missing dur-
ing the tracking process (a complete trajectory means the point is tracked in all frames that
have been processed).

Figure 5.9 shows the trajectories for the dense tracking method are much denser and
more accurate than for sparse tracking. Moreover, the number of “complete” trajectories
of dense tracking is larger than that of sparse tracking, see Figure 5.10.

The observations above, suggest that the moving objects can be segmented out by ana-
lyzing the similarity of motion vectors (or trajectories). In the next chapter, we will discuss
a newly proposed motion segmentation algorithm and compare the performance of mo-
tion segmentation on the three types of motion data.

6
2D MOTION SEGMENTATION

In the previous chapter, we discussed how to determine the movements of pixels (or fea-
ture points) in the images of a video subsequence. This chapter addresses the issue of
partitioning the extracted pixels (or feature points) into groups that undergo independent
motions. This is called the 2D motion segmentation problem. We investigate the 2D mo-
tion segmentation when the number of moving objects is unknown. Given the positions
of 2D points in a pair of successive images, the underlying independent motions are mod-
eled by 2D affine transformations. The segmentation of a video sequence is obtained by
iteratively processing successive pairs of frames in this sequence.

In Section 6.1, a brief introduction of the 2D motion segmentation problem is given. A
motion segmentation algorithm based on 2D motion coherence is proposed in Section 6.2,
with a discussion of possible improvements for the algorithm. Section 6.3 introduces the
evaluation methodology, and the experimental results are provided in Section 6.4. Sec-
tion 6.5 concludes this chapter.

6.1. INTRODUCTION
As introduced in Chapter 5, the motion information obtained from an image sequence is
represented as the movements of points (pixels or feature points) in the 2D image plane.
The 2D points in the image plane are projections of the 3D points in the real world, and the
obtained 2D motions in the images are caused by the 3D motions of the camera and the
moving objects. A rigid motion in the 3D world consists of a rotation and a translation of a
rigid 3D object. Such a motion can be described by a 3D transformation. In other words,
points on the same object undergo the same motion in the 3D world. In this thesis, we
only consider the rigid motions.

Motion segmentation refers to the task of labeling image points that undergo the same
motion in a video sequence containing multiple moving objects, for the purpose of ex-
tracting object-level descriptions from a video sequence [228]. The key issue of motion
segmentation is the definition of the “same motion”, which describes how an object moves
in the images of a sequence. The “same motion” in the 3D real world is different from the

75

6

76 CHAPTER 6. 2D MOTION SEGMENTATION

“same motion” in the 2D image plane. A rigid motion of a rigid 3D object in the real world
can result in multiple 2D motions in the image plane. Each 2D motion in the image plane
can be modeled as an affine transformation [155]. Therefore the 2D motion segmentation
can divide the projection of a 3D object into multiple regions, which is then called over-
segmentation. 3D motion segmentation is more likely to segment out the integral objects
than 2D motion segmentation. But the estimation of 3D motion models is more complex
than 2D motion models, because the depth value is missing due to the camera projection.

In this chapter, we investigate 2D motion segmentation, given the motion data ob-
tained in Chapter 5. As introduced in Section 3.3, we use a parametric motion model to
describe an independent 2D motion between two images. Due to the over-segmentation
problem, segmentation based on two-frame 2D motion coherence may not reflect the ac-
tual segmentation into objects in the 3D world. The trajectories over multiple frames of
points on the same object show a higher similarity than the motion vectors between just
two frames, and the differences between independent motion patterns become more dis-
tinguishable, as observed in Section 5.4. Based on this observation, we analyze the 2D
motions over a video subsequence consisting of sufficiently many images, by integrating
the results obtained from the two-frame motions in the sequence.

Any motion segmentation approach relies on the representation of extracted motion
data. As introduced in Chapter 5, the motion information obtained from an image se-
quence can be represented as either the two-frame motion fields at the pixel level, or as
point trajectories over the sequence. Therefore there are feature-based and pixel-based
motion segmentation approaches [271]. We investigate a general approach that can be
used for both types of motion data. Since both types of motion data represent the move-
ment of either a pixel or a feature point by its location in the images, we use “points” to
indicate both pixels and feature points in this chapter when we do not need to distinguish
between them.

In general, we investigate the 2D motion segmentation by addressing the following
questions:

• How to model the 2D motion of a single object in a sequence of images?
• How to determine the parameters of motion models?
• How to determine the assignment of points to different segments?
• How to determine the number of objects?

6.2. 2D MOTION SEGMENTATION
Regardless of the specific representation used, the obtained motion data is computed
frame by frame from a video sequence, as discussed in Chapter 5. We perform segmen-
tation on the motion vectors between each pair of successive frames and accumulate the
information in the sequence gradually.

As introduced in Subsection 3.3.3, an affine model of 6 parameters can be used for
representing the motion of a rigid object between two images when the displacements in
the z direction are small enough. Given the motions extracted from a video sequence, the
point correspondences are built between every pair of successive frames. The motion of a
single object in a video sequence can be modeled as a series of affine motion models, each
corresponding to the movement between two successive frames.

6.2. 2D MOTION SEGMENTATION

6

77

We perform segmentation on the motions between two successive frames based on
the affine motion assumption, as discussed in Section 3.3. A classification EM algorithm
introduced in Subsection 3.5.1 can be used to estimate the parameters of a motion model
and to determine the assignments of the points through an iterative process. However,
the number of moving objects is usually unknown for the given video. To estimate the
number of moving objects, a divisive scheme is used for hierarchically segmenting the
motion data until eventually the number of moving objects is found. The segmentation
information based on a pair of successive frames, is propagated to the next pair of frames
as prior knowledge using a Bayesian updating process. This makes it possible to further
improve the segmentation results in each frame of a sequence.

In the following subsections, we describe the details of the proposed algorithm, by ad-
dressing the problems introduced in Section 6.1.

6.2.1. PARAMETRIC MOTION MODEL

As discussed in Section 3.3, the projected motion of an object between two images can
be modeled as a 2D affine transformation under an orthographic projection, when the
changes between two frames are small (see Equation (3.29)). For the videos with standard
frame rate (24fps), the affine motion assumption usually holds, especially for rigid objects.

An affine motion model is parameterized by 6 parameters, 4 for the matrix A and 2
for the translation vector b. Given the movement of any 3 points of the object, (A,b) can
generically be computed. In practice, it is difficult to determine the correct solution of the
affine parameters because the motion data is noisy. When we have n ∏ 3 points and their
movements, we can compute an approximation of the parameters by solving the overde-
termined system, given by Equation (3.31) over all points. More specifically, given the mo-
tion vectors of n ∏ 3 points belonging to an object, the affine motion model (A,b) of the
object can be estimated by solving the optimization problem:

(A,b) = argmin(A,b)
Pn

i=1 ri ||"i ||2
where "i = x0i ° Axi °b

(6.1)

where xi and x0i are locations of point i in two frames, "i measures the error of point i ’s
movement w.r.t. the motion model (A,b), and ri is a weighting factor which defines the
reliability that point i belongs to the object. The value of ri varies between 0 and 1 for all i 2
{1,2, . . . ,n}, with 0 indicating that the point does not belong to the object and 1 indicating
that it does, with certainty. With an appropriate reliability weighting, the points that are
more likely to be in the group will contribute more to the estimation of motion parameters.
The computation of such reliabilities will be discussed in Subsection 6.2.4.

In practical applications, we can not always get 3 or more points from an object as
are needed to estimate its affine motion model. For example, for a small monochrome
ball, SIFT can only detect 1 or 2 feature points on the ball. To address this situation, we
assume that the affine transformation degenerates to a translation in case just one point is
available, and to a combination of a translation and a scaling in case of 2 available points,
respectively. The matrix A is then reformulated as shown in Equation (6.2).

6

78 CHAPTER 6. 2D MOTION SEGMENTATION

A =

8
>>>><

>>>>:

h1 0
0 1

i
, for n = 1

ha11 0
0 a22

i
, for n = 2

ha11 a12
a21 a22

i
, for n ∏ 3

(6.2)

6.2.2. SEGMENTATION BASED ON TWO-FRAME MOTION
The 2D motion of image points between two images can be modeled as a set of 2D motion
models described in Subsection 6.2.1. Each model corresponds to an independent (object)
motion in the images. Ideally, an object is described by one independent motion. How-
ever, because of the projection on the 2D image plane, multiple independent motions are
possible.

We do not know the number of independent motions, nor which points undergo the
same motion. To determine the number of independent motions, we propose a divisive
segmentation algorithm to address these issues jointly.

When the number of motion models is known, a classification EM algorithm can esti-
mate the latent motion models and the assignments of the points to the various models
simultaneously [58, 104]. Given an initial segmentation of the points, the EM algorithm
executes two steps repetitively to refine the segmentation:

1. Estimating the 2D motion models
Given a partition of points, the affine motion model of each group can be estimated
by minimizing a weighted least squares criterion, see Equation (6.1).

2. Assignment of points
Given the current estimation of motion models, each point is reassigned to the group
that it fits best. A point is reassigned based on the probability that the point belongs
to a group, which is described in Subsection 6.2.3.

These two steps are repeated until convergence happens to a locally optimal partition of
points. Suppose there are K independent motions, this optimal partition minimizes the
sum of group errors:

E =
KX

k=1
Ek (6.3)

Here the group error Ek of group Gk is defined by:

Ek =
X

i2Gk

||"i ,k ||2 (6.4)

where Gk is a group of points assigned to the same motion model, and "i ,k is the error of
point (xi,xi

0) given the motion model (Ak ,bk):

"i ,k = x0i ° Ak xi °bk (6.5)

Algorithm 1 formalizes the process of the EM algorithm used for 2D motion segmen-
tation. This EM algorithm requires an initial estimation of the segmentation. However,

6.2. 2D MOTION SEGMENTATION

6

79

Algorithm 1 The EM motion segmentation algorithm

Input: A set of N pairs of points. M := {(xi ,x0i)}N
i=1; An initial segmentation of the points

in M : G0 =<G 0
1,G 0

2, . . . ,G 0
K >.

Output: The estimated segmentation of points in M : G.
1: repeat
2: G :=G0;
3: Compute (Ak ,bk) of Gk 2G for k = 1,2, . . . ,K ;
4: Reset G0 =<;, . . . ,;>, |G0| = K
5: for all (xi ,x0i) 2 M do
6: Compute the probability of (xi ,x0i) fits the model (Ak ,bk), for k = 1, . . . ,K (see Sub-

section 6.2.3);
7: Assign point i to group G 0

j if the probability of (xi ,x0i) to group model (A j ,b j) is
maximal (see Subsection 6.2.3);

8: end for
9: until G0 =G {convergence}

10: End

f0 f1 ft-2 ft-1 ft

~

p1

p2

p3
p4

p5

p6

p1

p2

p3

p4

p5

p6

p7

...
(a) (b)

Figure 6.1: Two cases for initialization: (a) Points exacted and tracked from first two frames, are initialized as one
big group, as p1 to p6 are marked with the same color. (b) Points tracked in subsequent frames are initialized by

their prior estimates. For example, when processing frame pair (ft°1, ft) with t > 1, p1 to p5 are initialized by
their assignments in the previous step i.e. processing frame pair (ft°2, ft°1). Points in the same color indicate
that they are assigned to the same group. p6 is no longer detected in ft , thus the information of the group in
green is missing in this step. p7 is firstly detected in ft°1, so it is initialized as an unassigned point, which is

drawn as a white dot in the figure.

the number of motions is unknown, thus a proper initialization for the EM algorithm is
difficult.

To determine the number of objects, we use a divisive segmentation scheme. As we

6

80 CHAPTER 6. 2D MOTION SEGMENTATION

sequentially process two-frame motion vectors extracted from a video sequence, two situ-
ations are considered, as shown in Figure 6.1. In the very first step of the process, i.e. when
the motions are extracted from the first two frames of a sequence, no prior knowledge is
available. In this case, we initialize all points in one group. In all further steps of the pro-
cess, some points might have been tracked and segmented in the previous pair of frames.
In this case, the prior segmentation of these points can be used to initialize the current
step. Given the initialization, we recursively choose a group and split it, until a given stop-
ping criterion is met. In this process, we have to address the following three issues:

Which group to split?
We have to determine which group to split when there are multiple groups. Suppose
that the points are partitioned into K groups. We choose to split the group with the
largest outliers. More precisely, for each group Gk , we determine the sorted list of
errors Ek :

Ek = sort decendingh||"i ,k ||2 | i 2Gki= he1,k ,e2,k , . . . ,i

where "i ,k is the error of point (xi,xi
0) with respect to the model (Ak ,bk). The sorting

achieves that e1,k ∏ e2,k ∏ e3,k , Next for a user-selected value of q , we choose the
first q points in the sorted list Ek to determine the sum Oq

k of the q largest errors in
group Gk :

Oq
k =

qX

i=1
ei ,k (6.6)

Finally, we select the group Gk for which Oq
k is maximal as the one that will be split.

How to split the chosen group?
We split the selected group Gk by splitting off the q points with the largest errors.
Once the group is split, the number of groups K increases by 1 and the EM algorithm
is then used to estimate the segmentation for the new number of groups. Note that
in some cases the q points that are split off could belong to different objects. Since
the EM algorithm can handle this indirectly, there’s no need for additional steps for
refining the splitting.

When to terminate the division procedure?
The divisive procedure increases the number of groups by 1 in each iteration, and
then evaluates the segmentation based on current estimate. The optimal segmen-
tation is considered to be achieved when it is better than the results in the previous
and in the next iteration. The problem then is how to determine the quality of a
segmentation result. A quantitative metric is needed to evaluate this.

We measure the intra-group variations and inter-group distances for a segmentation
result. The intra-group variation of Gk is measured by the average errorµk = Ek /|Gk |.
The inter-group variation of group Gk w.r.t. Gl is denoted as ¥k|l , and is defined by
the average error of group Gk w.r.t. the affine transformation of group Gl :

¥k|l =
1

|Gk |
X

i2Gk

||"i ,l ||2 (6.7)

6.2. 2D MOTION SEGMENTATION

6

81

where "i ,l is the error of point (xi,xi
0) to the model (Al ,bl). We accept a split of a

group if for every pair of groups Gk and Gl , µk is sufficiently smaller than ¥k|l . For-
mally:

µk

¥k|l
∑ w, for every 1 ∑ k ∑ K and 1 ∑ l ∑ K (6.8)

where w 2 (0,1) is a user defined threshold.

At each stage of the division procedure, the algorithm chooses a group and splits off
some points to form a new group, and the estimated number of groups is increased by 1.
Next the EM algorithm is then applied to determine a segmentation based on the groups
after splitting. It may happen that the number of groups goes down after applying the EM-
based segmentation because there is a chance that a group (A,b) will not be assigned any
points. Because some initial groups fed into the EM algorithm could consist of points that
represent the same motion. Note that the splitting criterion can not guarantee that the
split-off points belong to the same object. The new group split from the selected group
can contain points from different objects.

The segmentation result produced by EM algorithm is then compared with the seg-
mentation result before splitting. If the current segmentation is better than the previous
one, the splitting stage continues. If the current segmentation is worse than the previous
one, the previous segmentation is therefore regarded as the optimal estimation and the
splitting process is stopped. In this way, the number of objects and the segmentation of
points are estimated simultaneously. The main steps of the EM-based divisive segmenta-
tion algorithm are shown in Algorithm 2. Note that some objects can have the same motion
in some frame pairs in the video, and the divisive algorithm is not able to distinguish them
from each other. Nevertheless, if these objects show different motions in other frame pairs,
they can be segmented out through a updating scheme, which is going to be discussed in
Subsection 6.2.3.

6.2.3. SEGMENTATION OF A SEQUENCE OF FRAMES
Given a sequence of frames, points may be tracked over multiple frames, thereby providing
us with long term motion data. We have discussed how to segment the points based on
the two-frame motion vectors. In this section, we will investigate how to segment points if
these points are present in a sequence of frames.

For a pair of successive frames, the observed motion between two frames is termed as
the evidence e. Let zi = k denote the assignment of a point i to a group k. We wish to
determine the likelihood L(zi = k) that point i belongs to group k given the evidence e.
This likelihood is proportional to the probability density p(e|zi = k):

L(zi = k) / p(e|zi = k) (6.9)

So, we need to determine the probability density function p(· |zi = k) of the possible evi-
dence values given the assignment zi = k. Since the evidence is given and the assignment
of a point to a group is variable, we may estimate a relative value for the probability den-
sity p(e|zi = k). The idea is that the smaller the error of a point i w.r.t. the affine model of a
group k compared to the errors of point i w.r.t. the affine model of all the groups, the more
likely it is that point i belongs to the group k. Let ≤i , j denote the error of point i w.r.t. the

6

82 CHAPTER 6. 2D MOTION SEGMENTATION

Algorithm 2 The EM-based divisive motion segmentation algorithm

Input: A video sequence; A set of feature points described by their trajectories in this video
sequence.

Output: Segmentation G of points in every successive frame pair (I , I 0) of the video.
1: fetch the first frame I and the second frame I 0;
2: P := {p1, p2, . . . , pi , . . . |pi 2 I , pi 2 I 0}; {extract points present in both I and I 0.}
3: G := {G1|G1 = P }; {segmentation G is initialized by assigning the points to a single

group.}
4: repeat
5: M := {(xi ,x0i)|xi := Position(pi , I),x0i := Position(pi , I 0)}|P |

i=1; {fetch two-frame motion
vectors of points in P , function Position(pi , I) gives the coordinates of point pi in the
image frame I , |P | is the number of points in P .}

6: G0 := EM motion segmentation (M ,G); {applying Algorithm 1}
7: repeat
8: G :=G0;
9: select a group Gk in G (k = {1,2, . . . , |G|}), if Oq

k (see Equation (6.6)) is maximal; {|G|
is the number of groups in G.}

10: split Gk into G 0
k,1 and G 0

k,2;
11: G0 := (G \ {Gk })[{G 0

k,1,G 0
k,2};

12: G0 := EM motion segmentation (M ,G0);
13: until the stopping criterion of divisive procedure holds (see Equation (6.8))
14: I := I 0;
15: I 0 := fetch the next frame;
16: P := {p1, p2, . . . , pi , . . . |pi 2 I , pi 2 I 0}; {extract points present in both I and I 0.}
17: G := {G \P |G 2G; {initial segmentation of P .}
18: until the end of the sequence
19: End

affine model of group j . Then, the likelihood L(zi = k) is inversely proportional to
≤i ,kPK

j=1 ≤i , j
.

It may happen that the error ≤i , j is 0 w.r.t. all affine models j 2 {1, . . . ,K }. To avoid dividing
by 0, we add a constant ± to the denominator and a constant ±/K to the numerator. The
exact value of ± is not very important, as long as it is small enough. Since the error w.r.t.
an affine model is measured in pixels, the value 0.1 was chosen for ±. The resulting frac-

tion,
≤i ,k+ ±

KPK
j=1 ≤i , j +±

is inversely proportional to the likelihood L(zi = k) and has a value from

the interval [0,1). Therefore, we define the likelihood that point i belong to group k as:

L(zi = k) = 1°
≤i ,k + ±

KPK
j=1 ≤i , j +±

(6.10)

Given an image sequence of T +1 frames f0, f1, ... fT , a segmentation is determined for
each pair of successive frames (ft°1, ft). Assuming that the evidence Eø = (e1, ...,eø) over ø
(0 < ø< T) pairs of frames in the sequence is independent, we may use Bayesian update to
determine the probability that point i belongs to group k given the evidence Eø of the past

6.2. 2D MOTION SEGMENTATION

6

83

ø+1 frames:

P (zi = k|Eø) / P (zi = k)
øY

t=1
Lt (zi = k) (6.11)

where Lt (zi = k) is the likelihood of assigning point i to group k using the evidence et of
the frame pair (ft°1, ft).

An important issue is the choice of the a priori probability P (zi = k). Here, different
choices are possible. If the length T of the sequence is long enough, all choices will con-
verge to the same a posteriori probability. For short sequences, the choice of the a priori
probability can have a significant impact. Here we assume that, a priori, we have no pref-
erence for assigning i to any particular group. Since we have a finite number of groups, we
use P (zi = k) = 1

K . Therefore,

P (zi = k|Eø) /
øY

t=1
Lt (zi = k) (6.12)

This implies that the a posteriori probability is completely determined by the likelihood
values.

When processing the video sequence, the segmentation algorithm is sequentially ap-
plied to the two-frame motions over the sequence. If a point i is continuously detected in
the video frames, the probability P (zi = k|Eø) is updated frame by frame.

6.2.4. RELIABILITY MEASUREMENT
When we determine the assignments of points, it is based on the errors to the estimated
group motion model. Meanwhile, the motion models are estimated based on an estimates
of point assignments. Misclassified points during the process can reduce the accuracy of
the motion models, thus reduce the quality of final segmentations. To reduce the impact
of misclassified points, we define a reliability value that evaluates the assignment of each
point. As argued in Subsection 6.2.1, it is reasonable to use reliabilities as weights, which
determine how much each point in a group influences the estimates of the affine motion
model, when solving Equation (6.1) [175]. When a point is assigned to a group with a higher
reliability, it will contribute more to the computation of the motion model of the group.
If the reliabilities are chosen appropriately, we can find more accurate estimates of the
motion models, as well as improve the segmentations.

Points assigned to the same group may have different likelihood. If Lt (zi = k) is higher
than Lt (z j = k), the assignment of point i to Gk has a higher chance to be correct than the
assignment of point j to Gk . Thus we can measure the reliability of an assignment based
on its likelihood. We propose three ways to compute the reliabilities. Suppose a point i is
assigned to Gk based on the motion information of the current frame pair (ft°1, ft)

1. Suppose a point i is assigned to Gk , we measure the distance of Lt (zi = k) to the
nearest Lt (zi = l) for any l 6= k, as:

r (1)
i = min

l 6=k
(Lt (zi = k)°Lt (zi = l)) (6.13)

A larger distance means the assignment is more reliable.

6

84 CHAPTER 6. 2D MOTION SEGMENTATION

2. Similar to r (1), we can measure the distance of Lt (zi = k) to the average of Lt (zi = l)
for all other groups:

r (2)
i = Lt (zi = k)° 1

K°1

X

l 6=k
Lt (zi = l) (6.14)

where K is the total number of groups.

3. Lt (zi = k) gives the probability of a point i belonging to a group Gk , which can be
directly used as a reliability measure:

r (3)
i = Lt (zi = k) (6.15)

6.2.5. CAMERA MOVEMENT
Experiments in Subsections 6.4.1 and 6.4.2 show that the camera movement significantly
influences the performance, especially when the camera is rotating. When Algorithm 2 is
applied to the Hopkins 155 dataset with all reliabilities set to 1, a drop of 5% in accuracy was
observed when the camera is rotating (see Table 6.1). In these videos, the camera rotation
causes large point movements compared to the moving objects. This makes it difficult to
distinguish differences between the movements caused by different moving objects. As a
result, the chance of incorrect assignments in Algorithm 2 increases.

To eliminate the effect of camera movement, we introduce an extra step to compen-
sate for the movement of the camera. The key problem is to find the motion model of
camera. Since we can assume that the background does not move, we can use the back-
ground movement to determine the camera movement. So we need to identify the back-
ground points. Usually the background covers the largest range in the image, so it is easy to
identify the “background” by segmenting the feature points and comparing the geometric
size of the obtained groups using the non-stabilized motion data. However, the segmen-
tation contains misclassified points for the non-stabilized motion data. Therefore, only
the points with a high reliability to belong to the background are used for computing the
camera motion. We use a threshold strategy to eliminate the points that are less likely to
belong to the background.

The following steps are introduced to compensate for the camera movement.

1. Run the segmentation algorithm to obtain an initial segmentation of the feature
points.

2. Select the “background”, based on the assumption that the “background” group has
the largest inner distance among all groups.

3. Refine the “background” by focusing on reliable points with a chosen reliability mea-
sure. Points that have high reliability values for the “background” are used to com-
pute the camera motion. We can select the points which reliability values are larger
than a threshold Æ (0.5 for example).

4. Compensate all feature points for the movement of the camera using the estimated
camera motion. Given the motion vector of a point, which is described by its posi-
tions in two successive frames (x,x0), we replace x0 by x̂0, which is computed by:

x̂0 = B°1
b x0

where x0 and x̂0 are homogeneous coordinates, Bb =
h

Ab bb
0T 1

i
is the homogeneous

affine matrix of the background group.

6.3. EVALUATION OF THE METHODOLOGY

6

85

Since the divisive segmentation algorithm computes the segmentations in an iterative
manner, the motion models and partitioning of points are updated and refined iteratively.
We need to determine when to apply the background compensation during this procedure.
There are several possibilities for adding the background compensation to Algorithm 1:

Option 1 In the inner loop of EM: in Algorithm 1 between lines 2 and 3. In each it-
eration of the EM loop, the motion vectors are first calibrated by compensating
the camera motion. Then the motion models of objects and the assignments of
points are estimated based on the calibrated motion vectors

Option 2 In Algorithm 2, right after the loop of EM: between lines 7 and 8. The mo-
tion vectors of points are calibrated after the EM algorithm generated a converged
result, but before the splitting step.

Option 3 In Algorithm 2, after the splitting step: between lines 13 and 14. The calibra-
tion takes place after one step of segmentation and splitting in the algorithm.

The accuracy of estimated camera motion relies on the quality of the identified “back-
ground” group, which is from an estimated segmentation. If there are too many incorrect
assignments in the “background” group, the camera compensation can have a negative
impact of the segmentation. Option 1 tries to dynamically change the estimated camera
motion with the segmentations in the EM loop, it will also affect the convergence pro-
cedure of EM segmentation. Option 2 utilizes the segmentation result after the EM loop
converged, which is regarded as an optimal estimation in this iteration. Option 3 uses
the segmentation after splitting, which goes one step further than Option 2. If the “back-
ground” is split, it means that the outliers are split off. Otherwise, the “background” group
is assumed to be sufficiently accurate. The camera motion estimation is also affected by
the method of computing reliabilities. In Subsection 6.4.1, we compared the results of us-
ing different options combined with different reliabilities measures, to find a good setting
of these parameters based on experiments.

6.3. EVALUATION OF THE METHODOLOGY
As introduced in Chapter 5, the motion implied in an image sequence can be represented
in different ways. Correspondingly, there are different types of motion data that can be
extracted. Motion segmentation approaches rely on the type of motion data they analyze.
Therefore, there is no general dataset that can be used for evaluation and comparison of
all existing motion segmentation methods, neither a generally applicable measurement
metric [26]. The existing datasets are proposed for different goals, where the definition of
motion segmentation and the type of utilized motion data varies.

In this thesis, we provided a detailed definition of moving objects to be segmented out
in videos in Chapter 4. Based on the definitions, we chose four benchmark datasets (see
Section 4.2) to test the proposed method. The obtained segmentation results are evaluated
against the provided ground truth. In Subsection 6.3.1, we summarize the provided data
types in the chosen dataset, which is the basis for the experimental set-up.

To evaluate the quality of the segmentation results, we utilize several widely used met-
rics in the field of motion segmentation These metrics demonstrate the performance from
different perspectives, which is further described in Subsection 6.3.2.

6

86 CHAPTER 6. 2D MOTION SEGMENTATION

6.3.1. DATASETS
As in Chapter 4, we presented four datasets that will be used to test the proposed method in
the experiment. One of them (the Hopkins155 dataset) provides the accurate point trajec-
tories extracted from the videos in this dataset, which can be regarded as the ground-truth
motion in the video frames. Such data can be directly used as the input of motion segmen-
tation algorithm, thus is regarded as “flawless” motion data. The other three datasets only
provide videos, which requires a pre-processing step of extracting motion data from these
videos that can be used as the input of motion segmentation algorithm from these videos.
The extracted data normally contain errors, which is called “realistic” motion data in this
thesis.

Based on the provided data, the experiment of evaluating the motion segmentation
algorithm is naturally divided into two parts: the first part uses the “flawless” motion data
as input, and the second uses the “realistic” motion data as input. The “flawless” data
gives a standard baseline for evaluating motion segmentation approaches. However, in
practice, “flawless” motion data is often unobtainable. The evaluation on realistic motion
data better reflects the robustness of a motion segmentation algorithm in practice.

THE “FLAWLESS” MOTION DATA

For each video in the Hopkins 155 dataset, a set of sparse trajectories, of the same length
as the video sequence, is given. This dataset also gives the groundtruth segmentation of
the provided trajectories.

Hopkins 155 dataset is specific for the trajectory based motion segmentation, and pro-
vides only sparse trajectories. The provided data in the Hopkins 155 dataset is biased.
Firstly, videos in the dataset are short sequences (of 31 frames). Secondly, only full trajec-
tories are considered. Thirdly, half of the videos are from unnatural scenes (the “checker-
board” videos). Fourthly, the number of independent motions is fixed in a video sequence,
and equals two or three. Experiments on the “flawless” data are given in Subsection 6.4.2.
Since our method dose not focus on point trajectories of the same (full) length, and ad-
dresses more general situations (see Chapter 4), results on the data in the Hopkins 155
dataset do not give a fair evaluation that can be extrapolated to a more general practical
setting.

THE “REALISTIC” DATA

The remaining three datasets, i.e. Robocup 2014, CDNet 2014 and FBMS-59, provide videos
with more variations than Hopkins 155. They contain different scenes recorded in the real
world, and the provided videos are of different lengths (with a minimum of 19 frames and
a maximum of 800 frames). Since they do not provide the groundtruth motion data, a
pre-processing step is needed to extract motion data from the videos.

The proposed motion segmentation algorithm has a flexible scheme, which can deal
with not only continuous trajectories in multiple frames, but also the two-frame motion
point correspondences. Therefore, in the experiments, we evaluate the proposed algo-
rithm given different types of motion data. In Chapter 5, we discussed three methods to
extract motion data from videos: one based on optical flow estimation, and two based on
trajectory extraction. These methods result in three types of data:

(1) a series of two-frame motion vectors at the pixel level,

6.3. EVALUATION OF THE METHODOLOGY

6

87

(2) a set of sparse trajectories of detected feature points in the video sequence,
(3) a set of dense trajectories of detected feature points in the video sequence.

In Subsection 6.4.3, we evaluate the performance of the segmentation algorithms on
the three types of motion data. Regardless of how the motion is obtained, the extracted
motion data is partially erroneous. The number of moving objects in each sequence is
between 2 and 7. In some sequences, the number of moving objects varies over the frames.
The extracted trajectories can have different lengths (see Section 5.4). More details of the
video properties are given in Section 4.2.

The three data sets, i.e. Robocup 2014, CDNet 2014 and FBMS-59, provide the pixel-
accurate ground truth segmentation of moving objects for each video sequence, see Sec-
tion 4.2. The provided segmentations can directly be used to evaluate the pixel-based
segmentation results. For the segmentation based on point trajectories, the groundtruth
can be obtained by reading the pixel annotations of corresponding locations of the feature
points. It is worth to mention that the provided segmentation concerns whole objects even
if their parts have different motions. Also note that groundtruth segmentation of points on
the edge is debatable because points may only partially belong to an object, which means
the “groundtruth” segmentation can in fact contain errors on the edge.

6.3.2. EVALUATION METRICS
The segmentation results are evaluated by the amount of overlap with the provided ground
truth. To quantitatively demonstrate how well a segmentation result matches the ground
truth, we use four metrics that have been applied widely in motion segmentation [26, 92,
177, 236, 247]. These evaluation metrics provide different interpretations of the quality of
segmentation results.

Generally, the segmentation results are evaluated on a per object basis. Given a
video sequence containing multiple moving objects, we evaluate the quality of each ob-
ject in the segmentation results. Suppose there are N points in a set to be segmented,
the groundtruth segmentation assigns the points to K § clusters C = {C1, . . . ,CK § }, where
each cluster Ck represents an object. The segmentation algorithm results in a partition
G = {G1, . . . ,GK } of the N points, in which each group Gk 0 represents a set of points that is
estimated to be an object. We define a mapping g from C to G[{;}, thus for every Ck 2 C,
there is a g (Ck) 2G[{;} which represents the same object as Ck . Based on the value of K §

and K , there are three cases:

1. If K § = K , g is bijective from C to G;
2. If K § < K , g is injective from C to G;
3. If K § > K , g is non-injective. We divide the C into two subsets: CK containing K clus-

ters and CK §°K containing the remaining K §°K clusters. The mapping g is bijective
from CK to G. And for every cluster Ck in CK §°K , g (Ck) =;.

However, the mapping g is as yet unknown given only C and G. In case 1 and 2 where
K § ∑ K , there are K · (K °1) · (k °2) · · · (K °K §+1) ways of mapping g , and in case 3 there
are K § · (K § °1) · (K § °2) · · · (K § °K +1) ways. We investigate all possible mappings, and
choose the mapping that maximizes the segmentation accuracy. We define the segmenta-
tion accuracy as the ratio of correctly assigned points to all points in the set [236]. Given

6

88 CHAPTER 6. 2D MOTION SEGMENTATION

a matching {(C1, g (C1)), . . . , (CK § , g (CK §))} of the groundtruth segmentation and the esti-
mated segmentation

accuracy = 1
N

K§X

i=1

|Ci \ g (Ci)| (6.16)

where | · | denotes the size of a set.
The segmentation accuracy represents the fraction of points which are segmented cor-

rectly compared to all points in the segmentation. If the groundtruth segments all contain
an almost equal number of points, the segmentation accuracy is often a reasonable mea-
sure of the segmentation quality. However, when the sizes of clusters are unbalanced, the
segmentation accuracy can not reflect the quality of segmentation results well. For exam-
ple, if an object contains 90% of the points, the segmentation accuracy will be 90% even
if we assign all points to a single group. If there are two objects with an equal number of
points, the segmentation accuracy is only 50% if we put all points in a single group, which
we find reasonable since object is not segmented out.

For better understanding of the segmentation results, we also determine the precision
and recall of each object; i.e., every matched pair (Ck , g (Ck)) [177]. Given a matched pair
(Ck , g (Ck)), The precision Pk and recall Rk are defined as:

Pk = |Ck \ g (Ck)|
|g (Ck)| (6.17)

Rk = |Ck \ g (Ck)|
|Ck |

(6.18)

If g (Ck) = ;, we define Pk = 1 following the paper [177], and Rk is 0 in this case because
|g (Ck)| = 0 and |Ck | 6= 0. The precision represents the fraction of points in a segmented
group that are correctly assigned. A higher precision indicates that the obtained group
contains less outliers. The recall measures the fraction of a groundtruth cluster covered by
the estimated group. A higher recall indicates that more points of a cluster are correctly
identified. For each video sequence, the average precision P̄ and recall R̄ are computed
on a per object basis. The average F-measure is computed based on P̄ and R̄, as in [177].
The F-measure is a standard way of combining precision and recall. A higher F-measure
indicates a better performance for the combination of precision and recall. It is given by:

F = 2P̄ R̄

P̄ + R̄
(6.19)

Since our method is designed to also estimate the number of moving objects in the pro-
vided sequence, we additionally evaluate the results by a fifth evaluation method, which
considers the number of estimated objects. Suppose the groundtruth number of objects is
K §, and the estimated number of objects is K in the segmentation result. Then we define
the deviation of the estimated number ¢K as,

¢K = K °K §; (6.20)

Note that ¢K = 0 needs not correspond with a correct segmentation. One object can be
split into two, while two other objects are combined into one. This measure is very coarse.

6.4. EXPERIMENTAL RESULTS

6

89

¢K < 0 indicates that at there is at least some under segmentation and ¢K > 0 indicates
there is at least some over-segmentation. Only of the F-measure is high and clusters have
similar sizes, ¢K indicates under and over segmentation.

To evaluate the computational efficiency, we also measured the average computation
time of processing sequences with length of 31 frames. If a video contains more than 31
frames, we evaluated the computation time for processing the first 31 frames.

6.4. EXPERIMENTAL RESULTS
In Section 6.2, we proposed a 2D motion segmentation algorithm based on the EM algo-
rithm and Bayesian updating, this algorithm is called AEM-b in this thesis. We also pro-
posed an improved version that is called AEM-b+, which measures the reliability of point
assignments and compensates for the camera motion. Several parameters in AEM-b and
AEM-b+have to be set by the users, which is discussed in Subsection 6.4.1.

We have applied AEM-b and AEM-b+to the provided datasets and evaluated the seg-
mentation results. As mentioned in Chapter 4, the motion segmentation algorithm uses
the motion data extracted from a video sequence as the input data. The quality and type
of the motion data varies with the method used for motion estimation, as discussed in
Chapter 5. Based on the quality of the input data, these datasets were divided into two
categories, “flawless” data and “realistic” data. Using the “flawless” data, we evaluate the
ability of dealing with videos containing various selected motions (i.e. rotation, transla-
tion, and a combination of them). Using “realistic” data, we investigate the performance
of using different types of motion data that are obtained from a video, i.e. the optical flow,
sparse point trajectories and dense point trajectories, see Chapter 5. The performance on
“realistic” data reveals the ability of dealing with noisy data in practice.

For comparison, we also evaluated the proposed algorithms with 6 motion segmen-
tation approaches from the literature. Four of the comparison methods are well-known
trajectory clustering methods, i.e. the Local Subspace Affinity (LSA) method [266], random
sampling and consensus (RANSAC) method [85], generalized principal component analy-
sis (GPCA) [247], and the sparse subspace clustering (SSC) [79] method. These methods are
specifically designed for segmenting complete trajectories, which requires that the points
are detected in all frames of a sequence. The number of objects is required as an input for
these methods. Implementation codes of these methods were downloaded from the site
of Hopkins 155 1. . We also chose two approaches for motion-based video segmentation,
i.e. the method proposed by Fragkiadaki, et al. [92] and the method proposed by Ochs, et
al. [177]. These methods are proposed for “realistic” trajectories obtained by the feature
tracking approaches as [46, 226]. These methods are more flexible in dealing with incom-
plete trajectories, and can determine the number of objects automatically. The code of
Fragkiadaki’s method is available on the author’s web page 1. The results of Ochs’ method
are reported in [177].

In the following subsections, Subsection 6.4.1 discusses the parameter configuring of
AEM-b and AEM-b+. The evaluation of segmentation results on “flawless” data and “real-
istic” data are given in Subsections 6.4.2 and 6.4.3 respectively.

1
http://www.vision.jhu.edu/data/hopkins155/

1
https://www.cs.cmu.edu/~katef/videoseg.html

6

90 CHAPTER 6. 2D MOTION SEGMENTATION

All experiments were done on a standard PC: CPU: Intel Core i5-2400 3.10GHz, OS:
Window 7 Enterprise, and using Matlab 2015a 64bit.

6.4.1. PARAMETER CONFIGURATION
In this experiment, we investigated the proper parameter settings of the improved algo-
rithm AEM-b+. we used the “flawless” data provided by the Hopkins 155 dataset. The
Hopkins 155 data set provides videos that contain different conditions of motions, together
with “flawless” motion data. With the flawless data, we can investigate the influences of
parameters on segmentation results, to avoid the effects of noise in the motion data. As
discussed in Subsection 6.3.2, segmentation accuracy is sufficient to evaluate the segmen-
tation results because all objects contain similar numbers of points in a sequence. Thus
we compared the average segmentation accuracy in this experiment.

As discussed in Section 6.2, parameters in the algorithm are categorized into three
classes: 2 for the splitting of groups, 1 for the reliability measure, and 2 for the camera
compensation. The following subsections discuss the settings of these parameters.

w
0.1 0.2 0.3 0.4 0.5 0.6

q

1

2

3

4

5

6

7

8

S
e
g
m

e
n
ta

tio
n
 a

cc
u
ra

cy
 (

%
)

85

86

87

88

89

90

91

92

93

94

95

Figure 6.2: Segmentation accuracy of AEM-b on the Hopkins 155 dataset using different settings of q and w for
splitting.

PARAMETER SETTING OF AEM-B

As discussed in Subsection 6.2.2, we have to determine which group to split when applying
the divisive segmentation algorithm (AEM-b). A segmentation is evaluated by computing
the sum of the value of q largest errors of each group, and the q needs to be set. More-
over, a threshold w is used to determine when to terminate the division procedure. We
varied q from 1 to 8, and w was chosen in {0.1,0.2,0.3,0.4,0.5,0.6}. The results are shown
in Figure 6.2. From this figure, the best performance is obtained when w = 0.1, and no big
differences are observed for different values of q . Note that an object point on the edge
may have big error, a small q can increase the possibility of wrong splitting. So we chose
q = 5 and w = 0.1 as the default setting for AEM-b .

PARAMETER SETTING OF AEM-B+

We investigate the parameter setting of AEM-b+, including the splitting parameters q and
w and the parameters for computing the reliabilities and compensating the camera mo-

6.4. EXPERIMENTAL RESULTS

6

91

α: the threshold for selecting background points
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9A

ve
ra

g
e
 a

cc
u
ra

cy
 o

f
se

g
m

e
n
ta

tio
n
s

(%
)

80

85

90

95

100

r(1): Equation 6.13

r(2): Equation 6.14

r(3): Equation 6.15

no reliabilities

(a) Option 1: compensate the camera motion in the inner loop of EM segmentation
algorithm (between line 2 and 3 in Algorithm 1)

α: the threshold for selecting background points
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9A

ve
ra

g
e
 a

cc
u

ra
cy

 o
f
se

g
m

e
n
ta

tio
n
s

(%
)

80

85

90

95

100

r(1): Equation 6.13

r(2): Equation 6.14

r(3): Equation 6.15

no reliabilities

(b) Option 2: compensate the camera motion right after EM loop in the divisive motion
segmentation algorithm (between line 7 and 8 in Algorithm 2).

α: the threshold for selecting background points
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9A

ve
ra

g
e

 a
cc

u
ra

cy
 o

f
se

g
m

e
n

ta
tio

n
s

(%
)

80

85

90

95

100

r(1): Equation 6.13

r(2): Equation 6.14

r(3): Equation 6.15

no reliabilities

(c) Option 3: compensate the camera motion after the splitting step in the divisive motion
segmentation algorithm (between line 11 and 12 in Algorithm 2).

Figure 6.3: (a), (b) and (c) respectively show the performance of compensating camera motion in
three different ways. The curves reflect the variation of segmentation accuracy when the threshold
value changes from 0 to 0.9. The colors of curves represent different reliability functions used. The

dashed line represents the case of no reliability computation.

6

92 CHAPTER 6. 2D MOTION SEGMENTATION

tion. As in Subsections 6.2.4 and 6.2.5, we present three ways for reliability computation
and three options for camera motion compensation. In the process of compensating the
camera motion, a threshold Æ is used to eliminate the background points with low relia-
bilities when computing the camera motion.

Based on the default setting of splitting parameters, i.e. w = 0.1 and q = 5, we inves-
tigate the influences of applying different settings for reliability computing and camera
compensation. Using one of the three options for camera motion compensation given in
Subsection 6.2.5, we vary the reliability computation by using Equations (6.13) to (6.15), We
also evaluate the performance when no reliability is computing. To select a proper value
ofÆ for camera motion estimation, we investigated the performances whenÆ changes be-
tween 0 and 0.9. The results are illustrated in Figure 6.3. Of all results in this figure, the
best performance is obtained when using Equation (6.13) for reliability computation and
compensating camera motion after the EM loop (Options 2 in Subsection 6.2.5), which are
chosen as the default setting of AEM-b+in this thesis. The influence of Æ value is insignif-
icant, but generally a value between 0.3 and 0.6 is better than others. We choose the value
of 0.5 as the default setting of Æ for AEM-b+.

AEM-b+addresses to improve the performance of segmenting moving objects from
videos captured by moving cameras. We additionally investigate its performance on videos
under different camera motions. The Hopkins 155 dataset provides some videos captured
by a handheld camera under controlled conditions, in the category called “checkerboard”.
We divided the videos in the “checkerboard” category into 4 sub-categories based on the
type of camera motion, as shown in Table 6.1. We compared the performance of AEM-
b and AEM-b+on videos from the four sub-categories, and the results are shown in Ta-
ble 6.1. From this table, AEM-b+and AEM-b perform almost equally on videos with static
camera, while AEM-b+performs better than AEM-b in case that the camera is moving.

checkerboard AEM-b AEM-b+

Static camera: 20 sequences 96.15 96.05

Translating camera: 20 sequences 92.67 94.91

Rotating camera: 24 sequences 90.78 92.56

Both rotating and translating cam-
era: 40 sequences 91.15 92.17

Table 6.1: Average segmentation accuracy (%) of on the “checkerboard” category in Hopkins 155 dataset.

We also investigate the influences of changing w and q for AEM-b+, when the param-
eters for reliability measure and camera compensation were fixed as the default value.
The results are shown in Figure 6.4. By comparing Figure 6.4 with Figure 6.2, the AEM-
b+generally improves the performance of AEM-b for different values of w and q , and the
best performance of AEM-b+and AEM-b are both achieved when w = 0.1. We still choose
w = 0.1 and q = 5 for AEM-b+.

6.4. EXPERIMENTAL RESULTS

6

93

w
0.1 0.2 0.3 0.4 0.5 0.6

q

1

2

3

4

5

6

7

8

S
e
g
m

e
n
ta

tio
n
 a

cc
u
ra

cy
 (

%
)

85

86

87

88

89

90

91

92

93

94

95

Figure 6.4: Segmentation accuracy of AEM-b+using different settings of q and w for splitting.

6.4.2. SEGMENTATION ON FLAWLESS DATA
In a next experiment, we compared AEM-b and AEM-b+using the “flawless” data provided
by the Hopkins 155 dataset. The provided motion data is a set of complete trajectories for
each video sequence, which means that each feature point is tracked in every frame of the
sequence. A trajectory of a feature point over F frames is represented as a sequence of
F 2D-coordinates. Trajectories of N detected feature points are represented by a matrix
X 2R2£F£N . In each sequences, there are 2 or 3 moving objects. Each motion corresponds
to a moving object in the video. The number of frames F is 31 and the number of feature
points N is 296 on average for the provided sequences. More details of these videos are
given in Section 4.2.

Following [236], we evaluate the accuracy of the segmentation results per sequence.
Since all objects in a video are represented by more or less the same number of feature
points in the given data, the segmentation accuracy is a reasonable measure of the quality
of segmentation results, as mentioned in Subsection 6.3.2. We compare the algorithms
AEM-b and AEM-b+with the four trajectory clustering algorithms, LSA [266], RANSAC [85],
GPCA [247] and SSC [79], and with Fragkiadaki’s method (FM) [92]. The algorithms LSA,
RANSAC, GPCA and SSC are specific for dealing with complete trajectories, and require
the number of objects as an input. Fragkiadaki’s method (FM) estimates the number of
individually moving objects. The results are given in Table 6.2.

We also evaluated the average computation time of a sequence, and the results are
shown in Table 6.3. Figure 6.5 illustrates some of the segmentation results, by visualizing
the point trajectories in different groups by different colors. Since our algorithms and FM
can estimate the number of objects, for these we evaluated the error ¢K of the estimated
number of objects, shown in Figure 6.6.

We can draw the following conclusions from the results:

• SSC outperforms all other methods on each category of the videos from Hopkins
155 dataset, as the segmentation accuracy in each category is above 97% for all cat-
egories. However, SSC requires the number of objects to be specified. AEM-b and
AEM-b+do not, and these are better than LSA, RANSAC and GPCA in general, since
the average segmentation accuracies of them are lower than for AEM-b or AEM-b+.

6

94 CHAPTER 6. 2D MOTION SEGMENTATION

LSA RANSAC GPCA SSC FM AEM-b AEM-b+
2

ob
je

ct
s Checkerboard(78) 93.91 92.01 79.11 98.37 73.13 91.89 93.52

Traffic(31) 98.62 92.14 73.2 99.42 75.09 97.71 98.18
Others(11) 96.93 90.45 72.52 98.19 93.33 92.44 95.37

All 95.37 91.9 76.98 98.73 75.51 93.44 94.44

3
ob

je
ct

s Checkerboard(26) 68.06 72.23 80.4 97.4 72.57 93.76 93.50
Traffic(7) 80.2 88.28 53.1 99.2 74.72 97.78 98.01
Others(2) 83.19 76.98 78.9 98.9 100 90.86 94.62

All 71.35 75.71 74.85 97.85 74.57 94.40 94.47

Average of all videos 89.98 88.24 76.50 98.45 75.30 93.66 94.80

Table 6.2: Segmentation accuracy (%) on Hopkins 155 motion data. The number in brackets means the number
of video sequences in this category. The values of segmentation accuracies 95 are printed in bold.

LSA RANSAC GPCA SSC FM AEM-b AEM-b+

4.32s 0.09s 0.14s 3.8s 1.20s 0.31s 2.6s

Table 6.3: Average computation time (seconds per sequence) on the Hopkins 155 dataset. The number of
processed points is 296 on average.

(a) “1RT2RCRT” (b) “1RT2RCRT_g12” (c) “cars1”

(d) “people1” (e) “articulated” (f) “articulated_g12”

Figure 6.5: Visualized segmentation results: 6 examples are shown by their names in the dataset. (a) and (b) are
from the same video in “checkerboard” category: (a) is composed by all 3 objects (a cuboid, a frustum cone and
the background) from the original video and (b) is composed by choosing the cuboid and the frustum cone in
(a); (c) is from the category of “traffic”; (d) is from the category of “others”; (e) and (f) are originated from the

same video in the category of “others”.

6.4. EXPERIMENTAL RESULTS

6

95

• Both AEM-b and AEM-b+perform well when the objects are undergoing transla-
tions, as either of them achieves a segmentation accuracy around 98% on the “traf-
fic” category. Such degree of segmentation accuracy implies that the segmented ob-
jects can be well recognized (see Figure 6.5c). Note that some traffic videos are taken
by a shaking camera, which means AEM-b and AEM-b+can handle small camera
motions. Moreover, as observed from the result of the walking people videos (see
Figure 6.5d), AEM-b and AEM-b+can handle an articulated object when the articu-
lated parts move as an integral unit.

When the object motion is more complicated, as in videos from the categories
“checkerboard” and “others”, the segmentation accuracy of AEM-b and AEM-
b+drops, which is not unexpected. AEM-b has a performance between 90% and 95%,
and AEM-b+has a performance between 93% and 96%.

• In general, AEM-b+has better performance than AEM-b . The improvement of AEM-
b+in the category of “others” and in the category of “checkerboard” with 2 objects,
is more significant than that in the “traffic” videos. It reveals that AEM-b+is better at
handling complex motions than AEM-b .

For the videos containing 3 objects in the “checkerboard” category, the segmentation
accuracy of AEM-b+is 0.26% lower than AEM-b . This is likely due to compensation
of the camera motion which can deteriorate the performance when the camera is
actually static, as discussed in Subsection 6.4.1. However, note that a decrease of
0.26% means that AEM-b+has 1.14 more points that are misclassified than AEM-
b for a sequence contains 437 points (the average value over these videos). Such a
small decrease does not affect the quality of object representations much.

• Our method outperforms FM using the Hopkins 155 dataset. FM is proposed spe-
cially for segmenting the dense trajectories obtained by [92]. This might explain the
low average accuracy in this experiment. The experiment with dense trajectories,
reported in Subsection 6.4.3, shows a better performance for FM.

• AEM-b is almost 10 times faster than SSC, while AEM-b+is 1.5 times faster than SSC.
Compared to the fastest method, i.e. RANSAC, both AEM-b and AEM-b+can achieve
more than 5 percentage points higher segmentation accuracy on average.

• AEM-b and AEM-b+both have a chance above 50% to correctly estimate the number
of objects, i.e. ¢K = 0, while chance of correctly estimation for FM is only 10%. The
over-segmentation cases of AEM-b and AEM-b+mostly happen for¢K = 1, while FM
often produce over-segemntations with ¢K 2. We can conclude that AEM-b and
AEM-b+are less likely to produce over-segmentations than FM, using the “flawless”
motion data.

6.4.3. SEGMENTATION ON REALISTIC DATA
In the following set of experiments, we evaluated the results when using motion data ex-
tracted from video sequences in Chapter 5, which contains the videos in Robocup 2014,
CDNet 2014 and FBMS-59 datasets. Such data is corrupted by noise, such as incorrect

6

96 CHAPTER 6. 2D MOTION SEGMENTATION

∆ K

-1 0 1 2 3 4 5 6 7 8

%

0

10

20

30

40

50

60

AEM-b

AEM-b
+

FM

Figure 6.6: The occurrences (%) of the mismatches in the estimated number of objects ¢K , for the methods
AEM-b , AEM-b+and FM, when using the “flawless” motion data provided by the Hopkins155 dataset.

trajectories and erroneous point motions, and also suffers from missing points. Moreover,
the point trajectories in a video sequence might have unequal lengths. We have considered
three types of motion data in Chapter 5, consisting of optical flows, sparse point trajecto-
ries and dense point trajectories. The segmentation algorithms are now applied to these
three types of motion data. We evaluate the performance with respect to the following four
aspects.

Firstly, while most of the existing approaches in the literature are proposed for dealing
with either two-frame motion fields [57, 64, 140, 192, 193, 259], or with point trajectories
over multiple frames [79, 92, 156, 177, 247, 266], the methods AEM-b and AEM-b+combine
the analysis of two-frame motion vectors with the analysis of long-term trajectories in a
video sequence. The segmentation accuracy is expected to increase when processing more
frame pairs while the scene objects do not change. Thus we investigated how the segmen-
tation accuracy varies with the number of frame indices in processing a video sequence.

Secondly, since the quality of motion data is affected by the frame rate (see Chapter 5),
we evaluated the effect of frame rates on the segmentation results. For comparison, we
extracted sub-sequences with different frame rates from a given video, by sub-sampling
the frames. Let { f0, f1, . . . , fT } denote a video of T +1 frames, we define a sample factor t
to denote the time step between two sampled frames. For the original video, t obviously
equals 1. For any integer t > 1, we can formulate a new sequence Sk = { f0, ft , . . . , ft ·k } by
repeatably jumping over t°1 frames in the original sequence. The displacements of points
between two successive frames become larger and the length of the subsequence becomes
shorter when t increases. In our experiments, the extracted sub-sequences have the same
first and last frame as the original sequence. This allows us to compare the segmentation
accuracies for the last frame. In this experiment, we chose frame f0 and f30 to be the first
and last frame for every sequence in test. The value of t is chosen from [1,2,3,5,10], and
k has the corresponding values [30,15,10,6,3]. We compared the segmentation accuracies
to illustrate the influences of frame rates on the segmentation results.

Since these two evaluations above require the groundtruth segmentation for every
frame in a video sequence, we only used motion data from Robocup 2014 and CDNet 2014

6.4. EXPERIMENTAL RESULTS

6

97

dataset.
Thirdly, we compared the proposed algorithms AEM-b and AEM-b+to SSC, FM and

Ochs’ method (OM), by measuring the average segmentation accuracy, precision, recall
and F-measure. We only choose SSC as a representative of trajectory clustering algorithms
in comparison, because the experiments in Subsection 6.4.2 revealed that our methods
achieve better performance than LSA, RANSAC and GPCA on flawless motion data. We
evaluated the performance on all videos from the Robocup 2014, CDNet 2014, and FBMS-
59 datasets.

Fourthly, we compared the computation time of all applied methods. We evaluated
the computation time of processing a sequence of 31 frames, together with the amount of
processed data, to give an intuitive measure of the computational efficiency.

The segmentation results of the three types of data, i.e. optical flows, sparse point tra-
jectories and dense point trajectories, are evaluated in the following subsubsections. Tra-
jectory clustering methods (SSC, RANSAC, GPCA, LSA), FM and OM can not process op-
tical flows in the video sequence, as they require that the motion data to be consistent
trajectories over the video frames. We do not compare with them when using optical flows
as the input.

SEGMENTATION ON OPTICAL FLOWS

In these experiment, the motion data is represented as a sequence of two-frame motion
vectors, as obtained by the optical flow algorithm introduced in Section 5.2. We evaluate
the performance of our methods AEM-b and AEM-b+on this type of data.

of
objects

Sequence { f0, ft , f2t , . . . , f30}, for t =
1 2 3 5 10

fixed 81.6 82.0 82.2 78.9 72.0
increasing 77.1 78.6 72.8 70.3 58.8
decreasing 78.3 76.9 73.0 62.1 55.6

all 80.4 80.5 79.4 75.3 67.0

Table 6.4: The segmentation accuracy (%) of sequences with different frame rates (indicated by sample factor t)
and the trends for the number of objects present in the sequence, using per-pixel motion vectors obtained from

Robocup+CDNet.

Firstly, we illustrate the variations of segmentation accuracy with respect to the num-
ber of frames that has been processed, for segmenting a sequence of 31 frames. As shown
in Figure 6.7, the curves show how the segmentation accuracy varies over time, i.e. with
respect to the index of frames. The results show that the segmentation accuracy is fluctu-
ating but generally slightly increasing over time. For the sequences with varying number
of objects, the accuracy fluctuates near the frames where the number of objects changes.

Secondly, we investigated the effects of frame rates on the segmentation results. The
segmentation accuracy of sub-sequences { f0, ft , . . . , f30} with different sub-sampling fac-
tors t is shown Table 6.4. A larger t represents a lower frame rate, which means larger
displacements between two frames. From this table, the segmentation accuracy generally
decreases when t increases. It is no surprise that the optical flows are more accurate when

6

98 CHAPTER 6. 2D MOTION SEGMENTATION

Index of frame
2 4 6 8 10 12 14 16 18 20

A
cc

u
ra

cy
(%

)
o
f
se

g
m

e
n
ta

tio
n

0

10

20

30

40

50

60

70

80

90

100

fixed
increasing
decreasing
all

Figure 6.7: The segmentation accuracy of segmenting optical flows varies w.r.t. the index of the frames, using the
Robocup 2014 and CDNet 2014 datasets. The curves in different colors show results on videos containing fixed,

increased and decreased numbers of objects respectively.

the displacements between two frames are small, as shown in Subsection 5.4.1. The in-
fluence of t is more significant when dealing with dynamic scenes containing a changing
number of objects, than dealing with videos with fixed number of objects. For small val-
ues of t (1 or 2), the differences in performance is not significant – as in some cases, the
segmentation accuracy even increases by 1 percentage point when t increases from 1 to
2. Since the frame rate of the original video is 30 fps on average, we can conclude that a
frame rate between 15 and 30 is preferred for the proposed segmentation algorithm using
optical flows.

SEGMENTATION ON SPARSE POINT TRAJECTORIES

In this experiment, the motion data is represented as a set of sparse point trajectories,
which is obtained by the SIFT tracking approach described in Section 5.3. These trajec-
tories can have different lengths, i.e. points can be present only in a subset of the frames.
The average number of tracked points in each frame is about 366 for a video with resolu-
tion of 640£320. For a video sequence of 31 frames, the number of extracted trajectories
is 1429 on average, and 145 of them are full trajectories. More details of the sparse point
trajectories can be found in Chapter 5.

Firstly, we evaluated the per-frame segmentation accuracy over a sequence of 31
frames, as illustrated in Figure 6.8. The segmentation accuracy generally increases over
time, except at the frames where the number objects changes.

Secondly, we compared the segmentation accuracies of sequences with different frame
rates and containing different numbers of objects, as shown in Table 6.5. As the segmen-
tation accuracy stays around 85% when t is less than 5, sparse trajectories are more robust
than optical flows with respect to a small t (∑ 5). However, the performance drops by 10%
when t increases to 10. Since the frame rate of the original video is 30 fps on average, the
proposed segmentation algorithm can achieve stable performance when the frame rate is

6.4. EXPERIMENTAL RESULTS

6

99

of
objects

Extracted sequence { f0, ft , . . . , f30}, for t =
1 2 3 5 10

fixed 86.2 86.7 85.6 85.5 78.4
increasing 81.2 83.2 83.5 80.1 66.9
decreasing 81.2 80.9 82.1 77.9 63.9

all 84.3 85.0 84.6 83.1 73.6

Table 6.5: The segmentation accuracy (%) w.r.t. sequences with different frame rates (indicated by sample factor
t) and the trends for the number of objects present in the sequence, using sparse trajectories extracted from

Robocup+CDNet.

Index of frame
2 4 6 8 10 12 14 16 18 20

A
cc

u
ra

cy
(%

)
o
f
se

g
m

e
n
ta

tio
n

0

10

20

30

40

50

60

70

80

90

100

fixed
increasing
decreasing
all

Figure 6.8: The segmentation accuracy of segmenting sparse trajectories varies w.r.t. the index of the frames,
using the Robocup 2014 and CDNet 2014 datasets. The curves in different colors show results on videos

containing fixed, increased and decreased numbers of objects respectively.

higher than 10 fps, using sparse point trajectories.

Thirdly, we compared our methods with SSC and FM, by measuring the segmentation
accuracy, precision, recall and F-measure. The results are shown in Table 6.6 and Table 6.7,
for the Robocup 2014 and CDNet 2014 dataset and the FBMS-59 dataset, respectively. Gen-
erally, AEM-b and AEM-b+have higher accuracy, precision, recall and F-measure than SSC
and FM. Only for specific data (the FBMS-59 dataset), FM has about 0.8% higher accuracy
than AEM-b and AEM-b+.

We also computed the occurrences (%) of different deviations ¢K in estimating the
number of objects. From the results shown in Figure 6.9, AEM-b and AEM-b+both are
comparable to correctly estimate the number of objects, but clearly outperform FM. FM is
more likely to generate over-segmentation than AEM-b and AEM-b+.

6

100 CHAPTER 6. 2D MOTION SEGMENTATION

Accuracy (%) Precision (%) Recall (%) F-measure (%)

SSC 74.38 60.05 50.00 54.56
FM 77.20 62.52 51.04 56.19
AEM-b 84.27 73,75 57.36 64.53
AEM-b+ 85.67 71.05 56.07 62.11

Table 6.6: Segmentation accuracy, precision, recall and F-measure on sparse trajectories obtained from
Robocup+CDNet dataset.

Accuracy (%) Precision (%) Recall (%) F-measure (%)

SSC 64.25 55.15 60.44 57.68
FM 85.63 68.89 53.96 60.51
AEM-b 84.88 71.48 60.49 65.53
AEM-b+ 84.84 70.10 63.06 66.39

Table 6.7: Segmentation accuracy, precision, recall and F-measure on sparse trajectories obtained from
FBMS-59 dataset.

∆ k

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

%

0

5

10

15

20

25

30

35

AEM-b

AEM-b
+

FM

Figure 6.9: The occurrences (%) of mismatches in the estimated number of objects ¢K , in the segmentation
results for the methods AEM-b , AEM-b+and FM, when using the sparse trajectories.

The computation time is shown in Table 6.8. We evaluated the average computa-
tion time for processing a sequence with 31 frames. FM can segment 1305 trajectories
for each sequence, while SSC can only deal with the 145 full trajectories. As AEM-b and
AEM-b+process part of the trajectories present in every frame pair, the amount of data
is counted by the number of processed points in one sequence. AEM-b is 6.5 times faster
than AEM-b+, and 1.5 times faster than FM. Considering that SSC processed the least num-
ber of trajectories, it is also slower than AEM-b and AEM-b+.

6.4. EXPERIMENTAL RESULTS

6

101

Method SSC FM AEM-b AEM-b+

computation time (s) 0.89 1.83 1.21 7.84

processed data
145
trajectories

1305
trajectories

366*30
points

366*30
points

Table 6.8: Average computation time (seconds) per sequence of 31 frames, for segmenting sparse trajectories.

SEGMENTATION ON DENSE POINT TRAJECTORIES

In this experiment, the motion data is represented as a set of dense point trajectories ex-
tracted by the dense tracking method in Subsection 5.4.3. Compared to the sparse trajecto-
ries, more feature points are tracked in each frame. Take a video of a resolution of 640£320
for example, then the number extracted trajectories is around 1300 for a sequence of 31
frames. More information of this type of motion data is given in Chapter 5.

Firstly, the per-frame segmentation accuracies are illustrated in Figure 6.10. From this
figure, using dense trajectories has better performance for the first frame pair than using
sparse trajectories, with an increase of more than 10 percentage points. In general, the
increasing trend of the average segmentation accuracy is not as significant as in the results
of sparse trajectories (Figure 6.8), but this is also due to the accuracy being higher. For
videos containing a varying number of objects, the segmentation accuracy drops when
the number of object changes, and then increases after several frames.

Index of frame
2 4 6 8 10 12 14 16 18 20

A
cc

u
ra

cy
(%

)
o
f
se

g
m

e
n
ta

tio
n

0

10

20

30

40

50

60

70

80

90

100

fixed
increasing
decreasing
all

Figure 6.10: The segmentation accuracy of segmenting dense trajectories varies w.r.t. the index of the frames,
using the Robocup 2014 and CDNet 2014 datasets. The curves in different colors show results on videos

containing fixed, increased and decreased numbers of objects respectively.

Secondly, Table 6.9 compares the performance on sequences with different frame rates,
also considering the number of moving objects present in a video. Although the segmenta-
tion accuracy decreases when t increases, this is less than 4%, which is smaller than when
using sparse trajectories and optical flows. In general, using dense trajectories achieves

6

102 CHAPTER 6. 2D MOTION SEGMENTATION

of
objects

Sequence { f0, ft , . . . , f30}, for t =
1 2 3 5 10

fixed 92.0 91.4 91.5 91.8 91.2
increasing 88.1 87.8 88.6 86.9 83.4
decreasing 85.7 85.4 85.3 84.0 81.5

all 90.5 90.1 90.2 89.9 88.0

Table 6.9: The segmentation accuracy (%) of sequences w.r.t. different frame rates (sample factor t) and number
of objects present in the sequence, using dense trajectories extracted from Robocup+CDNet.

higher segmentation accuracy than using sparse trajectories and optical flows. But the
preferable frame rate is at least 6 fps for dense trajectories segmentation, for which the
segmentation accuracy remains above 90%.

Thirdly, Tables 6.10 and 6.11 show the segmentation accuracy, precision, recall and
F-measure, using videos in the Robocup 2014 + CDNet 2014 datasets and the FBMS-59
dataset respectively. Here, AEM-b and AEM-b+outperform SSC and FM in all datasets.

Table 6.11 also shows the OM results for the FBMS-59 dataset, reported in the [177] OM
has a similar precision, recall and F-measure as AEM-b and AEM-b+. AEM-b+has better
performance than AEM-b in the Robocup 2014 + CDNet 2014 datasets. In contrast, it has
a slightly lower recall and F-measure than AEM-b on the FBMS-59 dataset.

The evaluation of identifying the number of objects is shown in Figure 6.11. We mea-
sured the differences ¢K between the estimated number and the groundtruth number of
objects in a video. The performance of AEM-b and AEM-b+are comparable, while both
outperform FM in estimating the correct number of objects. FM is more likely to produce
over-segmentations than AEM-b and AEM-b+.

∆ K

-8 -6 -4 -2 0 2 4 6 8 10

%

0

5

10

15

20

25

30

35

AEM-b

AEM-b
+

FM

Figure 6.11: The occurrences (%) of different mismatches in the estimated number of objects ¢K , in the
segmentation results for the methods AEM-b , AEM-b+and FM, when using the dense trajectories.

Finally, the computation time per sequence is shown in Table 6.12. FM processes about

6.4. EXPERIMENTAL RESULTS

6

103

Accuracy (%) Precision (%) Recall (%) F-measure (%)

SSC 78.91 74.80 39.24 51.47
FM 85.63 68.89 53.96 60.51
AEM-b 90.51 72.73 64.53 68.39
AEM-b+ 92.53 77.68 62.42 69.22

Table 6.10: Segmentation accuracy, precision, recall and F-measure on dense trajectories obtained from
Robocup+CDNet dataset.

Accuracy (%) Precision (%) Recall (%) F-measure (%)

SSC 87.92 81.35 40.74 54.29
FM 86.90 79.37 56.65 66.11
OM - 82.45 61.70 70.56
AEM-b 85.91 79.86 62.40 70.06
AEM-b+ 86.88 81.75 61.57 70.24

Table 6.11: Segmentation accuracy, precision, recall and F-measure on dense trajectories obtained from
FBMS-59 dataset, the accuracy of OM is not valid.

Method SSC FM OM(*) AEM-b AEM-b+

Computation time (s) 20.7 5.61 0.8 2.25 12.70

processed data
945
trajectories

13744
trajectories

2127
trajectories

1050*30
points

1050*30
points

Table 6.12: Average computation time (seconds) per sequence of 31 frames, for segmenting dense trajectories.(*
The results of OM is reported in [177], which is produced in a different environment.)

13744 trajectories for a sequence of 31 frames. SSC can only deal with the 945 complete
trajectories. AEM-b and AEM-b+processes about 1050 points per frame pair, and in total
1050*30 points per sequence. AEM-b is 5.6 times faster than AEM-b+and 2.5 times faster
than the FM. SSC is 1.2 times slower than AEM-b+, even though it processes only 7% of the
extracted trajectories. Based on the computation times reported in [177], OM is around 3
times faster than AEM-b . However, OM is executed in a different environment that uses
GPUs.

CONCLUSION

From these experimental results over three types of motion data, we can draw the following
conclusions

• Segmentation based on point trajectories outperforms the optical flow based
method in two ways. Firstly the point trajectories contain less points than the op-
tical flows. Therefore, the segmentation of trajectories requires less computational
resources than optical flow. Secondly, the segmentation of point trajectories always
achieves higher segmentation accuracy than optical flow.

6

104 CHAPTER 6. 2D MOTION SEGMENTATION

• Segmentation of dense point trajectories is more stable than segmentation of sparse
point trajectories, i.e. the variations of segmentation accuracy with respect to the
frame index are smaller, comparing Figure 6.10 to Figure 6.8. Moreover, the segmen-
tation accuracy of dense trajectories is generally higher than that of sparse trajec-
tories. This might because the dense tracking method tracks more points and the
obtained points trajectories are more accurate than those obtained by sparse track-
ing methods. As a result, the estimated motion models based on dense trajectories
are more accurate.

• AEM-b+is a little more powerful than AEM-b in dealing with videos that are captured
by a moving camera (see Table 6.2). In general, the improvement of AEM-b+is sta-
tistically insignificant, see Tables 6.10 and 6.11. In some cases, compensating the
camera motion even worsens the performance, see Table 6.6. Moreover, the compu-
tation time of AEM-b+is around 6 times higher than that of AEM-b , see Tables 6.8
and 6.12.

• While SSC is a powerful method in dealing with “flawless” motion data, it is much
poorer than our methods when processing the more “realistic” data that contain er-
rors. Moreover, our method is more flexible in dealing with a whole set of motion
data, while SSC can only deal with a subset of full trajectories.

• Comparing to two state-of-the-art video segmentation methods, i.e. FM and OM,
our methods show competitive performance over all datasets. As the F-measure
reflects the balance between precision and recall, it provides a qualitative justi-
fication of the extracted objects. AEM-b and AEM-b+always achieve a higher F-
measure than FM, which means that the objects obtained by AEM-b and AEM-
b+cover more points of the groundtruth objects. Moreover, AEM-b and AEM-b+have
a lower chance of suffering from the over-segmentation problem than FM. In gen-
eral, OM just outperforms our methods from the results. But here we must note that
the F-measures of AEM-b and AEM-b+are quite close to that of OM, with a difference
within 0.5%. And the result here of OM is not valid for all datasets.

6.5. CONCLUSION
In this chapter, we addressed the second research question: how to segment out the mov-
ing objects from a video sequence based on the extracted motion data? Assuming that the
point motions in successive images can be modeled by a 2D affine transformation, a mo-
tion segmentation algorithm based on classification EM algorithm and Bayesian updat-
ing is proposed, which is named by AEM-b . AEM-b is able to segment a video sequence,
by considering the motion information since the beginning of the sequence. Moreover,
an improved version of AEM-b is proposed with the name of AEM-b+, by compensating
the camera movement and measuring the reliabilities of segmentation results during pro-
cessing the sequence. Since the performance of proposed algorithm depends on several
parameters, we discussed the best parameter settings of the proposed algorithm using a
benchmark dataset. Experiments also show that, with the chosen parameters, this algo-
rithm performs well on other datasets compared to the reference methods as worked out
in Section 6.4.

6.5. CONCLUSION

6

105

Most of the existing approaches prefer to deal with a specific type of motion data, either
the sparse trajectories or the dense trajectories, and they are sensitive to noise and errors in
the motion data. Our approach shows high flexibility in dealing with optical flows, sparse
and dense trajectories. And the performance of our method stays in the upper level, no
matter the motion data is flawless or corrupted by noise and errors.

Moreover, our method is able to deal with arbitrary numbers of frames regardless of
the computational limit. The other methods usually require that the sequences are shorter
than a certain length. Our method also has the ability to handle videos in which the num-
ber of objects varies, and on this aspect they are superior to the compared methods that
have the same functionality in the experiments.

The two versions of the proposed algorithm, i.e. AEM-b and AEM-b+, both have advan-
tages and disadvantages. The original algorithm (AEM-b) is faster than AEM-b+, which
computes the segmentation reliabilities and compensates for the camera motion. AEM-
b+is better in dealing with videos with significant camera motion than AEM-b . Moreover,
AEM-b+requires the motion data to contain background points for obtaining a better per-
formance than AEM-b . Both algorithms are good in dealing with translations, like cars
moving and people walking.

The proposed segmentation algorithm is based on 2D motion coherences in frames,
which neglects the 3D motion and structural coherences of the objects in real world. As
mentioned in Section 6.1, 2D based motion segmentation often suffers from the over-
segmentation problem, especially when segmenting two-frame motion vectors. We used
a Bayesian updating procedure to obtain long-term motion coherences of a series of 2D
motions, which reduces the over-segmentation problem in some situations. However, the
results reveal that the proposed segmentation algorithms tend to produce over-segmented
objects in some cases.

One possible way to address the over-segmentation problem is to analyze the 3D mo-
tion coherences of the given 2D points motions. In the next chapter, we will discuss motion
segmentation based on 3D motion models.

7
3D MOTION SEGMENTATION

In Chapter 6, a motion segmentation algorithm is present based on the motion of 2D
points in a video sequence. Given a set of 2D points that belong to the same object, their
movements between two successive frames in a video is modeled by a 2D affine transfor-
mation. This algorithm performs well as long as the rotation around the x (or y) axis is
limited. However, this method often fails to segment out an object if the rotation about the
x (or y) axis is significant.

In this chapter, we investigate how to segment the projected 2D image points based on
the motion consistency of the corresponding points in the 3D space, since the 2D image
motion is the projection of 3D motion in the real world. Section 7.1 briefly introduces the
issue of this chapter. In Section 7.2, we analyze the motion of a set of 2D points between
two image frames based on matrix factorization technique and derive two theorems for re-
trieving the 3D consistency and the 3D rigid body motion from 2D motions. In Section 7.3,
we applied the proposed theorems for 3D consistency measure, and to recover the 3D mo-
tion of a rigid 3D body. Section 7.4 concludes this chapter.

7.1. INTRODUCTION
The motion data implied in two successive images is acquired by tracking some 2D points
in these images, see Chapter 5. These 2D image points are projections of corresponding
points in the 3D world. As points from the same object move consistently in the 3D world,
the corresponding 2D image points preserve the consistency in the 2D video frames if their
movements are small enough (see Subsection 3.3.3). In Chapter 6, we investigated motion
segmentation based on modeling the object motions in the 2D image plane as 2D affine
transformations. However, the 2D motion of an object in the video frames can not be
simply represented by one 2D affine model in many cases, due to the perspective effects,
depth discontinuities, occlusions, transparent motions, etc.[155] As a result, a 3D motion
in the real world might be broken into different 2D motions in the 2D images, and segmen-
tation based on 2D models tends to segment one object into multiple segments, which is
called over-segmentation. Experiments reveal that the 2D motion segmentation algorithm

107

7

108 CHAPTER 7. 3D MOTION SEGMENTATION

proposed in Chapter 6 is not good at dealing with videos in which the objects rotate signif-
icantly about the x (or y) axis.

To address the over-segmentation, we investigate 3D motion segmentation in this
chapter. That is, given the trajectories of 2D points in a video sequence, we intend to seg-
ment out the points that move consistent with a rigid 3D motion in the world space. In lit-
erature, the 3D motion segmentation approaches often capture the 3D motion consistency
with the help of geometric constraints derived from physical models, such as rigidity of an
object, 2D homography, an epipolar constraint, or a trilinear constraint [66, 102, 112, 272].
Some of these approaches factor the point trajectories into different motion subspaces,
assuming an affine projection model [79, 249, 266]. Other methods assume a perspective
projection, and therefore segmentation is a problem of clustering the point trajectories
into different multi-linear varieties [112, 208, 231].

7.2. 3D MOTION CONSISTENCY
To analyze 3D motion consistency, we address the situation in which we have a given set
of matched pairs of feature points from two image frames. We aim to find a 3D rigid body
motion consistent with all those matched pairs. Combining such a 3D motion with the
camera projection, we can set up an equation relating the coordinates of each matched
pair. With sufficiently many points from the same object, an overdetermined system of
equations will be obtained. Due to the rigid body motion assumption, this system will
have certain structural properties. By using matrix factorization techniques we then can
analyze how to recover a 3D rigid body motion in the best possible way.

7.2.1. ANALYSIS
Consider a point on an object undergoing a rigid body motion. Suppose it moves, in the
camera coordinate system, from some position x = (x, y, z)> at time ø to another position
x0 = (x 0, y 0, z 0)> at time ø0. Then according to Equation (3.20) we have that x0 = Rx+t, where
R is a rotation matrix and t = (t1, t2, t3)> is a translation vector. Since all points of a rigid
body have the same movement, the translation vector can be eliminated by working rela-
tive to a selected point at x0 = (x0, y0, z0)> (e.g., a center of mass or any other point on the
object):

x0 °x00 = R(x°x0). (7.1)

If the scene is far away from the camera, and focal length is small compared to the
distance of the object to the camera, then for every two points x and x0 at distances Zc

and Z 0
c , we can assume f

Zc
º f

Z 0
c

(see Subsection 3.3.2). Hence, we can ignore the effect of

the scaling factor f
Zc

and the camera projection can be approximated by an orthographic

projection. Therefore the point at position (x, y, z)> in the camera frame is mapped (up
to a fixed factor) to position (x, y)> in the image frame. The following theorems apply,
subject to this orthographic projection assumption. The general situation is discussed in
Subsection 7.2.3.

Theorem 7.2.1. A set of m + 1 matched pairs of 2D points (xi , yi)> and (x 0
i , y 0

i)> (with i =
0, . . . ,m) can consistently be interpreted as the 2D coordinates of orthographic projections
onto the image plane of m + 1 pairs of 3D points in camera space which are related by a

7.2. 3D MOTION CONSISTENCY

7

109

single 3D rigid body motion, if and only if the m £4 data matrix

M =

0

B@
x̃1 ỹ1 x̃ 0

1 ỹ 0
1

...
...

...
...

x̃m ỹm x̃ 0
m ỹ 0

m

1

CA (7.2)

where x̃i = xi ° x0, ỹi = yi ° y0, x̃ 0
i = x 0

i ° x 0
0 and ỹ 0

i = yi ° y0, has a nontrivial null space
containing a vector v = (v1, v2, v3, v4)> of which the four entries satisfy

v2
1 + v2

2 = v2
3 + v2

4. (7.3)

Proof. ()) From Equation (3.21) and Equation (7.1), we have:
0

@
x̃ 0

1 . . . x̃ 0
m

ỹ 0
1 . . . ỹ 0

m
z̃ 0

1 . . . z̃ 0
m

1

A=

0

@
cz °sz 0
sz cz 0
0 0 1

1

A

0

@
cy 0 sy
0 1 0

°sy 0 cy

1

A

0

@
1 0 0
0 cx °sx
0 sx cx

1

A

0

@
x̃1 . . . x̃m
ỹ1 . . . ỹm
z̃1 . . . z̃m

1

A (7.4)

Where sx , cx , sy , cy , sz and cz are shortcuts for sin'x , cos'x , sin'y , cos'y , sin'z and
cos'z respectively.
After applying the orthographic projection to the result of the rotation x̃0 = x0 °x0, we get:

µ
x̃ 0

1 . . . x̃ 0
m

ỹ 0
1 . . . ỹ 0

m

∂
=

≥cz °sz
sz cz

¥µ
cy sy sx sy cx
0 cx °sx

∂√
x̃1 . . . x̃m
ỹ1 . . . ỹm
z̃1 . . . z̃m

!

(7.5)

After transposition of this equation, we have:
0

B@
x̃ 0

1 ỹ 0
1

...
...

x̃ 0
m ỹ 0

m

1

CA=

0

@
x̃1 ỹ1 z̃1
...

...
...

x̃m ỹm z̃m

1

A
√ cy 0

sy sx cx
sy cx °sx

!≥ cz sz
°sz cz

¥
(7.6)

Note that every row (x̃ 0
i , ỹ 0

i) is a linear combination of (x̃i , ỹi , z̃i), implying that M has a rank
of at most 3.

Equation (7.6) can be rewritten as:
0

B@
x̃ 0

1 ỹ 0
1

...
...

x̃ 0
m ỹ 0

m

1

CA
≥cz °sz
sz cz

¥
=

0

@
x̃1 ỹ1
...

...
x̃m ỹm

1

A
µ

cy 0
sy sx cx

∂
+

0

@
z̃1
...

z̃m

1

A°
sy cx °sx

¢
(7.7)

or equivalently:

0

@
x̃1 ỹ1
...

...
x̃m ỹm

1

A
µ

cy 0
sy sx cx

∂
°

0

B@
x̃ 0

1 ỹ 0
1

...
...

x̃ 0
m ỹ 0

m

1

CA
≥cz °sz
sz cz

¥
=

0

@
z̃1
...

z̃m

1

A°°sy cx sx
¢

(7.8)

We can combine the matrices

0

B@

x̃1 ỹ1
...

...
x̃m ỹm

1

CA and

0

B@

x̃ 0
1 ỹ 0

1
...

...
x̃ 0

m ỹ 0
m

1

CA to form the matrix M :

7

110 CHAPTER 7. 3D MOTION SEGMENTATION

M

0

BB@

cy 0
sy sx cx
°cz sz
°sz °cz

1

CCA=

0

B@

z̃1
...

z̃m

1

CA
°
°sy cx sx

¢
(7.9)

After multiplying the result by
µ

cx sx
°sy sx sy cx

∂
, we get:

M

0

B@

cy cx cy sx
0 sy

°cz cx°sz sy sx °cz sx + sz sy cx
°sz cx + cz sy sx °sz sx°cz sy cx

1

CA=

0

@
z̃1
...

z̃m

1

A°°sy 0
¢

(7.10)

Because the second column of
°
°sy ,0

¢
in this equation is 0, we have a nontrivial vector

v =
°
cy sx , sy ,°cz sx + sz sy cx ,°sz sx°cz sy cx

¢> such that Mv = 0. The elements of the vector v
satisfy: v2

1 + v2
2 = v2

3 + v2
4, which proves one implication of Theorem 7.2.1.

If sy = 0 and cx 6= 0, the first column of
°
°sy ,0

¢
in Equation (7.10) is also 0, and we have

another nontrivial vector v = (1,0,°cz ,°sz)> such that Mv = 0. The elements of this vector
v also satisfy: v2

1 + v2
2 = v2

3 + v2
4.

(() Conversely, if a non-zero vector v = (v1, v2, v3, v4)> is given in the kernel of M which
happens to satisfy v2

1+v2
2 = v2

3+v2
4, we can proceed by the following two cases with respect

to the value of v2:

Case 1. Assume that v2 6= 0. Then let 'y have an arbitrary nonzero value in the interval°
°arctan

ØØ v2
v1

ØØ, arctan
ØØ v2

v1

ØØ¢, where the range is set to
°
°º2 , º2

¢
if v2 = 0. Next, compute 'x =

arcsin
° v1

v2
tan('y)

¢
. Let ∏ = v2

sin'y
be a scaling factor, which is nonzero. Then v2 = ∏sy and

v1 =∏cy sx . Consequently ∏ can be computed from v2
1 + v2

2 =∏2(1°c2
y c2

x).

Note that
° v3

v4

¢
= ∏(°cz sz°sz °cz)

° sx
sy cx

¢
should hold, which can be rewritten in terms of cz and

sz :
°°v3 °v4°v4 v3

¢° cz
sz

¢
= ∏

° sx
sy cx

¢
. The values of sz and cz are obtained, which uniquely specify

'z 2 (°º,º].

Case 2. Assumes that v2 = 0. Then let'y = 0 and note that v1 6= 0. Now choose'x to have an
arbitrary nonzero value in the interval

°
°º2 , º2

¢
. Set ∏ = v1. Then 'z is determined through° v3

v4

¢
=∏

°°cz°sz

¢
. It follows that v2

1 + v2
2 = v2

3 + v2
4 =∏2.

In either of the two cases Case 1 and Case 2, a nonzero scaling factor ∏ and suitable
values for 'z , 'y and 'x are obtained which make that the vector v is of the form v =

∏

√ cy sx
sy°cz sx+sz sy sx°sz sx°cz sy cx

!

, or simplified of the form v =∏

µ 1
0

°cz°sz

∂
when sy = 0.

In Case 1 (where sy 6= 0), this allows one to construct a corresponding vector
(z̃1, . . . , z̃m)> to satisfy the required identity. Because

° cx sx°sy sx sy cx

¢
is invertible, (z̃ 0

1, . . . , z̃ 0
m)>

can be obtained by reconsidering the omitted third row of R. Clearly, translations in the
z-direction cannot be observed at all, while coordinate values in all directions can only be
obtained relative to an arbitrarily chosen origin. For z0 and z 0

0 one can introduce arbitrary
values, which shows that the entry t3 of translation vector t is completely free.

7.2. 3D MOTION CONSISTENCY

7

111

In Case 2 (where 'y = 0), the matrix:
0

BB@

cy cx cy sx
0 sy

°cz cx°sz sy sx °cz sx + sz sy cx
°sz cx + cz sy sx °sz sx°cz sy cx

1

CCA

takes the form: 0

BB@

cx sx
0 0

°cz cx °cz sx
°sz cx °sz sx

1

CCA

Both columns are of the form k(1,0,°cz ,°sz)> because k can be either cx or sx . With 'x
from the indicated range (which ensures that cx and sx are both nonzero), we have that
both columns are collinear, and that the relationship in Equation (7.10) is properly sat-
isfied. However the matrix

° cx sx°sy sx sy cx

¢
is no longer invertible, so to rewind our steps, we

should reconsider Equation (7.9), which takes now the form:

M

0

BB@

1 0
0 cx

°cz sz
°sz °cz

1

CCA=

0

B@

z̃1
...

z̃m

1

CA
°
°0 sx

¢
(7.11)

because 'y = 0. The first column represents a vector in the kernel we just dealt with. With
sx 6= 0 it follows that:

0

B@

z̃1
...

z̃m

1

CA= 1
sx

M

0

BB@

0
cx
sz
°cz

1

CCA (7.12)

Then we can proceed as in Case 1 to construct a rotation and translation which is con-
sistent with the given observed data. This proves the converse implication of Theo-
rem 7.2.1.

Theorem 7.2.2. If the condition under Theorem 7.2.1 is satisfied, then there exists a family
of rigid body motions, consistent with the data, having at least one real degree of freedom
for the translation (corresponding to an arbitrary translation in the z-direction) and at least
one real degree of freedom for the 3D rotation.

Theorem 7.2.2 is also proved according the proof of Theorem 7.2.1, noting that in both
Cases 1 and 2 a real degree of freedom for R (for the angles'y and'x , respectively) and for
the coordinate t3 was encountered. In special cases, i.e., when the rank of M is less than 3,
more degrees of freedom may occur.

7.2.2. APPLICATION
Theorems 7.2.1 and 7.2.2 show the properties of point pairs between two images that fol-
lowing the same 3D motion. These theorems can be applied to analysis the consistency of
a given set of point pairs, or estimate some of the 3D motion parameters, as shown in the
following subsections.

7

112 CHAPTER 7. 3D MOTION SEGMENTATION

CONSISTENCY OF 3D RIGID BODY MOTION

In computer vision applications, motion based image segmentation is an important and
fundamental topic. The aim is to partition visual elements (pixels or feature points) into
groups, based on their motion features. Segmentation algorithms are used in tasks like
object detection and tracking, where objects are represented by groups of points (or pix-
els). For videos from a monocular camera, the key challenge of motion segmentation is to
segment the points w.r.t. their 3D motions, while only 2D projection-coordinates of points
are available.

Theorem 7.2.1 can be used to determine whether the movements of a group of 2D
points (matched point from consecutive images) are consistent with a 3D rigid body mo-
tion. Giving m +1 pairs of points, we can decompose the m £4 data matrix M using the
SVD:

M =U DV > (7.13)

in which U is an m £ m orthogonal matrix, V is a 4 £ 4 orthogonal matrix, and D =
diag{d1,d2,d3,d4} is an m£4 diagonal matrix with entries d1 ∏ d2 ∏ d3 ∏ d4 ∏ 0 on its main
diagonal. Theorem 7.2.1 establishes that at least d4 = 0 should hold if the movement of 2D
points is consistent with a 3D rigid body motion. However, when working with real data,
deviations may occur for various reasons, such as inaccuracies in feature extraction and
motion detection. Moreover, the orthographic projection hypothesis - which disregards
the perspective - is an approximation.

The value of d4 can be taken as a measure for the (lack of) quality of 3D rigid body
motion consistency, for the group of points being analyzed. According to Theorem 7.2.1,
in case of a rigid 3D body motion, every vector v in the kernel satisfies v2

1 + v2
2 = v2

3 + v2
4

if d3 > 0. This property can be also used as a quality measure for the rigid body motion
consistency. Note that a vector v is obtained as the last column of matrix V if d4 = 0 and
d3 > 0.

RECONSTRUCTION OF 3D RIGID BODY MOTION

Theorems 7.2.1 and 7.2.2 also enable us to estimate the parameters of a 3D rigid body
motion for a given set of matched pairs. Starting from data matrix M (Equation (7.2)) with
a 1-dimensional null space, using Equation (7.3), there will be one real degree of freedom
when computing the 3D rotations 'z , 'y , 'x . There is also one degree of freedom (the
translation in the z direction) in determining t. However, the values z̃1, . . . , z̃m completely
depend on the degree of freedom for the 3D rotation.

We may determine the value of 'y or 'x by minimizing a criterion function, such as
the sum of squares of values z̃1, . . . , z̃m . The idea is that the norm of the vector of changes
in the (unobserved) z-direction, consistent with the computed rotation and translation, is
minimized. So, no unnecessarily movement in the unobserved z direction is included in
the rigid body motion.

7.2.3. ERROR ANALYSIS
The proposed theorems are based on the orthographic projection, which is an approxima-
tion of the perspective projection. In this subsection, we analyze the errors of orthographic
projection w.r.t. to the perspective projection.

7.3. EXPERIMENTS

7

113

Suppose a 3D point is moving from (Xc ,Yc , Zc)> at time t to (X 0
c ,Y 0

c , Z 0
c)> at time t 0,

and two images are captured at the two time points. The coordinates of a projected
point at time t and t 0 under the perspective projections are (xp , yp)> and (x 0

p , y 0
p)> re-

spectively. The coordinates of the same projected point under orthographic projection
are (x, y)> and (x 0, y 0)>. According to the Equations (3.24) and (3.25): (x, y)> = (Xc ,Yc)>,
(xp , yp)>= f

Zc
(Xc ,Yc)>, (x 0, y 0)>= (X 0

c ,Y 0
c)> and (x 0

p , y 0
p)>= f

Z 0
c

(X 0
c ,Y 0

c)>. The perspective pro-

jection scales the (Xc ,Yc)> with a factor f
Zc

. We can compensate for the scaling of (xp , yp)>

by multiplying (xp , yp)> with µ= Zc
f . So, (x, y)>= µ(xp , yp)>. By applying the same scaling

to (x 0
p , y 0

p)>, we can compute the error caused by orthographic projection:

µ
x 0

y 0

∂
°µ

µ
x 0

p
y 0

p

∂
= (1° Zc

Z 0
c

)
µ

X 0
c

Y 0
c

∂
(7.14)

If the changes in z direction caused by translation and rotation are small, then Zc
Z 0

c
º 1, and

the error is approximately 0.

7.3. EXPERIMENTS
In this section, we evaluate the applicability of the proposed theorems on both synthetic
data in subsection and real video data in Subsection 7.3.1. These theorems can also be
used to estimate the 3D rigid motion of an object with one degree of freedom. We evaluate
this aspect in Subsection 7.3.2.

7.3.1. IMPROVING THE SEGMENTATION QUALITY
As the theorems proposed in Section 7.2 can be used to evaluate the 3D consistency of a
given set of 2D projected points pairs, we use them for improving a generated segmenta-
tion result. There are two possible ways to apply our results in motion segmentation,

1. Giving the result of a segmentation, an object is represented as a group of points.
Usually there are miss-classified points in each group, which reduces the precision
of the segmentation. We can use the results of the previous section to find the miss-
classified point in the group of points.

2. Given a group of points that are belonging to an object, and a set of new points with-
out assignments, we can use the results of the previous section to identify whether
the new points belong to the object. Failing to identify these points reduces the recall
of the segmentation.

We measure the 3D consistency error by er r or=
∞∞∞d4+

q
v2

1+v2
2°v2

3°v2
4

∞∞∞, which is named by
“3DM” in the experiments. A point is assigned to a group if its error is lower than a thresh-
old, which is 0.005 in this experiment. This threshold is determined by investigating the
average 3D consistency error of the objects from the Hopkins155 dataset. In the exper-
iments, we evaluate the performance of 3DM in two ways as above. Firstly, given some
points from one object and some noise does not belong to this object, we aim at identi-
fying the labels, i.e. “object” and “noise”, of these points using 3DM. By varying the ratio
of noise in the given set, we evaluate the classification accuracy, which is defined as the
percentage of points that are successfully classified. Secondly, given a set of points that

7

114 CHAPTER 7. 3D MOTION SEGMENTATION

101

1

100

0
x

z

-1

99

-1

0

1
y

Figure 7.1: 3D motion flows

x
-1 0 1

y

-1

0

1

Figure 7.2: 2D motion fields

are known to be belong to an object, we aim at determining the class of some unlabeled
points. We investigate the classification accuracy of the unlabeled points, by varying the
size of the known set. We use synthetic data and real data to do the experiments in the
following subsections.

IMPROVING MOTION SEGMENTATION USING SYNTHETIC DATA

We generated a 3D synthetic scene containing a cube, which follows a combination of ro-
tation and translation. Randomly chosen points on the surface of the cube are tracked.
We also randomly generate some noise points that have arbitrary 3D motions. The motion
of each point is represented by its initial position and the new position after transforma-
tion. Figure 7.1 illustrates the 3D motion flows of the points on the cube surface in camera
space, while Figure 7.2 shows the orthographic projection of these motion vectors on the
image plane that is parallel to the x y plane.

For the first experiment, we choose 100 points from the cube object and n noise points.
The objective is to divide these points into two subgroups: the “objects” and “noises” using
the results of the previous section. We did the experiment multiple rounds by varying the
number of noise points n from 0 to 50. In each round, we redid the experiment 100 times
by changing the chosen points, and plotted the average result.

We compared the 3DM with the sparse subspace clustering method (SSC) [79]. Fig-
ure 7.3 illustrates the accuracy with respect to different n, i.e. the number of noise points.
The classification accuracy of 3DM is higher than SSC. We also investigated the false nega-
tives (FNs) and false positives (FPs) in the results, as shown in Table 7.1. The 3DM can cor-
rectly identify the object points since the false negatives remains zero, and the errors are
caused by the misclassified noise, i.e. the false positives. Note that the noise points are ran-
domly generated, and it might have similar movement as the object points. Therefore, it is
no surprise that those noise points are misclassified. SSC generates false negatives while
the 3DM does not, and generates more false positives than 3DM. As a trajectory clustering
algorithm, SSC requires that the input points fit with a given number of motions and it is
sensitive to noise [79]. It can be observed from Table 7.1 that both FP and FN increase with
the number of noise in the set. We can conclude that our 3DM outperforms SSC when
dealing with one single cluster with noise from the experiment results.

For the second experiment, m (m 2 [4,100]) points on the cube are chosen to represent
the object, which are used to determine the classification of other 200 unlabeled points
(half from the object and while the other half are randomly generated noise points) using
the results of the previous section. We compared the results of the proposed approach

7.3. EXPERIMENTS

7

115

n
0 5 10 15 20 25 30 35 40 45 50

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy
 (

%
)

50

55

60

65

70

75

80

85

90

95

100

3DM
SSC

Figure 7.3: The average classification accuracy of classifying the object points and the noise from a set of points
representing a moving object.

n 0 1 5 10 20 30 40 50

FN
3DM 0 0 0 0 0 0 0 0
SSC 16.2 15.4 18.5 23.4 24.6 23.9 25.5 25.0

FP
3DM 0 0.15 0.72 1.45 2.36 3.23 3.75 4.69
SSC 0 0.1 0.6 1.6 3.1 4.0 5.4 6.5

Table 7.1: The average false negatives (FNs) and false positives (FPs) in the results of classifying the object points
and the noise from a set of points representing a moving object.

3DM, with that of an affine model based method, which computes the error w.r.t. the affine
motion model of the m points using the approach described in Chapter 6. For each m, we
redid the experiment 100 times by changing the unlabeled points each time, and plotted
the average result.

The classification accuracy of unlabeled points is shown in Figure 7.4. The classifica-
tion accuracy of 3DM is higher than that of the 2D affine model. Table 7.2 shows the false
negatives and false positives of the result. Using the 3DM, the number of false negatives
is 0 and the number of false positives decreases when m increases. It shows that the 3DM
is better able to identify the object points than the noise points. The method based on 2D
affine model results in lower classification accuracy than the 3DM. When the number of
given labeled points increases, the 2D method generate more false positives and less false
negatives. It means that the 2D method is sensitive to the size of the given set, as a larger
set does not guarantee a better performance. The results show that the 3D consistency
measure described in this chapter outperforms classification of points based on the affine
motion model.

7

116 CHAPTER 7. 3D MOTION SEGMENTATION

m
10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy
 (

%
)

60

65

70

75

80

85

90

95

100

3DM
2D affine model

Figure 7.4: The average classification accuracy of assigning 200 unlabeled points to a given set of m points. The
unlabeled set contains 100 object points and 100 noise.

m 4 10 20 30 40 50 60 70 80 90 100

FN
3DM 0 0 0 0 0 0 0 0 0 0 0
2D model 33.9 15.5 12.0 11.4 10.8 10.4 10.4 10.4 10.3 10.0 9.7

FP
3DM 20.2 14.2 8.5 7.3 6.1 5.6 5.1 4.7 4.6 4.6 4.4
2D model 3.0 3.6 5.3 8.0 11.7 14.8 17.6 20.0 21.6 24.5 25.5

Table 7.2: The average false negatives (FNs) and false positives (FPs) in the results of assigning unlabeled points
to a given set of m points based on 3D consistency measure.

IMPROVING MOTION SEGMENTATION USING VIDEO DATA

In this experiment, we used the real video sequences from the Hopkins155 benchmark
data set [236]. The Hopkins155 benchmark data set provides for each video in the data set,
a set of feature points and their motions on the image plane. We chose 25 video sequences
from the category named “checkerboard”. Each video contains 29 frames, which records
a scene with 3 objects following distinct 3D motions (rotation and translation). There are
75 objects in total. In each experiment we chose one object and used the motion vectors
between the frame pair { f1, fi } (i 2 (2,29)).

In the first experiment, for each video in the dataset, we chose all points of one ob-
ject to be the “object”, and points from other objects to be the “noise”. We changed the
number of noise points nnoise, thus the ratio nnoise : nobject varied between 0% and 50%,
where nobject is the number of object points. We took the average result of all objects in the
experiment, with respect to different frame pairs and noise ratios. Figure 7.5 shows the av-
erage accuracy with respect to different frame pairs and noise ratios. The results show that
the accuracy decreases when the noise rate increases. The distance between frame pairs
has no significant influence for low noise ratios, and has a small influence, around 7% for

7.3. EXPERIMENTS

7

117

ratio of noise to object points (%)

0
10

20
30

40
502

5

10

i for frame pair (f
1 ,f

i)

15

20

25

100

70

80

90

29

C
la

ss
ifi

ca
tio

n
 a

cc
u
rc

y
(%

)

Figure 7.5: The accuracy of classifying the noise and object points in a given set by 3DM, using the data provided
by the Hopkins 155 dataset.

high noise ratios. When there are more noises, the accuracy increases with the distance
of frame pairs. As was to be expected, a larger frame distance results in a higher accuracy.
Since displacement between two frames is smaller when the frames are closer, 3DM is bet-
ter able to deal with frame pairs of relatively large distance. Note that the video sequences
used in the experiment are of at most 31 frames, the time slot of a frame pair is smaller
than 1.25 seconds for a standard 24 fps video. To investigate the affects of frame distance,
more experiments are needed using sequences longer than 1.25 seconds. Table 7.3 shows
the average false negatives (FNs) and false positives (FPs) in the result. When the noise in-
creases, both false positives and false negatives increase. When the distance between the
frame pair increases, the false negatives increase and the false positives decreases. Gener-
ally, the performance of 3DM on real video data is affected by the frame distance and noise
rate. The 3DM performs well when the noise is less than 10% of the objects points.

In the second experiment, we computed the average accuracy of allocating an unla-
beled point to a given group representing an object, with respect to the group size m, i.e.
the number of points in the group, and the distance between frames. Figure 7.6 and Ta-
ble 7.4 shows the average results. The results show that a larger group size is beneficial in
identifying whether a point belongs to a group. However, the accuracy levels off at a max-
imum of 85%. The distance between frames does not have a significant influence on the
results, although a smaller frame distance seems to be beneficial for smaller group sizes.
The false negatives increases when the distance between frames becomes larger, although
the false positives decreases. If more points are given in the group, the false negatives de-
crease but false positives increases. The results also suggest that 3DM on its own will not
be sufficient to create a segmentation algorithm that out performs the segmentation algo-
rithm described in Chapter 6.

7

118 CHAPTER 7. 3D MOTION SEGMENTATION

Average number of points in the set

nob j ect 146 146 146 146 146 146 146 146

nnoi se 0 1.5 7.3 14.6 29.2 43.8 58.4 73.0

i for (f1, fi) FN

2 3.2 5.5 5.1 8.4 13.1 14.9 13.0 14.5

5 5.0 8.7 7.2 12.7 21.3 23.1 24.0 22.5

10 5.8 9.7 8.3 14.2 23.9 25.8 25.5 21.9

15 6.0 10.1 8.5 14.4 24.3 26.0 25.1 24.7

20 6.8 10.2 9.6 15.9 25.8 25.7 28.8 30.0

29 7.8 11.9 10.7 17.7 27.2 27.8 28.4 27.7

i for (f1, fi) FP

2 0 0.1 3.1 4.3 5.2 8.0 10.1 20.0

5 0.0 0.2 4.7 6.5 7.8 12.0 15.2 30.0

10 0.0 0.0 3.2 6.0 9.0 14.4 16.1 18.0

15 0.0 0.0 3.6 6.5 6.9 9.2 15.2 18.8

20 0.0 0.0 2.9 4.4 7.2 9.9 14.9 15.6

29 0.0 0.2 0.9 3.3 3.0 4.8 13.1 13.4

Table 7.3: The average false negatives (FNs) and false positives (FPs) of classifying the object points and the
noise from a set.

100
80

60

m

40
20

42
5

10

i for frame pair (f
1 ,f

i)

15

20

25

95

90

80

75

70

100

85

29

C
la

ss
ifi

ca
tio

n
 a

cc
u
rc

y
(%

)

Figure 7.6: The accuracy of classifying unlabeled points to a given group by 3DM, using the data provided by the
Hopkins 155 dataset.

7.3. EXPERIMENTS

7

119

Av
er

ag
e

n
u

m
be

r
of

p
oi

n
ts

in
th

e
u

n
la

be
le

d
se

t

n
ob

je
ct

14
2

13
6

12
6

11
6

10
6

96
86

76
66

56
46

n
n

oi
se

29
1

29
1

29
1

29
1

29
1

29
1

29
1

29
1

29
1

29
1

29
1

m
4

10
20

30
40

50
60

70
80

90
10

0

i
fo

r
(f

1
,f

i)
FN

s

2
11

.0
12

.4
10

.7
7.

5
6.

5
1.

2
1.

3
0.

2
0.

4
0.

1
0.

2

5
48

.0
33

.7
32

.9
28

.4
24

.2
14

.3
12

.7
7.

2
4.

9
3.

3
6.

4

10
55

.8
52

.0
43

.4
36

.8
32

.7
24

.4
19

.1
13

.9
9.

6
6.

3
7.

2

15
82

.7
59

.5
51

.9
43

.3
38

.6
28

.9
24

.1
25

.4
14

.6
9.

6
10

.1

20
85

.3
69

.7
58

.3
49

.4
43

.7
33

.8
28

.4
28

.1
18

.1
13

.4
13

.6

29
87

.9
65

.5
47

.9
47

.6
43

.3
34

.0
35

.6
35

.3
23

.5
10

.9
11

.4

i
fo

r
(f

1
,f

i)
FP

s

2
12

7.
4

10
6.

9
99

.4
88

.2
79

.7
76

.1
72

.9
70

.8
70

.3
71

.1
69

.3

5
96

.4
89

.2
61

.0
51

.1
61

.6
58

.8
65

.2
68

.2
69

.0
68

.3
68

.9

10
79

.0
47

.2
40

.0
24

.4
25

.9
31

.3
37

.6
38

.7
40

.4
39

.6
41

.7

15
55

.5
48

.0
36

.5
26

.6
29

.2
33

.8
40

.0
41

.3
36

.9
50

.1
43

.1

20
53

.4
33

.1
18

.5
21

.9
33

.4
37

.1
43

.0
43

.1
47

.3
44

.0
43

.5

29
53

.3
66

.0
67

.9
66

.6
66

.6
71

.8
59

.5
31

.0
39

.4
48

.5
41

.7

Ta
bl

e
7.

4:
T

h
e

av
er

ag
e

fa
ls

e
n

eg
at

iv
es

(F
N

s)
an

d
fa

ls
e

p
os

it
iv

es
(F

Ps
)o

fa
ss

ig
n

in
g

u
n

la
be

le
d

p
oi

n
ts

to
a

gi
ve

n
gr

ou
p.

7

120 CHAPTER 7. 3D MOTION SEGMENTATION

7.3.2. RECOVERING THE 3D RIGID BODY MOTION
In this experiment, we investigated whether it is possible to handle the one degree of free-
dom for the 3D rotation by minimizing the sum of squares of z̃1, . . . , z̃m . We generated an
synthetic 3D object as in Subsection 7.3.1 and moved it by a 3D rotation with a 3D trans-
lation. Based on the assumption of the presented theorems, we did the experiment only
for small motions. The rotation angles are chosen randomly in the interval (°º

4 , º4). The
translation distance in a direction is also randomly selected, of which the absolute value is
no more than the size of object in this direction.

We estimate the rotation angles based on the method in Subsection 7.2.2. The idea is
that the norm of the vector of changes in the (unobserved) z-direction, consistent with the
computed rotation and translation, is minimized so that no unnecessarily large deviations
are included in the rigid body motion.

Our initial experiments with points on the surfaces of a cube in the synthetic scene
showed that for randomly chosen rotations smaller than º/4 rad, we can recover the rota-
tion angles'x ,'y and'z with average accuracies of 74.3%, 74.3%, 94.6% respectively. The
high accuracy for the rotation around the z axis is not surprising because this rotation is
does not depend on the (unobserved) z-direction. The rotations around the x and y axis
do depend on the (unobserved) z-direction. Minimizing the sum of squares of z̃1, . . . , z̃m
results in a reasonable estimate of these rotation angles.

7.4. CONCLUSION
This chapter presented two theorems specifying properties of a 2D projection of a 3D rigid
body movement. The theorems state that the data matrix of 2D projection of points on a
3D rigid body making a 3D movement, has a non-trivial kernel with a specific structure.
The theorems also show that we can reconstruct the original 3D body movement with one
degree of freedom for the translation in z-direction and one degree of freedom for the 3D
rotation.

We used the theorems to measure the 3D rigid motion consistency of a group of 2D
projection points. We applied the 3D motion consistency measure to refine a given seg-
mentation, by removing the outliers in a given group of points that are supposed to move
consistent in 3D world. The experimental results show that the classification accuracy in-
creases if the noise rate decreases. We also used the theorems to determine whether an
unlabeled point belong to a given object. When more points are given for the know ob-
ject, the unlabeled points are more likely to be identified correctly. These results suggest
that the theorems can be used to improve the segmentation accuracy of existing motion
segmentation algorithms.

Recovering the 3D rotation angle of a moving object has also been evaluated. Due to
the one degree of freedom in computing the 3D rotations, the estimated rotation angles
can be inaccurate. The experimental results are promising. The estimation of rotation an-
gle about z direction an accuracy of 94.6%, which is higher than the estimation of rotation
angles about x and y direction.

In general, the proposed 3D motion consistency measure shows promising potential.
In the future research, we can investigate to vary the threshold flexibly based on the data.
The applicability of the presented theorems can be widened by developing a 3D based
motion segmentation algorithm. One can investigate the 3D consistency constraint for

7.4. CONCLUSION

7

121

mixture motions, as the presented 3DM is only applied for a single motion. For recovering
the 3D motion models, further research is required to address the one degree of freedom
when computing the 3D rotations. Moreover, further studies can be aimed at investigating
the 3D consistency of a long-term trajectory.

8
LEARNING STATIC SEGMENTATION

FROM THE MOTION SEGMENTATION

RESULTS

The previous chapters of this thesis addressed the segmentation of moving objects in each
frame of a video sequence. Two approaches were investigated, one that describes the
movements of objects using affine models, and one that tries to exploit properties of rigid
moving 3D objects. An advantage of movement-based object segmentation is that no a pri-
ori knowledge about the moving object is needed. This makes it possible to learn objects
from videos in an unsupervised way. However, as the objects in a video may not always
move, motion segmentation does not work when an object is static. In the context of the
thesis, it is interesting to investigate whether we can unsupervisedly learn to segment an
static image as well. Moreover, it is interesting whether we can learn to identify objects.

Learning to segment objects that do not move is a very useful ability. In robot soccer
for instance the ball or some robots may stop moving for some period. Having learned
to identify an object and keeping track of it when it does not move, will be important for
playing the soccer game. Being able to identify different appearances of one and the same
object in different situations is also a useful ability in robotics. Moreover, it is necessary to
consistently identify the same object in different situations. It allows for communication
about the object on a higher level of abstraction.

In the following sections, we will first address the problem of segmenting non-moving
objects using information that is learned while the object was moving. Next we will address
the task of recognizing an object using the same learned information.

8.1. INTRODUCTION
Motion segmentation algorithms can segment out moving objects from the static back-
ground in an unsupervised way, but will fail to segment out objects that are not or no
longer moving; i.e., no motion information is available. Segmentation of static images

123

8

124 CHAPTER 8. LEARNING STATIC SEGMENTATION

relies on the visual representations of objects, which are classically obtained by a super-
vised learning approach. A variety of studies have addressed this problem using various
machine learning techniques and successes have been achieved [60, 98, 103, 150, 183, 184,
276]. These methods typically require a large dataset of annotated images to train a learn-
ing model. However, annotation of these images is quite time-consuming even, frustrat-
ing and commercially expensive, while most of the methods need a pixel-wise accurate
annotation [103]. In recent decades, weakly supervised methods have been proposed for
semantic segmentation by less accurate annotations, such as bounding boxes and image-
level labels [183, 184]. These methods have shown good performance on many state-of-
the-art datasets, such as ImageNet [204] and PASCAL VOC [82].

As motion segmentation can segmented out the objects from video sequences, this
suggests an unsupervised learning approach for static segmentations could be developed,
which utilizes the results of motion segmentation as the training data. Human vision stud-
ies have shown that infants and newly sighted congenitally blind people tend to learn ob-
jects based on their motions [180, 221]. Motivated by such studies and the development
of computer vision and machine learning techniques, research on the subject of learn-
ing from motion has boosted in recent years. A variety of methods have been proposed for
unsupervised object detection or semantic image segmentation by learning from motions.
Since learning from motion segmentation is a multi-task problem, its solution varies with
the problem set-up. Techniques used for motion estimation, motion segmentation and
feature representation, as well as learning methods, affect the design and performance of
a solution. Some early methods in this class focused on learning a statistical model from
the motion segmentation results [200, 222]. These methods often use pixel-wise segments
based on two frame optical flows to construct appearance models for objects. Recently,
due to the development of deep learning, more and more methods utilize the techniques,
such as Convolutional Neural Networks (CNN), to learn high-level feature representations
from the motion segmentation results [75, 109, 185]. As CNN has shown excellent ability of
representing high-level features, these methods use CNN to simultaneously learn both the
object representations and segmentation (detection) models, from motion segmentation
results of videos [51, 60, 103, 204].

An object presents in different frames may differ in the appearances, which lead to
the variations of object representations in the segmentation results. The video object seg-
mentation in this thesis aims at segmenting out the objects from every frame of a video
sequence, which requires that the same object to be identified in different frames. The
object identification can be interpreted as an object recognition task. However, the clas-
sic learning based object recognition methods require a big training set and a supervised
learning process. In this thesis, we investigate unsupervised object segmentation, and ex-
pect to perform object identification with less human intervention.

In this chapter, we utilize the segmentation results obtained in Chapter 6 as the learn-
ing data. Experiments in Chapter 6 showed that the segmentation algorithm performs
best on dense trajectories. Furthermore, the dense features contain more visual informa-
tion of the segmented objects than sparse features. Thus in this chapter, we utilize the
dense feature extraction method of Subsection 5.4.3 for image representation and use the
segmentation results on dense trajectories (see Subsection 6.4.3) as the learning data.

8.2. THE LEARNING DATA

8

125

8.2. THE LEARNING DATA
To formally specify the learning method, we first must specify the learning data. We will
use the following notation. An image is represented by a set of feature points, while each
feature point consists of a position vector x and a description vector d. A segmentation
partitions an image into multiple feature sets, each corresponding to a (moving) object
(or the background) in the image. If an image contains K objects, the segmentation in-
duces a partition {S1, . . . ,SK } which consists of non-overlapping sets containing feature
points belonging to the objects. Given a sequence of T segmented images, we collect
Ci = {Si ,0, . . . ,Si ,T°1}, a set of feature point sets per frame for each object i . Note that an
object may be not present in every frame: Si , j 2Ci is empty when object i is not present in
the j th frame. For K objects, our learning data consists of C1, . . . ,CK .

8.3. STATIC OBJECT SEGMENTATION
Our aim is to segment objects from a video frame when they are static, by using informa-
tion that was learned when the objects were moving. We will investigate this by learning
from the first T frames from a sequence of L frames, i.e., the images I0, . . . , IT°1; are sub-
sequently used to segment the images IT , . . . , IL°1. By varying the length T of the learning
sequence from 2 to L°2, we can see the effect on the segmentation quality. By segmenting
images IT , . . . , IL°1, we can see to which extent the quality decreases when the images start
to differ more from the images I0, . . . , IT°1 used for learning.

Each feature point extracted from an image is represented by a description vector rep-
resenting the feature and a position vector containing its location in this image. A feature
may be present in multiple image frames of the video, because they are consecutively ob-
served from the same scene. The same feature point extracted from consecutive images in
a video, is identified by matching their description vectors, of which the locations compose
the trajectory of this point in the images I0, . . . , IT°1.

For each image J in the remaining images {IT , . . . , IL°1}, we also extract feature points.
We compare the extracted feature points of each image J with the feature points extracted
form the images I0, . . . , IT°1. Using the segmentation results of the images I0, . . . , IT°1, we
can associate an object label to the feature points of the each image J in the remaining
images {IT , . . . , IL°1}.

As our feature points are described by the scale-invariant feature transform algo-
rithm (SIFT), two feature descriptors are matched by the Euclidean-distance based nearest
neighbor approach in [152]. For each feature point in J , a best match is found by identify-
ing the nearest neighbor from the features in learning images I0, . . . , IT°1, and the feature
point in J is correspondingly associated with an object class to which the nearest neighbor
belongs. However, some of the matches found by the nearest neighbor approach can be
incorrect, because ambiguous features can arise due to background clutter, illumination
changes and motions, etc. Therefore, we evaluate the quality of matches and reject the less
reliable matches using Lowe’s method [152]. Lowe proposed an effective measure of SIFT
matching, which is obtained by comparing the distance of the closest neighbor to that of
the second-closest neighbor. To match the features in two images, matches in which the
distance ratio is greater than 0.8 are rejected because they have a 90% probability [152].
Since the training data contains features from multiple image frames, a feature in image J

8

126 CHAPTER 8. LEARNING STATIC SEGMENTATION

may have multiple correct matches that are from the same object but in different frames.
Therefore, we compare the distance ratios of matches from different objects. In general,
given a feature point, which is denoted by p in image J , we carry out the following steps to
find the match from the learned data:

1. For each Ci = {Si ,0, . . . ,Si ,T°1} in the learning data, we find a candidate matching q̂i
for p by

q̂i = argmin
qi2[T°1

j=0 Si , j

kp °qik (8.1)

where k·k is the l2 norm.
2. Suppose there are K objects in the learning data, we have K candidates q̂1, . . . , q̂K ,

each represent the possible matching feature of q to an object in the learning data.
We take the nearest and the second-nearest neighbor of p in the K candidates. Let
q̂ j1 denote the nearest neighbor, and q̂ j2 denote the second-nearest neighbor, we
compute the distance ration

DR =
kp ° q̂ j1k
kp ° q̂ j2k

(8.2)

If DR is smaller than a threshold Ω, here we take it to be 0.8 as in [152], the best match
of p is taken to be the nearest neighbor q̂ j 1. Otherwise, the given feature does not
have a match in the learning data.

8.4. OBJECT IDENTIFICATION
Object identification aims at identifying the same object in different images. Of course, if
we track an object through a sequence of frames, we are fairly certain that it is the same
object in each of these frames. In fact we exploit this in the learning process when we
track features. However, tracking objects by their motions only works for a continuous
video sequence. Suppose that there are two video sequences that reflect the same scene at
different time, or from different views. It is possible that some objects can present in both
sequences. But the approaches proposed in this thesis, for motion segmentation and non-
moving objects segmentation, can not identify the same object in different sequences.

What we will now investigate is whether we can identify an object without using the
motion information but only using the learned segmentations. Thus the robot (computer)
can continually learn from the obtained information. We will investigate this by learn-
ing from a video sequence, which is called the training sequence, to identify the objects
present in another video sequence of the same scene, which is called the test sequence. As
a beginning, we start with the simple case. We divide a video sequence of length L into two
parts: the first T frames form the training sequence, and the rest L °T frames are used as
the test sequence. The training sequence is segmented by the presented segmentation ap-
proach, so do the test sequence. Different objects in the training sequence are annotated
by their class labels. Then we learn a SVM classifier from the training sequence, to iden-
tify the class labels of objects in the test sequence. To see what the effect is of the training
sequence length on the identification task, we vary the value of T from 2 to L°1.

As an object instance is represented as a set of SIFT features in the segmentation re-
sults, the feature sets of different objects can contain different number of feature points

8.4. OBJECT IDENTIFICATION

8

127

because the object appearance varies in different images. However, they can not be di-
rectly used as the input of SVM to object recognition, since the SVM requires that the input
data to be identical dimension. We will generate uniform data representations for the in-
put objects, and then perform object recognition based on the new representations.

DATA REPRESENTATION

We encode these feature sets into uniform object representations based on the Bag of
Words (BoW) model [105, 227]. Specifically, we learn a set of basis vectors B = [b1, . . . ,bM]
which is called codebook, so that each SIFT feature vector d can be represented as a linear
combination of these basis vectors

d =
MX

m=1
am bm (8.3)

The coefficients am form a vector a = [a1, . . . , aM]>, which is called the sparse codes of d
based on B. Sparse coding (SC), which is able to capture high-level features in the inputs,
is used to learn the codebook and compute the sparse codes of the SIFT features in the
input data. Let D = [d1, . . . ,dN] 2RN£d be the input set of SIFT features, where N is the
number of feature in this set and d is the dimension of feature vectors, sparse coding solves
the following problem

min
A,B

PN
n=1 kdn °anBk2 +∏ |an |

subject to kbmk ∑ 1, 8bm 2 B
(8.4)

where A = [a1, . . . ,aN], B = [b1, . . . ,bM], k·k is the l 2 norm and |·| is the l 1 norm. Here M is
chosen to be larger than d to make the codebook B an over-complete basis set.

The encoding of object representations consists of a training phase and a coding phase,
as follows:

• In the training phase, we learn the codebook for sparse coding. We randomly chose
a collection of SIFT features extracted from different images to be the training set.
Then Equation (8.4) is solved with respect to both B and A given D as the training
set. The training set of sparse coding requires more SIFT features that are extracted
from various of images for generating a more representative codebook.

• In the coding phase, we repeat the following steps to encode every segmented object
in the training and test sequences, based on the spatial pyramid representation in
[267].
Firstly we compute the sparse codes by solving Equation (8.4) given the features of
an object and the learned codebook. Secondly, we construct spatial pyramids by
partitioning an object into increasing finer sub-segments. For each sub-segment of

the spatial pyramids, we determine a collection of sparse codes
h

a§
1 ,a§

2 , . . . ,a§
q

i
. Next

we do max pooling on each collection of sparse codes to compute an M-dimensional
vector z§, of which the mth element z§

m is computed by:

z§
m = max{|a§

1,m |, |a§
2,m |, . . . , |a§

q,m |} (8.5)

where a§
i ,m is the mth element of vector a§

i . The pooled representations z§ of all
sub-segments are then concatenated to form a single vector z, which is therefore the
spatial pyramid representation of the object.

8

128 CHAPTER 8. LEARNING STATIC SEGMENTATION

After the coding phase, all segmented objects are represented by vectors in a M-
dimensional feature space.

CLASSIFICATION

As in Section 8.2, as the training sequence is specified as the learning data, the objects are
naturally annotated by a serial of numbers, which can be used as their class labels. Once
the segmented objects are encoded, we can train a SVM classifier based on the obtained
objects in the training sequence. We use a linear SVM with kernel:

∑(zi , z j) = zT
i z j (8.6)

where zi and z j are the spatial pyramid representations of object segments Si and S j re-
spectively. [267] shows that spatial pyramids together with sparse coding makes it possible
to classify images using a linear SVM. Then we use the learned SVM classifier to identify
the class labels of objects in the test sequence.

It is worth to note that, SVM is only used to identify objects from different classes, and
it is not able to distinguish objects which are belong to the same class. When we use the
object number in the segmentation results as the class label, we assume that these objects
are from different classes in the real world. In practice, however, there are usually multi-
ple objects in a video that are belong to the same class. For example, there are multiple
individuals of the object class “robot” in a robot soccer video, but the segmentation result
differs them in number. To avoid ambiguity, we manually give the objects the same class
label if they belong to the same class in the real world in the experiment.

8.5. EXPERIMENT
In this section, we evaluate the proposed static image segmentation and object identifi-
cation on the Robocup 2014 and CDNet 2014 dataset. Because the two datasets provide
groundtruth segmentation for every frame in a given video, which allow us to evaluate the
segmentation quality for T varying from 1 to 30.

8.5.1. STATIC OBJECT SEGMENTATION
In this experiment, we evaluated the non moving object segmentation, as proposed in Sec-
tion 8.3. Given the motion segmentation results of I0, . . . IT°1, we obtained the learning
data C1, . . . ,CK for K “objects”. And then we segmented the following images IT+1, . . . IL ,
based on matching feature descriptors with the leaning data. By varying T , we investigate
how the quality of segmentation results changes by measuring the segmentation accuracy,
precision, recall and F-measure.

Figures 8.1 to 8.4 illustrate the non-moving object segmentation quality for T =
2,10,15,20 respectively. The motion segmentation quality of image frame IT°1 is also plot-
ted in figures with round circles for comparison. The performance of static segmentation
drops compared to the motion segmentation on IT°1, of which the accuracy, precision,
recall and F-measure drops about 10% to 20%. Generally, the segmentation quality of
IT , . . . IL°1 decreases when the frame index increases. It is because of a moving object might
appear with more differences in two distant frames than in two nearby frames. When the
amount of training data increases, the decreasing trend becomes more smoothly. For ex-
ample, for T = 2 shown in Figure 8.1, the segmentation accuracy from IT to IT+5 drops

8.5. EXPERIMENT

8

129

from 72% to 68%. But for T = 25 shown in Figure 8.4, the segmentation accuracy from
IT to IT+5 remains around 72%. The other measures, i.e. precision, recall and F-measure
show similar trend as the accuracy.

frame index
1 2 5 10 15 20 25 30

%

0

10

20

30

40

50

60

70

80

90

100

accuracy
precision
recall
F-measure

Figure 8.1: The accuracy, precision, recall, and F-measure of static segmentation of IT , . . . , IL°1 learned from the
motion segmentation results of I0, . . . , IT°1 for T = 2 are plotted in squares. For comparison, the measures of

motion segmentation results of IT°1 is plotted in circles.

8.5.2. OBJECT CLASSIFICATION
In this experiment, we evaluated the classification accuracy of the segmented objects.

To train the codebook, we use 10,000 SIFT descriptors randomly sampled from the fea-
ture points extracted from images in the datasets. It is sufficient to extract the main fea-
tures from given videos, considering that there are 23 videos and each contains about 30
frames of images. The size of code book is chosen as 1024, which is verified for a good
performance on sparse coded features [267].

Given a video sequence of length L in the dataset, we take the first T images I0, . . . IT°1
as the training sequence, and the rest images IT , . . . IL°1 as the test sequence. We perform
motion segmentation to segment both training and test sequence, and then encode the
segmented objects by sparse coding, as introduced in Section 8.4. Given the SC encoded
object representations, an SVM classifier is learned based on the training sequence. There
are 5 categories of moving objects that present in the dataset: car, truck, people, robot, ball.
In addition, the static background is also regarded as an object class because all feature
points from the non-moving objects are segmented out as an integral part. Therefore there
are in total 6 classes of objects. The number of objects that are extracted from all videos in
the dataset for each class is shown in Table 8.1.

The obtained SVM classifier is used to identify the class labels of the encoded object

8

130 CHAPTER 8. LEARNING STATIC SEGMENTATION

frame index
9 10 15 20 25 30

%

0

10

20

30

40

50

60

70

80

90

100

accuracy
precision
recall
F-measure

Figure 8.2: The accuracy, precision, recall, and F-measure of static segmentation of IT , . . . , IL°1 learned from the
motion segmentation results of I0, . . . , IT°1 for T = 10 are plotted in squares. For comparison, the measures of

motion segmentation results of IT°1 is plotted in circles.

frame index
14 15 20 25 30

%

0

10

20

30

40

50

60

70

80

90

100

accuracy
precision
recall
F-measure

Figure 8.3: The accuracy, precision, recall, and F-measure of static segmentation of IT , . . . , IL°1 learned from the
motion segmentation results of I0, . . . , IT°1 for T = 15 are plotted in squares. For comparison, the measures of

motion segmentation results of IT°1 is plotted in circles.

8.5. EXPERIMENT

8

131

frame index
24 25 26 27 28 29 30

%

0

10

20

30

40

50

60

70

80

90

100

accuracy
precision
recall
F-measure

Figure 8.4: The accuracy, precision, recall, and F-measure of static segmentation of IT , . . . , IL°1 learned from the
motion segmentation results of I0, . . . , IT°1 for T = 25 are plotted in squares. For comparison, the measures of

motion segmentation results of IT°1 is plotted in circles.

background car truck people robot ball
713 859 103 124 542 142

Table 8.1: The number of object instances of each class can be extracted from all videos in the dataset.

representations in the test sequence. The ground-truth class label of a segment in the
test sequence is manually assigned. Since some obtained segments may cover regions of
multiple ground-truth objects, it is labeled by the object class of the largest part.

The classification accuracy is evaluated by the average percentage of corrected identi-
fied segments for all testing data. We varied the number of images in the training data, i.e.
T , from 2 to 30. We visualized the results for T = 2,10,15,20 in Figure 8.5.

When T is fixed, the classification accuracy is not affected by time. It means that al-
though the motion segmentation accuracy usually increases over time, it does not have
obviously influences on the identification of the segmented objects. Figure 8.5 shows that
the classification accuracy depends on T , the number of images in the training data. For
a particular frame, the classification accuracy is always higher when T is larger. It reveals
that the object identification relies on the amount of training data. Note that it corresponds
to only 1 second in a video if the training set is formed by 25 images, for a typical video with
a frame rate of 24 fps. The results show that the segmented objects obtained by the pre-
sented motion segmentation algorithm can effectively represent the scene objects, since
they can be identified by learning from a limited training set.

8

132 CHAPTER 8. LEARNING STATIC SEGMENTATION

frame index
0 5 10 15 20 25 30

cl
a

ss
ifi

ca
tio

n
 a

cc
u

ra
cy

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

T=2
T=10
T=15
T=25

Figure 8.5: The classification accuracy of obtained segments from IT , . . . , IL°1 by SVM learned from the objects
extracted from I0, . . . , IT°1, for T = 2,10,15,20 respectively.

8.6. CONCLUSION
This chapter addressed the segmentation of non-moving objects in a video sequence by
learning from the motion segmentation results. It answered the fourth research question:
“How can the objects be segmented out without motion information?”.

Motion segmentation integrate the features of various visual properties in an image, to
obtain semantic meaningful segments in an unsupervised way. When no motion occurred,
the knowledge acquired by motion segmentation can still be utilized for static object de-
tection/segmentation in a similar scene. Therefore, we suggested an unsupervised struc-
ture for object segmentation from a given video, which focuses on segmenting the moving
objects that present in the scene. As SIFT algorithm provides robust feature descriptions,
the non-moving object segmentation is determined by matching the SIFT points from the
static image with the learning data.

With more images, we have richer learning data. By varying the number of images in
the learning data, we investigated its effect on the segmentation quality. Results show that
more learning data results in a better performance in non-moving object segmentation.
Note that the experiment uses sequences of only 31 frames, which correspond to only 1.2
seconds of a 24 fps video. It shows that learning from motion information within a short
period (1.2 seconds) can provide effective knowledge for segmenting static images.

Compared with the manually managed datasets for supervised segmentation ap-
proaches, the learning data obtained from motion segmentation is less accurate, in which
the wrong segmentation, over-segmentation and under-segmentation may occur. We have
evaluated the segmentation results by comparing with the ground-truth segmentations. In
this chapter, we additionally evaluated the quality of the segmentation results by investi-

8.6. CONCLUSION

8

133

gating whether we can correctly identify the object class of the obtained segments. Results
show that more than 82% of the obtained segments can be identified correctly, if we use
the learning data obtained from at least 25 frames of a video.

As the segmentation of static images can benefit from the motion segmentation results,
it is worth to investigate if the resulted static segmentation can be used to refine the motion
segmentation results in the future. It suggests an unsupervised system with the ability
of improving the segmentation over time, by learning from both motion cues and visual
features. Furthermore, it is worth to explore the performance on longer sequences.

9
CONCLUSIONS AND FUTURE WORK

This thesis investigated unsupervised object segmentation in a video sequence. When
a video is given without any additional information, motion provides concrete cues for
grouping visually distinct features into regions that then represent different objects in a
video sequence. We focused on segmenting out “salient” objects from backgrounds by
learning from the motion information in a video sequence. The salient object refers to an
object which moves independently with respect to the background in a video sequence.
Note that the movements are unpredictable, a salient object might move during only part
of a given video. As videos are composed of successive images, the motion information
is inherent in the changes of the images. To tackle the research problem, we needed to
extract the motion data from a video sequence, and utilize the acquired motion data for
object segmentation. In Chapter 1, we have posed five research questions that needed to
be answered.

In Section 9.1, we present our results and conclusions to answer these research ques-
tions. In Section 9.2, we discuss promising directions of future research based on the
achievements in this thesis.

9.1. CONCLUSIONS ON THE RESEARCH QUESTIONS
The research questions stated in Chapter 1 concern the data processing pipeline from low
level to high level, (i.e. from pixels to semantic objects). In the following subsections, these
research questions are addressed one by one.

9.1.1. SYSTEM DESIGN
As a multi-task problem, video object segmentation can not be solved within a single step.
Starting from pixel-level image processing, multiple steps are involved to obtain the se-
mantic level object representations and intermediate data, such as motion data, are gen-
erated during the middle steps. The acquirement and representation of motion data plays
an important role in this process. When to extract the intermediate data, and what kind of
data to generate, as well as how to process it, all affects the final results. This has led to the

135

9

136 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

first research question:

Research Question 1 How to design a framework for motion based video object segmen-
tation?

In Chapter 4, we designed a framework, combining a bottom-up procedure, which ex-
tracts high-level object representations by analyzing the lower-level features in the video
frames, with a top-down procedure, which segments the lower-level features by learning
from the obtained high-level representation. Without knowledge, a video only provides
a sequence of successive digital images. The direct information consists of the low-level
visual features represented in the images, such as pixel intensity and color. Based on this
direct information, we can extract local features, such as structures, orientations, and tex-
tures. By identifying the same local features in multiple images of the video, we can obtain
the movements of these local features in the 2D images. As the 2D images are projections
of the 3D world, the 2D motions of local features in the images reflect the projected motion
of the corresponding 3D elements. As points on the same object should move consistently,
those local features that move accordingly can be integrated together as a segment. Such a
segment is assumed to be a potential object in the video. The above unsupervised process
segments out objects from different images in the video sequence. It naturally follows a
bottom-up scheme. However, this only works well if motions occur in the images. If an
object stops moving, it can be no longer detected. To segment out static objects, prior
knowledge of the object representations is required. As motion based segmentation can
segment out objects while they are moving, it inspires us to learn object representations
from the obtained segmentations. The learned knowledge can be used to segment out
these objects also from static images, which is obviously a top-down procedure.

The bottom-up approach learns object segmentation from low-level features, while the
top-down approach learns object segmentation from high-level object representations.
With a combination of both bottom-up and top-down approaches, it is possible to tackle
the research problem in an unsupervised way. In practice, our system is composed of three
main steps based on the nature of the processed data. The first step processes the input
video frames (pixels) to extract the motion data. The second step analyzes the motion data
for segmenting out moving objects. The first two steps form the bottom-up procedure. The
third step fulfills the top-down learning, which extracts high-level object representations
from the motion segmentation results, and utilizes the learned information for segmenting
out objects from static images. For each step, there are corresponding research questions
to be answered, which will be discussed in the following subsections. The results show that
the moving objects can be unsupervised segmented out from a video with this presented
framework. It also has high flexibility in dealing with variations, such as the data types,
video lengths, and the number of objects.

9.1.2. FEATURE EXTRACTION AND MOTION ESTIMATION
The first step of the system is to extract motion data from video sequences, which is also
called motion estimation. As a video projects a 3D scene into dynamic 2D images, the mo-
tion information of the 3D scene is implied in the changes of successive frames. Therefore,
motion estimation can refer to either analysis of the 2D image motions, or recovering the
3D motions in the real scene. In this thesis, we are interested in segmenting out the objects,

9.1. CONCLUSIONS ON THE RESEARCH QUESTIONS

9

137

for which the recovering of 3D motions is not strictly necessary. In addition, the represen-
tation of extracted motion data is an issue as there are several methods to do this, which
can have impact on the further processing. It has led to the following research question:

Research Question 2 How to extract and represent motion data from a video sequence?

We tackled the second question by tracking the movements of specific features in the
frames of a video sequence. The motion data is represented as the movements of invariant
features in these frames. Good features for motion estimation are supposed to be visu-
ally invariant in different images, thus we can track the same feature by matching their
descriptions in different images; see Subsection 2.3.2 and Sections 3.1 and 3.2. However,
noise and variations are caused by technical reasons, such as the camera, lighting con-
ditions, etc., and they affect the quality and accuracy of this information. Therefore the
answer to this research question also depends on the type of features to be tracked, which
was discussed in Chapter 5.

We investigated pixel-based and feature-based methods, which are two basic cate-
gories of motion estimation methods. The pixel-based method can generate dense and
accurate motions between two images, but can not track pixels in multiple frames. The
feature based method tracks a set of local features, and generates longer trajectories of fea-
ture points over multiple frames. In the experiments, we applied one pixel-based method
and two feature-based methods, one for sparse feature tracking and another for dense fea-
ture tracking. Three types of motion data are extracted from the used data sets, i.e. the two-
frame pixel motions, sparse point trajectories and dense point trajectories. The three types
of motion data all have their own advantages and limitations. The two-frame pixel motions
is accurate at a pixel level, which is convenient in segmenting image regions. However, the
similarity of two-frame pixel motions on the same object is less significant than for longer
point trajectories. Compared to pixel-wise motions, point trajectories lose some visual
information. The sparse tracking method is the fastest, but it tracks less points than the
other two methods. The dense tracking method is also more accurate than sparse track-
ing method. The obtained motion data is subsequently used as the input for the motion
segmentation method. In the following chapters, we further investigated the influences of
different motion data types on the segmentation results in more details.

9.1.3. MOTION SEGMENTATION
The obtained motion data describes how 2D image points move in a video sequence.
These 2D points can be pixels, or some local features that are invariant in a video sequence.
The 2D image points are projections of corresponding 3D points on the objects in the real
world. Assuming that the object is rigid, points from the same object should move consis-
tently in the 3D world accordingly to a rigid body motion (such as translation and rotation).
Thus the motion information provides clues for segmenting out objects that undergo dif-
ferent motions from the video sequences. However, retrieving the 3D object motions from
the obtained 2D image motions is difficult, as the depth value is missing due to the camera
projection. This has led to the following research question:

Research Question 3 How can the objects be segmented out based on the motion infor-
mation restricting to 2D consistency in the images?

9

138 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

We developed a motion segmentation algorithm, called AEM-b in Chapter 6. The core
intuition behind this algorithm is that long-term trajectories of points from the same ob-
ject show higher similarity than two-frame motion vectors, as observed from the obtained
motion data in Chapter 5. The proposed segmentation algorithm performs and updates
the segmentation for every pair of successive frames in a video sequence. For each frame
pair that is processed, this algorithm models the two frame object motion by a 2D affine
transformation, and computes the segmentation by a classification EM algorithm. The
segmentation result of each frame pair is propagated to the next frame pair by Bayesian
updating. With this procedure, the segmentation is improved gradually by considering the
long-term motion coherences. We also proposed an improved version of the algorithm
AEM-b+by including reliability estimates of segmentation results and compensating for
the camera movement.

To evaluate the algorithms AEM-b and AEM-b+, we used the three types of motion
data obtained in Chapter 5, i.e. the two-frame pixel motions, sparse trajectories and dense
trajectories. We compared the AEM-b and AEM-b+with six motion segmentation ap-
proaches: four are well-known trajectory clustering algorithms and two are the state-of-
the-art video segmentation methods. The compared methods have more requirements
for the input motion data than our algorithm. Firstly, the compared methods can only
deal with trajectories, while our algorithm is able to deal with all three types of motion
data. Secondly, the trajectory clustering algorithms normally require that the trajectories
are of the same length and the video segmentation methods need that the sequences are
shorter than a certain length, while the our algorithm does not need that. Moreover, our
algorithm can deal with a varying number of objects. The segmentation results were eval-
uated with four metrics: accuracy, precision, recall and the F-measure. Results showed
that AEM-b and AEM-b+perform among the best for dealing with all three types of motion
data. The other methods perform well for one type of the motion data but poorly for other
types of motion data. AEM-b+outperforms AEM-b when dealing with videos with signif-
icant camera motion. We also evaluated the computation time of all methods. AEM-b is
reasonably fast, and it usually outperforms other fast methods on segmentation quality.
AEM-b+is slower than AEM-b . The results also showed that the segmentation quality for
dense trajectories is better than for the other two data types (i.e. the two-frame motions
and sparse trajectories).

The results of AEM-b and AEM-b+also showed that over-segmentation of objects re-
mains a problem in the results. As the camera projection can break a 3D motion into mul-
tiple 2D motions, the over-segmentation is inevitable for 2D model based motion segmen-
tation. Although the Bayesian updating reduces the number of over-segmentation areas,
there are usually one or two over-segmented objects in the results for the experiments
that were performed. To address the over-segmentation problem, the inherent 3D motion
consistency of the motion data needs to be considered. This raised the fourth research
question:

Research Question 4 How to retrieve 3D motion consistency based on the 2D motion
data?

To address this question, we derived two theorems by investigating the 3D motion con-
sistency of the 2D projected motion data, in Chapter 7. These theorems are based on an

9.1. CONCLUSIONS ON THE RESEARCH QUESTIONS

9

139

orthographic projection assumption. We presented a metric for measuring the 3D mo-
tion consistency of a given set of two-frame 2D point motions based on the theorems. We
also investigated to retrieve the 3D motion models using the theorems. The experimental
results showed that the 3D motion consistency measure (3DM) can identify and reduce
the noise from object points given a noisy segment. The 3DM is also useful for allocating
unlabeled points to a known object. The results suggested that the theorems are help-
ful to improve the segmentation accuracy of an existing motion segmentation algorithm.
However, the proposed theorems are insufficient for developing an accurate motion seg-
mentation algorithm based on the 3D motion models alone. Results have shown that the
retrieval of 3D motion models is not accurate as there is one degree of freedom for solving
the problem. Moreover, the orthographic projection assumption ignores the perspectivity
effects. And this chapter did not yet consider the 3D motion consistency of long-term tra-
jectories which cover multiple frames. But this can be done and further research is needed
to investigate a better motion segmentation algorithm based on 3D motion consistency.

9.1.4. LEARNING FROM THE MOTION SEGMENTATION
Motion segmentation addresses the detection of objects that move in a video sequence.
However, the motions that occur in a video are changeable and unpredictable. One object
can move in some frames and stop in others. Motion segmentation can not segment out
an object once it stops. This has led to the fifth question:

Research Question 5 How to segment out objects from static frames using moving infor-
mation from videos?

To address the answer of this question, we investigated in Chapter 8 how we can learn
from the knowledge that is obtained from the motion segmentations. The motion segmen-
tation provides the representations of objects in multiple frames. The segmented frames
can be used as knowledge input for a learning model for segmenting static images in sim-
ilar situations. We proposed an unsupervised object segmentation approach based on
learning models from the motion segmentation results of a subsequence of a given video.
This approach segments out static objects by matching the SIFT descriptors of the feature
points in the learning data and the static images. We evaluated the quality of segmen-
tation results by measuring the classification accuracy of the class labels of the obtained
objects. As the segmentation of trajectories abstracts the images by a set of feature points,
the obtained objects can miss some pixels. The object identification process measures the
robustness of the obtained object representations in the segmentation results.

In the experiments, we evaluated this static object segmentation approach and the ob-
ject identification using the segmentation results of dense trajectories, which has proved
to be the best data type for motion segmentation in Chapter 6. We evaluated the segmen-
tation quality by varying the number of images in the learning data. Results showed that
static object segmentation improves if the learning data uses more images. Unfortunately,
the errors in the learning data, such as wrong segmentation, over-segmentation and un-
der segmentation, remain present in the static object segmentation results and decrease
the segmentation quality. Although the quality of static object segmentation is less com-
pared to the motion segmentation results, the object identification results have shown that
the segmented object can still be identified with an accuracy higher than 80%. It means

9

140 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

that the decrease of segmentation quality does not significantly affect the representations
of segmented objects. We conclude that the motion information is not only helpful for
motion segmentation, but also beneficial to static object segmentation. Learning from
motion data in this way achieved unsupervised object segmentation of video sequences,
for both moving and static objects.

9.2. FUTURE RESEARCH
The research presented in this thesis indicates the following areas of interest for future
research:

1. Agglomerative motion segmentation

The motion segmentation algorithm presented in Chapter 6 follows a top-down
scheme, which starts with putting all data points in one cluster and then iteratively
splitting a chosen cluster until a stopping criterion is reached. The segmentation re-
sult is strongly affected by the splitting criterion, i.e. the choice of cluster to split, the
splitting method and the stopping conditions. In the divisive procedure, the motion
model of a cluster is computed by taking all points in this cluster into account, and
the errors of points are computed according to the estimated model. This approx-
imation can lead to wrong assignments in the splitting procedure, especially when
the cluster is a mixture of multiple objects of almost equal size.

An alternative method is to perform the segmentation in an agglomerative manner.
An agglomerative approach is constructed bottom-up: it starts with building a sin-
gleton cluster for each data point and recursively merges clusters. The estimated
models can be more accurate in the agglomerative procedure than in the divisive
procedure, because the clusters are more likely to contain points from the same ob-
ject.

2. 3D motion segmentation

To address the over-segmentation problem, segmentation based on 3D motion con-
sistency is a potential option. Chapter 7 dealt with a cluster which undergoes one
single motion and investigated 3D motion consistency of image motions between
two frames. This research can be extended to deal with long-term trajectories of
multiple motions over multiple frames. It has lead to two possible directions. On
the one hand, one can investigate the 3D motion consistency of long-term trajec-
tories, by introducing more strict geometrical constraints, such as the multiple view
geometry under the perspective projection. On the other hand, retrieving 3D motion
models from the obtained 2D projected motions can be investigated.

3. Online learning

In this thesis, the segmentation is computed for each pair of frames by considering
the motion information in a current frame pair and combining it with the knowledge
learned from previous frames. The experimental results in Chapter 6 have shown
that the segmentation can be improved if more frames are processed. Chapter 8
has revealed that the segmentation of a single frame can be helped by the motion
segmentation results of previous frames in a video. This suggests the video object

9.2. FUTURE RESEARCH

9

141

segmentation can be achieved with an online learning procedure. We suggest that
segmentation at each frame can be computed based on the obtained motion data
and a learned model, and then the obtained segmentation is used to update the
learned model, especially if a video is likely to generate many frames. Many state-of-
the-art learning approaches, such as Deep convolutional neural networks (DCNN)
and region-based convolutional neural networks (RCNN), can be investigated for
training the motion segmentation model. The segmentation model can be contin-
uously updated as long as new frames come in. The online learning segmentation
can theoretically deal with videos of arbitrary length. And once an object has been
learned, it can be recognized whenever it shows up again. Additionally, we suggest
that a general model learned from multiple videos in a dataset can be investigated.
This procedure mimics the memory mechanism of the human vision system, which
helps for better and faster segmentation of an unknown video.

4. Segmentation based on both motion and visual features

We investigated how to utilize the motion information for video object segmenta-
tion in this thesis. Over-segmentation remains a problem if we only use the motion
information for object segmentation. To address this problem, we can consider to
use both motion information and visual features for object segmentation. An ob-
ject is often visually different from the background. However, the visual appearance
of different regions on an object can be different too. We can partition the video
frames into small regions by grouping the pixels of similar visual properties, and
then perform motion segmentation on these small regions. Furthermore, the mo-
tion estimation and segmentation can be carried out simultaneously by considering
both motion and visual features, for which high-level feature representations, such
as super-pixel and super-voxels, can be investigated.

REFERENCES

[1] Andrea F Abate, Michele Nappi, Daniel Riccio, and Gabriele Sabatino. 2D and 3D
face recognition: A survey. Pattern Recognition Letters, 28(14):1885–1906, 2007. 5

[2] Malcolm Acock. Vision: A computational investigation into the human representa-
tion and processing of visual information. The Modern Schoolman, 62(2):141–142,
1985. 1

[3] Rolf Adams and Leanne Bischof. Seeded region growing. IEEE Transactions on pat-
tern analysis and machine intelligence, 16(6):641–647, 1994. 23

[4] Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M
Ogden. Pyramid methods in image processing. RCA engineer, 29(6):33–41, 1984. 37

[5] Jake K Aggarwal and Quin Cai. Human motion analysis: A review. Computer vision
and image understanding, 73(3):428–440, 1999. 5, 7

[6] Jake K Aggarwal and Michael S Ryoo. Human activity analysis: A review. ACM Com-
puting Surveys, 43(3):16:1–16:43, April 2011. 5, 6, 7

[7] Yucel Altunbasak, P Erhan Eren, and A Murat Tekalp. Region-based parametric mo-
tion segmentation using color information. Graphical models and image processing,
60(1):13–23, 1998. 49, 57

[8] Luis Alvarez, Rachid Deriche, Théo Papadopoulo, and Javier Sánchez. Symmetrical
dense optical flow estimation with occlusions detection. International Journal of
Computer Vision, 75(3):371–385, 2007. 25

[9] Yali Amit. 2D object detection and recognition: Models, algorithms, and networks.
MIT Press, 2002. 15

[10] Jens Christian Andersen, Morten Rufus Blas, Ole Ravn, Nils A Andersen, and Mogens
Blanke. Traversable terrain classification for outdoor autonomous robots using sin-
gle 2d laser scans. Integrated Computer-aided engineering, 13(3):223–232, 2006. 8

[11] Alexander Andreopoulos and John K Tsotsos. 50 years of object recognition: Direc-
tions forward. Computer Vision and Image Understanding, 117(8):827–891, 2013. 3,
28

[12] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad:
Cnn architecture for weakly supervised place recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5297–5307, 2016. 10

143

144 REFERENCES

[13] Pablo Arbeláez, Bharath Hariharan, Chunhui Gu, Saurabh Gupta, Lubomir Bourdev,
and Jitendra Malik. Semantic segmentation using regions and parts. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3378–3385.
IEEE, 2012. 16

[14] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour de-
tection and hierarchical image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 33(5):898–916, 2011. 21

[15] Christian Bailer, Bertram Taetz, and Didier Stricker. Flow fields: Dense correspon-
dence fields for highly accurate large displacement optical flow estimation. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 4015–4023,
2015. 26

[16] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and Richard
Szeliski. A database and evaluation methodology for optical flow. International Jour-
nal of Computer Vision, 92(1):1–31, 2011. 62, 66, 67

[17] David Barber. Bayesian reasoning and machine learning. Cambridge University
Press, 2012. 45

[18] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. PatchMatch:
A randomized correspondence algorithm for structural image editing. ACM Trans-
actions on Graphics-TOG, 28(3):24:1–24:11, 2009. 26

[19] Harry G Barrow and RJ Popplestone. Relational descriptions in picture processing.
Machine intelligence, 6:377–396, 1971. 29

[20] Harry G Barrow and J M Tenenbaum. Recovering intrinsic scene characteristics from
images. Computer vision systems, 2:3–26, 1978. 1

[21] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer vision and image understanding, 110(3):346–359, 2008. 19

[22] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.
In European conference on computer vision, pages 404–417. Springer, 2006. 19

[23] Mr. Bayes and Mr Price. An essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john
canton, amfrs. Philosophical Transactions (1683-1775), pages 370–418, 1763. 44

[24] Elliot Joel Bernstein and Yali Amit. Part-based statistical models for object classifi-
cation and detection. In Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, volume 2 of CVPR ’05, pages 734–740.
IEEE, 2005. 27, 49

[25] Massimo Bertozzi, Alberto Broggi, and Alessandra Fascioli. Vision-based intelli-
gent vehicles: State of the art and perspectives. Robotics and Autonomous systems,
32(1):1–16, 2000. 171

REFERENCES 145

[26] Pia Bideau and Erik Learned-Miller. It’s moving! a probabilistic model for causal mo-
tion segmentation in moving camera videos. In European Conference on Computer
Vision, pages 433–449. Springer, 2016. 10, 58, 85, 87

[27] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 30, 43

[28] Michael Black. Combining intensity and motion for incremental segmentation
and tracking over long image sequences. In G. Sandini, editor, Computer Vi-
sion—ECCV’92, pages 485–493. Springer, 1992. 49

[29] Michael J Black and Paul Anandan. The robust estimation of multiple motions: Para-
metric and piecewise-smooth flow fields. Computer vision and image understand-
ing, 63(1):75–104, 1996. 25, 34

[30] Michael J Black, Yaser Yacoob, Allan D Jepson, and David J Fleet. Learning parame-
terized models of image motion. In Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 561–567. IEEE, 1997. 25

[31] Volker Blanz and Thomas Vetter. Face recognition based on fitting a 3d morphable
model. IEEE Transactions on pattern analysis and machine intelligence, 25(9):1063–
1074, 2003. 4

[32] Aaron F Bobick. Movement, activity and action: the role of knowledge in the per-
ception of motion. Philosophical Transactions of the Royal Society of London B: Bio-
logical Sciences, 352(1358):1257–1265, 1997. 7

[33] Aaron F. Bobick and James W. Davis. The recognition of human movement using
temporal templates. IEEE Transactions on pattern analysis and machine intelligence,
23(3):257–267, 2001. 24

[34] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual navigation for mo-
bile robots: A survey. Journal of intelligent and robotic systems, 53(3):263–296, 2008.
7, 8, 9

[35] Eran Borenstein and Shimon Ullman. Combined top-down/bottom-up segmenta-
tion. IEEE Transactions on pattern analysis and machine intelligence, 30(12):2109–
2125, 2008. 16, 49, 50

[36] Georgi D Borshukov, Gozde Bozdagi, Yucel Altunbasak, and A Murat Tekalp. Mo-
tion segmentation by multistage affine classification. IEEE Transactions on Image
Processing, 6(11):1591–1594, 1997. 26, 27, 49

[37] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-
putational learning theory, pages 144–152. ACM, 1992. 29, 45, 47

[38] Oene Bottema and Bernard Roth. Theoretical kinematics. North-Holland, 1979. 40

146 REFERENCES

[39] Jean-Yves Bouguet. Pyramidal implementation of the affine lucas kanade feature
tracker description of the algorithm. Intel Corporation, 5, 2001. 35, 36, 66

[40] Thierry Bouwmans, Caroline Silva, Cristina Marghes, Mohammed Sami Zitouni,
Harish Bhaskar, and Carl Frelicot. On the role and the importance of features for
background modeling and foreground detection. Computer Science Review, 28:26–
91, 2018. 20, 25

[41] Alan C Bovik. Handbook of image and video processing. Academic press, 2010. 11,
12, 22, 23, 25, 26, 55, 57, 62

[42] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. 4, 36

[43] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008. 35

[44] Matthew Brand. Incremental singular value decomposition of uncertain data with
missing values. Computer Vision—ECCV 2002, pages 707–720, 2002. 43

[45] Christoph Bregler, Aaron Hertzmann, and Henning Biermann. Recovering non-rigid
3d shape from image streams. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, volume 2, pages 690–696. IEEE, June 2000. 5

[46] Thomas Brox, Christoph Bregler, and Jitendra Malik. Large displacement optical
flow. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
41–48. IEEE, 2009. 25, 26, 64, 65, 70, 89

[47] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy
optical flow estimation based on a theory for warping. Computer Vision-ECCV 2004,
pages 25–36, 2004. 25, 65

[48] Thomas Brox, Andrés Bruhn, and Joachim Weickert. Variational motion segmen-
tation with level sets. In European Conference on Computer Vision, pages 471–483.
Springer, 2006. 27

[49] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point
trajectories. In European conference on computer vision, pages 282–295. Springer,
2010. 24, 56

[50] Peter Burt and Edward Adelson. The laplacian pyramid as a compact image code.
IEEE Transactions on communications, 31(4):532–540, 1983. 37

[51] Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep rein-
forcement learning. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2488–2496, 2015. 15, 49, 124

[52] John Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986. 22

[53] Bradley P Carlin and Thomas A Louis. Bayesian methods for data analysis. CRC
Press, 2008. 45

REFERENCES 147

[54] Joao Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu. Semantic seg-
mentation with second-order pooling. In European Conference on Computer Vision,
pages 430–443. Springer, 2012. 15

[55] Joao Carreira and Cristian Sminchisescu. Constrained parametric min-cuts for auto-
matic object segmentation. In Proceedings of the 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3241–3248. IEEE, 2010. 49

[56] Vicent Caselles and J Morel. Introduction to the special issue on partial differential
equations and geometry-driven diffusion in image processing and analysis. IEEE
transactions on image processing, 7(3):269–273, 1998. 22

[57] Andrea Cavallaro, Olivier Steiger, and Touradj Ebrahimi. Tracking video objects in
cluttered background. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 15(4):575–584, 2005. 26, 96

[58] Gilles Celeux and Gérard Govaert. A classification em algorithm for clustering and
two stochastic versions. Computational statistics & Data analysis, 14(3):315–332,
1992. 44, 78

[59] H Chan and WW Bledsoe. A man-machine facial recognition system: some prelimi-
nary results. Panoramic Research Inc, 1965. 5

[60] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis
and machine intelligence, 40(4):834–848, 2018. 27, 124

[61] Fang-Hsuan Cheng and Yu-Liang Chen. Real time multiple objects tracking and
identification based on discrete wavelet transform. Pattern recognition, 39(6):1126–
1139, 2006. 27

[62] Guangchun Cheng, Yiwen Wan, Abdullah N. Saudagar, Kamesh Namuduri, and
Bill P. Buckles. Advances in human action recognition: A survey, 2015. 6

[63] Wongun Choi, Khuram Shahid, and Silvio Savarese. What are they doing? : Collec-
tive activity classification using spatio-temporal relationship among people. In 2009
IEEE 12th International Conference on Computer Vision Workshops, ICCV Work-
shops, pages 1282–1289, 11 2009. 6

[64] Andrea Colombari, Andrea Fusiello, and Vittorio Murino. Segmentation and track-
ing of multiple video objects. Pattern Recognition, 40(4):1307–1317, 2007. 26, 96

[65] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. IEEE Transactions on pattern analysis and machine intelligence,
24(5):603–619, 2002. 21

[66] Joao Costeira and Takeo Kanade. A multi-body factorization method for motion
analysis. In Proceedings of the Fifth International Conference on Computer Vision,
pages 1071–1076. IEEE, 1995. 108

148 REFERENCES

[67] Daniel Cremers and Stefano Soatto. Motion competition: A variational approach
to piecewise parametric motion segmentation. International Journal of Computer
Vision, 62(3):249–265, 2005. 27

[68] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines: And Other Kernel-based Learning Methods. Cambridge University Press, New
York, NY, USA, 2000. 47

[69] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on statistical learning in
computer vision, ECCV, pages 1–22. Prague, 2004. 29

[70] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005. 18, 65

[71] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), pages 1–38, 1977. 44

[72] Yining Deng and BS Manjunath. Unsupervised segmentation of color-texture re-
gions in images and video. IEEE transactions on pattern analysis and machine intel-
ligence, 23(8):800–810, 2001. 21

[73] Guilherme N DeSouza and Avinash C Kak. Vision for mobile robot navigation: A
survey. IEEE transactions on pattern analysis and machine intelligence, 24(2):237–
267, 2002. 8, 9

[74] Jian-Jiun Ding, CJ Kuo, and WC Hong. An efficient image segmentation technique
by fast scanning and adaptive merging. CVGIP, Aug, 2009. 23

[75] Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In
The IEEE International Conference on Computer Vision (ICCV), 2017. 124

[76] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2758–2766, 2015. 26

[77] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley
& Sons, 2012. 29

[78] Krista A Ehinger, Barbara Hidalgo-Sotelo, Antonio Torralba, and Aude Oliva. Mod-
elling search for people in 900 scenes: A combined source model of eye guidance.
Visual cognition, 17(6-7):945–978, 2009. 50

[79] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In 2009 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 2790–2797. IEEE, 2009. 27,
89, 93, 96, 108, 114

REFERENCES 149

[80] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Camera-based navigation of a low-
cost quadrocopter. In International Conference on Intelligent Robots and Systems
(IROS), pages 2815–2821. IEEE, 2012. 7

[81] James T Enns. The thinking eye, the seeing brain: Explorations in visual cognition.
Recording for the Blind & Dyslexic, 2005. 2

[82] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes challenge: A retrospective.
International journal of computer vision, 111(1):98–136, 2015. 124

[83] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Ob-
ject detection with discriminatively trained part-based models. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010. 29

[84] Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. Simultaneous object recogni-
tion and segmentation from single or multiple model views. International Journal
of Computer Vision, 67(2):159–188, 2006. 15, 27

[85] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Com-
munications of the ACM, 24(6):381–395, 1981. 64, 89, 93

[86] Martin A Fischler and Robert A Elschlager. The representation and matching of pic-
torial structures. IEEE Transactions on computers, 100(1):67–92, 1973. 4

[87] Robert B Fisher. From surfaces to objects: computer vision and three dimensional
scene analysis. Wiley New Jersey, 1989. 28

[88] David Fleet and Yair Weiss. Optical flow estimation. In Handbook of mathematical
models in computer vision, pages 237–257. Springer, 2006. 34

[89] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.
3, 28

[90] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach (2nd Edition). Pear-
son, 2012. 1

[91] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. Optical flow modeling and
computation: a survey. Computer Vision and Image Understanding, 134:1–21, 2015.
25, 62

[92] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video segmentation by tracing
discontinuities in a trajectory embedding. In Proceedings of the 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1846–1853. IEEE,
2012. 87, 89, 93, 95, 96

[93] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural net-
work model for a mechanism of visual pattern recognition. In Competition and co-
operation in neural nets, pages 267–285. Springer, 1982. 30

150 REFERENCES

[94] Fabio Galasso, Naveen Shankar Nagaraja, Tatiana Jimenez Cardenas, Thomas Brox,
and Bernt Schiele. A unified video segmentation benchmark: Annotation, metrics
and analysis. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pages 3527–3534, 2013. 58

[95] Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few
to many: Illumination cone models for face recognition under variable lighting and
pose. IEEE transactions on pattern analysis and machine intelligence, 23(6):643–660,
2001. 4

[96] James J Gibson. The perception of the visual world. Houghton Mifflin, 1950. 31

[97] Joel Gibson and Oge Marques. Optical flow and trajectory methods in context. In
Optical Flow and Trajectory Estimation Methods, pages 9–23. Springer, 2016. 63

[98] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 580–587,
2014. 15, 27, 28, 124

[99] Gene H Golub and Christian Reinsch. Singular value decomposition and least
squares solutions. Numerische mathematik, 14(5):403–420, 1970. 43

[100] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2001. 15

[101] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006. 1, 5, 15, 21, 22, 23, 25

[102] Amit Gruber and Yair Weiss. Multibody factorization with uncertainty and missing
data using the em algorithm. In Proceedings of the 2004 IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 1, pages 707–714. IEEE, 2004. 108

[103] Yanming Guo, Yu Liu, Theodoros Georgiou, and Michael S Lew. A review of seman-
tic segmentation using deep neural networks. International Journal of Multimedia
Information Retrieval, pages 1–7, 2017. 28, 124

[104] Maya R Gupta, Yihua Chen, et al. Theory and use of the em algorithm. Foundations
and Trends® in Signal Processing, 4(3):223–296, 2011. 44, 78

[105] Isabelle Guyon and André Elisseeff. An introduction to feature extraction. In Feature
extraction, pages 1–25. Springer, 2006. 127

[106] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lotfi A. Zadeh. Feature Ex-
traction: Foundations and Applications (Studies in Fuzziness and Soft Computing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 18, 57

[107] Martin T Hagan, Howard B Demuth, Mark H Beale, et al. Neural network design,
volume 20. Pws Pub. Boston, 1996. 30

REFERENCES 151

[108] Gregory D Hager and Peter N Belhumeur. Efficient region tracking with parametric
models of geometry and illumination. IEEE transactions on pattern analysis and
machine intelligence, 20(10):1025–1039, 1998. 25

[109] Nazrul Haque, N. Dinesh Reddy, and K. Madhava Krishna. Joint semantic and mo-
tion segmentation for dynamic scenes using deep convolutional networks. In Pro-
ceedings of the 12th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISIGRAPP 2017) - Volume 5: VISAPP,
pages 75–85, 2017. 124

[110] Robert M Haralick and Linda G Shapiro. Image segmentation techniques. Computer
vision, graphics, and image processing, 29(1):100–132, 1985. 22

[111] Chris Harris and Mike Stephens. A combined corner and edge detector. In Proceed-
ings of the Fourth Alvey Vision Conference. Citeseer, 1988. 39

[112] Richard Hartley and René Vidal. The multibody trifocal tensor: Motion segmen-
tation from 3 perspective views. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 1, pages 769–775.
IEEE, 2004. 108

[113] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003. 2, 56

[114] M Hassaballah, Aly Amin Abdelmgeid, and Hammam A Alshazly. Image features
detection, description and matching. In Image Feature Detectors and Descriptors,
pages 11–45. Springer, 2016. 17, 18, 19

[115] Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. In
Proceedings of the 22nd international conference on Machine learning, pages 297–
304. ACM, 2005. 45

[116] Donald D Hoffman and Whitman A Richards. Parts of recognition. Cognition,
18(1):65–96, 1984. 28

[117] Berthold Horn. Robot vision. MIT press, 1986. 1

[118] Berthold K Horn and Brian G Schunck. Determining optical flow. In 1981 Techni-
cal Symposium East, pages 319–331. International Society for Optics and Photonics,
1981. 25, 31, 32

[119] Steven L Horowitz and Theodosios Pavlidis. Picture segmentation by a tree traversal
algorithm. Journal of the ACM (JACM), 23(2):368–388, 1976. 23

[120] Weiming Hu, Tieniu Tan, Liang Wang, and Steve Maybank. A survey on visual
surveillance of object motion and behaviors. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 34(3):334–352, 2004. 7

[121] Shih-Shinh Huang, Li-Chen Fu, and Pei-Yung Hsiao. Region-level motion-based
background modeling and subtraction using mrfs. Image Processing, IEEE Trans-
actions on, 16(5):1446–1456, 2007. 26, 56

152 REFERENCES

[122] David H Hubel, Janice Wensveen, and Bruce Wick. Eye, brain, and vision. Scientific
American Library New York, 1995. 1

[123] Michal Irani and P Anandan. About direct methods. In International Workshop on
Vision Algorithms, pages 267–277. Springer, 1999. 25, 26, 55, 63

[124] Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric recognition.
IEEE Transactions on circuits and systems for video technology, 14(1):4–20, 2004. 2

[125] Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. Computer vision for
autonomous vehicles: Problems, datasets and state-of-the-art. arXiv preprint
arXiv:1704.05519, 2017. 170, 171

[126] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for
human action recognition. IEEE transactions on pattern analysis and machine intel-
ligence, 35(1):221–231, 2013. 28

[127] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678. ACM, 2014. 30

[128] Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with tfidf for
text categorization. Technical report, DTIC Document, 1996. 29

[129] Pierre-Marc Jodoin, Sébastien Piérard, Yi Wang, and Marc Van Droogenbroeck.
Overview and benchmarking of motion detection methods, chapter 24, pages 24–1–
24–26. Chapman and Hall/CRC, 2014. 62

[130] Luo Juan and Oubong Gwun. A comparison of sift, pca-sift and surf. International
Journal of Image Processing (IJIP), 3(4):143–152, 2009. 19

[131] Takeo Kanade. Picture processing system by computer complex and recognition of
human faces. Doctoral dissertation, Kyoto University, 3952:83–97, 1973. 4

[132] Yan Ke and Rahul Sukthankar. PCA-SIFT: A more distinctive representation for local
image descriptors. In Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2, pages 506–513. IEEE, 2004. 19

[133] Frank Kleibergen and Richard Paap. Generalized reduced rank tests using the sin-
gular value decomposition. Journal of econometrics, 133(1):97–126, 2006. 43

[134] Virginia Klema and Alan Laub. The singular value decomposition: Its computation
and some applications. IEEE transactions on automatic control, 25(2):164–176, 1980.
43

[135] Kristin Koch, Judith McLean, Ronen Segev, Michael A Freed, Michael J Berry, Vijay
Balasubramanian, and Peter Sterling. How much the eye tells the brain. Current
biology : CB, 16:1428–1434, 08 2006. 1

REFERENCES 153

[136] Jan J Koenderink. The structure of images. Biological cybernetics, 50(5):363–370,
1984. 18

[137] Konstantinos Konstantinides, Balas Natarajan, and Gregory S Yovanof. Noise esti-
mation and filtering using block-based singular value decomposition. IEEE Trans-
actions on Image Processing, 6(3):479–483, 1997. 43

[138] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012. 10, 15, 28, 29, 30

[139] Gaurav Kumar and Pradeep Kumar Bhatia. A detailed review of feature extraction in
image processing systems. In Advanced Computing & Communication Technologies
(ACCT), 2014 Fourth International Conference on, pages 5–12. IEEE, 2014. 16, 18

[140] M Pawan Kumar, Philip HS Torr, and Andrew Zisserman. Learning layered motion
segmentations of video. International Journal of Computer Vision, 76(3):301–319,
2008. 24, 27, 96

[141] Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Beyond sliding
windows: Object localization by efficient subwindow search. In 2008 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008. 15, 28

[142] Manuel Lang, Oliver Wang, Tunc Aydin, Aljoscha Smolic, and Markus Gross. Practi-
cal temporal consistency for image-based graphics applications. ACM Transactions
on Graphics (ToG), 31(4):34:1–34:8, 2012. 25, 26

[143] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust object detection with inter-
leaved categorization and segmentation. International journal of computer vision,
77(1-3):259–289, 2008. 27

[144] Anat Levin and Yair Weiss. Learning to combine bottom-up and top-down segmen-
tation. Computer vision–ECCV 2006, pages 581–594, 2006. 50

[145] Stan Z Li, RuFeng Chu, ShengCai Liao, and Lun Zhang. Illumination invariant face
recognition using near-infrared images. IEEE Transactions on pattern analysis and
machine intelligence, 29(4):627–639, 2007. 10

[146] Zhe Lin and Larry S Davis. A pose-invariant descriptor for human detection and seg-
mentation. In European Conference on Computer Vision, pages 423–436. Springer,
2008. 15

[147] Zheng Lin, Jesse Jin, and Hugues Talbot. Unseeded region growing for 3d image
segmentation. In Selected papers from the Pan-Sydney workshop on Visualisation-
Volume 2, pages 31–37. Australian Computer Society, Inc., 2000. 23

[148] Tony Lindeberg. Scale-space theory: A basic tool for analyzing structures at different
scales. Journal of applied statistics, 21(1-2):225–270, 1994. 18

154 REFERENCES

[149] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence across
scenes and its applications. IEEE transactions on pattern analysis and machine in-
telligence, 33(5):978–994, 2011. 26, 65

[150] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3431–3440, 2015. 27, 124

[151] David G Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, vol-
ume 2, pages 1150–1157. Ieee, 1999. 18, 37

[152] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004. 18, 37, 64, 68, 125, 126

[153] Bruce D Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 1981 DARPA Image Understanding
Workshop, pages 121–130, 1981. 25, 33, 35

[154] Aurélien Lucchi, Kevin Smith, Radhakrishna Achanta, Graham Knott, and Pascal
Fua. Supervoxel-based segmentation of mitochondria in em image stacks with
learned shape features. IEEE transactions on medical imaging, 31(2):474–486, 2012.
15

[155] Y. Ma, S. Sastry, and R. Vidal. Generalized Principal Component Analysis. Interdisci-
plinary Applied Mathematics. Springer New York, 2015. 11, 12, 56, 57, 76, 107

[156] Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate
mixed data via lossy data coding and compression. IEEE transactions on pattern
analysis and machine intelligence, 29(9), 2007. 27, 96

[157] Yi Ma, Stefano Soatto, Jana Kosecka, and S Shankar Sastry. An invitation to 3-d vision:
from images to geometric models, volume 26. Springer Science & Business Media,
2012. 57

[158] Muhammad Habib Mahmood, Yago Díez, Joaquim Salvi, and Xavier Lladó. A collec-
tion of challenging motion segmentation benchmark datasets. Pattern Recognition,
61:1–14, 2017. 10

[159] Raman Maini and Himanshu Aggarwal. Study and comparison of various image
edge detection techniques. International journal of image processing (IJIP), 3(1):1–
11, 2009. 22

[160] Davide Maltoni, Dario Maio, Anil Jain, and Salil Prabhakar. Handbook of fingerprint
recognition. Springer Science & Business Media, 2009. 2

[161] Ana I Maqueda, Carlos R del Blanco, Fernando Jaureguizar, and Narciso García.
Human–computer interaction based on visual hand-gesture recognition using vol-
umetric spatiograms of local binary patterns. Computer Vision and Image Under-
standing, 141:126–137, 2015. 6

REFERENCES 155

[162] Jerry B Marion. Classical dynamics of particles and systems. Academic Press, 2013.
40

[163] Richard H Masland and Paul R Martin. The unsolved mystery of vision. Current
Biology, 17(15):R577–R582, 2007. 1

[164] Yoshio Matsumoto and Alexander Zelinsky. An algorithm for real-time stereo vision
implementation of head pose and gaze direction measurement. In Proceedings of the
Fourth IEEE International Conference on Automatic Face and Gesture Recognition,
pages 499–504. IEEE, 2000. 4

[165] Brendan McCane, Kevin Novins, D Crannitch, and Ben Galvin. On benchmarking
optical flow. Computer Vision and Image Understanding, 84(1):126–143, 2001. 25, 62

[166] Carl D Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000. 43

[167] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of lo-
cal descriptors. IEEE transactions on pattern analysis and machine intelligence,
27(10):1615–1630, 2005. 18, 19

[168] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri
Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of affine
region detectors. International journal of computer vision, 65(1-2):43–72, 2005. 25

[169] Baback Moghaddam and Alex Pentland. Probabilistic visual learning for object
representation. IEEE Transactions on pattern analysis and machine intelligence,
19(7):696–710, 1997. 4

[170] Anuj Mohan, Constantine Papageorgiou, and Tomaso Poggio. Example-based ob-
ject detection in images by components. IEEE transactions on pattern analysis and
machine intelligence, 23(4):349–361, 2001. 4

[171] Jean-Michel Morel and Guoshen Yu. Asift: A new framework for fully affine invariant
image comparison. SIAM Journal on Imaging Sciences, 2(2):438–469, 2009. 19

[172] Greg Mori, Xiaofeng Ren, Alexei A Efros, and Jitendra Malik. Recovering human
body configurations: Combining segmentation and recognition. In Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, volume 2 of CVPR’04, pages 326–333. IEEE, 2004. 27

[173] Neil Muller, Lourenço Magaia, and Ben M Herbst. Singular value decomposition,
eigenfaces, and 3d reconstructions. SIAM review, 46(3):518–545, 2004. 43

[174] Joseph L Mundy. Object recognition in the geometric era: A retrospective. In Toward
category-level object recognition, pages 3–28. Springer, 2006. 2, 28

[175] Mary Natrella. NIST/SEMATECH e-handbook of statistical methods.
NIST/SEMATECH, 2010. 83

[176] Mark S Nixon and Alberto S Aguado. Feature extraction & image processing for com-
puter vision. Academic Press, 2012. 1

156 REFERENCES

[177] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation of moving objects by
long term video analysis. IEEE transactions on pattern analysis and machine intelli-
gence, 36(6):1187–1200, 2014. 54, 62, 87, 88, 89, 96, 102, 103

[178] Timo Ojala, Matti Pietikainen, and David Harwood. Performance evaluation of tex-
ture measures with classification based on kullback discrimination of distributions.
In Proceedings of 12th International Conference on Pattern Recognition, volume 1,
pages 582–585. IEEE, Oct 1994. 19

[179] Aude Oliva and Antonio Torralba. Building the gist of a scene: The role of global
image features in recognition. Progress in brain research, 155:23–36, 2006. 17

[180] Yuri Ostrovsky, Ethan Meyers, Suma Ganesh, Umang Mathur, and Pawan Sinha. Vi-
sual parsing after recovery from blindness. Psychological Science, 20(12):1484–1491,
2009. 124

[181] Nikhil R Pal and Sankar K Pal. A review on image segmentation techniques. Pattern
recognition, 26(9):1277–1294, 1993. 22

[182] Zailiang Pan and Chong-Wah Ngo. Selective object stabilization for home video con-
sumers. IEEE Trans. Consumer Electronics, 51(4):1074–1084, 2005. 27

[183] Megha Pandey and Svetlana Lazebnik. Scene recognition and weakly supervised
object localization with deformable part-based models. In 2011 International Con-
ference on Computer Vision, pages 1307–1314. IEEE, 2011. 15, 27, 29, 49, 124

[184] George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, and Alan L. Yuille. Weakly-
and semi-supervised learning of a deep convolutional network for semantic image
segmentation. In Proceedings of the 2015 IEEE International Conference on Com-
puter Vision (ICCV), ICCV ’15, pages 1742–1750, Washington, DC, USA, 2015. IEEE
Computer Society. 27, 124

[185] Deepak Pathak, Ross B Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan.
Learning features by watching objects move. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6024–6033, 2017. 124

[186] Alexander Patterson, Philippos Mordohai, and Kostas Daniilidis. Object detection
from large-scale 3d datasets using bottom-up and top-down descriptors. In Euro-
pean Conference on Computer Vision, pages 553–566. Springer, 2008. 50

[187] Alex Pentland, Baback Moghaddam, Thad Starner, et al. View-based and modular
eigenspaces for face recognition. In CVPR, volume 94, pages 84–91, 1994. 4

[188] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross,
and Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodology
for video object segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 724–732, 2016. 10

[189] Nicolas Pinto, David D Cox, and James J DiCarlo. Why is real-world visual object
recognition hard? PLoS Comput Biol, 4(1):e27, 2008. 3

REFERENCES 157

[190] Ronald Poppe. A survey on vision-based human action recognition. Image and vi-
sion computing, 28(6):976–990, 2010. 6

[191] Marcus E Raichle. A brief history of human brain mapping. Trends in neurosciences,
32(2):118–126, 2009. 1

[192] Christopher Rasmussen and Gregory D. Hager. Probabilistic data association meth-
ods for tracking complex visual objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(6):560–576, 2001. 26, 96

[193] Yogesh Rathi, Namrata Vaswani, Allen Tannenbaum, and Anthony Yezzi. Tracking
deforming objects using particle filtering for geometric active contours. IEEE trans-
actions on pattern analysis and machine intelligence, 29(8), 2007. 26, 49, 96

[194] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn
features off-the-shelf: an astounding baseline for recognition. In 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 512–
519. IEEE, 2014. 30

[195] Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation.
In Proc. 9th Int’l. Conf. Computer Vision, volume 1, pages 10–17, 2003. 15

[196] Xiaofeng Ren and Deva Ramanan. Histograms of sparse codes for object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3246–3253, 2013. 18

[197] Robot Vacuum Cleaner Reviews. Robot vacuum cleaner navigation. http://www.
robotvacuumcleaner.org. 8

[198] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop
on empirical methods in artificial intelligence, pages 41–46. IBM, 2001. 29

[199] Lawrence Gilman Roberts. Machine perception of three-dimensional soups. PhD
thesis, Massachusetts Institute of Technology, 1963. 20

[200] Michael G Ross and Leslie Pack Kaelbling. Learning static object segmentation from
motion segmentation. In American Association for Artificial Intelligence, 2005. 124

[201] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine
learning approach to corner detection. IEEE transactions on pattern analysis and
machine intelligence, 32(1):105–119, 2010. 20

[202] Peter M Roth and Martin Winter. Survey of appearance-based methods for object
recognition. Inst. for Computer Graphics and Vision, Graz University of Technology,
Austria, Technical Report ICGTR0108 (ICG-TR-01/08), 2008. 28, 29

[203] Henry A Rowley, Shumeet Baluja, and Takeo Kanade. Neural network-based face
detection. IEEE Transactions on pattern analysis and machine intelligence, 20(1):23–
38, 1998. 4

158 REFERENCES

[204] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015. 124

[205] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009. 29, 45

[206] M. S. Ryoo and J. K. Aggarwal. UT-Interaction Dataset, ICPR contest on Seman-
tic Description of Human Activities (SDHA). http://cvrc.ece.utexas.edu/
SDHA2010/Human_Interaction.html, 2010. 6

[207] Peter Sand and Seth Teller. Particle video: Long-range motion estimation using point
trajectories. International Journal of Computer Vision, 80(1):72–91, 2008. 26, 63, 65

[208] Konrad Schindler, U James, and Hanzi Wang. Perspective n-view multibody
structure-and-motion through model selection. In European Conference on Com-
puter Vision, pages 606–619. Springer, 2006. 108

[209] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015. 30

[210] Christian Schüldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: A
local svm approach. In Proceedings of the 17th International Conference on Pattern
Recognition (ICPR), volume 3, pages 32–36. IEEE, 2004. 6

[211] Shokri Z Selim and Mohamed A Ismail. K-means-type algorithms: a generalized
convergence theorem and characterization of local optimality. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-6(1):81–87, 1984. 44

[212] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. OverFeat: Integrated recognition, localization and detection using
convolutional networks. In International Conference on Learning Representations
(ICLR2014), 2014. 15

[213] Pierre Sermanet and Yann LeCun. Traffic sign recognition with multi-scale convo-
lutional networks. In The 2011 International Joint Conference on Neural Networks
(IJCNN), pages 2809–2813. IEEE, 2011. 2, 15

[214] Mehmet Sezgin et al. Survey over image thresholding techniques and quantitative
performance evaluation. Journal of Electronic imaging, 13(1):146–168, 2004. 22

[215] Mohsen Sharifi, Mahmood Fathy, and Maryam Tayefeh Mahmoudi. A classified and
comparative study of edge detection algorithms. In Proceedings. International Con-
ference on Information Technology: Coding and Computing, pages 117–120. IEEE,
April 2002. 22

[216] Jianbo Shi et al. Good features to track. In 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 593–600. IEEE, 1994. 25

REFERENCES 159

[217] Jianbo Shi and Jitendra Malik. Motion segmentation and tracking using normalized
cuts. In Sixth International Conference on Computer Vision, pages 1154–1160. IEEE,
1998. 26, 49

[218] Yang Shi, Ji Huang, and Bo Yu. Robust tracking control of networked control systems:
application to a networked dc motor. IEEE Transactions on Industrial Electronics,
60(12):5864–5874, 2013. 27

[219] GT Shrivakshan, C Chandrasekar, et al. A comparison of various edge detection tech-
niques used in image processing. IJCSI International Journal of Computer Science
Issues, 9(5):272–276, 2012. 22

[220] Stephen M Smith and J Michael Brady. Susan—a new approach to low level image
processing. International journal of computer vision, 23(1):45–78, 1997. 20

[221] Elizabeth S Spelke. Principles of object perception. Cognitive science, 14(1):29–56,
1990. 124

[222] Andrew N Stein and Martial Hebert. Combining local appearance and motion cues
for occlusion boundary detection. In BMVC, pages 1–10, 2007. 124

[223] Deqing Sun, Stefan Roth, and Michael J Black. A quantitative analysis of current
practices in optical flow estimation and the principles behind them. International
Journal of Computer Vision, 106(2):115–137, 2014. 62

[224] Deqing Sun, Stefan Roth, J. P. Lewis, and Michael J. Black. Learning optical flow. In
Proceedings of the 10th European Conference on Computer Vision: Part III, ECCV ’08,
pages 83–97, Berlin, Heidelberg, 2008. Springer-Verlag. 25

[225] Deqing Sun, Erik B Sudderth, and Michael J Black. Layered segmentation and optical
flow estimation over time. In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1768–1775. IEEE, 2012. 27

[226] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point trajectories by
gpu-accelerated large displacement optical flow. In European conference on com-
puter vision, pages 438–451. Springer, 2010. 26, 65, 70, 89

[227] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010. 2, 3, 4, 5, 15, 17, 18, 20, 25, 27, 28, 29, 43, 127

[228] A Murat Tekalp. Digital video processing. Prentice-Hall, Inc., 1995. 26, 55, 61, 75

[229] A Murat Tekalp. Digital video processing. Prentice Hall Press, 2015. 63

[230] Joseph Tighe and Svetlana Lazebnik. Finding things: Image parsing with regions and
per-exemplar detectors. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3001–3008, 2013. 21

[231] Philip HS Torr. Geometric motion segmentation and model selection. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineer-
ing Sciences, 356(1740):1321–1340, 1998. 108

160 REFERENCES

[232] Philip HS Torr, Richard Szeliski, and P Anandan. An integrated bayesian approach to
layer extraction from image sequences. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(3):297–303, 2001. 57

[233] Philip HS Torr and Andrew Zisserman. Feature based methods for structure and
motion estimation. In International workshop on vision algorithms, pages 278–294.
Springer, 1999. 25, 26, 55, 63

[234] Marco Alexander Treiber. An Introduction to Object Recognition: Selected Algorithms
for a Wide Variety of Applications. Springer Publishing Company, Incorporated, 1st
edition, 2010. 2, 28

[235] Øivind Due Trier, Anil K Jain, and Torfinn Taxt. Feature extraction methods for char-
acter recognition-a survey. Pattern recognition, 29(4):641–662, 1996. 2

[236] Roberto Tron and René Vidal. A benchmark for the comparison of 3-D motion seg-
mentation algorithms. In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2007. 24, 27, 53, 54, 57, 87, 93, 116

[237] Emanuele Trucco and Konstantinos Plakas. Video tracking: a concise survey. IEEE
Journal of Oceanic Engineering, 31(2):520–529, 2006. 9

[238] Eduard Trulls, Iasonas Kokkinos, Alberto Sanfeliu, and Francesc Moreno-Noguer.
Dense segmentation-aware descriptors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2890–2897, 2013. 15

[239] Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-Chun Zhu. Image parsing:
Unifying segmentation, detection, and recognition. International Journal of com-
puter vision, 63(2):113–140, 2005. 50

[240] Pavan Turaga, Rama Chellappa, Venkatramana S Subrahmanian, and Octavian
Udrea. Machine recognition of human activities: A survey. IEEE Transactions on
Circuits and Systems for Video Technology, 18(11):1473–1488, 2008. 5, 6, 7

[241] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive
neuroscience, 3(1):71–86, 1991. 4

[242] Tinne Tuytelaars, Krystian Mikolajczyk, et al. Local invariant feature detectors: a
survey. Foundations and trends® in computer graphics and vision, 3(3):177–280,
2008. 18, 20, 25, 63

[243] Vladimir Vapnik. The nature of statistical learning theory. Springer science & busi-
ness media, 2013. 46

[244] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear (tensor) image synthe-
sis, analysis, and recognition [exploratory dsp]. IEEE Signal Processing Magazine,
24(6):118–123, 2007. 43

[245] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vi-
sion algorithms. http://www.vlfeat.org/, 2008. 68

REFERENCES 161

[246] Rodrigo Verschae and Javier Ruiz-del Solar. Object detection: current and future
directions. Frontiers in Robotics and AI, 2:29, 2015. 2, 3, 28

[247] René Vidal and Richard Hartley. Motion segmentation with missing data using Pow-
erFactorization and GPCA. In Proceedings of the 2004 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, volume 2 of CVPR’04, pages
310–316. IEEE, 2004. 26, 27, 87, 89, 93, 96

[248] René Vidal and Shankar Sastry. Segmentation of dynamic scenes from image inten-
sities. In Proceedings of the Workshop on Motion and Video Computing, MOTION’02,
pages 44–49. IEEE, 2002. 57

[249] René Vidal, Roberto Tron, and Richard Hartley. Multiframe motion segmentation
with missing data using powerfactorization and gpca. International Journal of Com-
puter Vision, 79(1):85–105, 2008. 54, 108

[250] Sebastian Volz, Andres Bruhn, Levi Valgaerts, and Henning Zimmer. Modeling tem-
poral coherence for optical flow. In Proceedings of the 2011 International Conference
on Computer Vision, ICCV’11, pages 1116–1123. IEEE, 2011. 26

[251] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decompo-
sition and principal component analysis. In A practical approach to microarray data
analysis, pages 91–109. Springer, 2003. 43

[252] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense trajecto-
ries and motion boundary descriptors for action recognition. International journal
of computer vision, 103(1):60–79, 2013. 26

[253] John YA Wang and Edward H Adelson. Layered representation for motion analysis. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
361–366. IEEE, June 1993. 27

[254] John YA Wang and Edward H Adelson. Representing moving images with layers.
Image Processing, IEEE Transactions on, 3(5):625–638, 1994. 27

[255] Xiang-Yang Wang, Ting Wang, and Juan Bu. Color image segmentation using pixel
wise support vector machine classification. Pattern Recognition, 44(4):777–787,
2011. 28

[256] Yi Wang, Pierre-Marc Jodoin, Fatih Porikli, Janusz Konrad, Yannick Benezeth, and
Prakash Ishwar. Cdnet 2014: An expanded change detection benchmark dataset.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 393–400. IEEE, 2014. 52

[257] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid. Deep-
flow: Large displacement optical flow with deep matching. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1385–1392, 2013. 25, 26,
65

162 REFERENCES

[258] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid. Learn-
ing to detect motion boundaries. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2578–2586, 2015. 65

[259] Yair Weiss. Smoothness in layers: Motion segmentation using nonparametric mix-
ture estimation. In Proceedings of the 1997 Conference on Computer Vision and Pat-
tern Recognition, CVPR ’97, pages 520–526. IEEE, 1997. 26, 96

[260] Yair Weiss and Edward H Adelson. A unified mixture framework for motion segmen-
tation: Incorporating spatial coherence and estimating the number of models. In
Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 321–326. IEEE, 1996. 26

[261] Ronald J Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural computation, 1(2):270–280, 1989. 30

[262] Josh Wills, Sameer Agarwal, and Serge Belongie. A feature-based approach for dense
segmentation and estimation of large disparity motion. International Journal of
Computer Vision, 68(2):125–143, 2006. 57

[263] Patrick Henry Winston. The psychology of computer vision. Pattern Recognition,
8:193, 1976. 2

[264] Laurenz Wiskott, Norbert Krüger, N Kuiger, and Christoph Von Der Malsburg. Face
recognition by elastic bunch graph matching. IEEE Transactions on pattern analysis
and machine intelligence, 19(7):775–779, 1997. 4

[265] Lu Xia, Chia-Chih Chen, and Jake K Aggarwal. View invariant human action recog-
nition using histograms of 3d joints. In Computer vision and pattern recognition
workshops (CVPRW), 2012 IEEE computer society conference on, pages 20–27. IEEE,
2012. 10

[266] Jingyu Yan and Marc Pollefeys. A general framework for motion segmentation: Inde-
pendent, articulated, rigid, non-rigid, degenerate and non-degenerate. In Computer
Vision–ECCV 2006, pages 94–106. Springer, 2006. 27, 89, 93, 96, 108

[267] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid
matching using sparse coding for image classification. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR, pages 1794–1801. IEEE, 2009. 127, 128,
129

[268] Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, and Tong Zhang. Sparse
nonlinear regression: Parameter estimation under nonconvexity. In Proceedings of
the 33rd International Conference on Machine Learning, volume 48 of ICML’16, pages
2472–2481. JMLR.org, 2016. 27

[269] Kin Choong Yow and Roberto Cipolla. Feature-based human face detection. Image
and vision computing, 15(9):713–735, 1997. 2, 21

REFERENCES 163

[270] Luca Zappella, Xavier Lladó, and Joaquim Salvi. Motion segmentation: a review. In
Proceedings of the 2008 conference on Artificial Intelligence Research and Develop-
ment, pages 398–407. IOS Press, 2008. 21, 26, 27

[271] Luca Zappella, Xavier Llado, and Joaquim Salvi. New trends in motion segmentation.
In Pattern Recognition, chapter 3. IntechOpen, Rijeka, 2009. 26, 76

[272] Lihi Zelnik-Manor, Moshe Machline, and Michal Irani. Multi-body factorization
with uncertainty: Revisiting motion consistency. International Journal of Computer
Vision, 68(1):27–41, 2006. 26, 108

[273] Bo Zhang. Computer vision vs. human vision. In 9th IEEE International Conference
on Cognitive Informatics (ICCI’10), pages 3–3. IEEE, July 2010. 1

[274] Liang Zhao and Larry S Davis. Closely coupled object detection and segmentation.
In Proceedings of the Tenth IEEE International Conference on Computer Vision, vol-
ume 1 of ICCV ’05, pages 454–461. IEEE, 2005. 50

[275] Wenyi Zhao, Rama Chellappa, P Jonathon Phillips, and Azriel Rosenfeld. Face recog-
nition: A literature survey. ACM computing surveys (CSUR), 35(4):399–458, 2003. 3

[276] Hongyuan Zhu, Fanman Meng, Jianfei Cai, and Shijian Lu. Beyond pixels: A compre-
hensive survey from bottom-up to semantic image segmentation and cosegmenta-
tion. Journal of Visual Communication and Image Representation, 34:12–27, 2016.
10, 16, 27, 28, 124

SUMMARY

This thesis addresses unsupervised video object segmentation based on motion informa-
tion. As the motion information is implicit in a video sequence, we focus on acquiring,
analyzing and utilizing motion data from a given video sequence. This research focuses
on processing video and image data at different levels, using techniques and approaches
from different fields. Chapter 2 and Chapter 3 give the introduction of related research
fields, as well as the involved methodologies and techniques. Chapter 4 presents a general
framework for addressing the research problem. In Chapter 5, we address the low-level im-
age processing and discuss three types of motion data that can be extracted from a video
sequence. The obtained motion data represent the 2D motions in the video frames. A mo-
tion segmentation algorithm is presented in Chapter 6, to segment the video frames based
on the 2D motion data. In Chapter 7, we analyze the 3D motion consistency implied in the
obtained 2D motions. Chapter 8 investigates how to segment non-moving objects based
on information that was learned when the objects were moving. Chapter 8 also discusses
the object identification based on motion segmentation.

In Chapter 4, we analyze the general pipeline of processing video sequences, for the
purpose of video object segmentation. We investigate how to extract the implicit mo-
tion information hinted in the changes of video frames without using prior knowledge.
A framework is presented for the system design that combines a bottom-up and a top-
down scheme. At the bottom-up step, we investigate the extraction of motion data from
the lower-level image features and the utilization of the obtained motion data for group-
ing image features into higher-level object descriptions. The top-down step then learns to
segment non-moving objects by using the obtained object descriptions as the prior knowl-
edge. Based on the scheme, we present three fundamental modules for building up the
video object segmentation system: one for motion data extraction, one for motion based
video objects segmentation, and one for non-moving object segmentation. We describe
the explicit definitions of related terminologies in this system, and discussed the keypoints
to be noticed for each module. We also introduced the datasets used in our experiments.

Chapter 5 focuses on the extraction of motion data based on the low level image fea-
tures. We extract and track some salient image features in a video sequence, and represent
the motion data as their position changes in the video frames. We investigate two ways
for motion data extraction: one focuses on estimating the motion of elementary image
pixels, another takes some local image patterns as the feature points to be tracked. Three
approaches are described in this chapter. One of them focuses on the pixel-based motion
estimation by using the optical flow technique. The other two approaches both extracts
SIFT features from the images and tracks their movements, but differ in the methods used
for feature extraction. One of the feature-based methods only focus on a sparse set of fea-
tures in the images, while the other one adopts a dense field of features for tracking. As a
result, three types of motion data are obtained from our data sets. As these data are used
as the input for next step, i.e the motion segmentation, we can not conclude that which is

165

166 SUMMARY

a better choice for our system in this chapter.

In Chapter 6, we investigate the segmentation of moving objects given the obtained
motion data. An unsupervised 2D based motion segmentation algorithm is proposed.
This algorithm focuses on segmenting the pixels or feature points into groups that un-
dergo the unique 2D motion, based on the given motion data. Based on the assumption
that points from the same object undergo the same motion, the segmented groups can be
regarded as objects in the given videos. We model the points’ motion between two suc-
cessive image frames by a 2D affine transformation, and use a classification EM algorithm
to segment points into groups of the same motion. Bayesian update is used to propagate
the segmentation from one frame pair to the next. Thus the segmentation of the entire
video sequence is the combination of segmentation of successive frames. In this way, the
segmentation algorithm takes the motion information from the beginning to the end of
a video sequence into account. The algorithm also automatically estimates the number
of objects. The method has high flexibility in dealing with different types of motion data.
We measure the reliabilities of the segmentation results and propose an optional step for
compensating the camera motion, which leads to a different version of the proposed al-
gorithm. The experimental results on the three types of motion data, which are described
in Chapter 5, show that the performance of the proposed method is comparable with the
state-of-the-art methods. The results also suggest that the proposed method prefers the
motion data obtained by the dense feature tracking approach, on which the performance
is more outstanding.

Chapter 7 complements Chapter 6, by analyzing the inherent 3D consistency in the
obtained motion data, which is essentially the 2D movements in the successive images of
a video sequence. As the 2D motions in images are a projection of the 3D motions in the
real world carried out by a camera system, the assumption that the motion of points of
an object can be described by an affine transformation, can be violated and leads to over-
segmentation. Two theorems are presented in this chapter, which describes the properties
of a given set of points from an object and their projected movements between two images.
These theorems can effectively measure the 3D rigid motion consistency of a group of 2D
projection points, and also estimate the original 3D body movement with one degree of
freedom. Experiments shows that the segmentation obtained by our algorithm presented
in Chapter 6 can be improved by using the proposed theorems. Unfortunately the recov-
ering of 3D motion models only works well for the rotation about the z direction in the
camera system. Nevertheless, the proposed theorems show promising potential, and fur-
ther research is worth to take in the future.

Chapter 8 addresses the non-moving object segmentation, when motion segmentation
is no longer possible. Without prior knowledge, we use the motion segmentation results
to learn object descriptions from moving objects. These object descriptions are used to
segment objects when they are no longer moving. We present a static object segmentation
method based on the SIFT matching strategy, which obtains the segmentation by com-
paring the image data with the learned object descriptions. Additionally, we investigate
object identification given the segmentation results based on a sparse coding algorithm. It
addresses the problem of identifying the same objects without using the motion clue, and
evaluates the quality of the segmented objects. The experimental results show that the
non-moving object segmentation relies on the quantity of learning data that is obtained

SUMMARY 167

by motion segmentation. With more images in the motion segmentation results, the non-
moving object segmentation performs better. The results also show that the segmented
objects can effectively represent the ground-truth, as they can be identified even with er-
rors in the segmentation results.

Finally in Chapter 9, we discuss the results with respect to the research questions. We
also present several directions for further research.

ADDENDUM: VALORIZATION

Valorization is “the process of creating value from knowledge, by making knowledge suitable
and/or available for social (and/or economic) use and by making knowledge suitable for
translation into competitive products, services, processes and new commercial activities”
(Maastricht promotie regelement, 2013). Since 2013, an addendum about valorization to
the PhD dissertation is required by Maastricht University. This chapter will comply with this
requirement by addressing the potential value and social relevance of the work described in
this thesis. It does not form as a part of the dissertation, and should not be assessed as part
of the dissertation.

Since the digital era is coming, extremely large and increasing amounts of data and infor-
matics are produced in the economy and society. However, grasping of the useful infor-
mation from a massive data is beyond the ability of humankind. In modern society, com-
puters and machines take the work of transferring the massive, redundant digital data into
high-level information that can be understand by human. To deal with visual data, such
as digital images and videos, computer vision systems have been broadly and extensively
investigated in both academic and industrial communities. Indeed, an ever-increasing
variety of computer vision products and services in industry have been created, as the
computer vision technology become more mature. From machine inspection to video
surveillance, from medical image analysis to unmanned vehicles, from robots industrial
to intelligent man-machine communication, etc., computer vision technology has greatly
benefited the modern society. These technologies enable human to acquire useful infor-
mation from videos without watching them thoroughly—by just clicking the mouse.

This thesis address an fundamental problem in computer vision and video processing:
the unsupervised video object segmentation. Video object segmentation aims at extract-
ing and analyzing object-level information from videos that can be interfaced with other
thought processes and elicit appropriate action. Such techniques supplement the tradi-
tional object detection and/or recognition technology that is based on supervised machine
learning. In Section 1.1, we introduced some applications of the traditional object detec-
tion and recognition technology in existing society. This thesis is innovative in respect to
the existing products from the following aspects:

• This thesis solves the problem in an unsupervised way. It means that the program
can automatically learn useful information from the videos. The traditional products
require a large dataset of manually annotated images for training the learning model.
The process of manually annotating images is fulfilled by human, which is a costly
work.

• This thesis focuses on analyzing the motion information, which is a kind of feature
that implied in the videos. The traditional products only analysis the visual features
that are directly acquired from the videos. The motion information captures the

169

170 ADDENDUM: VALORIZATION

spatial coherence of image features in a video, and provides more clues for extracting
more representative information.

In conclusion, the results of this thesis addresses some short-comes of the traditional
products in real-life, with potential for further development.

In general, the research results of this thesis are valuable for both academic and non-
academic audiences. It can be applied in computer vision applications that requires gen-
erating and analyzing object-level information from digital videos or a sequence of images.
In the following sections, we will introduce two non-academic domains that can be ben-
efit from the research results of this thesis, as well as the representative products and/or
services of these applications.

Autonomous Vehicles
Computer vision technology has been widely applied in the navigation systems for au-
tonomous vehicles. Autonomous navigation has been extensively investigated and applied
in the non-academic domain, due to its economic and social potentials. Autonomous nav-
igation requires the vehicles or robots to perceive and understand the environment. As
video data is the primary resources for autonomous navigation systems, computer vision
currently plays the key role in a perception systems for autonomous vehicles or robots
[125].

Figure 9.1: Object detection and recognition helps for understanding the environment in autonomous
navigation: a snapshot of the vision system of Tesla Autopilot in driving 1.

A variety of projects has been started worldwide to explore intelligent transportation
systems (ITS), by many governmental institutions and industrial groups. In Europe, the
PROMETHEUS project started in 1986 was the largest project in the autonomous driving
field, and defined the state of the art of autonomous vehicles [125]. Numerous univer-
sities and car manufactures, as well as research units from governments of 19 European
countries participated in this project. The U.S. government established the National Au-
tomated Highway System Consortium (NAHSC) in 1995. Meanwhile Japan established the

ADDENDUM: VALORIZATION 171

Advanced Cruise-Assist Highway System Research Association in 1996 [25]. In the 21 cen-
tury, several prototype vehicles have been developed and tested in real world, including
ARGO, BRAiVE. The onboard system allows to detect obstacles, lane marking, ditches,
berms and identify the presence and position of a preceding vehicle [125]. Google also
started their self-driving car project in 2009. Their self-driving system equipped with dif-
ferent sensors, such as cameras, radars, LiDAR, wheel encoder and GPS, and can detect
pedestrians, cyclists, vehicles, road work and more in all directions. Besides, many car
manufactures, such as Tesla, GE, Toyota, etc., have established projects and institutes for
developing autonomous driving cars. Although great progress has been made, the fully
autonomous navigation cars is still in laboratory, as most of the existing computer vision
systems produce errors at a rate which is not acceptable for the safety consideration. Still
the achievements for autonomous vision, which refers to the computer vision technol-
ogy in a autonomous navigation system, have benefited in the advanced driver assistant
systems. More and more modern cars are equipped with the advanced driver assistant sys-
tem. These systems help the driver in the driving process, and increase the car safety and
the road safety. Some successful implementations are the Tesla Autopilot, Nissan ProPilot
Assist, Mobileye, etc.

Besides the ground vehicles, like cars, computer vision system is also applied for au-
tonomous vehicles used in different environments, such as the unmanned aerial vehicle
(UAV) and autonomous underwater vehicle or robot. Vision systems for these vehicles
need to deal with specific environment, and focus on specific features that are different
from the ground objects as cars meet. UAVs move in 3D space and at high attitude, which
requires to process videos with high resolution. UAVs have been developed and deployed
many countries around the world, for applications in civilian, commercial, military, and
aerospace domains. AUVs are created for various of undersea applications, such as in-
spection of sunken ships, sea life monitoring, military missions, undersea infrastructures
or installations inspection and maintenance, etc. Vision system for AUVs deals with un-
derwater environments, where the video quality is easily affected by the muddy or turbid
waters . Currently the AUVs navigation systems are often the combination of the sonar
based system and the vision based system [25].

Video Surveillance
Video surveillance systems are used to monitor security sensitive areas, such as banks,
department stores, highways, crowded public places and borders. The implementation
of artificial intelligence and computer vision technologies makes the video surveillance
being smart: computer vision system takes over the work of human operator for tracking
and detecting suspicious objects.

Video surveillance system needs to be sensitive to moving objects and providing auto-
matic alarming function. The ability of segmentation, detection and recognition of mov-
ing objects is therefore required for an intelligent video surveillance system. Numerous of
governmental institutes, universities, companies from worldwide have involved in video
surveillance projects, and a variety of products and services have been produced and used
in our daily life. The technologies for specific objects, such as face detection and recog-
nition, people detection and tracking, are widely used in commercial products and offer

1https://www.tesla.com/autopilot

172 ADDENDUM: VALORIZATION

Figure 9.2: iRadar’s iSenseTM Smart Video Surveillance System

reliable security solutions for the society. Nowadays, numerous smart security cameras are
available in markets, provide high quality intelligence security services for families with a
low cost, such as the Amazon Cloud Cam, the Ring Spotlight Cam, iBaby Monitor, etc.

ACKNOWLEDGMENTS

There are many people and institutes that have earned my gratitude for helping me to
achieve this thesis.

First and foremost, I would like to express my sincere appreciation to my supervisors.
My PhD dissertation would not have been possible without the support and nurturing of
my supervisors. Nico, I am extremely grateful to for your guidance in the past seven years.
You are always patient and supportive, to guide me with my research. I appreciate that
you were never stop reviewing my papers when you got injured. Thank you as well for
mentoring me on the precise scientific writing. With your help, I am growing as a research
scientist. I am deeply indebted to Ralf for your insightful comments and effective advice
in mathematics and thesis writing, especially your contributions in the theoretical part of
my thesis. And most importantly, I appreciate your encouragement when I almost lose my
confident during the process of thesis writing.

I would also like to express my appreciation to all the members of my assessment com-
mittee, for your time and valuable comments. Thank you all for your participation and
contribution, to the special day of my life.

As my thesis was carried out at the Department of Data Science and Knowledge Engi-
neering (DKE) in Maastricht University, I would like to thank DKE for offering the oppor-
tunity and providing me with a wide range of academic resources. I must also thank the
China Scholarship Council (CSC) for financial supporting of my PhD research.

I would express my gratitude to the excellent research fellows at DKE that have taken
some time to discuss and enrich my work. Some special words of thanks goes to Gijs,
Rachel and Katerina, for your kind help of composing better sentences in propositions.
Particularly helpful to me during this time was Haitham, with whom I published the first
conference paper, and thanks for your brilliant ideas.

I am very grateful to the support staffs at DKE, KCIS and FSE Local Support, who help
me a lot in the non-academic area. I would like to extend my sincere thanks to Jet, for your
solicitude and encouragement, which had helped me to get through the hard times.

Special thanks to Katharina and Yiyong, for helping me with preparing the defense and
being my paranymphs during the ceremony.

I would like to thank all my PhD colleagues, with whom I have shared unforgettable
moments. Zhenglong, Frederik, Wenzhao, Siqi, Yiyong, Arjun, Monica and Maria, many
thanks to you for the good moments shared in the office, and for the inspiration discus-
sions. I am also grateful to Seethu, Amir, Kirill and Jordy, for the joyful moments of playing
games. Bijian, Nasser, Firat and Chiara, I would like to thank you for the lunch-times and
interesting discussions we have had. Katharina and Lucas, thank you for cheering me up,
and for the invitations to many great events. Some special words of gratitude go to Hua, Li
and Shuang, who have always been supporting me. I appreciate for your generous friend-
ship, and for the life times we have spent together.

173

174 ACKNOWLEDGMENTS

I am also grateful to my friends in Maastricht, Ai, Wenqing, Xiahong, Haiyan, Rui,
Tianxiang, Yuzhe, Jie, Pei, Yuan, Mengmeng, Mengxing, Ancui, Yu, Xi and Tian, who have
brought me precious memories of life in this city. I would like to acknowledge the help of
Weiwei, for your useful advice and cocktails. Thanks should also goes to Yin and Shuang,
thank you for your warm hospitality and the true Sichuan dishes.

Finally, my dearest Mom and Dad, thank you for showing faith in me and supporting
me.

Wei Zhao
February 2019

Maastricht

ABOUT THE AUTHOR

Wei Zhao was born in April 10, 1985 in Sichuan, China.
She received her B.Sc. degree in Computer Science and
Technology at 2007, from the University of Electronic Sci-
ence and Technology of China (UESTC). From 2008, she
started her Master study in the same university and be-
came a member of the Laboratory of Digital Media Tech-
nology in School of Computer Science and Engineering,
UESTC. During her master studies, she joined the project
of developing developing a real-time 3D computer graph-
ics engine, which is supported by the National High-
tech Research and Development Program of China (grant
NO.2006AA01Z335), and led a team of 5 master students.
She obtained her B.Sc. in Computer Application Technol-
ogy in July 2007.

In January 2012, she started a PhD project at the De-
partment of Data Science and Knowledge Engineering
(DKE), Maastricht University. Since then she has been a member of Robotics, Agents and
Interactions group (RAI). Her research was founded by the China Scholarship Council.
During her PhD studies, she focused on object detection for a computer vision system,
which is supported by the Robotlab project. Her scientific research contributes have led
publications in scientific conferences and finally this dissertation.

175

LIST OF PUBLICATIONS

Wei Zhao, H Bou Ammar, and Nico Roos. Dynamic object recognition using sparse coded
three-way conditional restricted boltzmann machines. In 25th Benelux Conference on
Artificial Intelligence (BNAIC 2013), 2013.

Wei Zhao and Nico Roos. An EM based approach for motion segmentation of video se-
quence. In 24th International Conference in Central Europe on Computer Graphics, Visu-
alization and Computer Vision (WSCG), pages 61–69, 2016.

Wei Zhao and Nico Roos. Motion based segmentation for robot vision using adapted
em algorithm. In Proceedings of the 11th Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016),
pages 649–656. INSTICC, SciTePress, 2016.

Wei Zhao, Nico Roos, and Ralf Peeters. 3D motion consistency analysis for segmentation
in 2d video projection. In Computer Analysis of Images and Patterns: 17th International
Conference, CAIP 2017, Ystad, Sweden, August 22-24, 2017, Proceedings, Part II, pages 440–
452. Springer International Publishing, Cham, 2017.

Wei Zhao and Nico Roos. Moving object detection in video sequence. submitted, 2018.

Wei Zhao and Nico Roos. Detecting objects by learning from motion segmentation re-
sults. Unpublished Manuscript, 2019.

176

	Contents
	Chapter 1 - Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9 - Conclusions and future work
	References
	Summary
	Addendum: Valorization
	Acknowledgments
	About the author
	List of publications

