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Chapter 1

Introduction

In this thesis we investigate repair-based approaches for handling dynamic Con-
straint Satisfaction Problems (CSPs) and reactive Job Shop Scheduling Problems
(JSSPs) in the field of Artificial Intelligence (AI). In this chapter we present the con-
tours of these problems and outline our research approaches. The principal problems
of the repair-based approaches are formulated and emphasized in the thesis’s prob-
lem statement, which determine the lines to be followed in the subsequent chapters.

1.1 Background

A large number of problems in AI and other areas of computer science can be viewed
as special cases of constraint-satisfaction problems (Kumar [?]). A few examples are
machine vision, belief maintenance, scheduling and planning, temporal reasoning,
graph problems, circuit design, diagnostic reasoning, data mining [?] and access
control to multimedia storage devices [?].

The first part of this research concentrates on developing repair-based approaches
for Dynamic Constraint Satisfaction Problems (DCSPs); the second part on devel-
oping Repair-Based Scheduling approaches for JSSPs.

1.1.1 CSPs and Dynamic CSPs

Constraint Satisfaction Problem A general CSP consists of a set of variables,
a finite set of possible values for each variable (variable domain), and a set of con-
straints restricting the values that the variables can simultaneously take. A solution
to a CSP is a complete assignment that assigns to each variable a value from its
domain in such a way that all constraints between the variables are satisfied. De-
pending on the requirements of an application, the task for solving a CSP can be
classified into finding: (1) just one solution, with no preference to which one; (2) all

1



2 CHAPTER 1. INTRODUCTION

solutions; and (3) a particular solution according to prefixed domain conditions as
formulated by functions that can be assessed straightforwardly. However, not every
CSP is solvable. In the latter case, the solver is required to prove that no solu-
tion exists for the given CSP. Subsequently, the solver can stop the work, or relax
some constraints to find a solution for the new case under investigation. The solver
may attempt to obtain a partial solution that satisfies as many of the constraints as
possible. A CSP can be considered as a declarative description of a combinatorial
problem in which a solution results from taking a whole series of interdependent
choices, i.e., the correctness of a given choice is usually not apparent until a number
of other choices have been made, which may in turn depend on further choices.

The question whether a CSP has a solution is NP-complete, meaning that a
polynomial algorithm to solve all CSPs is unlikely to exist. In order to seek for
a complete assignment that satisfies all constraints in a CSP, search methods are
widely applied. However, search can be very expensive, i.e., it may require a large
amount of computation time. During the past two decades, a large number of
efficient search strategies and techniques have been developed to handle the CSPs
in various application domains [?, ?, ?, ?]. These techniques include proper variable
and value selection heuristics for guiding the search process[?, ?, ?]; constraint-
propagation for pruning the search space and making the search easier and more
efficient [?, ?, ?, ?, ?]; and intelligent backtracking for handling adequately the
dead-ends in the search processes[?, ?, ?].

Optimization Many practical problems can easily be formulated as a CSP. In
most cases finding a solution to a CSP requires domain-specific knowledge, but
general methods for solving CSPs are applicable in many situations.

In real-world applications it is often of the utmost importance whether the solu-
tion found reaches the predefined objective. Then, seeking for a particular solution
is necessary. Normally, the predefined objective is given by a mathematical function
that will be regarded as an additional constraint to the CSP. The requirement then
is to find a solution that optimally meets the objective function, rather than to find
an arbitrary solution. These problems are called Constraint Optimization Problems
(COPs). An optimization problem is called NP-hard if the corresponding decision
problem is NP-complete. Straightforwardly, COPs are NP-hard problems.

In general, an optimization poses two tasks: (1) searching for a feasible solution,
and (2) proving that the result is optimal. A naive but sometimes costly approach to
obtain an optimal solution is to find all solutions for the corresponding CSP and then
compare the solutions with respect to the objective function. To avoid looking for
all solutions, sometimes domain knowledge can be used to prune parts of the search
space that do not contain solutions better than the best solution (‘best’ according to
the objective function) found so far. This strategy can be realized by incorporating
a simple inference (branch and bound algorithms, see [?]) into the search processes.

The time costs to find an optimal solution is usually higher than that to find
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an arbitrary solution. So, efficiency becomes a prominent issue in developing op-
timization algorithms. In particular, in some applications, where the environment
changes dynamically, an optimal solution at one point may become suboptimal very
soon. The decisions derived from the solution could be useless if they come too late.
Hence, giving up completeness for speed is crucial in these cases. The weakening of
the optimality criteria, i.e., relaxing an additional constraint specified by the objec-
tive function and obtaining a near-optimal solution, is then considered acceptable
and sufficient. For a hard optimization problem, one can crack (decompose) it by
solving a reasonable number of easy problems that are collectively equivalent to the
original problem [?, ?]. Each of them corresponds to a new problem which may
be much easier to solve than the original problem. When no alternative methods
are available, the stochastic search techniques could be used to solve a CSP and a
COP. A stochastic search algorithm moves from one point to another in the search
space in a non-deterministic manner, guided by heuristics. The next move in the
search space is partly determined by the outcome of the previous move. Generally
speaking, a stochastic search is incomplete. Thus, the obtained solution is often
near-optimal for a COP.

Dynamic CSPs The technologies developed for solving CSPs (COPs) have been
successfully used to solve combinatorial (optimization) problems due to their com-
bination of high-level modeling, constraint propagation and facilities for controlling
search behavior. However, the physical world is a highly dynamic environment. The
set of constraints in a CSP which models a real-world problem may change over
time. For instance, a machine may break down at one time in a job shop. The re-
source constraint which specifies the availability of the machine thus changes. Such
a change may result in a new CSP. The sequence of such CSPs is called a Dynamic
CSP (DCSP) [?]. The constraint change of a CSP may be a restriction (a new con-
straint is imposed on a subset of variables), a relaxation (a constraint is removed
from the CSP) or a combination of restriction and relaxation.

In case of the restriction or the combination of relaxation and restriction, a valid
solution of one CSP may not be a solution of the next CSP invoked by the new
situation. Hence, a new solution must be generated for that CSP. In solving such
CSPs, it is always possible to treat them as independent CSPs and adopt the nor-
mal CSP solution methods. However, any solution obtained in this way might be
quite different from a previous one. In practical situations, large differences between
successive solutions are often undesirable. For instance, airline companies are con-
tinuously faced with disruption problems which derive from severe weather patterns
and unexpected aircraft or personnel failures. When a disruption occurs, new air-
craft routings are needed. Changes to aircraft routings inconvenience passengers and
affect crew schedules, gate assignments and maintenance. Reassigning more than a
few aircrafts when a single plane is grounded is unacceptable for most airlines. Con-
sequently, dealing with disruption in a way that results in a minimal difference from
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the original aircraft routings is very desirable [?]. So, in these cases we practically
face the challenges to solve a DCSP with a solution-maintenance objective.

In dealing with these challenges, some methods were proposed [?, ?] to generate
solutions that are expected to remain valid after constraint changes in a CSP. These
approaches are based on the assumption that the successive changes in a DCSP are
temporary and tractable. However, when unexpected events occur, for instance a
mechanical problem (a machine breakdown) or an employee illness, the assumptions
may no longer be well-founded. Since it is quite complicated to track down the
changes directly in the cases of constraint addition, those approaches may become
too costly to be viable [?]. Verfaillie and Schiex [?] proposed an alternative algorithm
by reusing the solution of a previous CSP to find a solution for the new CSP. The
solution maintenance was made by fixing the assignment of a set of variables in the
solution of the previous CSP, and then finding a partial assignment for the rest of
variables that are consistent with the fixed assignments. However, it turned out to
be hard to predict which assignment of variables should be fixed in a dynamic envi-
ronment. Moreover, carrying out the solution maintenance by fixing the assignment
of a set of variables is rather limited in some specific application domains. In other
application domains such as generating a new aircraft routing, the objective may
be to maintain as many as possible variable assignments equal to the old ones. To
meet these application demands, the first part of our research focuses on exploring
new approaches for solving such solution-maintenance problems in a general DCSP.
From the solution-maintenance point of view, the new approach carries out the tasks
of repairing/revising some assignments in the original solution. So, it is purposedly
called a repair-based approach in solving DCSPs.

1.1.2 Repair-Based Scheduling for JSSPs

In the second part of this research, we concentrate on developing Repair-Based
Scheduling approaches to deal with the unexpected events occurring in a manufac-
turing system.

Job Shop Scheduling Problem (JSSP) Scheduling is motivated by questions
that arise in various domains of application ranging from manufacturing, computer
control, train and airline planning to generally all situations in which scarce resources
have to be allocated to activities (tasks) over time [?]. In this thesis, we focus on the
applications in a manufacturing environment, where scheduling is the assignment of
operations of jobs to machines for a given period of time on the job shop floor. The
corresponding scheduling problem is called Job Shop Scheduling Problem (JSSP).

The JSSP considered in our research is a standard JSSP which consists of a
number of jobs and a limited number of resources. Each job consists of a series of
operations which are subjected to a linear order (often called precedence constraint).
Each operation requires a resource, often denoted as a machine, for processing it.
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The machine can be allocated to at most one operation at a time (often called
capacity constraint). Moreover, a machine is allocated to an operation for a certain
processing time period (from the start of processing the operation till the end of
processing the operation, i.e., non preemptive scheduling). A solution to a JSSP is a
complete assignment that assigns to each operation a start time in such a way that
the precedence and capacity constraints in the JSSP are satisfied. The standard
JSSP is not only NP-hard [?] but also one of the computationally more difficult
combinatorial optimization problems [?].

Operation Research and AI Operations Research analysts and engineers have
been pursuing solutions to these problems for more than 35 years, with varying
degrees of success. While they are difficult to solve, JSSPs are among the most
important problems since they have an impact on the ability of manufactures to
meet customer demands and make a profit. They have an impact, too, on the ability
of autonomous systems optimizing their operations, the deployment of intelligent
systems, and the optimizations of communications systems. Hence, effective job
shop scheduling may make a major contribution to the competitive power in serving
customers, and in utilizing the assets and resources of a company.

Existing approaches for solving JSSPs range from the combinatorial optimization
techniques of operation research to AI approaches. However, the approaches purely
developed in the field of operation research (OR) have generally proved unsuccessful
[?]. The currently known best results (with respect to time and solution quality)
are achieved by hybrid approximation algorithms [?] that combine OR and AI tech-
nologies. As pointed out by Fox [?], practical scheduling problems are affected by a
large number of domain-specific constraints most of which are not readily expressible
in conventional OR oriented forms of representation. Nevertheless, AI approaches
for JSSPs represent an important step towards the required expressiveness, flexibil-
ity and responsiveness in handling realistic scheduling problems. These approaches
provide a rich representational language for describing, propagating and if neces-
sary relaxing the many constraints that apply to schedules in live environments, and
multiple search strategies to assist in finding a solution.

In order to find a feasible schedule to a JSSP, AI approaches generally model
the JSSP as a CSP and construct a search tree which will be explored in a depth-
first or iterative-deepening mode depending on the application. Various methods,
among them the constraint-directed search techniques proposed by Fox [?] and the
randomized strategy developed by Nuijten [?, ?], can be applied to reduce the size
of the search tree and to achieve a feasible schedule with the lowest effort.

Reactive Scheduling Generating a schedule before its execution is called predic-
tive scheduling [?]. As we mentioned in dealing with DCSPs, the physical world is
a highly dynamic environment which comprises a large number of uncertainties. In
a manufacturing shop floor, fast changing customer demands may evoke external,



6 CHAPTER 1. INTRODUCTION

market-driven uncertainties, while unplanned shop floor contingency such as a ma-
chine breakdown, a late delivery, an operator being absent, etc., comprise internal
manufacturing uncertainties. Most of these uncertainties are unforeseeable at the
moment of generating a predictive schedule. Once an unexpected event occurs, the
predictive schedules may no longer be valid. Thus, they need to be revised continu-
ously for the management of changes at the shop floor level. Revising the predictive
schedule as unexpected events force changes is called reactive scheduling [?].

There are a number of other definitions for reactive scheduling in the scheduling
literature [?, ?, ?, ?]. Although these definitions are somewhat general in nature,
they all emphasize the fast-changing environment, which demands immediate deci-
sion at shop floor level as a reactive response to contingencies. As pointed out in
[?], reactive scheduling problems, like their predictive counterparts, are typically a
domain for which no polynomial-time solution algorithm is known. Computation
times are usually highly variable and unpredictable. So, giving up completeness and
optimality criteria in reactive scheduling, i.e., relaxing the constraint specified by
the objective function, is therefore considered necessary and acceptable.

In the past decade, many reactive scheduling systems have been developed [?, ?,
?, ?]. Although these systems emphasized the importance of reducing the disrup-
tion to the original (predictive) schedule when generating a new schedule, they were
primarily designed to balance the objective of minimal disruption with the tradi-
tional optimization objectives (such as minimizing the make-span, work-in-process
inventory, mean tardiness of jobs etc). In a real-world scheduling environment, min-
imizing the disruption to the original schedule may need particular attention and be
treated separately from the traditional optimization objectives. The reason is that
the original (predictive) schedule represents an investment in planned resources, i.e.,
an allocation of machines and people. By executing the original schedule a large
number of interdependent processes has been put into motion. If an unexpected
event occurs, keeping as much as possible the continuity of those processes is of vital
importance for reaching an agreement among all parties affected by the changes on
the original schedule.

Minimizing the disruption to the original (predictive) schedule in reactive schedul-
ing provides a rich context of Repair-Based Scheduling, which is interpreted as gen-
erating a new schedule that has a minimal difference with the original (predictive)
schedule. It means that Repair-Based Scheduling must achieve two objectives si-
multaneously: (1) the modification of the original (predictive) schedule should be as
minimal as possible; (2) the time required to get or validate a new schedule should
not exceed the time window in which the schedule must be applicable. The differ-
ence between a new schedule and the original schedule may be explicitly described by
some objective functions. The time required by the Repair-Based Scheduling system
may be measured by the run time (in CPUs) of the corresponding algorithms. The
new JSSP problems caused by unexpected events are called repair-needed JSSPs in
the context of Repair-Based Scheduling.



1.2. PROBLEM STATEMENT 7

Since the reactive scheduling systems currently in use do not uniquely pursue
the objective that Repair-Based Scheduling seeks, we intend to develop an efficient
and robust Repair-Based Scheduling system to meet the original goal. Therefore, we
deal with the Repair-Based Scheduling in the field of AI. Hence, the system will be
built under the fundamental framework of AI scheduling: constraint-directed search.

1.2 Problem statement

As described in the previous section, a valid solution of one CSP in a DCSP may
not be a solution of the next CSP when an additional constraint is added. Hence,
a new solution must be generated for that CSP. Our goal is to solve, as efficiently
as possible, such a DCSP with a solution-maintenance objective. To meet the ap-
plication demands, we need to explore repair-based approaches for solving a general
DCSP.

In a Repair-Based Scheduling approach, a new schedule is required to cope with
the changes caused by an unexpected event (a machine breakdown) occurring in
a job shop. To generate a new schedule that has a minimal difference with the
original (predictive) schedule, we intend to use the constraint-directed search as the
foundation to develop efficient, robust solution methods.

From the above, it is clear that the general research problem is twofold:

• Is it possible to develop new methods that adequately solve DCSPs?

• Is it possible to develop new methods that adequately solve repair-needed
JSSPs?

This thesis is an attempt to address the general research problem. The subse-
quent chapters will describe our approaches in detail. The chapters are organized
as follows.

1.3 Thesis outline

Chapter 2: Constraint Satisfaction Problems This chapter starts with giv-
ing a formal definition of a CSP. Then, it shows that solving a CSP is a NP-complete
problem. The search methods and techniques for solving CSPs, which include vari-
able and value selection heuristics for guiding search, constraint-propagation tech-
niques for pruning the search space and dead-end handling techniques, are discussed
subsequently. Finally, the optimization problem of CSPs (COPs) and Dynamic CSPs
(DCSPs) are investigated.
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Chapter 3: Job Shop Scheduling The goal of this chapter is to provide an
overview of Job Shop Scheduling. First, a formal definition and a useful CSP model
of a JSSP are presented. Then, a number of important notations in job shop schedul-
ing which will be adopted in the successive chapters are introduced. Furthermore,
some powerful methods which have successfully been used for solving JSSPs in the AI
community are discussed and investigated. These methods include constraint-based
scheduling approaches, local search algorithms and genetic algorithms. In particular
attention is paid to the constraint-based scheduling which uses a constraint-directed
search framework for solving JSSPs. Subsequently, the algorithms developed un-
der the framework in generating a job shop schedule (with an optimal or a near-
optimal make-span) and a set of constraint-propagation techniques in JSSP domain
are briefly described. Finally, the concepts of predictive and reactive scheduling are
brought in. The rescheduling and incremental repair strategies for reactive schedul-
ing are briefly discussed and a number of typical reactive-scheduling systems are
mentioned.

Chapter 4: A repair-based method for DCSPs In this chapter, we propose
three repair-based methods for solving DCSPs, which include a complete repair-
based algorithm (RB-AC) and two approximate algorithms (BS and RS). First,
the necessity of finding a minimal-number of assignment-change solution for a CSP
is clarified as the objective of the repair-based approaches. Then, the idea and
methodology behind the methods are explained. Subsequently, a complete repair-
based algorithm (RB-AC) which combines local search and constraint-propagation
techniques is proposed. The termination, correctness, completeness and optimality
of the RB-AC is proved. Following the analysis of the time complexity of RB-AC,
two approximate algorithms which are developed to obtain a near minimal-number
of assignment-change solution are proposed. Through empirical studies, we conclude
that the approximate algorithm RS outperforms BS, and finally introduce the best
parameter combinations in RS.

Chapter 5: Repair-Based Scheduling This chapter presents explorative stud-
ies for Repair-Based Scheduling in the field of AI. First, the motivation in conducting
a repair for an existing schedule is clarified. Then, we discuss the following four is-
sues: (1) why is an innovative Repair-Based Scheduling approach needed? (2) what
kind of model modification should be made to the original JSSP model to arrive at
an adequate solution? (3) what is the objective that must be achieved in Repair-
Based Scheduling? and (4) what minimal perturbation function is appropriate for
describing the objective? After that, we make a thorough analysis to an unexpected
event (e.g., a machine breakdown) occurring in a job shop and build a new CSP
model for the repair-needed JSSP. Therefore, we identify which operations need to
participate in repair and what constraints should be added to the original constraint
set. Subsequently, we outline a novel Repair-Based Scheduling algorithm (RBS)



1.3. THESIS OUTLINE 9

which is developed under the framework of constraint-directed search. The main
ideas, related techniques and the pseudo codes of the RBS are presented and illus-
trated. Finally, the procedures which form the main part of an innovative heuristic
(semi-randomized heuristic) and the different design choices of RBS are presented.
A new constraint-propagation technique which impose the optimization needs on
the operations’ start-time domains and thus help to prune the search space is devel-
oped in the successive sections. Finally, an algorithm to implement this technique
is shown.

Chapter 6: Performance evaluation In this chapter, we report the perfor-
mance of our Repair-Based Scheduling approaches in solving repair-needed JSSP
instances. First, we explain how to generate a repair-needed JSSP instance (caused
by a machine-breakdown) from a standard JSSP instance. The important param-
eters of such a machine-breakdown JSSP instance are discussed and determined.
Subsequently, we present the experimental results by using RBS to solve simple
machine-breakdown instances. After that, the different design choices of RBS are
evaluated in solving simple, moderate and difficult machine-breakdown instances.
The experimental results of running these algorithms for different problems are
compared and discussed. Then, the representative of our Repair-Based Schedul-
ing approaches is selected. The important parameters in RBS which include the
number of restarts, the backtracking factors and the probability partition factors
in the extended semi-randomized heuristic are dealt with different values in a va-
riety of experiments. The efficiency and optimality impact of these parameters to
RBS are clearly exhibited by the experimental results. The experimental results of
other alternative operation selection heuristics are also presented to compare with
the schedules generated by RBS. Finally, the issues about the comparison with other
existed reactive-scheduling systems are discussed.

Chapter 7: Concluding remarks The final chapter concludes our research with
summarized answers to the problem statement formulated in Section 1.2. Further-
more, the contributions of our research covered by this thesis are outlined and a
short discussion on future research is given.
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Chapter 2

Constraint Satisfaction
Problems

This chapter presents the formal definitions of a Constraint Satisfaction Problem
(CSP) and a Dynamic CSP (DCSP) (Section 2.1), the relevant issues of the com-
plexity theory (Section 2.2), and the important notions that are concerned with solv-
ing a CSP (Section 2.3). For instance, we review tree-search algorithms, constraint
propagation, and heuristics for variable and value selection. Finally, in section 2.4,
solution methods and the solution-maintenance problem for a DCSP are discussed.

2.1 Basic notations and formal definitions

A CSP consists of a finite set of variables, a finite set of possible values for each
variable (its domain), and a finite set of constraints restricting the values that the
variables can simultaneously take. A solution to a CSP is a complete assignment that
assigns to each variable a value from its domain in such a way that all constraints
between the variables are satisfied. In practice, a large number of problems can be
molded as CSPs. Consequently, the methods and techniques developed for solving
CSPs can be applied to handle these problems. Overviews on CSPs can be found in
[?, ?, ?].

2.1.1 Unary, binary and general CSPs

In this subsection, we formally define a variable’s domain, a CSP, a partial as-
signment, a complete assignment, a solution of a CSP and the notion satisfiable
(consistent).

11
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Definition 1 The domain of a variable is a set of all values that can be assigned to
the variable. If v is a variable, we use Dv to denote the domain of v.

The domain of a variable can be numbers, boolean values, enumerated type of
objects etc. When the domain of a variable contains numbers only, the variables are
called numerical variables. Moreover, the domain of a variable can be a finite set of
values or an infinite set. In this thesis, we focus on numerical variables with a finite
set of values.

Definition 2 A constraint satisfaction problem (V,D, C) involves a set V = {v1, v2,
· · · , vn} of n variables, a set of finite domains D = {Dv1 , Dv2 , · · · , Dvn

} and a finite
set C = {cvi1 ,···,vik

|1 ≤ i1 < · · · < ik ≤ n, k ≤ n} of constraints. A constraint

cvi1 ,···,vik
: Dvi1

× · · · ×Dvik
→ {true, false}

is a polynomial-time computable mapping onto true or false for an instance of Dvi1
×

· · · ×Dvik
.

For a constraint cvi1 ,···,vik
∈ C, {vi1 , · · · , vik

} is the set of variables involved in
constraint cvi1 ,···,vik

, where 1 ≤ i1 < · · · < ik ≤ n, k ≤ n. A constraint may involve
an arbitrary number k(k ≤ n) of variables. Typically, if a constraint involves one
variable, where k = 1, the constraint is called a unary constraint. If a constraint
involves two variables, where k = 2, the constraint is called a binary constraint. A
CSP with constraints not limited to unary and binary constraints is called a general
CSP. Nudel [?] proved that a general CSP can be reformulated as a binary CSP.
Hence, in the CSP research, a great deal of attention is paid to binary CSPs. An
instance of a binary CSP can be viewed as a graph(or constraint network/graph),
where the nodes represent variables and the edge (v1, v2) represents the constraint
cv1,v2 . However, the graph interpretation of a general CSP is not so obvious. For
this reason, Dechter and Pearl [?] introduced the notion constraint hypergraph for
general CSPs.

A variable in a CSP(V,D, C) can be assigned a value from its domain. Below,
we formally define a partial assignment, a complete assignment, a solution of a CSP,
and the notion satisfiable (consistent).

Definition 3 A partial assignment for a CSP (V,D, C) is a function a′ that assigns
values to variables in a subset V ′ of V , i.e., ∀ v′ ∈ V ′(V ′ ⊆ V ), a′(v′) ∈ Dv′ . A
complete assignment a? is a function that assigns a value to every variable appearing
in the CSP, i.e., ∀ v ∈ V, a?(v) ∈ Dv.

Definition 4 For a CSP (V,D, C), let a′ be a partial assignment on V ′(V ′ ⊆ V ).
a′ satisfies the constraint cvi1 ,···,vik

(cvi1 ,···,vik
∈ C, {vi1 , · · · , vik

} ⊆ V ′) iff

cvi1 ,···,vik
(a′(vi1), · · · , a′(vik

)) = true.
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Definition 5 For a CSP (V, D, C), let a? be a complete assignment. Then a? is a
solution for the CSP iff for each cvi1 ,···,vik

∈ C, a? satisfies the constraint cvi1 ,···,vik
.

Definition 6 A CSP is called satisfiable (consistent) if a solution exists.

2.1.2 Tightness of a CSP

CSPs can be adequately characterized by their tightness, which could be measured
under the following definitions (adapted from [?]). Below we define the tightness of
a constraint and the tightness of a CSP.

Definition 7 The tightness of a constraint cvi1 ,···,vik
is measured by the number of

partial assignments satisfying cvi1 ,···,vik
over the number of all partial assignments

on {vi1 , · · · , vik
}:

For a CSP(V,D,C): ∀cvi1 ,···,vik
∈ C :

tightness(cvi1 ,···,vik
; (V, D, C)) ≡ S

T

where:
S = ‖a |cvi1 ,···,vik

(a(vi1), · · · , a(vik
)) = true‖

T = maximum number of assignments for vi1 , · · · , vik
=

∏k
j=1 ‖Dvij

‖.

Definition 8 The tightness of a CSP is measured by the number of solutions over
the number of all distinct complete assignments :

For a CSP(V,D,C): tightness((V,D, C)) ≡ ‖S‖∏
∀v∈V ‖Dv‖

where S = the set of solutions.

Tightness is a relative measure. Some CSP solving techniques are suitable for
tighter problems, while others are suitable for looser problems. In order to evalu-
ate a CSP solving algorithm as precise as possible, the CSP instances are usually
considered for different CSPs and various constraint tightnesses. The typical CSP
instances that can be used for this purpose are randomly generated binary CSPs de-
noted by a four-tuple (n, d, p1, p2), in which n denotes the number of variables and
d the domain size of each variable; p1 and p2 are two probabilities. Probability p1

represents the probability that a constraint exists between two variables and proba-
bility p2 represents the conditional probability that a pair of values in the domains of
two variables satisfies the constraint between them. So, when p1 takes values from 0
to 1, the generated CSP instances range from the loosest CSPs to the tightest CSPs.
When p1 is fixed and p2 takes values from 0 to 1, the generated constraints between
variables range from the tightest constraints to the loosest constraints.

The suitability of the specific techniques for different tightnesses of CSPs and
constraints is discussed in Subsection 2.3.3 and in Chapter 4 (in the description of
the corresponding techniques).
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2.2 Complexity of CSP

In practice, some CSPs are easier to solve than others. Owing to complexity theory
which relies on a mathematical exploration of general computational problems, CSP
problems can be classified into “easy problems” and “hard problems”. Below we
briefly discuss the notions algorithm and efficiency (Subsection 2.2.1), NP and NP-
completeness (Subsection 2.2.2), and the main theorem of CSP that a CSP is an
NP-complete problem (Subsection 2.2.3). In dealing with complexity theory and its
theorem we mainly refer to William et al. [?] and Brucker [?].

2.2.1 Algorithms and efficiency

When we use a computer to solve a problem, we expect that the computer produces
an output f(x) for each input x in some given domain. Although it is well known
that a computer solves the problem by a list of instructions, called an algorithm, we
nevertheless define the notion since it is the basis of complexity theory.

Definition 9 An algorithm is a finite list of instructions to solve a problem.

For a precise description, a Turing machine is commonly used as a mathematical
model of an algorithm. For our purpose, it is sufficient to think of a computer pro-
gram written in some standard programming language as a model of an algorithm.

The efficiency of an algorithm is characterized by the performance of an algorithm
with respect to its computational time. The latter is measured by an upper bound
T (n) which is related to the number of steps that the algorithm takes on any input
x with n = |x|, where |x| denotes the length of some encoding of x. In most cases,
it is difficult to calculate the precise form of T . For these reasons, the T is replaced
by its asymptotic order. Therefore, we say that T (n) ∈ O(g(n)) (g is a function)
if there exist two constants c and n0 with c > 0 and n0 a nonnegative integer such
that T (n) ≤ cg(n) holds for all integers n ≥ n0. Thus, instead of saying that the
computational complexity is bounded by 8n3 + 15n2 + 6n + 7, we simply say that it
is O(n3).

Definition 10 A problem is called polynomially solvable if there exists a polynomial
p such that T (|x|) ∈ O(p(|x|)) holds for all inputs x of the problem, i.e., if there is
a integer k such that T (|x|) ∈ O(|x|k).

Somewhat informally and phrased beyond mathematical rigor we may state: a
problem is a question or a task. So, problems can be categorized into two types:
problems that can be answered by yes or no, and those that ask you to find a certain
object. The first type of problems is called decision problems. The second type of
problems can be easily transformed into equivalent decision problems by rephrasing
the conditions in the task. For instance, a scheduling problem can be transformed
into a decision problem by defining a threshold K for the corresponding objective
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function f . Such a decision problem then reads: does there exist a feasible schedule
S such that f(S) ≤ K?

2.2.2 NP and NP -completeness

The class of problems solvable in polynomial time is usually denoted by P . The class
NP is a class of decision problems where each “yes” input x has a certificate y, such
that |y| is bounded by a polynomial in |x| and there is a polynomial algorithm to
verify that y is a valid certificate for x. The letters NP stand for nondeterministic
polynomial time. Clearly, P ⊆ NP and NP is assumed to be a much larger class
than the class P .

Within the class NP there are NP-complete problems. These are the hardest
problems in the class NP . Below we define NP-complete problems, but we start
defining the concept of a polynomial-time reduction.

Definition 11 Let Q,R be two decision problems, Q polynomially reduces to R if
there exists a polynomial-time function g that transforms inputs for Q into inputs
for R such that x is a ‘yes’-input for Q iff g(x) is a ‘yes’-input for R.

Definition 12 A decision problem Q ∈ NP is called NP-complete if for each deci-
sion problem Q′ ∈ NP there exists a polynomial-time reduction of Q′ to Q.

Obviously, if Q ∈ P and there exists a polynomial-time reduction of Q′ to Q,
then Q′ ∈ P . This implies that if one NP-complete problem can be solved in poly-
nomial time, then each problem in NP can be solved in polynomial time. Despite
considerable research effort, so far no polynomial-time algorithm is found for any
of the NP-complete problems. Thus, it is widely accepted that any algorithm that
solves each instance of an NP-complete problem requires super-polynomial time. We
will deal with such problems and corresponding algorithms in the next subsection.

2.2.3 The main theorem

The size of an instance of a CSP is characterized by the number of variables, i.e.,
each instance of the CSP can be encoded by p(n), where p is a polynomial and n is
the number of variables. This follows from the fact that the size of the domains are
polynomial in n, the number of constraints is polynomial in n, and each constraint
is polynomially computable. The complexity of a CSP is given by the following
theorem.

Theorem 1 The decision version of a CSP, i.e., the question whether the CSP has
a solution, is an NP-complete problem.

Proof Observe that a CSP belongs to the class NP, because for a given assignment
a, all constraints can be checked in polynomial time. So, we can verify in polynomial
time the correctness of a solution of a CSP instance.



16 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

Next we prove that an instance of 3-SAT ( satisfiability ) problem 〈V, C〉 can be
polynomially reduced to a CSP, where:

• V is a set of boolean variables;

• C is a set of clauses: cl ⊆ L× L× L,
L = {¬v | v ∈ V} ∪ V.

Let f : V → W be a polynomially bijective function that maps the variables of
V onto a set of new variables W (W = {f(v) | v ∈ V}).

We reduce the 3-SAT problem to the following CSP:

〈W, {{0, 1}w | w ∈ W}, C′〉.

cl = (`1, `2, `3) ∈ C if and only if

cw1,w2,w3 ∈ C′;

wi =
{

f(`i) if `i ∈ V
f(v) if `i = ¬v and v ∈ V;

ti(x) =
{

x if `i ∈ V
1− x if `i = ¬v and v ∈ V;

cw1,w2,w3(x, y, z) =
{

true if t1(x) + t2(y) + t3(z) ≥ 1;
false if t1(x) + t2(y) + t3(z) < 1.

Now it is not difficult to see that there exists a solution for the CSP if and only
if there exists a solution for the SAT problem. Hence, if we have a polynomial al-
gorithm for finding a solution for a CSP, we also have a polynomial algorithm for
SAT. According to Cook’s theorem [?], SATs are NP-complete. So, any problem in
NP can be polynomially reduced to the problem whether a CSP has a solution, thus
the decision version of a CSP is NP-complete. 2

Note that a CSP is an NP-equivalent problem, since every NP-complete problem is
self-reducible. For the simplicity, we say that a CSP is NP-complete afterwards.

Although all known algorithms for solving a CSP take super-polynomial time in
the worst case, there is a subclass of CSPs that take polynomial expected time. In
[?], some classes of binary CSP instances are identified as solvable in polynomial
time. One of these classes is the class of instances in which the constraint graph is
a tree. Such instances can be solved in O(nd2), where n is the number of variables
and d is the size of the largest domain.
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2.3 Solving a CSP

In this section we provide an overview of existing methods and means for solving
a CSP. We discuss successively the following topics: possible tasks (2.3.1), search
methods (2.3.2), constraint propagation (2.3.3), the order of variable and value se-
lection (2.3.4), dead-end handling (2.3.5), and optimization in CSPs (2.3.6).

2.3.1 Possible tasks

The main task when solving a CSP consists of assigning a value to each variable in
such a way that all the constraints are satisfied simultaneously.

Depending on the requirements of an application, the task can be classified into
finding:

1. just one solution, with no preference to which one;

2. all solutions; and

3. an optimal solution, where optimality is defined according to prefixed domain
conditions as formulated by functions that can be assessed straightforwardly.

We remark that not every CSP is solvable. In this case, the task is at least to
prove that no solution exists for the given CSP. Subsequently, one can stop the work,
or relax some constraints to find a solution for that case or just attempt to obtain
a partial solution that satisfies as many of the constraints as possible.

Whether a CSP is easier or harder to solve is also related to the number of
solutions required. This issue will be further discussed in Subsection 2.3.3.

2.3.2 Search methods

In many applications, constructing a search space that covers all possible solutions
(i.e., a set of all possible assignments of values to variables) for the problem at hand
is a basic method. An appropriate problem representation makes it then possible
to move through the search space and to try and find a solution. Frequently the
search process is performed in the framework of a graph in which the representations
are connected to each other. Solving various kinds of graph problems can be done
by an exhaustive graph search which starts from some initial node and ends after
the examination of all graph nodes. This is considered as the basic algorithm.
Apparently, the exhaustive search of the whole search space is ineffective and only
applicable in the case of small search spaces. Within AI, a large number of efficient
search methods and strategies have been developed to handle the problems with large
search spaces. Some of such methods deal with the problems in which the search
spaces can be represented by a special type of graphs, i.e, trees. More discussions on
tree search methods and strategies can be found in Bolc and Cytowski’s book [?].
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Search can be very expensive, i.e., it may require a large amount of computation
time. For example, searching all truth assignments for a SAT is one of the simplest
search procedures. However, it will take a time proportional to 2n, where n is the
number of variables in the problem. Formally, a procedure that terminates in time
less than 2f(n) for some polynomial f(n) is said to execute in exponential time, where
n is the size of the problem. So, a search procedure is identified as the procedure that
requires at least exponential time. A no-search procedure is a procedure that only
requires polynomial time. This classification of procedures concerns the worst-case
time.

From Theorem 1, a polynomial algorithm to solve all CSPs is unlikely to exist.
In order to seek for a complete assignment that satisfies all constraints in a CSP,
search methods are therefore widely applied.

In fact, a solution of a general CSP can be found by searching systematically
through the search space without explicitly using the graph representation. In such
a procedure, each possible combination of the variable assignments is systematically
generated and tested (this is called Generate and Test ‘GT’ algorithm) to see whether
it satisfies all the constraints. A combination that satisfies all constraints in the
CSP is a solution. The number of combinations considered by GT is the size of the
Cartesian product of all the variable domains (i.e.,

∏n
i=1 |Dvi |, where |Dvi | is the

size of Dvi and n is the number of variables in the problem). In other words, GT
performs an exhaustive search, and can either find all solutions or prove that no
solution exists for the CSP.

Obviously, the GT algorithm is very simple but very inefficient too, because
it generates many wrong assignments of values to variables which are rejected in
the testing phase. The most common algorithm for performing systematic search
involves some notion of backtracking. In this algorithm, all variables involved in the
search are selected in some order. The first selected variable creates the root node
of the search tree (i.e., the start of the searching procedure). Values are assigned
to variables one by one. As soon as all the variables relevant to a constraint are
assigned, the validity of the constraint is checked. If a partial assignment violates
any of the constraints, backtracking is performed to the most recently assigned
variable whose domain is still not empty. The search stops if a solution is found, or
if all alternative decisions in the root of the tree have been tried without solution. In
the latter case, the instance of the CSP is said to be infeasible. The backtracking tree
search algorithm essentially performs a depth-first search through the search space.
It is usually called the chronological backtracking algorithm. Figure 2.1 provides an
outline of the algorithm.

At each time, variables with assignment are called past variables, variables with-
out assignment are called future variables; the variable which is being assigned is
called the current variable. A value d ∈ Dv is called inconsistent (consistent) if no
(a) solution exists that includes the assignment of d to v in combination with the
partial assignment made so far. When all values of a variable v are inconsistent, it
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Procedure Chronological Backtracking(V, D, C)
BT (V, {}, D,C)

Procedure BT (Set unassigned, Set partial assignment,D, C)
If (Set unassigned <> {}) do

select v ∈ Set unassigned;
save Dv;
while Dv <> {} do

select d ∈ Dv;
a(v) := d;
Dv − {d};
constraint checking;
If (no inconsistency detected)

if(BT (Set unassigned− {v}, Set partial assignment + a(v), D,C))
return (success);

recover Dv;
return (failure);

Figure 2.1: Chronological backtracking tree search algorithm for CSP

is said that a dead-end is encountered.

Apparently, whenever a partial assignment violates a constraint, backtracking
is able to eliminate a subspace from the Cartesian product of all variable domains.
So, backtracking is better than generate-and-test, however, it has some obvious
drawbacks and thus is still inefficient. First, the chronological backtracking may
repeat failure due to the same reason. Because it does not identify the real reason of
the conflict, the search in different parts of the space may fail for the same reason.
Second, chronological backtracking detects the conflict too late. Since it is not
able to detect the conflict before the conflict really occurs, i.e., only after assigning
the values to the all variables involved in a constraint. If these drawbacks can be
overcome, the performance of chronological backtracking can be further improved.

From chronological backtracking tree search algorithm, we can abstract three
basic components. They are constraint checking, variable and value selection and
dead-end handling. In the successive subsections, we introduce three techniques for
overcoming the drawbacks of chronological backtracking. These techniques improve
the search efficiency considerably. In 2.3.3 we describe constraint propagation in-
stead of the simple constraint checking for pruning the search space; it makes the
search process easier and more efficient. In 2.3.4 we discuss heuristics for variable
and value orderings to guide the search process. Finally, in 2.3.5 we describe intelli-
gent backtracking instead of simple chronological backtracking to handle dead-ends
adequately.
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RXY: (1,2) (2,3) RXY:(1,2)

X Y X Y

RXZ:

(1,3) RXZ: RYZ:

(3,2) (1,3) (2,3)

Z Z

Figure 2.2: A constraint-propagation example

2.3.3 Constraint propagation

Constraints between each pair of variables (X,Y ) can be divided into explicit and
implicit constraints. Explicit constraints are explicitly recorded in a set of consistent
(compatible) value pairs denoted by RXY . However, implicit constraints are not
recorded in any place. They can be seen as the side effects caused by the action of
explicit constraints. If a value assigned to a variable violates an implicit constraint,
the inconsistency will usually not be detected at the time of the assignment, but
several steps later, when the set of explicit constraints has acted according to its
contexts.

Definition 13 The deductive processes that make the initially implicit constraints
explicit are called constraint propagation.

A process of constraint propagation is shown in the following example.

Example of constraint propagation Figure 2.2 depicts a constraint graph of
a CSP instance (V, D, C), where V = {X,Y, Z}, and the same domain {1, 2, 3} is
assumed for all the variables in the CSP. The constraint RXY and RXZ are explicit
constraints. After the interaction of the two explicit constraints, the X domain
becomes {1}. This result is propagated by the constraints RXY and RXZ . Then the
Y domain becomes {2} and the Z domain becomes {3}. At the end of the process,
a new constraint RY Z has arisen that was not explicit in the previous constraint
graph.

The constraint checking process in the chronological backtracking algorithm only
checks the explicit constraints in the CSP. The implicit constraints are not dealt with.
From the example of Figure 2.2, we can see that a simple constraint checking can
be improved by constraint propagation. The inconsistent values in the unassigned
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variable domain that cannot participate in a solution can be detected and filtered
out by applying constraint propagation.

In constraint propagation, the most frequently checked forms of consistency are
node and arc-consistency. Node consistency refers to the consistency of a single
variable’s domain. A variable v’s domain Dv is node consistent for a unary constraint
cv, if cv(d)=true holds for all values d ∈ Dv. Node consistency is easily achieved by
deleting all values that do not satisfy the unary constraints.

As we focus on binary CSPs, the consistency of a binary constraint should be
ensured. In the constraint graph, binary constraints correspond to arcs, therefore
this type of consistency is also called arc-consistency. The arc (vi, vj) is arc-consistent
if for every value d ∈ Dvi

there is some value d′ ∈ Dvj
such that cvi,vj

(d, d′)=true
holds. Note that the concept of arc-consistency is directional, i.e., if an arc (vi, vj)
is consistent, it does not automatically mean that (vj , vi) is consistent too. Clearly,
an arc (vi, vj) can be made consistent by simply deleting those values from Dvi

for which there does not exist a corresponding value in Dvj
such that the binary

constraint cvi,vj
is satisfied. Deletions of such values do not eliminate any solution of

the original CSP. If all constraints of a binary CSP are arc-consistent (AC), we say
that full arc-consistency is achieved. Many algorithms (from AC-3 to AC-7) that
achieve arc-consistency have been developed [?, ?, ?]. Recently, a new algorithm
AC2001 was proposed by Bessiere and Regin [?]. The time and space complexity of
AC2001 are O(ed2) and O(ed) respectively, where e is the total number of binary
constraints and d is the size of the largest domain. For an appropriate overview
and some insights into new developments of arc-consistency algorithms, the reader
is referred to [?, ?, ?, ?].

Arc-consistency in itself is not sufficient to eliminate the need for backtracking.
So, a concept called K-consistency is introduced. A set of variables is K-consistent
if the following requirements hold: choose values of any K − 1 variables that satisfy
all the constraints among these variables and choose any Kth variable. Then there
exists a value for this Kth variable that satisfies all the constraints among these K
variables. Note that the K-consistency (K > 2) is achieved by constraint adaptation
on K − 1 variables rather than using domain reduction. In more detail, if a value
tuple that is allowed by the constraints among K−1 variables has no consistent value
in the Kth variable’s domain, this value tuple of K − 1 variables will be removed.

If the set of variables is K ′-consistent for all K ′ ≤ K, then it is called strong
K-consistent. The node consistency discussed earlier is equivalent to strong 1-
consistency, and arc-consistency is equivalent to strong 2-consistency (arc-consistency
is usually assumed to include node-consistency). Algorithms exist for making a CSP
strongly K-consistent for K > 2, but in practice they are rarely used because of
other efficiency issues. If a CSP containing n variables is strongly n-consistent, then
a solution to the corresponding CSP can be found without any search (backtrack
free). But the worst-case complexity of the algorithm for obtaining n-consistency is
also exponential.
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The chronological backtracking algorithm performs arc-consistency among al-
ready assigned variables for binary CSP, i.e., the algorithm checks the validity of
binary constraints on the partial assignment. It cannot detect the conflict before
the conflict really occurs. This drawback can be avoided by forward checking of the
possible conflicts, i.e., by applying arc-consistency between the current variable and
the future variables. When a value is assigned to the current variable, any value in
the future variable domain which is not arc-consistent with the current assignment is
(temporarily) removed. If the domain of a future variable becomes empty (a dead-
end is encountered), it is immediately known that the current partial assignment
is inconsistent. Forward checking therefore allows that a branch of the search tree
that will lead to failure is pruned earlier. Consequently, whenever a new variable
is considered, all its remaining values are guaranteed to be consistent with the past
variables. As a result, checking a new assignment against the past assignments is no
longer necessary. Forward checking checks only the constraints between the current
variable and the future variables. A more active approach, called look-ahead, per-
forms full arc-consistency among the future variables. It also detects the conflicts
between future variables and therefore allows that branches of the search tree that
lead to failure are pruned earlier than forward checking.

With the implementation of forward checking or look ahead, the constraint prop-
agation not only prunes the search space before the search process starts but also
during the search process. More constraint propagations at each node will result
in the search tree containing fewer nodes, but the overall cost may be higher, as
the computation at each node will be more expensive. For instance, a strong n-
consistency CSP would completely eliminate the need for search. However, obtain-
ing the strong n-consistency is usually more expensive than simple backtracking. In
some cases even the full look-ahead arc-consistency may be more expensive than
simple backtracking combined with forward checking arc-consistency (denoted as
FC-AC)[?]. Therefore, FC-AC is still widely used in applications and the imple-
mented constraint propagation is usually incomplete. This means that some but not
all the consequences of constraints are deduced. In particular, not all inconsistencies
can be detected by constraint propagation.

If a single solution is required, the tighter problems are harder to solve. Since
the larger proportion of the search space does not contain a solution, more back-
tracking is likely to be required. However, when all solutions are required, looser
problems becomes harder to solve. Since the problem is loosely constrained, a larger
proportion of the search space lead to solutions. In order to find all solutions, the
whole search space has to be explored.

As pointed out in [?], the hardest CSPs are neither the most loosely constrained
(a solution can quickly be found), nor the most tightly constrained (an inconsistency
can be quickly detected), but the intermediate ones. For them it is difficult to es-
tablish the consistency or the inconsistency. In principle, the tighter the constraints,
the more effectively one can propagate the constraints, which makes problem reduc-
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tion more effective. Partly because of this, problems with tighter constraints need
not be harder to solve than loosely constrained problems. For loose problems, many
leaves of the search space represent solutions. A simple chronological backtracking
would not require much backtracking before a solution is found. A strategy which
combines searching and constraint propagation is likely to spend its efforts unneces-
sarily in attempting to reduce the problem. From the point of view of the efficiency,
it is logical to use different constraint propagation strategies to solve CSPs with
different tightness. However, for a large CSP in practice, it is quite difficult to know
how many solutions exist before finding all solutions. Consequently, determining
the tightness of a large CSP is sometimes much harder than finding one solution.
Therefore, the approach that uses a limited form of constraint propagation is widely
applied to solve a variety of CSPs [?].

2.3.4 The order of variable and value selection

The order in which the variables are assigned and the values chosen could affect the
number of backtracks required in a search. This number is one of the most important
factors affecting the efficiency of a search algorithm. So, choosing a good variable
and value order to guide the search processes can improve the search efficiency
considerably. The simplest strategy for the selection of a next variable and its value
is static ordering, i.e., the order of the variables and values is predefined before the
search starts, and is not changed thereafter. The more sophisticated strategy is
dynamic ordering, i.e., the choice of a next variable and value at any point depends
on the current state of the search.

In the CSP community, several heuristics have been developed and analyzed
for variable ordering. One of the powerful heuristics is that the variable with the
fewest possible remaining alternatives is selected first for assignment (denoted as
FPR). The FPR heuristic provides a substantial improvement over the chronological
backtracking for significant classes of problems [?]. Another possible heuristic is to
assign those variables first that participate in the highest number of constraints.
This heuristic aims at early pruning the unsuccessful branches of the search tree.
Sadeh and Fox used a variable ordering (Operation Resource Reliance–ORR) in
constraint-based scheduling which is somewhat related to this heuristic [?].

Once a variable is chosen to be assigned, the variable may have several values
available. The order in which these values are considered can have substantial impact
on the time to find the first solution. One possible heuristic is to prefer those values
that maximize the number of options available for future assignments (denoted as
MNO). If a variable is selected according to the FPR heuristic, using the MNO
value heuristic as performed by the algorithm developed by Kale [?], for instance,
is able to solve much larger n-queen problems than without using the MNO value
heuristic. Johnston and Minton [?] proposed a minimal-conflicts heuristic for value
selection. They showed that this heuristic works quite well for n-queen problems
and for scheduling the Hubble Space telescope. As well as variable ordering, value
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ordering heuristics are highly problem-specific. For instance, one heuristic may
perform quite good for a certain class of problems but poor for another class of
problems. Moreover, for a given problem, one variable ordering may perform quite
good together with a specific value ordering and poor with another value ordering
[?].

In general, a good variable ordering reduces the search efforts by moving the
failures to upper levels (closer to the root node) of the search tree. Since a search
tree is formed from left to right, A good value ordering moves a solution of the
CSP to the left of the search tree so that the solution can be found quickly by the
backtracking algorithm. Note that good variable and value orderings are likely to
lead to a better run-time performance, but do not change the complexity of the
problem.

2.3.5 Dead-end handling

If a partial assignment cannot be extended to a solution satisfying all constraints, we
say that a dead-end occurs. The search procedure then has to undo one or more as-
signments and try alternative assignments. In chronological backtracking, the search
undoes the last assignment and tries another value, if it is available, for the selected
variable. As a result, chronological backtracking may search exhaustively a sub-tree
in which no solution exists. This is because the combination of several earlier as-
signments causes the algorithm to get stuck in such a sub-tree. The main problem of
escaping from a dead-end is to decide which assignments to undo. Besides chrono-
logical backtracking, more sophisticated procedures called Intelligent Backtracking
are developed to escape from a dead-end. They are dependency-directed backtracking
[?], backjumping [?], graph based backjumping [?], learning nogood assignments [?],
etc.[?, ?]. The main idea behind the Intelligent Backtracking is that if backtracking
is required, the reasons for the failure are analyzed so that the same mistake can
be avoided in the future. Note that a simple Intelligent Backtracking may have less
overall complexity than a more complicated Intelligent Backtracking. Because of
the complexity of determining the cause of the dead-end, the algorithm of Intelli-
gent Backtracking may take more time in total than even simple backtracking for a
variety of problems. Thus, choosing proper dead-end handling is usually combined
with the choice of proper constraint propagation, proper variable and value ordering.
The optimal combination of these techniques is varied for different problems [?].

In terms of complexity, all the algorithms that integrate constraint propagation,
variable and value selection heuristics and dead-end handling techniques have a
worst case complexity that is exponential to the number of variables. The reason
is that all techniques that attempt to improve the search efficiency do not aim to
reach a polynomial complexity, but a better run-time performance. The efficiency
improvements will possibly increase the spatial complexity because sometimes the
temporal complexities are transferred to the spatial complexities.
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2.3.6 Optimization in CSPs

In many practical problems the question whether the solution found reaches the
predefined objective is of the utmost importance and therefore optimization is nec-
essary. Normally, the predefined objective is given by an objective function that is
regarded as an additional constraint for the CSP. The requirement of the problem
is to find an optimal solution that meets the objective function, rather than finding
an arbitrary solution. We call these problems Constraint Optimization Problems
(COPs).

Definition 14 A COP (V,D,C,g) is defined as a CSP (Definition 2) together with
an objective function g which maps every complete assignment to a numerical value.
Where (V,D,C) is a CSP, and if S is the set of complete assignments of (V,D,C)
then

g : S → R.
Given a complete assignment a, we call g(a) the g-value of a.

The task of solving a COP is to find the solution with the optimal (minimal or
maximal) g-value. For instance, in job shop scheduling applications, finding just
any solution is not good enough. One may like to find the most economical way to
allocate the machines to the jobs, minimizing completion time of all jobs, etc.

In general, optimization poses two tasks: finding a feasible solution, and proving
that it is optimal. A naive but sometimes costly approach to obtain an optimal so-
lution is finding all solutions so as to compare their g-values. To avoid looking for all
solutions, the domain-knowledge sometimes can be used to prune parts of the search
space that do not contain solutions better than the best solution (‘best’ according
to the optimization function) found so far. This strategy that incorporates a simple
inference into the search processes is realized by branch and bound algorithms. In
such an algorithm, the bound is initialized to infinity for minimization (minus infin-
ity for maximization) COPs. Then, it searches for solutions in a depth-first manner.
It behaves like chronological backtracking, except that before a partial assignment is
extended to include a new assignment, the g-value of the current partial assignment
is calculated. If the g-value is greater than (less than) the bound, the sub-tree under
the current partial assignment is pruned. Whenever a solution is found, the g-value
that is less than (greater than) or equal to the bound becomes the new bound. The
newly found solution is recorded as (one of) the best solution(s) so far. After all
parts of the search space have been searched or pruned, the best solution recorded
so far is the solution to the COP.

An optimization problem is called NP-hard if the corresponding decision problem
is NP-complete. Straightforwardly from Theorem 1, COPs are NP-hard. Usually,
the time required to find an optimal solution is much more than that for finding an
arbitrary solution. The efficiency is the prominent issue in developing optimization
algorithms. Especially in some applications, the environment changes dynamically
(e.g., in industrial scheduling, a machine may break down from time to time), an
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optimal solution at one point may become suboptimal very soon. The decisions
derived from the solution could be useless if they come too late. Hence, giving
up completeness for speed is crucial in these cases. Consequently, weakening the
optimality criteria (i.e., relaxing the additional constraint specified by the objec-
tive function) and obtaining a near-optimal solution by approximate algorithms are
considered significant in solving such COPs.

For a hard optimization problem, one can crack it by solving a reasonable num-
ber of easy problems that are collectively equivalent to the original problem. For
instance, when solving a minimization problem, the upper bound on the optimal
solution value can be quite large at the beginning. When a solution is found, a new
upper bound which is lower than the previous one is chosen. So, the upper bound
values form a monotonous descending sequence. Each of them corresponds to a new
problem which may be easier to solve than the original problem.

When no alternative methods are available, the stochastic search techniques could
be used to solve CSP and COP. A stochastic search algorithm moves from one point
to another in the search space in a nondeterministic manner, guided by heuristics.
The next move in the search space is partly determined by the outcome of the
previous move. Generally speaking, a stochastic search is incomplete. Thus, the
obtained solution is often near-optimal for a COP.

2.4 Dynamic CSPs

In practice, the set of constraints in a CSP may change over time. For instance, a
machine may break down in a job shop. The resource constraint on the operations
processed by that machine is thus changed. Such a change may result in a new CSP.
The sequence of such CSPs is denoted as a Dynamic CSP (DCSP) [?].

Definition 15 A dynamic constraint satisfaction problem P is a sequence P0, P1,
· · · , Pi, · · · of static CSPs, each one resulting from a constraint change in the preced-
ing one.

The constraint change may be a restriction (a new constraint is imposed/added
on a subset of variables), a relaxation (a constraint is removed from the CSP) or
a combination of restriction and relaxation. We remark that, the other possible
changes to a CSP, such as domain modifications, variable additions or removals, can
be expressed in terms of constraint additions or removals too.

For any i, if Pi = (V,Ci, D), we have Pi+1 = (V, Ci+1, D) where Ci+1 = Ci±c or
Ci+1 = Ci− c1 + c2; c, c1, c2 being a constraint. Obviously, if a complete assignment
a? is a solution of Pi = (V,Ci, D) then it is also a solution of (V, Ci − c,D). Upon
relaxation, and if there is a previous solution, we may simply keep this solution.
Conversely, if a complete assignment a? is not a solution of Pi = (V, Ci, D) then
it is not a solution of (V, Ci + c,D) either. Consequently, we define the notion of
infringed solution.
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Definition 16 A solution of Pi which is not a solution of Pi+1 is called the infringed
solution of Pi+1.

Assume that the constraint change is a restriction or a combination of relaxation
and restriction, then a valid solution of one CSP may not be a solution of the
next CSP invoked by the new situation. So, we have an infringed solution and a
new solution must be generated for that CSP. For solving such CSPs, it is always
possible to treat them as independent CSPs and solve them by solution methods
introduced in the previous sections. However, any solution obtained in this way
might be quite different from a previous one. In practical situations, large differences
between successive solutions are often undesirable. So, we must solve, as efficiently
as possible, the solution-maintenance problem in a DCSP.

Wallace and Freuder [?] recently proposed an algorithm to generate solutions that
are expected to remain valid after constraint changes in a DCSP. The algorithm
tracks the changes that happen in a DCSP and incorporates this information to
guide the search to solutions that are more likely to be maintained. This approach
is based on the assumption that the successive changes in a DCSP are temporary and
tractable. However, when unexpected events occur, for instance a machine breaks
down or an employee becomes ill, the assumptions may no longer be well-founded.
As the authors pointed out, in the cases of constraint addition, it is quite complicated
to track down the changes directly. Thus, that approach may become too costly to
be viable [?].

Verfaillie and Schiex [?] proposed an algorithm by reusing the solution of a pre-
vious CSP to find a solution for the new CSP. The solution maintenance was made
by two steps. First, the algorithm fixes the assignment of a set of variables in the
solution of the previous CSP. Second, it finds a partial assignment for the rest of
variables that are consistent with the fixed assignments by the traditional search
algorithm. However, for a general DCSP, it is hard to predict which assignment
of variables should be fixed in a dynamic environment. Moreover, carrying out the
solution maintenance by fixing the assignment of a set of variables is limited in some
specific application domains. In other application domains, the objective may be
to maintain as many as possible variable assignments equal to the old ones. For
instance, for the process of scheduling people working in a hospital where someone
becomes ill, it would be disadvantageous if too many changes with respect to the old
schedule would occur in night shifts, weekend shifts and corresponding compensation
days of all employees. To cope with these application demands, a new algorithm has
been developed in our research. It will be discussed in Chapter 4 of this thesis.
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Chapter 3

Job Shop Scheduling

Over the last decade a number of powerful methods have been developed for solving
Job Shop Scheduling Problems (JSSPs) [?]. The success of these methods is mainly
due to formulating the JSSP as a CSP and combining the CSP solving methods with
the techniques developed in Operation Research (OR), such as simulated annealing
[?], edge-finding [?] etc.[?].

After the precise formulation of a JSSP in Section 3.1, the chapter introduces
a useful CSP model of a JSSP in Section 3.2. Then, from Section 3.3 to Section
3.6, an overview of strategies and techniques in constructing a Job Shop Schedule
is given, which include constructive algorithms, local-search algorithms, genetic al-
gorithms, and constraint-propagation techniques. Finally, Section 3.7 deals with
reactive scheduling issues.

3.1 The Job shop scheduling problem

Scheduling is concerned with the problem of allocating scarce resources to activities
over time (i.e., the processes of assigning activities to resources in time). Any man-
ufacturing shop not engaged in mass production of single items will have scheduling
problems.

In manufacturing shops a job consists of a series of operations (activities) which
are processed by machines (resources) for a certain processing time period. The
number of machines available is limited. If a machine can only process one operation
at a time, the machine is called a unary capacity machine (resource). If a machine
is capable of processing more than one operation at a time, the machine is called a
multiple capacity machine (resource). In order to distinguish machines from other
resources in the job shop scheduling problem, we use the notation of machine to
denote process resource. Except for explicit explanation, the machines mentioned
are unary capacity machines. For description convenience and consistency, we use

29
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operations instead of activities.
Usually, the operations of a job cannot be processed in arbitrary orders but are

subject to a prescribed processing order. From this point of view, manufacturing
shops can be categorized in three types: (1) if all jobs pass the machines in an
identical order, it is called a flow shop; (2) if jobs pass the machines in predefined
different orders, it is called a job shop; (3) if the operations of the jobs can be
processed in arbitrary orders, it is called an open shop. Since a job shop contains
a variety of constraints on the order of the operations, the problem that determines
the start times of the operations in a job shop is more complicated than in a flow
shop and an open shop. As a result job shop scheduling is considered to be a
good representation of the general domain and has earned a reputation for being
notoriously difficult to solve.

The task of job shop scheduling is to determine the start times of the jobs’
operations such that the prescribed orders (if they exist) are not violated and the
processing times of identical machines do not overlap in time. The resulting time
table is called a schedule. In practice, each scheduling pursues at least one economic
objective. Typical objectives are: (1) the reduction of the make-span of an entire
production program (i.e., the maximum completion time of all operations) [?], (2)
the minimization of mean job tardiness (i.e., how much time the operations finish
after their due date) [?], (3) the maximization of machine load and (4) some weighted
average of many similar criteria.

In order to handle JSSPs properly, we adopt a formal definition of JSSP as given
by Nuijten et al. [?], with some small adaptations to our notation.

Definition 17 An instance of a standard JSSP is a tuple (J , Ω,M,H,≺, J,M, p),
where J is a set of jobs, Ω is a set of operations, M is a set of machines and
H ∈ N is an scheduling horizon. A function J : Ω → J gives each operation the
job to which it belongs, a function M : Ω →M gives each operation the machine on
which it must be processed, and function p : Ω → N gives the processing time of each
operation. A binary relation ≺ is used to decompose Ω into chains, such that every
chain corresponds to a job. A schedule is a function st : Ω → N which denotes the
nonnegative start times of the operations. The problem is to find a schedule st such
that for all o, o′ ∈ Ω:

1. st(o) + p(o) ≤ H,

2. st(o) + p(o) ≤ st(o′), if o ≺ o′ and,

3. st(o) + p(o) ≤ st(o′) or st(o′) + p(o′) ≤ st(o), if M(o) = M(o′) and o 6= o′.
where o ≺ o′ means that the operation o is before the operation o′, M(o) denotes
the machine on which the operation o is processed.

Building a system to solve job shop scheduling problems is not a trivial task.
The scheduler or the system developer has to be aware of three issues before starting
work.
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• The complexity of the job shop scheduling problem. Most job shop scheduling
problems are known to be NP-hard [?]. In practice, this means that one must
design robust approximate algorithms to generate an appropriate (possibly
optimal but often sub-optimal) solution in a bounded amount of time. De-
pending on different applications, the response time required for constructing
a schedule may vary from a few microseconds to a few days.

• The specification of the problems. Different processing environments induce
different scheduling constraints that more or less contribute to the complexity
of the problem, some of which may be very specific to the problem under
consideration. The size of a scheduling problem may vary from a few dozens
of operations to thousands of operations. Thus, the algorithms that work well
on the small problems may not be applicable to bigger problems.

• The integration with the overall processing system. A scheduling system must
get its data from the information system globally in use in the job shop, and
must return its results (i.e., the constructed schedule) for shop-floor execution.

3.2 Constraint-based job shop scheduling

Over the last decade, CSP methodologies have successfully been used for handling
JSSPs in the AI community [?, ?]. The constraint representation of a JSSP is able
to express the problem knowledge at a deep level and may form the basis for search
guidance in the solution search processes.

3.2.1 CSP model of a JSSP

Based on the Definition 17, we give the following CSP definition of a JSSP.

Definition 18 A JSSP (J , Ω,M,H,≺, J,M, p) is a CSP (Ω, D, C) which involves
a set Ω = {o1, o2, · · · , on} of n operations, a set of operation start time domains
D = {D(o1), D(o2), · · · , D(on)} and a set C = {C1, C2, C3} of constraints. Where
each Cl (1 ≤ l ≤ 3) denotes a set of constraints that are defined on the subset of Ω:

C1 : st(oi) + p(oi) ≤ H;
C2 : st(oi) + p(oi) ≤ st(oj), if (J(oi) = J(oj) ∧ oi ≺ oj);
C3 : st(oi) + p(oi) ≤ st(oj) or st(oj) + p(oj) ≤ st(oi), if M(oi) = M(oj);
where oi, oj ∈ Ω (1 ≤ i ≤ n, 1 ≤ j ≤ n).

From the point of view of a constraint satisfaction problem, two main types
of constraint are considered in a JSSP. (a) Temporal constraints (i.e., precedence
constraints, denoted by C2) between two operations in the same job specify that if
operation oi is before oj in the total order (oi ≺ oj), then oi must execute before
oj . (b) Capacity constraints (machine constraints, denoted by C3) specify that no
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st(o): A variable representing the start time of o;
D(o): The discrete domain of possible values for st(o);
J(o): The job to which operation o belongs;
M(o): The machine on which operation o is processed;
p(o): Processing time of o;
P (Ω): The sum of the processing times of all operation in Ω;
M(Ω): The machine on which all operations o ∈ Ω are processed;
J(Ω): The job to which all operations o ∈ Ω belong.

Figure 3.1: Notations

two operations requiring the same machine can be executed simultaneously. In a
real job-shop floor, jobs have release dates (the time after which the operation in
the job can be executed) and due dates (the time by which the last operation in the
job must be finished). These requirements are often added to the constraint set to
determine each operation’s earliest start time and latest finish time. The job shop
scheduling problem thus becomes to determine whether there is an assignment of a
start time to each operation such that all constraints defined in Definition 18 are
satisfied. This approach is called constraint-based scheduling.

Many scheduling problems are not simply CSPs but COPs (Constraints Op-
timization Problems). To handle these problems, the optimization functions are
added as new constraints. Some relatively simple optimization functions have been
studied in the literature such as the minimization of make-span [?], minimization
of the average (or maximum) tardiness of operations, or some combination of other
attributes (for example, minimize work-in-process combined with tardiness [?]).

For the sake of consistently describing JSSPs, we use the notations given in
Figure 3.1 throughout the context of this thesis (where o ∈ Ω).

3.2.2 Constraint-directed search for solving JSSPs

The fundamental technique used to solve a JSSP in constraint-based scheduling is
the constraint-directed search. This search technique utilizes the constraint repre-
sentations not only to model the problem knowledge but also to guide search to a
solution. The constraint-directed search algorithms can be described by the frame-
work in Figure 3.2 (referred to [?]).

Since a variable has been introduced for each operation, we speak of operation
selection instead of variable selection. Similarly, we often use start-time selection
instead of value selection.

Like the chronological-backtracking algorithm, the Framework of constraint-
directed search contains three basic components. They are constraint propagation,
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While not solved and not infeasible do
constraint propagation
if a dead-end is detected then

dead-end handling
else

select variable
select value for variable

endif
endwhile

Figure 3.2: Framework of constraint-directed search.

operation and start-time selection, and dead-end handling. More specifically, each
time an operation is assigned a start time, inconsistent start times of the unassigned
operations are removed by the consistency checking algorithm. The new start-time
domain of an unassigned operation is called its current start-time domain. If a par-
tial assignment obtained cannot be extended to a solution satisfying all constraints,
we say that a dead-end occurs. The purpose of the next operation and its start time
selection is to avoid getting trapped in a dead-end. They are done by operation and
start time selection heuristics. When a real dead-end occurs, the procedure called
dead-end handling undoes one or more previous assignments and tries alternative
assignments. The search stops if a solution is found, or if all alternatives have been
tried without success. In the later case, the instance is said to be infeasible.

Based on the notations in Subsection 3.2.1, we introduce the following definitions.
For each operation o ∈ Ω, D(o) is its current start-time domain.

• est(o) = min{t | t ∈ D(o)} is the earliest possible start time of o;

• eft(o) = min{t + p(o) | t ∈ D(o)} is the earliest possible finish time of o;

• lst(o) = max{t | t ∈ D(o)} is the latest possible start time of o;

• lft(o) = max{t + p(o) | t ∈ D(o)} is the latest possible finish time of o;

• EST (Ω) = min{est(o) | o ∈ Ω} is the minimal earliest possible start time of
all operations in Ω;

• EFT (Ω) = min{eft(o) + p(o) | o ∈ Ω} is the minimal earliest possible finish
time of all operations in Ω;

• LST (Ω) = max{lst(o) | o ∈ Ω} is the maximum latest possible start time of
all operations in Ω;

• LFT (Ω) = max{lft(o) + p(o) | o ∈ Ω} is the maximum latest possible finish
time of all operations in Ω;
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In the following sections, we first introduce a number of constructive algorithms
that generate schedules in constraint-based scheduling approach. Then, we briefly in-
troduce other approaches. We end the chapter with a discussion on reactive schedul-
ing.

3.3 Constructive algorithms

The constructive approach starts to create a job-shop schedule from scratch, then
works on a consistent partial solution (that is, a fixed subset of operations success-
fully assigned) and attempts to extend it by assigning a start time to a currently
unassigned operation. Notable progress has been made in this approach in the last
decade [?, ?, ?, ?, ?].

3.3.1 An optimization algorithm

Baptiste et al. [?] presented an optimization algorithm to find a schedule with
the minimal make-span. The algorithm starts with the propagation of temporal
constraints to determine whether a set of temporal constraints is consistent. It also
determines earliest and latest start and finish times for operations that are globally
consistent with all the temporal constraints. As a result, solutions to the JSSP can
be obtained by sequencing all the operations that require a common machine. Given
an upper bound for the make-span, the following constructive algorithm either finds
a solution to the JSSP or proves that no solution exists:

1. Select a machine among the machines required by unordered operations.

2. Select the operation to execute first (or last) among the unordered operations
that require the chosen machine. Post and propagate the corresponding prece-
dence constraints. If an inconsistency is detected, a backtrack occurs. Keep
the other operations as alternatives to be tried upon backtracking.

3. Iterate step 2 until all the operations that require the chosen machine are
ordered.

4. Iterate step 1 and 3 until all the operations that require a common machine
are ordered.

Effective heuristics are used to select the machine and the operation to execute
either first or last among the unordered operations that require the machine.

To find a schedule with the minimal make-span, the algorithm proceeds by
branch-and-bound search (or binary search on the make-span interval). As long
as the above search algorithm succeeds in generating a solution to the problem, a
new constraint stating that the value of the criterion to minimize must be strictly



3.3. CONSTRUCTIVE ALGORITHMS 35

smaller than the value of the best solution found so far is added to minimize make-
span. When the search algorithm fails, i.e., reports that there is no better solution,
it is known that the best solution found so far is optimal.

3.3.2 Approximation algorithms

Although the results obtained by the optimization algorithms are quite good, a
significant portion of the CPU time is spent to find a solution relatively far from
the optimal value. The reason is as follows: when the upper bound make-span of
a scheduling is much higher than the optimal make-span, there are many solutions,
making the algorithm easy to find one. Furthermore, when the upper bound is
very close to the optimal make-span, constraint propagation becomes very effective
in pruning the search space. Although it is not easy to find a solution, constraint
propagation provides reliable guidance. However, for intermediate values of the
upper bound, it is fairly difficult to find a solution and constraint propagation does
not provide much guidance. This increases the probability of taking a wrong decision
and as a chronological-backtracking (systematic) search strategy is used, it may take
long to recover from such a mistake.

An alternative to an optimization algorithm is an approximation algorithm. Sev-
eral types of approximation algorithms are available for JSSPs. Below we discuss
three of them.

(1) Applegate and Cook [?] use the shuffle procedure to improve solutions to the
JSSP. The basic ideas is to fix a number of ordering decisions, based on the best
solution found so far, and search for an optimal schedule among those that respect
those decisions. This procedure gives very good results, especially when effective
constraint propagation techniques are used. The reason is that the propagation of
the imposed decisions results in a drastic reduction of the search space and thus
enables a fast resolution of the remaining sub-problems.

(2) Nuijten [?] points out that every schedule can be transformed into a left-
justified schedule in which the operations are scheduled as early as possible while
preserving the precedence constraints and the machine orderings. So, he uses the
simpler and less expensive heuristics in which the operations and start times that
together construct left-justified schedules are selected. In more detail, an operation
is selected by determining the minimal earliest finish time of any unscheduled op-
erations and then randomly selecting one operation that can be started before this
finish time. The start-time selection consists of selecting the earliest possible start
time of this operation. As a result the number of possible decisions in each node of
the search tree is drastically reduced. Moreover, Nuijten uses a more powerful prop-
agator — edge-finding to derive more precise start time domains for the unassigned
operations. This further reduces the number of possible decisions in each search
state.

To escape from dead-ends, a randomized procedure is applied. First, the chrono-
logical backtracking is used in order to solve the instance. If this does not lead to
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a solution after a reasonable number of backtracks, the search is stopped and then
completely restarted. The problem then is to direct the search along a path differ-
ent from the ones followed previously. By restarting the search with a randomized
selection of a next operation, the probability of following the same search path more
than once is very small since the number of possible paths is usually very large.

Furthermore, by backtracking, if it is derived that operation o cannot be sched-
uled on time t, it is implied that it cannot be started on any time in the interval
[t + 1, min{eft(o′) | o′ ∈ ΩM(o) −{o}}), where ΩM(o) represents the set of operations
which require the same machine as o does.

(3) An algorithm presented by Baptiste et al. in [?] combines the two ideas
above. At each step of the algorithm, a number of ordering decisions is kept. Then
as in (1), the algorithm proceeds to search for an optimal schedule among those that
respect the decisions. However, the decisions that are kept are randomly selected
and the search is stopped after a given number of backtracks.

The algorithm can be refined by introducing different operation selection heuris-
tics. Each of these heuristics is tried in turn. The procedure terminates when N
iterations of each of the heuristics have failed to produce a solution better than the
best available solution. Finally, the approximation and optimization algorithms can
be combined as follows: when the approximation algorithm terminates, the opti-
mization algorithm is launched.

3.3.3 The ORR-FSS algorithm

The ORR-FSS algorithm was proposed by Sadeh and Fox in [?, ?]. In the algorithm,
each iteration works on a consistent partial assignment and attempts to extend it
by assigning a start time to a currently unassigned operation. ORR (Operation
Resource Reliance) heuristically identifies the most critical operation by finding the
operation that relies most upon the machine and the time for which there is the most
contention (i.e., the highest number of operations that are competing to execute at
a particular time on a machine). FSS (Filtered Survivable Schedules) then rates the
quality of the possible start times of the critical operation. The start time with the
highest quality (which is expected to be compatible with the largest number of sur-
vivable job schedules) is assigned. Chronological backtracking, temporal-constraint
propagations and capacity-constraint propagations are used in the algorithm. The
algorithm terminates if all operations are assigned a consistent start time, or a user-
specified bound on the number of assignments is reached.

Although ORR-FSS uses sophisticated heuristics for the operation and the start-
time selection, experimental results show that the performance of ORR-FSS is poor
in comparison with Nuijten’s algorithm, even if ORR-FSS is augmented with the
propagators used in Nuijten’s algorithm [?].
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3.4 Local-search algorithms

Local-search techniques are useful tools for solving discrete optimization problems.
All non-preemptive scheduling problems are discrete optimization problems. A dis-
crete optimization problem can be described by the following definition.

Definition 19 For a given finite set S and a given cost function c : S → R, one
has to find a solution s? ∈ S such that: ∀s ∈ S c(s?) ≤ c(s).

Local search is an iterative procedure which moves from one solution in S to an-
other as long as necessary. In order to search systematically through S, the possible
moves from a solution s (s ∈ S) to the next solution is restricted by the neighbor-
hood N(s), where N(s) describes the subset of solutions which can be reached in one
step by moving from s. By selecting a solution s′ ∈ N(s) based on the values c(s)
and c(s′), a starting solution of the next iteration is chosen. According to different
criteria used for the choice of the starting solution of the next iteration, different
types of local search techniques can be utilized.

The simplest choice is to take the solution with the smallest value of the cost
function. This choice leads to the well-known iterative improvement method. In
general, a final solution s? obtained by iterative improvement is only a local minimum
with respect to the neighborhood N (i.e., a solution such that no neighbor is better
than this solution) and may differ considerably from the global minimum. A method
that seeks to avoid being trapped in a local minimum is simulated annealing [?].
In this method, s′ is chosen randomly from N(s). In the ith step s′ is accepted
with probability min{1, exp(− c(s′)−c(s)

ci
)}, where ci is a sequence of positive control

parameters with limi→∞ ci = 0.
A variant of simulated annealing is the threshold acceptance method. It differs

from simulated annealing only by the acceptance rule for the randomly generated
solution s′ ∈ N(s). s′ is accepted if the difference c(s′) − c(s) is smaller than some
non-negative threshold T , where T is a positive control parameter which is gradually
reduced.

Simulated annealing and threshold acceptance still have the disadvantage that
it is possible to get back to solutions already visited. A simple way to avoid such
problematic returns is to store all visited solutions in a list called tabu list and to
accept only solutions which are not in the list. This local search technique is called
tabu search. Further discussions about tabu search can be found in [?, ?].

Zweben et al. presented a local search algorithm for scheduling problems in [?].
The algorithm, called GERRY, begins with a complete assignment of start times that
fails to satisfy some set of constraints and then iteratively modifies or repairs the
start times of some operations to improve the quality of the schedule. The quality
of a schedule is measured by a cost function which is a weighted sum of constraint
violations.
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GERRY preserves temporal (precedence) constraints in all its problem solving
activities. Therefore, when applied to job shop, the only constraints that GERRY

repairs are the machine capacity constraints. If K is the set of operations contribut-
ing to the violation, GERRY tries to move each operation in K to the previous and
next times at which the machine is available. Each candidate move is evaluated by a
linear combination of a number of factors, including the extent to which the process-
ing time of the operation matches the amount of the over-allocation, the number
of operations temporarily dependent on the operation, and the distance from the
current start time of the operation to the new start time. The repair then converts
each evaluated value into a probability, and a operation is selected based on the
probabilities.

At the end of each iteration, the overall cost of the schedule is calculated. If the
cost is less than that of the previous schedule, the new schedule becomes the current
schedule for the next iteration. If the new schedule is better than any previous
solution, it is cached as the schedule “so far best”. Even if the schedule has a higher
cost than the previous schedule, it may be accepted by some probability based on
the simulated annealing technique in order to escape local minima and cycles. As
the search progresses, a higher cost schedule is increasingly less likely to be accepted.
The algorithm terminates when the quality of the obtained schedule is found to be
satisfactory or when a designated time bound is reached.

3.5 Genetic algorithms

Genetic (Evolutionary) algorithms are probabilistic algorithms. An initial popula-
tion of likely problem solutions (rather than a single solution) is usually created by
some randomized means. The algorithm is assumed to evolve towards better solution
versions. New solutions are generated with the use of genetic operators patterned
according to the reproductive processes observed in nature. Each element of a cur-
rent solution space (population) is called a chromosome, and its components (there
is a number of components) are called genes. Because of the similarity in action,
genetic operators have names originating from genetics: cross-over, mutation, and
inversion. However, in a variety of applications different representations can be used
which may lead to the use of specially adapted genetic operators.

After a certain number of generations, when the successive populations (off-
spring) are no longer getting better (in the sense of a fitness function), the best
chromosome represents the optimal solution. In practice, the algorithm terminates
after a number of iterations (having taken into account storage and time constraints).

Many researchers have worked on solving JSSPs by using the genetic algorithm
template [?, ?, ?, ?, ?, ?]. In recent years, hybrid genetic (evolutionary) search
scheduling algorithms (ESSA) are developed to overcome disadvantages of the stand-
alone genetic algorithm [?, ?]. They combine a local search algorithm to update the
offsprings, and try to optimize locally the created offspring as much as possible
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before it is merged in the population. However, the new method is in principle not
different from the basic genetic algorithm template. The major differences are (1)
the representation (encoding) of a schedule (chromosome), (2) the specific operators
used to produce offsprings (e.g., crossover and mutation), (3) the fitness function
used to evaluate the chromosome. Although Hybrid ESSA performs quite well to find
optimal schedules for some benchmark JSSPs [?], many of them cannot handle an
infeasible complete assignment for a JSSP. Moreover, the computation time needed
(i.e., efficiency) is not addressed in full and not even in its essence in the genetic
algorithm literature.

3.6 Constraint propagation techniques

In recent years, many powerful propagation techniques have been put in use for
constraint-based scheduling. For instance, variations of edge-finding [?, ?, ?] have
been integrated in many constraint-directed search algorithms. Although, it has
long been known that the search can drastically be reduced by enforcing various
degrees of consistency implemented by constraint propagation algorithms, the effort
to achieve such high degrees of consistency appeared to be at least as expensive as
the traditional algorithms. Therefore, the goal for the research with emphasis on
propagation is to find a trade-off between complexity and the resultant easing of
the search effort. We briefly introduce four efficient propagator techniques in the
following subsections, namely the time-table propagator, the disjunctive constraint
propagator, the edge-finding technique, and the energy-based reasoning technique.

3.6.1 Time-table propagator

The time-table propagator defines a data structure called timetables to maintain
information about machine utilization and machine availability over time. The data
structure can be discrete arrays or sequential lists which contain constrained op-
erations. The machine constraints are propagated in two directions: (1) from the
machines to the operations, in order to update operation time-bounds according to
the availability of the machines; (2) from the operations to the machines, in order
to update machine utilization and availability according to the time-bounds of op-
erations. For example, when lst(o) < eft(o), it is sure that the operation o will use
the machine within the interval [lst(o), eft(o)). Over this period, the corresponding
machine is no longer available for other operations.

3.6.2 Disjunctive constraint propagator

The disjunctive constraint propagator applies to unary machines. It consists of
posting a generic disjunctive constraint to ensure that the time intervals over which
two operations require a unary machine cannot overlap in time. Such disjunctive
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constraint propagation is more time-consuming but often results in more precise time
bounds than the propagation of the corresponding time-table constraints. The most
basic disjunctive constraint states that two operations o and o′ which require the
same unary machine M cannot overlap in time: either o precedes o′ or o′ precedes
o. This can be stated as follows:

[end(o) ≤ start(o′)] or [end(o′) ≤ start(o)]
In this formula, start(o), end(o), start(o′), end(o′) denote constrained variables.

Constraint propagation consists in reducing the set of possible values for these vari-
ables: whenever the minimal possible value of end(o) exceeds the maximal possible
value of start(o′) (i.e., eft(o) > lst(o′)), o cannot precede o′; hence o′ must precede
o; the time-bounds of o and o′ can consequently be updated with respect to the new
temporal constraint [end(o′) ≤ start(o)]. Similarly, when eft(o′) > lst(o), o′ cannot
precede o. When neither of the two operations can precede the other, a contradiction
is detected.

The disjunctive formulation above does not necessarily imply the explicit creation
of a disjunctive constraint for each pair of operations. To create a unique global
constraint for the overall set {o1, . . . , on} of operations that require a given unary
machine M is equivalent to applying the process described above to the n(n− 1)/2
pairs of operations {oi, oj}(1 ≤ i, j ≤ n). In fact, it is an arc-consistency enforcement
of disjunctive constraints over the start-time domains of all operations.

3.6.3 Edge finding

The problem of eliminating all the impossible start and end times of operations
submitted to machine constraints is NP-hard. Even when only one unary machine
is considered, the problem of determining whether there exists a schedule satisfying
the given time-bounds for each operation is NP-hard [?]. Two types of methods that
provide more precise time-bounds have been developed. The first type of method,
called edge finding, consists in determining whether an operation o must, can, or
cannot be the first or the last to execute among a set Ω of operations that require the
same machine. The second type of method, called energy-based reasoning, consists
in comparing the amount of machine energy required over a time interval [t1 t2)
to the amount of energy that is available over the same interval. This form of
propagation will be discussed in the next subsection.

One of the most successful algorithms for updating time-bounds of operations
submitted to unary machine constraints was proposed by Carlier and Pinson [?] ; it
is called edge-finding technique. The main principle of this algorithm is to compare
the temporal characteristics of an operation o to those of a set of operations Ω that
require the same machine. Assume that a set of operations Ω on one machine is
selected. For each operation o ∈ Ω, o is constrained to execute first (or last) among
the operations in Ω. Then the edge-finding rule presented below deduces that some
operations must, can, or cannot, execute first (or last) in Ω.

LFT (Ω ∪ {o})− EST (Ω) < p(o) + P (Ω) ⇒ o ≺ Ω
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LFT (Ω)− EST (Ω ∪ {o}) < p(o) + P (Ω) ⇒ o Â Ω
Where o ≺ Ω(o Â Ω) denotes that o is before (after) all operations in Ω.
Consequently, new time-bounds can be deduced. When o is before all operations

in Ω , the end time of o is at most LFT (Ω)− P (Ω); When o is after all operations
in Ω, the start time of o is at least EST (Ω) + P (Ω).

If n operations require the same machine, there are potentially O(n× 2n) pairs
{o,Ω} to be considered. The computation complexity is exponential. However,
Carlier and Pinson [?] present an algorithm that performs all of the possible time-
bound adjustments in O(n2). It consists of a “primal” algorithm to update earliest
start times and a “dual” algorithm to update latest finish times. The “primal”
algorithm consist of computing “Jackson’s preemptive schedule” (JPS)[?] for the
machine under consideration. A variant of this algorithm, presented by Nuijten
in [?] has the same complexity but does not require the computation of Jackson’s
preemptive schedule. Carlier and Pinson [?] present a variant running in O(n ×
log(n)), too.

Caseau and Laburther [?] present two sets of rules for the edge-finding technique
based on the concept of “task intervals”. There are at most O(n2) task intervals to
consider for a machine on which n operations are scheduled. Therefore, a compu-
tational time in O(n3) is, in the worst case, necessary to apply the rules to all the
tasks intervals and all the operations of a given machine.

While integrating the edge-finding algorithm in a generic constraint propagation
framework to deduce more precise start-time bounds for operations, the efficiency
issues have to be considered too. When both temporal constraints and capacity (ma-
chine) constraints apply, it is intuitively more efficient to deduce all the consequences
of temporal constraints prior to the application of the edge-finding technique. The
main reason is that the propagation of each temporal constraint has a very low cost
in comparison to an application of edge finding. The edge finding is consequently
delayed until the other constraints have been propagated.

3.6.4 Energy-based reasoning

Energy-based reasoning (EBR) consists in comparing the amount of machine energy
required over a time interval [t1 t2) to the amount of energy that is available over the
same interval. Erschler et al. [?] analyzes the effect of time and machine constraints
on the admissibility of schedules. They studied how operation characteristics and
machine constraints can induce new constraints which allow to restart the propa-
gation. The definition of required energy consumption of an operation o over an
interval [t1 t2) is the smallest amount of time during which o will be executed on
the interval:

W [t1 t2)
o = min(p(o), t2− t1, est(o) + p(o)− t1, t2− lft(o) + p(o))

W
[t1 t2)
o is null if the previous quantity is negative. Two deduction rules apply.
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• The first rule is based on the idea of picking two operations o and o′ and trying
to find a contradiction when sequencing o before o′. To achieve this goal, the
required consumption of all the operations o′′ over the interval [est(o) lft(o′))
is computed and compared to the provided amount of machine energy during
the same interval.

lft(o′)− est(o) <
∑

o′′ /∈{o o′}W
[est(o) lft(o′))
o′′ + p(o) + p(o′) ⇒ o′ ≺ o

• The second rule directly updates time-bounds. An operation o and an integer
X in the interval [est(o) lft(o)) are chosen. Then checking on the interval
[est(o) X) whether o can or cannot start at its earliest possible start time. If
it cannot start, then est(o) will be increased.

Let be
∑

W =
∑

o′′ 6=o W
[est(o) X)
o′′ + min(p(o), X − est(o)).

The deduction rule is:
X − est(o) <

∑
W ⇒ est(o) := est(o) +

∑
o′′ 6=o W

[est(o) X)
o′′

There are many values of X for which this rule could be used. Erschler et al.
[?] suggested that the appropriate values of X are the earliest and latest start and
finish times of operations (which seems reasonable but is yet to be proven).

The complexity of energy-based reasoning is O(n3). Baptiste and Le Pape [?]
pointed out that EBR is quite efficient for solving very hard job-shop scheduling
problems. But for most benchmarks of JSSPs, as we found in experiments, adding
EBR to a scheduling algorithm which has already enforced arc-consistency and edge-
finding does not outperform the algorithm without EBR.

When the amount of propagation is extended, the search space is more drastically
pruned. Due to the management of the additional data structures used to implement
these techniques, more CPU time and memory consumption may be required, but
the number of problem-solving steps decreases.

3.7 Reactive scheduling

Traditionally, scheduling focuses on optimization of performance under idealized
assumptions of environmental stability and solution executability. However, in
industrial environments, some schedule requirements cannot be fixed in the pre-
establishing phase. They may become manifest only as the time of execution comes
closer or when some unexpected events happen. These dynamically evolving and
changing requirements may continually force reconsideration and revision of a pre-
established schedule. For instance, while a pre-established schedule is executing, a
machine may break down, an operator may be absent, the supplier delivery may
change (potentially resulting in a lack of materials). Whatever the reason, quick
reactions are required to handle these unforeseen events in a job shop. The schedul-
ing systems which cope with dynamic changes in the execution environment are
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called reactive scheduling systems [?]. Comparatively, generating a schedule before
its execution (pre-establishing a schedule) is called predictive scheduling [?].

Over the past decade, many reactive scheduling systems have been developed.
Most of these systems emphasized the importance of keeping the continuity of ex-
ecution and the real-time response in order to reduce disruption in the existing
schedule. This means that the original schedule should be modified to the minimum
extent possible. Moreover, the time required to get or validate a new schedule should
not exceed the time window in which the schedule must be applicable. For more
elaborate discussions of reactive scheduling we refer to [?, ?, ?, ?, ?].

In general, there are three reactive strategies that a reactive scheduling system
can have to the occurrence of environmental changes. First, do not attempt any
reaction. It results in not taking advantage of any opportunities or in incurring
execution delays entailed by deleterious events (e.g., partial or total loss of machine
capacity). This strategy is obviously suboptimal. The second reactive strategy
could be to throw away the rest of the schedule and reschedule from the point of the
occurrence of the environmental changes. The rescheduling tools might be the same
ones as those that created the predictive schedule. Such strategy may efficiently
produce high-quality schedules but may increase schedule disruption. The third
reactive strategy could be incremental revision/repair of the existing but flawed
schedule. The incremental repair process presented in [?] is attractive not only for
incrementally improving a sub-optimal and cheap schedule to meet optimization
objectives but also in response to the environmental changes during the schedule
execution.

The majority of reactive scheduling systems that appeared in the literature con-
centrates on the third strategy. OPIS [?] and CABINS [?] are typical such systems. In
OPIS, constraint analysis is used to recognize the conflict in the current schedule to
identify important modification goals, and to estimate the possibilities for efficient
and non-disruptive schedule modification. This information, in turn, provides a basis
for selecting among a set of alternative modification actions that range from general
heuristic search procedures to more specialized procedures. The general heuristic
search procedures in OPIS orient toward generating and revising sets of decisions as-
sociated with a specific process or machine. The specialized procedures are used for
sliding schedule components forward or backward in time and performing pairwise
machine assignment exchanges.

CABINS uses case-based reasoning (learning) to bias the search procedures for
incrementally revising a complete but flawed schedule. It is based on the idea that
a reactive scheduler usually encounters many times quite similar situations. Thus,
the reactive scheduling can benefit from a learning mechanism which can capture
and reuse of the previous reaction knowledge. A set of repair actions is presented
in CABINS. Each of them operates with respect to a particular local view of the
problem and offers selective advantages for improving schedule quality. The goals
of this approach are (1) to arrive at a schedule that does not violate any constraint,
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(2) to optimize the modified schedule according to the user’s preference and (3) to
minimize the schedule disruption.

In the incremental repair strategy, the problem is additionally complicated by
the ripple effects that spread conflicts to other parts of the schedule as actions are
applied and specific revisions are made. The constraint propagation is then used
to propagate the ripple effects of a schedule repair action. To avoid unnecessary
computation and to limit the amount of ripple effects, OPIS, by analyzing conflict
features in the current schedule, selects a focal-point machine and operation(s) to
take proper repair actions. In contrast, CABINS adopts a different approach. The
repair action of CABINS is job oriented, where the focal job under the current repair
consideration is randomly identified. Repair is performed by one operation at a
time. Operations in the focal job are repaired in a forward fashion starting from the
earliest operation of that job that has a specific feature.

Recently, Sakkout [?, ?] proposed a Probe Backtrack Search to reconfigure as
minimal as possible schedules in response to a changing environment. They use a
very close integration of constraint-directed search with linear-programming (LP)
optimization. The approach conducts a search in two interleaved phases, i.e., a
resource feasibility phase and a temporal optimization phase. In the resource fea-
sibility phase, the algorithms use a unimodular probing backtrack search to relieve
resource contention by ordering temporal variables. In the temporal optimization
phase, the algorithms use cheap linear solving procedures to find values for the tem-
poral variables that are optimal, subject to the orderings decided in the resource
phase. At each search step, the algorithm implements a repair step (as follows: it
uses LP to generate an “optimal solution” on a subset of constraints, it selects a
still violated constraint and it rules out the current “optimal solution” by imposing
an “easy” constraint that maintain the unimodularity property) until no violated
constraint exists. It apparently adopted an incremental repair strategy.

Some other research focused on generating robust schedules (solutions) [?, ?]
that are likely to remain valid after minor changes to the problem. Nevertheless,
major changes (for instance, a machine breaks down) usually make the modifications
inevitable to even very robust schedules.

Both rescheduling and incremental repair strategies may utilize model modifi-
cation to the occurrence of unexpected events in a job shop. Model modification
reformulates the problem by changing model parameters, such as excluding a num-
ber of operations which have already been executed to be rescheduled (repaired),
relaxing global constraints by postponing due dates or buying a new machine etc.
Model modifications facilitate the solution of the problem, since they amount to
global constraint relaxation. However, model modifications are costly to implement
in practice (e.g., buy new equipment, pay a fine for the production delay, subcon-
tract jobs to outside contractors). Thus model modifications should be made to the
minimum extent possible.

No experimental evidence has been provided so far in favor of incremental sched-
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ule repair as opposed to rescheduling. Like for predictive scheduling problems, no
polynomial-time solution algorithm is known for reactive scheduling problems. Com-
putation times are usually highly variable and unpredictable [?]. In order to bridge
the gap between capabilities and requirements, a reactive scheduling system is con-
sidered as real-time response only in the simplest sense in which the program runs
fast enough to cope with the job shop events. In other words, real-time computation
must include the option of selecting a response that will exist by the time at which
the response is required. The computation time for the response can be reduced by
storing a number of predefined responses at the expense of storage space. At the
implementation, a reactive scheduling system may need to make trade-offs between
computation time and storage space. In addition, further trade-offs between the
solution quality and the amount of search required may needed.

Moreover, the frequency of reactive scheduling has some important effects. More
reactive scheduling (with high frequency) will provide better service (user requests
are quickly taken into account), better robustness to uncertainty, and more chances
to update and improve the schedule than a single reactive scheduling. The drawback
of this approach is that a shorter time interval for reactive scheduling may decrease
the quality of the schedule. This is an interesting topic for further research.
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Chapter 4

A Repair-Based Method for
DCSPs

From Definition 15 we know that a Dynamic Constraint Satisfaction Problem (DCSP)
is a sequence of static CSPs that are formed by constraint changes. In this sequence,
the solution of one CSP may be invalidated by one or more constraint changes.
Hence, a new solution must be generated for that CSP. To obtain a solution for such
a CSP, it is possible to solve the CSP from scratch by a constructive method such as
AC 1. However, any solution obtained in this way might be quite different from a pre-
vious solution. In practical situations, large differences between successive solutions
are often undesirable. For instance, the rescheduling of people working in a hospital
in case two nurses are ill may result in too many changes to the old schedule; it
means that many night shifts, weekend shifts and corresponding compensation days
of all employees will be changed. Hence, for this scheduling problem, it is necessary
to find a minimal change schedule with respect to the previously executing schedule.

4.1 Motivation

Several proposals to handle DCSPs have been presented in [?, ?, ?]. As pointed
out in chapter 2, these proposals either are limited in a specific application domain
or based on some particular assumptions which are not well-founded for changes
caused by unexpected events. Our research is mainly motivated by the occurrence
of unexpected events. The above-mentioned example of the hospital personnel is an
illustrative guideline for the goals set.

Hence, to overcome the drawbacks of the previous methods, we proposed an

1In this chapter, AC stands for a backtracking search algorithm that applies arc-consistency on
the yet unassigned variables when the algorithm starts or a variable has been assigned a value.
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approach in our paper [?] that tries to repair the infringed solution of the current
CSP instead of creating a completely new solution. The basic idea behind the
approach is to move from a candidate solution, such as an infringed solution, that
violates some constraints to a nearby solution that satisfy all constraints.

Whether a new solution found is nearby the infringed solution can be determined
by a predefined cost function λ in the application domain. The cost may be the
number of variables that are assigned a new value, the weighted distances between
the new and the old values assigned to each variable, the importance of the variables
that must change their value and so on. For conveniently dealing with DCSP, we
formally define the nearby and optimal solution as follows.

Definition 20 In a DCSP, the solution of the current CSP αn is called the most
nearby solution of the infringed solution αi, if and only if the cost function λ(αn, αi)
is minimal. The most nearby solution is also called the optimal solution of the
current CSP. Here the cost is defined as the number of variables that are assigned a
new value.

If we use other measures of the notion cost (e.g., see above), we explicitly mention
this. We remark that it may happen that two or more solutions have the same
minimal cost. A further discrimination is possible but for the moment we refrain
from such a diversification.

As described in Section 3.4, local search is a solution method that moves from
one candidate solution to a nearby candidate solution. However, it has a problem
since there is no guarantee that it will find the most nearby solution. In fact local
search may also wander off in the wrong direction. Another problem with using
local search is the speed of the search process. Local search does not use something
like constraint propagation to reduce the size of the search space. The search space
is completely determined by the number of variables and the number of values that
can be assigned to the variables.

It is our aim to develop a solution method that can systematically search the
neighborhood of the infringed solution, taking advantages of the powerful constraint-
propagation methods. In the following sections, we show that such a repair-based
approach is possible.

4.2 Ideas and methodology

The problem we have to solve is the following. We have a CSP (V,D, C) and a
complete assignment a that assigns values to all variables. The complete assignment
a satisfied all constraints. But because of an incident some constraints have changed
or new constraints have been added and a new CSP is formed. As a result the
complete assignment a no longer satisfies all constraints in the new CSP, i.e., a
becomes an infringed solution of the new CSP. Now it is our task to find a new
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CSP(V,D,C) Ci,j=“not equal”

v1 v2 v1 v2

2 1 2 1

3 2 3 2

1 3 1 3

2 4 2 4

v3 v4 v3 v4

solution: New solutions after adding a constraint

a[v1]=2 a’[v1]=3 a’[v1]=3

a[v2]=1 a’[v2]=2 a’[v2]=2

a[v3]=1 a’[v3]=1 a’[v3]=1

a[v4]=3 a’[v4]=4 a’[v4]=3

AC solution RB-AC solution

Figure 4.1: Basic idea of repair-based solving for a CSP

complete assignment a′ that satisfies all constraints in the new CSP with a minimal
cost.

4.2.1 Basic ideas

From Definition 20 it follows that if a′ is a complete assignment that has a minimal
number of different value assignments with a and satisfies all constraints in the new
CSP, then a′ is an optimal solution of the new CSP.

The example of Figure 4.1 illustrates the idea of repair-based solving a CSP.

Example The left graph of Figure 4.1 shows a constraint graph of a CSP instance,
where v1, v2, v3 and v4 are four variables; Dv1 = {2, 3}, Dv2 = {1, 2}, Dv3 = {1, 2}
and Dv4 = {3, 4} are the corresponding domains; each line linked between two
variables denotes a not equal constraint. a(v1) := 2, a(v2) := 1, a(v3) := 1 and
a(v4) := 3 is a complete assignment that satisfies all constraints. Now, assume that
a new CSP is formed by adding a binary constraint (not equal) between v2 and v3.
The corresponding constraint graph is showed in the right graph of Figure 4.1.

Consequently, the values assigned to the variable v2 and v3 are not consistent
with this new added constraint. We use a set X to collect these variables, where
X := {v2, v3}. So, at least one variable in the set X that violates the new added
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constraint must change its value assignment. In the new CSP, let us first perform
the constraint propagation (enforcing arc-consistency). We found that no value
assignment made by a is outside the new domain of each variable (obviously, no
domain is changed after constraint propagation). Then, let us try to change one
value assignment of a. If we select v2 from X and assign it a new value a(v2) := 2,
the new added constraint is satisfied. However, the constraint between v1 and v2 is
violated. After forward-checking arc-consistency, the current value assignment of v1

is no longer in its domain. We use a set U to collect such variables (v1 ∈ U). This
means that we have to continue changing another variable’s assignment, namely the
value assignment of v1. Since we are trying to change one value assignment of a,
it is not allowed to change two value assignments of a in this iteration. Thus, we
restore the initial value assignment of v2 and the initial domain of v1, select v3 from
the set X and assign it a new value a(v3) := 2. The same situation arises as in
changing the value assignment of v2. As a result, all possibilities of changing one
value assignment of a are exhaustively examined without success. Hence, we have
to increase the number of new value assignments of a in the current CSP.

In order to find the most nearby solution such that all constraints are satisfied,
a systematic exploration of the search space is required. In other words, if we fail
to find a solution by changing the value assignment of one variable, we must look
at changing the value assignment of two variables. If this also fails, we go to three
variables, and so on. This process is the well-known iterative deepening strategy.

In the second iteration of solving the example of Figure 4.1, we focus on changing
the value assignments of two variables. Let us select v2 and assign it a new value,
i.e., let be a(v2) := 2 (repeat the work for changing the value assignment of one
variable). Now v1 is in the recalculated set U . Moreover, in this iteration we are
allowed to change the value assignment of v1 (i.e., let be a(v1) := 3). It is easy
to see that the new complete assignment a′ made for v1, v2, v3 and v4 (a′(v1) :=
3, a′(v2) := 2, a′(v3) := 1, a′(v4) := 3) satisfies all constraints in the new CSP. The
algorithm returns success. According to the iterative deepening strategy, a′ is also
the most nearby solution of the new CSP (the initial assignments of v3 and v4 are
not changed). Note that a constructive algorithm, which creates a solution from
scratch, may find a solution with more assignment changes, namely 3 instead of 2
(see Figure 4.1).

4.2.2 The general case

Now, we return to the general case. Let X be the set of variables involved in the
constraints that do not hold.

X =
⋃

cvi1
,...,vik

∈C,cvi1
,...,vik

(a(vi1 ),...,a(vik
))=false

{vi1 , ..., vik
}

Obviously, at least one of the variables in X must be assigned a new value. So, we
can begin to investigate whether changing the value assignment of one variable in
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X enables us to satisfy all constraints. If no such variable can be found then there
are two possibilities.

• if ⋂

cvi1
,...,vik

∈C,cvi1
,...,vik

(a(vi1 ),...,a(vik
))=false

{vi1 , ..., vik
} = ∅.

at least one of the other variables in X must also be assigned another value.
Hence, we must investigate changing the value assignment of two variables in
X.

• There is a value assignment to a variable v in X such that all constraints
between the variables of X are satisfied, but for which a constraint cvi1 ,...,vik

with v ∈ {vi1 , ..., vik
} and {vi1 , ..., vik

} 6⊆ X, is not satisfied.

In both cases we must try to find a solution by changing the value assignment of
two variables. In the former case it is sufficient to consider the variables in X for
this purpose. In the latter case we must also consider the neighboring variables of
X. The reason is that for any value assignment satisfying the constraints over X,
there is a constraint over variables in X and variables in V -X that does not hold.
We can determine the variables in V -X after assigning a variable in X a new value,
by recalculating X and subsequently removing the variables that have been assigned
a new value.

Briefly speaking, in order to find the most nearby solution, we should assign new
values to variables in the set X. The number of variables that should be assigned
a new value is increased gradually until we find a solution. Furthermore, the set of
variables X that collect candidate variables for change is determined dynamically.

4.2.3 Improving performance efficiency

Considering many sets of variables to which we are going to assign a new value may
have a high complexity. Successively, we give a quick calculation on the complexity
of the method proposed. If we are going to change the values of n variables from a
set X containing m candidate variables, we need to consider

(
m
n

)
different subsets

of X where each subset is a separate CSP. We call this number the first source
of overhead. Since the number can be exponential in m (depending on the ratio
between m and n) the number of CSPs we may have to solve is O(2m), where each
CSP has a worst-time complexity that is exponential. This would make it impossible
to use a repair-based approach.

There is another source of extra overhead in the search process. If we fail to
find a solution changing the value assignments of n variables, we try for some larger
value n′ > n. Clearly, when changing the value assignments of n′ variables we must
repeat all the steps of the search process for changing the value assignments of n
variables. This second source of overhead can, however, be neglected in comparison
with the first source of overhead in the worst cases.
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Constraint propagation can be used to speed up the search process in constructive
solution methods by pruning the search space. We investigate whether it can also
be used to avoid solving an exponential number of CSPs. If we could use constraint
propagation to determine variables that must be assigned a new value, we may
avoid solving a substantial amount of CSPs. In fact, we are able to do this by
determining the domain values of the variable that are not allowed by the constraints,
independent of the original assignment. If a variable was assigned a value that is no
longer in its current domain, we know that it must be assigned a new value.

In the same way we can also determine a better lower bound for the number of
variables that must change their current value assignments during the search process.
Thereby we reduce the second source of overhead. The following example gives an
illustration of how constraint propagation helps us to reduce both forms of overhead.

Example The left graph of Figure 4.2 shows a CSP instance, where v1, v2, v3 and
v4 are four variables; Dv1 = {2, 3}, Dv2 = {1, 2}, Dv3 = {2, 4} and Dv4 = {3, 2, 4}
are the corresponding domains; each line linked between two variables denotes a not
equal constraint. a(v1) := 2, a(v2) := 1, a(v3) := 4 and a(v4) := 3 is a complete
assignment that satisfies all constraints.

Now, because of some incidents a unary constraint cv2 = (v2 6= 1) is added to
the CSP (as shown on the right graph of Figure 4.2). If we enforce arc-consistency
on the domains Dv1 , Dv2 , Dv3 and Dv4 by using the constraints in the original
CSP and newly added constraint, we get the following reduced domains Dv1 = {3},
Dv2 = {2}, Dv3 = {4} and Dv4 = {3}. From these reduced domains it immediately
follows that two variables v1 and v2 must be assigned a new value in order to obtain
a solution. So there is no point in considering which variables may need to change
their value assignments nor investigating whether we can find a solution by changing
one or two variables.

For a complicated CSP, the solution is not so straightforward after applying
constraint propagation. However, based on the new value assignments made so far,
we can try, by using the constraint propagation, to determine the other variables
whose current value assignments lay outside of their current domain, and thus must
also be assigned a new value.

4.2.4 The methodology

Based on the ideas explained, the examples given and many more examples investi-
gated in our research, we developed a methodology for our investigation of repair-
based approaches. The methodology relies on an appropriate representation (given
in Chapter 2) and has as essential points: constraint propagation, systematic search
and iterative deepening.

According to the methodology given above, we proposed an algorithm presented
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Cj=“not equal”

V1 V2 V1 V2

2 1 2 1 ¹1

3 2 3 2

2 3 2 3

4 2 4 4 2 4

V3 V4 V3 V4

solution: solution:

a[v1]=2 a’[v1]=3

a[v2]=1 a’[v2]=2

a[v3]=4 a’[v3]=4

a[v4]=3 a’[v4]=3

Figure 4.2: How constraint propagation reduces the overhead.

in the next section in which the ideas are implemented in combination with local
search (repairing an infringed solution) and constraint propagation (enforcing arc-
consistency). For convenience, this algorithm is denoted as RB-AC in this thesis.

4.3 Local search and constraint propagation

Let V be a set of variables, D an array of a domain for each variable, C a set of
constraints and a an array containing a complete assignment. The RB-AC algorithm
which consists of four procedures, RB, solve, find, and assign is presented below,
where V, D,C and a are global variables in all procedures with exception of RB. All
arguments in the procedures are used both as input and output parameters. The
RB-AC algorithm is used to solve the CSP (V, D, C) and to obtain a most nearby
solution represented by the output a with respect to the infringed solution repre-
sented by the input a.

Procedure RB(V,D, C, a)
; returns success or failure
; V a fixed set of variables
; D the sets of allowed domain values of the variables in V; can be changed in the
; procedure, but will be unchanged after the return out of the procedure
; C a fixed set of constraints on the variables V
; a the assignment that is to be repaired; can be changed; will be a consistent
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; assignment in case of success; will be the original assignment in case of failure
save(a);
X := conflict var(C, a); (1)
save(D);
constraint-propagation(V, D);
U := {v ∈ V | a[v] /∈ D[v]}; (2)
X := X ∪ U ; (3)
n := max(1, |U |); (4)
u := |V |;
if (X = ∅)

return success;
end if;
state = solve(U,X, n, u);
restore(D);
if (state = success)

return success;
else

restore(a);
return failure;

end if;
end Procedure RB.

Procedure solve(U,X, n, u)
; U a subset of V of variables that certainly need a new assignment
; X a subset of V of variables that probably need a new assignment, X contains U
; n the maximum number of new assignments allowed; can change
; u is the greatest lower bound on the number of assignment changes that might
; lead to a solution given the current state of the search process (given the part of
; the search tree that has been investigated); can change.

save(U,X)
while (n ≤ |V |)

if (find(V, 1, U,X, ∅, n, u) = success)
return success;

end if;
n := max(n + 1, u); (5)
u := |V |;
restore(U,X);

end while;
return failure;

end Procedure solve.

Procedure find(F, i, U,X, Y, n, u)
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; F the subset of variables in V that are allowed to get a new assignment (they did
; not yet get a new assignment)
; i the count of the variable that needs a new assignment now (i−1 variables already
; got a new assignment)
; U the set of variables that certainly need a new assignment
; X the set of variables that probably need a new assignment (X contains U)
; Y the set of variables that is not allowed to have a new assignment
; n and u as in solve

if (U 6= ∅) (6)
v:= select-variable(U);
if (assign(v, F − {v}, i, Y, n, u) = success)

return success;
end if;

else
while (X 6= ∅) (7)

v := select-variable(X);
X := X − {v};
if (assign(v, F − {v}, i, Y, n, u) = success)

return success;
end if;
Y := Y ∪ {v}; (8)
F := F ∪ {v}; (9)

end while;
end if;
return failure;

end Procedure find.

Procedure assign(v, F, i, Y, n, u)
; v a variable that needs a new assignment now
; F the subset of variables in V that are allowed to get a new assignment (they did
; not yet get a new assignment)
; i the count of the variable that has to get a new assignment now and will get this
; new assignment if possible
; Y a set of variables that is not allowed to get a new assignment
; n and u as in procedure solve

save(D[v], a[v]);
state := failure;
D[v] := D[v]− {a[v]};
while (D[v] 6= ∅ ∧ state = failure)

d := select-value(D[v]);
D[v] :=D[v]− {d};
a[v] := d; (10)
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save(D[v∗], ∀v∗ ∈ F );
constraint-propagation(F, D);
if (∀v∗ ∈ F, D[v∗] 6= ∅)

U := {v∗ ∈ F | a[v∗] /∈ D[v∗]}; (11)
X := U ∪ conflict var(C, a); (12)
j := max(1, |U |);
if (X = ∅)

return success;
else

if (i + j ≤ n)
if (U ∩ Y = ∅)

state := find(F, i + 1, U, (F ∩X)− Y, Y, n, u)
if (state = success)

return success;
end if;

end if;
else

u := min(u, i + j); (13)
end if;

end if;
end if;
restore(D[v∗],∀v∗ ∈ F );

end while;
restore(D[v], a[v]);
return failure;

end Procedure assign.

Where: conflict var(C, a) :=
⋃

cvi1
,···,vik

∈C,cvi1
,···,vik

(a(vi1 ),···,a(vik
))=false

{vi1 , · · · , vik
};

The algorithm RB-AC is activated by calling the procedure RB(V, D, C, a) which
starts by identifying the current problem. Assume a is an infringed solution of the
given CSP (V, D,C), so a violates one or some of the constraints in C. Consequently,
at least some of the variables involved in these violated constraints need to change
their value assignments. The function conflict var(C, a) determines the variables
involved in such constraint violations, and the set X (RB-AC algorithm, line (1))
collects these variables. Moreover, the constraint propagation2 is applied on the
original domains of all variables to determine the variables that must be assigned a
new value, i.e., the variables of which the current value assignments of a lay outside
their domains after constraint propagations. These variables are collected in the set

2arc-consistency
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U (RB-AC algorithm, line (2)). As a result, the new set X, i.e., the set of all variables
which may be assigned a new value (RB-AC algorithm, line (3)), is updated. Note
that often only a subset of X need to be assigned a new value. Thereafter, the initial
number of variables n that are to be assigned a new value, is set at max(1, |U |) (RB-
AC algorithm, line (4)). The constant |V | delimits the maximum number of changes
on the value assignments of the infringed solution a. The variables n and u will
be updated when the algorithm proceeds. If X is empty, RB immediately returns
success. Otherwise, whether RB returns success or failure is dependent on the
outcome of the procedure call solve(U,X, n, u).

The procedure solve(U,X, n, u) carries out an iterative deepening search strat-
egy. While n ≤ |V |, solve(U,X, n, u) calls the procedure find(V, 1, U,X, ∅, n, u).
If find(V, 1, U,X, ∅, n, u) does not return success, solve updates n (RB-AC algo-
rithm, line (5)) to the new maximal number of variables that may be assigned a new
value and then restarts find(V, 1, U,X, ∅, n, u). This processes will be iteratively
performed until find returns success or n > |V | without success.

The procedure find(F, i, U,X, Y, n, u) selects a variable to be assigned a new
value. If the set U is not empty (RB-AC algorithm, line (6)), find selects a variable
v from the set U since the variables in U must be assigned a new value. Subse-
quently, the procedure assign(v, F, i, Y, n, u) is called. Otherwise, it selects a vari-
able v from the set X then calls the procedure assign(v, F, i, Y, n, u). If the call
of assign(v, F, i, Y, n, u) fails and the variable was selected from the set U , find
returns failure. If the variable was selected from the set X and i < n, find will try
other variables in the set X one by one until a call of assign(v, F, i, Y, n, u) returns
success or the set X becomes empty (RB-AC algorithm, line (7)). The variable set
Y is used to represent the CSP variables for which new assignments have been tried
without success in the same find call.

The procedure assign(v, F, i, Y, n, u) assigns a new value to the selected variable
v and carries out constraint propagation to evaluate the effects of the assignments
made so far. The sub-procedure constraint-propagation(F,D) applies forward check-
ing and full look-ahead arc-consistency on the future variable set F given the new
assignments made to the past variables and the current variable v. For the case more
variables need to be assigned a new value is determined by recalculating the sets U
(RB-AC algorithm, line (11)) and X (RB-AC algorithm, line (12)). If X = ∅, the
problem is solved and success is returned. Otherwise, assign either recursively calls
the procedure find (when i < n) or updates u (RB-AC algorithm, line (13)) and
backtracks to assign another value for the selected variable v. If the set X is still
not empty after the domain of the selected variable becomes empty, assign returns
failure.

In summary, RB-AC finds an optimal solution by systematically searching the
neighborhood of the infringed solution with an iterative deepening approach. If RB-
AC fails to find a solution through an exhaustive search with changing the value
assignments of n variables, it tries to change the value assignments of n′ variables
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with n′ > n (n′ is determined by line (5) and line (13) in RB-AC algorithm). If
this also fails, it goes to n′′ variables with n′′ > n′, and so on until the value of
|V | is reached. If RB-AC then fails there is no complete assignment a′ possible (no
solution exists).

4.4 Supportive theorems

The following theorems state that, for a given CSP (V,D, C) and a complete assign-
ment a, the RB-AC algorithm either finds the solution most nearby a if a solution
exists, or proves that no solution exists.

Theorem 2 Let V be a set of variables with domains D. Let C be a set of con-
straints on V . Let a be a complete assignment of the variables in V . If a consistent
assignment A exists for the CSP(V, D, C) then the procedure call RB(V, D, C, a) will
return success and the assignment a is changed into a consistent assignment such
that for a minimal number of variables the original assignments are changed. If
a consistent assignment does not exist then the procedure call RB(V, D, C, a) will
return failure and the original assignment is unchanged.

Proposition 1 Let V be a set of variables with domains D. Let C be a set of
constraints on V . Let U be a subset of V of variables that certainly need a new
assignment. Let X be a subset of V of variables that probably need a new assignment
(X contains U). Let n be an integer such that initially n ≥ |U | and n ≤ u. Then
the call to the procedure solve(U,X, n, u) will result in success if a new assignment
exists with n changes of variables with respect to the original assignment, otherwise
this call will result in failure. In case of success the assignment a is changed into a
consistent assignment. The variables in the set U have got a new assignment, and
possibly some more variables have got a new assignment. During the procedure, n
is altered into the minimal number of assignment changes needed for a consistent
assignment or into |V |+ 1 in case of failure.

Proposition 2 Let F be the subset of variables in V that are allowed to get a new
assignment (they did not yet get a new assignment). Let i be an integer, 1 ≤ i ≤ n,
such that i− 1 is the number of variables that already got a new assignment. Let U
be a subset of variables that certainly need a new assignment. Let X be the set of
variables that probably need a new assignment (X contains U). Let Y be the set of
variables that is not allowed to have new assignments. Let n be an integer denoting
the maximally allowed total number of variables that will have new assignments and
let u be the greatest lower bound on the number of assignment changes that might
lead to a solution given the current state of the search process, where n ≤ u. Then
the procedure call find(F, i, U,X, Y, n, u) will result in success if the assignment a
adapted by the assignment on the i−1 already newly assigned variables can be adapted
to a consistent assignment with at most n− i + 1 new assignments to variables in F
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but not in Y . Otherwise the call will result in failure. If the procedure call results in
success then the assignment a is changed into a consistent assignment such that all
variables in U got a new assignment and the total number of changed variables with
respect to the original assignments is at most n.

Proposition 3 Let v be a variable that needs a new assignment now. Let F be
the subset of variables in V that are allowed to get a new assignment (they did not
yet get a new assignment). Let i be an integer, 1 ≤ i ≤ n, such that i − 1 is the
number of variables that already got a new assignment. Let Y be the set of variables
that are not allowed to have new assignments. Let n be an integer denoting the
maximally allowed total number of variables that will have new assignments and let
u be the greatest lower bound on the number of assignment changes that might lead
to a solution given the current state of the search process, where n ≤ u. Then the
procedure call assign(v, F, i, Y, n, u) will result in success if the assignment a adapted
by the assignment on the i − 1 already newly assigned variables can be adapted to
a consistent assignment with a new assignment to the variable v and at most n− i
new assignments to variables in F but not in Y . Otherwise the call will result in
failure. If the procedure call results in success then the assignment a is changed into
a consistent assignment such that all variables in U got a new assignment and the
total number of changed variables with respect to the original assignments is at most
n. If the call results in failure u will denote the minimum required number of new
assignments and the assignments of the variables in F ∪{v} are the original values.

Theorem 2 expresses the termination, correctness, completeness and optimality
of RB-AC algorithm. We will prove that Theorem 2 is a consequence of Proposition
1, and Proposition 1 is the consequence of Proposition 2.

First, we give the proof for propositions 2 and 3. Then, we give the proof for
proposition 1 and Theorem 2.

Proof of Proposition 2 and 3.
Let us consider proposition 3. Suppose all preconditions for the call find(F, i, U,

X, Y, n, u) are fulfilled. We show that the preconditions for the calls assign(v, F −
{v}, i, Y, n, u) during the procedure find are fulfilled too.

Based on i − 1 newly assigned variables, find calls assign to change the as-
signment of the ith variable. (1) When the parameter U of find is not empty, the
ith variable v must be selected from U . Namely, the variables in U must get new
values. For the call of assign, the parameters i, Y, n, u and the set F are the same as
those of find. So, the preconditions of Proposition 3 are fulfilled when a find calls
assign in this case. (2) When the parameter U of find is empty, the ith variable
v is selected from X. In this case, if a call of assign returns success, find returns
success too. After trying every variable in X without success by calling assign,
find will returns failure. So, find calls assign at most |X| times. For all calls of
assign, the parameters i, n and the set F are the same as those of find. However,
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the parameters Y, u are changed dependent on the previous calls of assign. Any
previously tried variable v by a call of assign without success will be added to the
set Y , since for any new assignment of v, there does not exist a solution requiring
no more than n assignment changes. Such calls of assign will update the value of u.
So, the preconditions of Proposition 3 are fulfilled too, when each find calls assign.

Hence, if proposition 3 is proven, we can conclude from the described results for
the calls of assign, that in the corresponding cases proposition 2 also holds.

Let us consider proposition 3.
Suppose all preconditions for the call assign(v, F, i, Y, n, u) are fulfilled. Proce-

dure assign adapts the assignment of the ith variable v of a based on i− 1 already
newly assigned variables. We first prove that the proposition holds when assign
returns success, and afterwards we prove that the proposition holds for assign re-
turning failure.

assign returns success if there is a value in the current domain of v which does
not result in an empty domain for one of the future variables in F after constraint
propagation and if one of the following two cases occurs: (1) the new set X is empty,
or (2) a recursive call to find is made and returns success. Note that since constraint-
propagation imposes arc-consistency on the future variables F , any assignment to v
is consistent with the i− 1 already newly assigned variables.

• In case (1), the sets U and X are empty. This means that for each variable
in F , its assignment of a is still in its current domain and is not involved in
any constraint violation. a is thus adapted as a consistent assignment with i
newly assigned variables. Since i ≤ n, Proposition 3 holds.

• In case (2), the new set X is not empty. The set U (containing the variables
of which the current assignments are not in their current domain) may not be
empty too. Moreover, i + j is less than or equal to n and U ∩ Y is empty.
The first condition states that the number of necessary assignment changes
in F will be less than or equal to n − i; the call to find adapts at least
j = |U | assignments in F . The second condition states that no variable that
must be assigned a new value belong to the set of variables that may not
be assigned a new value because they have already been tried. Therefore, a
recursive call to find is made and this call returns success. Clearly, when
calling find(F, i+1, U, (F ∩X)−Y, Y, n, u), (i) F is the set of future variables
that have not been assigned a new value, (ii) i is the number of variables that
have been assigned a new value since v has been assigned a new value, (iii)
X contains the variables involved in a constraint violation and (F ∩ X) − Y
contains those future variables in X that may receive a new value because they
have not been tried before, (iv) Y contains the variables that may not receive a
new value because they have been tried before, (v) n is the maximum number
of assignment changes and (vi) u is the greatest lower bound on the number
of assignment changes that might lead to a solution given the current state of
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the search process so far. Since find returns success, at most n variables have
received a new value, including the variables in U , a contains the modified
assignments and all constraints hold given a. Hence, Proposition 3 holds in
case it returns success.

assign returns failure after trying every value in v’s current domain D[v] (through
while loop) without success. There are four reasons why a new assignment may not
lead to success: (1) the domain of a future variable (in F ) becomes empty after
constraint propagation; (2) no future variable’s (in F ) domain becomes empty after
constraint propagation, but the number |U | of variables that must be assigned a new
value exceeds the number of allowed assignment changes n − i; (3) a variable that
must receive a new value has already been tried before without success, U ∩ Y 6= ∅;
and (4) the call to find returns failure. In case 2, the value of u (the greatest lower
bound on the number of assignment changes that might lead to a solution given the
current state of the search process) is updated, at least i+ j assignment changes are
required given the changes made so far. In case 4, no solution exists requiring no
more than n assignment changes. The parameter u of find will contain an upper
bound on the minimum number of required assignment changes needed if the call to
find had to succeed. Hence, Proposition 3 also holds in case it returns failure.

So, Proposition 3 holds whenever proposition 2 holds, and Proposition 2 holds
whenever proposition 3 holds.

In order to complete the proof we remark that for both procedures holds that
they only can succeed or fail when 1 ≤ i ≤ n. Furthermore, if find is called with
a value i equal to i0, then it will call assign with the same value of i equal to i0.
Then either assign needs a call to find with a value of i equal to i0 + 1 or assign
does not need such a call. In the latter case assign results in a success or failure.
In the former case we can use an induction argument: These recursive calls will
finish either with success or failure for some i, say i1, with i1 ≤ n. For that last
value of i assign terminates, and so does the calling find, and so on. So in fact the
induction proves that since the calls terminate when i = i1, they will terminate for
i = i1 − 1, i1 − 2, · · · , 1. 2

Now, we give the proof for proposition 1.

Proof of Proposition 1.
Suppose all preconditions for the call solve(U,X, n, u) are fulfilled. Then for any

value of n ≤ |V |, the parameters of find(V, 1, U,X, 0, n, u) satisfy the conditions of
Proposition 2. Therefore, if the call of find succeeds, then a contains a solution
requiring at most n assignment changes with respect to the original infringed solu-
tion. If a call of find(V, 1, U,X, 0, n, u) returns failure, no such solution exists for
the current parameter values of n and u, and solve tries to find a solution requiring
more assignment changes by calling find(V, 1, U,X, 0, n, u) with new parameter val-
ues of n and u. Hence solve contains at most |V | iterative calls of find and returns
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success if and only if there exists a solution for the current CSP.
For each call of find(V, 1, U,X, 0, n, u), the sets V, U,X are the same as those

in solve. If one call of find returns success, the variables in U get new values. To
complete the proof of the proposition, we have to show that each time a call to
find(V, 1, U,X, 0, n, u) is made, solve “knows” that no solution requiring less than
n assignment changes exists. We can distinguish three situations. (1) In the first
call to find, n = |U | (the variables that must be assigned a new value). (2) If n
has been increased with 1 after the previous call, then no solution requiring no more
than n − 1 assignment changes exists. (3) If n has been increased with k > 1 after
the previous calls, then this is because of the value of u after the previous calls. Ac-
cording to Proposition 2 (and Proposition 3), no solution exists requiring less than
u assignment changes. Hence, if solve succeeds, no solution requiring less than n
assignment changes exists. 2

The proof of Theorem 2 is as follows.

Proof of Theorem 2.
Procedure RB initializes the parameters used by solve. The values of these

parameters satisfy the conditions of Proposition 1. If X = ∅, the original assign-
ment a satisfies the (changed) set of constraints. Therefore, RB returns success and
Theorem holds in this case.

If X 6= ∅, X contains the variables involved in a constraint violation and U
contains the variables that must be assigned a new value. Hence the conditions of
Proposition 1 are satisfied. According to propositions 1 solve returns success if and
only if a solution for the CSP exists. Moreover, in case of success, the call to solve
changes the assignment of a minimum number of variables in V . 2

In the Example of Figure 4.2, we have illustrated that RB-AC algorithm reduces
the search overhead by applying constraint propagation. Now, we present a result
in which all overhead can be completely eliminated in case unary constraints are
added to an instance of a CSP. Since some unexpected events in practical situations,
such as the unavailability of machines or the lateness of supplies, can be described
by unary constraints, this result is practically significant.

Proposition 4 Let (V, D,C) be a CSP containing only unary and binary constraints
and let the assignment a be a solution.

If a new CSP is formed by adding only unary constraints to the original constraint
set, then using node-consistency in the procedure RB and forward checking in the
procedure ‘assign’ avoid considering more than one subset of X.

Proof Enforcing node-consistency guarantees that we know all variables of which
the assignments in a are inconsistent with the new added unary constraints. So,
X = U in RB procedure.
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Having assigned some variable v a new value, some of the binary constraints cv,w

may no longer hold. Since we apply forward checking, values in the domain of each
variable w that are inconsistent with the new value assigned to v will be removed
from the domain of w. If the constraint cv,w does not hold given the current value
of w, this value will not be in the domain of w after forward checking. So again,
X = U .

Hence, we always consider only one subset of X in which every variable assign-
ment should be changed. 2

The above proposition implies that repairing a solution after adding unary con-
straints to a CSP does not have a high complexity. Using proper constraint-propagation
techniques can bring the complexity close to O(T ), where T is the complexity of solv-
ing the CSP from scratch. If, however, binary constraints are added, the situation
changes. If the current solution does not satisfy the added binary constraint, one
of the two variables of the constraint must be assigned a new value, and possibly
both. Since we do not know which one, both possibilities will be investigated until
a new solution is found. This implies that the repair time will double with respect
to adding a unary constraint.

4.5 Approximate algorithms

From Theorem 2, RB-AC theoretically can find the most nearby (optimal) solution
for a CSP (if such a solution exists) in a DCSP. Moreover, if the new CSP is the
result of adding a unary constraint, the time complexity of RB-AC is not much higher
than solving the new CSP from scratch. However, when a new CSP is formed by
adding or changing several n-ary (n ≥ 2) constraints, and this happens quite often
in a practical situation, using RB-AC to find a minimal change solution is much
harder than using a constructive algorithm to generate an arbitrary solution from
scratch. The time complexity of RB-AC then increases drastically. The constraint-
propagation techniques integrated in RB-AC do not reduce the time complexity
of RB-AC. To solve the CSPs, RB-AC may not find an optimal solution over a
reasonable period of time. The reason is that the search efficiency of RB-AC is
affected when we intend to obtain an optimal-solution stability, i.e, maintaining
as many as possible variable assignments. Hence, we face an important trade-off
between search efficiency and solution optimality.

By examining the RB-AC algorithm more closely, we found that a significant
portion of the search effort in RB-AC was consumed by additional overhead that
the constructive algorithm AC does not have. In our paper [?], we provided an
thorough analysis of the time complexity of the RB-AC algorithm. The analysis
will be introduce in Subsection 4.5.1. Then, in the Subsections 4.5.2 and 4.5.3 we
deal with two approaches that balance the search efficiency and solution optimality
in such a way that a part of the additional overhead is avoided and a near-optimal
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solution is obtained within a reasonable period of time. The first idea is to do a
binary search on a maximum number of variables (called the BS algorithm), the
second idea is to restart the search processes a number of times and take the best
one (called the RS algorithm).

4.5.1 Time complexity of RB-AC algorithm

Unlike a search algorithm that constructs a solution from scratch, RB-AC uses an
iterative deepening strategy and searches through the subsets of variables, i.e., the
subsets of the set X. Since the number of such subsets is exponential, search through
the subsets can have a significant influence on the time complexity of RB-AC. Below,
we analyze the resulting time complexity of RB-AC.

Let us assume that RB-AC changes the value assignment of N (N ≤ |V |) vari-
ables and obtains the optimal solution. For the sake of dealing with the worst cases
in the execution of RB-AC, we also assume that the set U (RB-AC algorithm, lines
(2) and (11)) is always empty. Moreover, the set X (RB-AC algorithm, lines (3) and
(12)) at depth i contains at most |V | − i + 1 variables and the maximal domain size
of any variable in X is d = maxv∈V |Dv|.

The maximum number of nodes (M) that RB-AC may examine is:

M ≤ |V | · d + (|V | − 1)2 · d2 + · · ·+ (|V | −N + 1)N · dN (4.1)

We have (|V | − i + 1)i < (|V | − i)i+1 for every i = 0, 1, · · · , N (N ≤ |V |).
Hence,

M ≤ (|V | −N + 1)NΣN
i=1d

N = N(|V | −N + 1)NdN (4.2)

Let be K = |V | − N + 1. From Formula (4.2), it can be inferred that the time
complexity of RB-AC for changing the value assignment of N variables is O(KN ·dN )
in the worst case. In comparison with O(dN ), which is the worst-case complexity of
the constructive method AC that solves the CSP from scratch, the factor KN is the
main cause of the additional overhead introduced by the RB-AC search processes.

The constraint propagation reduces the contribution of the factors KN and dN

in RB-AC as well as the factor dN in the constructive algorithm AC. However,
when a CSP is modified by adding or changing several n-ary (n ≥ 2) constraints,
the constraint propagation does not provide sufficient help for improving the per-
formance of RB-AC. Moreover, the heuristics on variable or value selection do not
exert any influence on the exhaustive search at each n(n < minimal cost) depth in
RB-AC. Hence, we have to investigate new approaches that are able to reduce the
time complexity of RB-AC. In the following subsections, we introduce two approxi-
mate algorithms which were first proposed in our paper [?] that modify the RB-AC
algorithm by balancing its solution optimality and its time complexity. They are
the BS and RS algorithms.
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BS (V,D,C,a)
lb := 1, ub := |V |;
while(ub 6= lb) do

n1 := (ub + lb)/2;
if(solve(V, D, C, a) = success) then

cache solution ;
nd := new cost∗;
if(nd < ub) then ub := nd;
else lb := (ub + lb)/2;

else lb := (ub + lb)/2;

Procedure solve(V, D, C, a)
X := conflict var(C,a);
constraint-propagation (V );

U := {v ∈ V | a[v] /∈ D[v]};
X := X ∪ U ;
n := n1;
if (n ≤ |V | ∧BTN∗ < upbound) then

if(find(V, 1, U, X, ∅) = success)
then return success;

return failure;

Procedure find(F, i, U, X, Y )
{· · · · · · · · · · · · · · · · · ·};

Procedure assign(v, F, i, Y )
{· · · · · · · · · · · · · · · · · ·};

*where the new cost is the cost of new solution; BTN is the number of backtrack
steps.

Figure 4.3: BS algorithm.

4.5.2 The BS algorithm

The first approach, denoted as BS, uses binary search on the maximum cost (the
maximum number of variables that may be assigned a new value). In this approach,
the iterative deepening processes of RB-AC are replaced by a binary search on the
maximum depth that the search processes might proceed. Moreover, BS sets an
upper bound for the number of backtracks to prevent consuming too much time on
one estimated maximum depth. Thus, for each estimated maximum depth, either
a new solution is found or the upper bound of backtracks is reached without a new
solution. Furthermore, since BS gives up the exhaustive search on each estimated
search depth, the heuristics on variable and value selection become applicable. We
use ‘most-conflicts’ as a variable-ordering heuristic and the ‘mini-conflicts’[?] as a
value-ordering heuristic in the implementation.

The pseudo codes of BS algorithm that are different from that of the RB-AC
algorithm are presented in Figure 4.3. The procedures find and assign in BS are
almost the same as they are in RB-AC except for adding backtrack upper-bound
limitations in both procedures, without using n and u as parameters, and leaving
out line (13) in RB-AC algorithm. BS works as follows. First, the number of the
variables in the CSP is taken as the upper bound ub and 1 as the lower bound lb of
the maximum depth. Second, BS tries to solve the problem by proceeding at most
(lb + ub)/2 depths in the modified RB-AC. If it produces a solution and the cost
of the solution is less than ub, this cost is taken as new ub. Otherwise, lb becomes
(lb + ub)/2. When lb and ub are equal, the work is done. Third, the remaining
solution is taken as the approximate optimal solution of the new CSP. If the final
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ub is equal to the number of variables in the CSP, the solution produced by BS may
not be better than the one produced by a constructive algorithm AC.

If RB-AC finds a solution at depth N , it may search every depth between 1 and
N . BS only searches through O(logN) depths. From Formula (4.2) it follows that
the time complexity of BS is still O(KN ·dN ) in the worst case. The actual reduction
on the time consumption in BS is reached by setting the upper bound of backtracks
for each estimated maximum depth. We may conclude that the BS approach avoids
some repetition of work in the iterative deepening strategies of RB-AC and makes
variable-selection and value-selection heuristics useful. But, it does not really reduce
the time complexity of RB-AC.

4.5.3 The RS algorithm

The second approach avoids to traverse every variable in the set X (RB-AC algo-
rithm, lines (3) and (12)). It is denoted as RS (Restart Search processes) and is
explored below. RS randomly selects one variable from the set X in the procedure
find in case of an empty set U . Each time, a new set X (RB-AC algorithm, line
(12)) is determined after the selected variable is assigned a value from its domain. If
RS does not find a solution by changing the assignment of the selected variable, no
other variable from the same set X is tried. Instead, RS backtracks to the variable
selected in the previous search step and tries a new value for that variable. Moreover,
the iterative deepening process is replaced by a depth first search process by setting
the maximum depth equal to the number of variables in the problem (n = |V | in
RB-AC algorithm, line (4)) or the cost (depth) of the best solution found so far.
The latter is called ‘search-depth adaptation’. These two changes make the search
processes of RB-AC similar to the search processes proposed by Verfaillie and Schiex
[?]. The worst-case time complexity of our search processes is reduced to O(dN ).

The pseudo codes of RS algorithm are presented in Figure 4.4. Due to the
similarity with RB-AC, the pseudo codes of the procedures find and assign in RS
are omitted in Figure 4.4. Only a few modifications on these two procedures are
made. We mention them here. With reference to the RB-AC algorithm, in the
procedure find of RS, while (RB-AC algorithm, line (7)) is changed to if and the
lines (8) and (9) (RB-AC algorithm) are left out; in the procedure assign of RS,
line (13) is left out.

In order to obtain a near-optimal solution, RS restarts the search process a
number (RN) of times and caches the solution that has the minimal cost based on the
solutions found so far. In each restart, backtracks are allowed and the upper bound
of backtracks is set to prevent consuming too much time on one restart. A restart
happens when a search process either finds a solution or reaches the upper bound of
backtracks without a solution. Because the restart of the search is combined with a
randomized variable-selection strategy, the probability of following the same search
path more than once is rather small since the number of the possible paths is usually
quite large. Hence, a different solution will be found in each restart. Furthermore,
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RS (V,D,C,a)
cost := |V |;
n1 := cost;
for(i := 1; i < RN ; i := i + 1) do

if(solve(V, D, C, a) = success) then
if(new cost∗ < cost) then

cache solution;
cost := new cost;
n1 := cost− 1; (1)

Procedure solve(V, D, C, a)
X := conflict var(C,a);
constraint-propagation (V );
U := {v ∈ V | a[v] /∈ D[v]};

X := X ∪ U ;
n := n1;
if (n ≤ |V | ∧BTN∗ < upbound) then

if(find(V, 1, U, X, ∅) = success)
then return success;

return failure

Procedure find(F, i, U, X, Y )
{· · · · · · · · · · · · · · · · · ·};

Procedure assign(v, F, i, Y )
{· · · · · · · · · · · · · · · · · ·};

*where the new cost is the cost of new solution; BTN is the number of backtrack
steps.

Figure 4.4: RS algorithm.

selecting a variable from the set X makes RS change the value assignment of the
variables that are in the neighborhood of the infringed solution.

In this approximate approach, the execution efficiency and solution optimality
are closely related to the following parameters: the number of restarts, the value-
selection ordering, the upper bound on the number of backtracks, and the search-
depth adaptation.

Obviously, more restarts will produce better solutions as well as an increase in
time consumption. When the upper bound of backtracks is quite large, we do not
adapt the search-depth (line (1) is left out in Figure 4.4) to the minimal cost based
on the solutions found so far. If we did so, we would cause more backtracks in
easy CSPs making them much harder to solve. As a result the time required to
achieve a near-optimal solution increases considerably. However, when the upper
bound of backtracks is relatively small, the search-depth adaptation is applicable.
The reason is that if the adaptation brings about more backtracks than the upper
bound of backtracks allowed, the search will immediately restart. Thus, the time
consumption of each restart will be controlled to an acceptable amount and the RS
will work in a way similar to the branch-and-bound search algorithm. An extreme
circumstance of this approach is that the search process immediately restarts when a
dead-end is encountered. This implies that a non-backtracking (i.e., backtrack-free)
approach is applied.

As pointed out in Subsection 4.5.1, the value-selection heuristics do not improve
the efficiency of the original RB-AC. In RS, however, it may help to find a solution
more quickly in each restart. For this reason, the mini-conflict value selection [?]
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and random value selection are examined in the implementation.
By doing a large number of experiments, we have tried to find out the proper

parameter combination in RS to balance the execution efficiency and the solution
optimality. We conclude that it is crucial to use a sufficiently large number of restarts
and a moderate number of backtracks for a general CSP. If the CSP has looser
constraints, the mini-conflict value selection should be applied in RS. If the CSP has
tighter constraints, the random value selection or the mini-conflict value selection can
be applied arbitrarily. Since it is in practice usually difficult to determine whether
a given CSP has looser or tighter constraints, the mini-conflict value selection is
preferred.

If the mini-conflict value-selection heuristic is used, search-depth adaptation and
no search-depth adaptation can be applied arbitrarily for the CSPs with looser con-
straints. However, if CSPs have tighter constraints, the search-depth adaptation
should be applied. Again, since it is in practice usually difficult to determine whether
a given CSP is looser or tighter constrained, the search-depth adaptation is preferred.

In summary, whether a general CSP has looser or tighter constraints, using a
sufficiently large number of restarts, a moderate number of backtracks, mini-conflict
value selection and search-depth adaptation in RS is regarded as the best parameter
combination for getting a near optimal solution.

4.5.4 Empirical studies

In this subsection, we provide an overview of our experiments concerning the ap-
proaches discussed in the previous subsections. To guarantee the generality, we
assume that a randomly generated CSP is located in the sequence of a DCSP. The
infringed solution of a CSP is a randomly-generated complete assignment of its vari-
ables.

We use a four-tuple (n, d, p1, p2) to generate CSP instances, where n denotes
the number of variables and d denotes the domain size of each variable; p1 and p2

are two probabilities. They are used to generate randomly the binary constraints
among the variables. Here, p1 represents the probability that a constraint exists
between two variables, and p2 represents the conditional probability that a pair of
values in the domains of the two variables is consistent. Therefore, the bigger the p1

value, the more binary constraints exist among the variables of the generated CSPs
(the CSP is tighter constrained). For a given value of p1, the bigger the p2 value,
the more values are consistent in the domains of the two variables (the constraint
between two variables is looser). When p1 and p2 take values from 0 to 1 with step
0.1, the generated CSP instances include three distinct classes: (1) the class of the
least constrained ones (i.e., a solution is quickly found), (2) the class of the most
constrained ones (an inconsistency is quickly detected) and (3) the intermediately
constrained ones (it is difficult to establish a consistency or an inconsistency).

In the experiments, the initial complete assignment for the generated CSP in-
stance is made by assigning a random value to each variable. The approaches dis-
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cussed in the previous sections are tried to find a solution nearby such a complete
assignment that is viewed as an ‘infringed’ solution of the considered CSP. This pre-
supposition represents the worst possible cases for the repair-based algorithm, since
many constraints will be violated, many variables will be involved in the violated
constraints, and there will be no fixed pattern for the constraint violations.

Corresponding to the four-tuple (n, d, p1, p2), CSP instances were generated by
setting n:=20, d:=10; and n:=40, d:=20. The choice for n:=20 and d:=10 was
motivated by the fact that RB-AC can still find the optimal solution within a rea-
sonable period of time with these two parameter values. Choosing n:=40 and d:=20
is to compare various approximate approaches in solving large-scale CSPs, since the
original RB-AC is usually not able to solve the instances generated with these two
parameter values within a reasonable period of time.

We show some of the experimental results for CSP (20, 10, p1, p2) by the Figures
4.6 to 4.9, in which p1 takes the values 0.3 (Figures 4.6 and 4.8) and 0.7 (Figures
4.7 and 4.9). These values of p1 are examples of CSP with a low and high number
of constraints respectively; p2 takes the values from 0.1 to 1.0 with step 0.1. These
values of p2 cover the whole range of constraints from loose to tight ones. For each
pair of values of p1 and p2, 10 instances are created to be solved by the algorithms.
The figures present the solution quality and the time consumption of four algo-
rithms, namely the constructive algorithm AC (denoted as FC in the Figures), the
original repair algorithm RB-AC (denoted as RB in the Figures), and the approxi-
mate algorithms RS and BS. The Figures 4.6 and 4.7 exhibit the average distance
to the randomly-generated ‘infringed’ solution. The Figures 4.8 and 4.9 exhibit the
average time needed to find a solution to one problem instance. All experiments
in this section are performed on a Pentium-450MHz PC with 128.0MB RAM and
all algorithms use forward-checking and full-lookahead arc-consistency for constraint
propagation. The upper bound of backtracks in RB-AC is 10,000,000, and in AC,
RS, and BS is 500,000. RS takes 2000 restarts.

The Figures 4.6 and 4.7 show that the solutions of BS and RS are much closer
to the solutions of RB-AC than those AC produced. The Figures 4.8 and 4.9 show
that BS has a similar profile of time complexity as RB-AC has, and that the time
complexities of RS are much lower than those of BS. Note that the empty places in
the figures correspond with problem instances that are unsolvable.

Furthermore, in solving CSP (40, 20, p1, p2), we tested the approximate algo-
rithm RS for a variety of parameter combinations; the parameters are the number
of restarts, the value-selection ordering, the upper bound on the number of back-
tracks, and the search-depth adaptation. In the experiments, p1 takes the values
0.3 and 0.5. These values of p1 are examples of CSP with a low and high number
of constraints, respectively. p2 takes the values 0.7 and 0.8. These two values of p2

represent the loose and tight constraints in CSPs, respectively. Note that when p2

is 0.6, the CSPs are already over-constrained. The experimental results for CSPs
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(40, 20, 0.3, 0.7) and (40, 20, 0.3, 0.8) are presented by the Figures 4.10 to 4.17. In
these Figures, the number of restarts takes values from 100 to 7000. The marked
points on the curves represent the average distances and average time consump-
tion produced by the indicated approach over 10 CSP instances. One approach is
compared with another in terms of the execution efficiency (time consumption) and
the solution optimality (shortest distance) after a certain time elapse. Due to the
similarity, the experimental results for p1:=0.5 are not presented.

When p2 is 0.7, we first compare the effects of the two approaches that have
a distinct number of backtracks, but both of them are equipped with random-
value selection (ra) and no-search-depth adaptation (NA). Figure 4.10 shows that
a moderate number (4h:=400) of backtracks (ra4hNA) outperforms a large num-
ber (ub:=500,000) of backtracks (raubNA). Second, the previously better approach
(ra4hNA) is taken to be compared with an approach (ra4hA) that applies search-
depth adaptation while other parameters remain the same. Figure 4.12 shows
that search-depth adaptation (ra4hA) outperforms the no-search-depth adaptation
(ra4hNA). Third, again the previously better approach (ra4hA) is taken to be com-
pared with an approach (mi4hA) that applies the mini-conflict value-selection heuris-
tics while other parameters remain the same. Figure 4.14 shows that the mini-conflict
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value-selection heuristic (mi4hA) performs roughly equal to the random-value selec-
tion (ra4hA).

When p2 is 0.8, we compare different approaches in a similar way as that p2 is 0.7.
Figure 4.11 shows that a moderate number of backtracks (ra4hNA) outperforms a
large number of backtracks (raubNA) after 400 seconds. Between 50 and 400 seconds
the two approaches perform roughly the same. Here, both approaches take the
random-value selection and no-search-depth adaptation. Figure 4.13 shows that no-
search-depth adaptation (ra4hNA) outperforms search-depth adaptation (ra4hA),
while both of them take 400 backtracks and the random-value selection. Figure 4.15
shows that the mini-conflict value-selection heuristic with search-depth adaptation
(mi4hA) outperforms the random-value selection with no-search-depth adaptation
(ra4hNA), while both of them take 400 backtracks.

Now, we can figure out the proper parameter combinations in RS to solve the
CSPs with different type of constraints. The Figures 4.10, 4.12 and 4.14 show that
using a moderate number of backtracks and search-depth adaptation is crucial for
solving the CSPs with tighter constraints. The value-selection heuristic is, however,
not important since the mini-conflict heuristic does not definitely outperform the
random value selection and vice versa. Figures 4.11, 4.13 and 4.15 show that the
mini-conflict value-selection heuristic and a moderate number of backtracks with
search-depth adaptation, denoted as MIMOA, outperforms other parameter combi-
nations for solving the CSPs with looser constraints. Since it is usually difficult to
determine whether a given CSP has looser or tighter constraints in practice, con-
sidering Figure 4.14 and Figure 4.15 together, MIMOA can be taken as the best
parameter combination for solving general CSPs.

If we change one of the parameters in MIMOA, such as replacing the search-
depth adaptation (mi4hA) with no-search-depth adaptation (mi4hNA), the quality
of the produced solution is not better than that of MIMOA. Figure 4.16 shows that
the search-depth adaptation certainly outperforms the no-search-depth adaptation
for the CSPs with tighter constraints. Figure 4.17 shows that there is no preference
for search-depth adaptation or no-search-depth adaptation in solving the CSPs with
looser constraints. For the same reason in practice, MIMOA can still be viewed
as the preferred parameter combination for solving general CSPs. Other parameter
combinations have also been examined in the experiments. They did not outperform
the parameter combination in MIMOA on the whole.

4.6 Chapter conclusions

In this chapter, we have proposed three repair-based methods for solving DCSPs,
which include a complete repair-based algorithm (RB-AC) and two approximate al-
gorithms (BS and RS). All algorithms aim at finding a solution for a CSP requiring
a minimal or a near-minimal number of assignment changes with respect to its in-
fringed solution. The complete algorithm applies an iterative deepening form of local
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search combined with constraint propagation. BS and RS give up the completeness
by limiting the amount of search.

Through empirical studies, we conclude that the approximate algorithm RS with
appropriate parameter combinations can be used to solve DCSPs as efficiently as
possible for achieving a solution-maintenance objective, i.e., obtaining a solution
with a near-minimal number of assignment changes. Hence, this chapter adequately
addressed the first part of the general research problem given in the problem state-
ment (Section 1.2).



Chapter 5

Repair-Based Scheduling

This chapter presents a study of Repair-Based Scheduling. In Section 5.1, the moti-
vation for conducting a repair for an existing schedule is clarified. In Section 5.2, the
following four issues are discussed: (1) why an innovative Repair-Based Scheduling
approach is needed? (2) what kind of model modification should be made to the
problem? (3) what objective should be achieved in Repair-Based Scheduling? and
(4) what minimal perturbation function is appropriate for describing the objective?
In Section 5.3, a thorough analysis for an unexpected event (e.g., a machine break-
down) that happens in a Job Shop is made. A key-operation on the breakdown
machine is identified. The operations that need to participate in the repair are
determined. Section 5.4 gives an overview of a novel Repair-Based Scheduling algo-
rithm (denoted as RBS) for handling such unexpected events. The main ideas and
techniques of the algorithm are illustrated. The pseudo codes of the RBS are given
in Section 5.5. Section 5.6 presents and illustrates innovative heuristic procedures
which are the result of different design choices of RBS. Finally, in Section 5.7, the
routine of a new constraint-propagation technique is presented which determines the
operations’ start-time domains and prunes the search space adequately.

5.1 Motivation for repair-based scheduling

In section 3.7, we briefly introduced the reactive-scheduling concepts and correspond-
ing methodologies. We saw that the scheduling requirements in a reactive scheduling
phase are more than those in a predictive scheduling phase. In a real-world reactive-
scheduling environment, the additional requirements (constraints) often include that
the new schedule must differ minimally from the original schedule. The reason is
that the original schedule represents an investment in planned resources, i.e., an
allocation of machines and people. By executing the schedule a large number of
interdependent processes has been set in motion. If an unexpected event occurs,

73
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keeping as much as possible the continuity of those processes is of vital importance.
Hence, not disturbing the original schedule more than necessary is a key factor for
reaching an agreement among all affected parties regarding the changes on the orig-
inal schedule. In a common sense, minimizing the changes on the original schedule
to obtain a new schedule is the right objective of repairing a schedule.

In the realm of reactive scheduling we focus in this thesis on Repair-Based
Scheduling to be interpreted as generating a new schedule that has a minimal differ-
ence with the original schedule. The difference between new and original schedules
may be explicitly expressed by some measures or functions. Although the reactive-
scheduling systems currently in existence [?, ?] claim to emphasize on keeping the
changes to the original schedule as minimal as possible, most of them primarily try
to balance this objective with the traditional optimization objectives, such as mini-
mizing the make-span, minimizing the mean tardiness of jobs etc. As pointed out in
[?], there is a strong commercial demand for techniques that can better deal with the
reactive scheduling problems to achieve the objective of Repair-Based Scheduling.

In Chapter 3, we outlined a number of powerful predictive (pre-established)
scheduling methods based on constraint-directed search and introduced some re-
active (repair-based) scheduling approaches. The methods developed in this chapter
are also based on constraint-directed search. However, the focus of this chapter is on
repairing a Job Shop Schedule. Thus, the notations and definitions associated with
the JSSPs in Chapter 3 are still valid in this Chapter. In Chapter 3, we considered
only the standard JSSPs in which (1) the processing times of operations are fixed
values, (2) each machine can process only one operation, and (3) each operation can
be processed by only one machine at a time. These three issues will be investigated
more closely below.

During the execution of a schedule in a job shop, some unexpected events may
happen (such as a machine breakdown). As a consequence, users may want to
add new requirements. The result may be that the original JSSP model has to be
changed to a new JSSP model. The original schedule of the original JSSP needs to
be repaired (revised) to cope with the dynamic changes on the JSSP model. We
are only interested in those dynamic JSSPs in which new requirements (constraints)
are added. Since in these cases the original schedule may not be consistent with
the newly added constraints, some modifications and adjustments must be made on
the original schedule. For those dynamic JSSPs with constraint removals only, the
original schedule of the original JSSP is still valid without need of modification and
the new JSSP becomes simpler than the original one. We are not going to discuss
the latter cases in this thesis. As we mentioned in the beginning of this paragraph, a
resource shortage or failure, viz. a machine out-of-service (breakdown), is a typically
unexpected event that may happen in a job shop. In the Chapters 5 and 6, we restrict
our study on handling this kind of unexpected events in a job shop.

In the sections below, we discuss the strategies of repairing an existing schedule.
Then, we present an innovative Repair-Based Scheduling strategy that is able to
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generate a new schedule with a near-minimal difference to the original schedule.

5.2 Repairing an existing schedule

Since a machine failure often introduces a schedule inconsistency, the whole or a part
of the job-shop production cannot be implemented in accordance with the original
schedule established for the original JSSP. In this case, there are roughly two reactive
options available to industrial companies: (1) radical changes in the production sys-
tem or (2) considerable improvement of existing systems. The improvement option
provides a rich context of Repair-Based Scheduling methods. In order to satisfy the
requirements of improvement, Repair-Based Scheduling must achieve two objectives
simultaneously:

1. restore the feasibility of a schedule (now known to be infeasible because of the
introduction of new conflicting constraints);

2. produce a new schedule which has a minimum difference with the original
schedule.

To meet the above two objectives which are obviously different from those in
predictive scheduling, repair action usually starts with identifying a set of problems
[?, ?, ?] in the original schedule through localized schedule analysis as we will do in
Section 5.3. Then, the repair activity proceeds with making local changes to mini-
mize the potential (global) ripple impact and press optimization needs. Given the
tightly coupled nature of scheduling decisions made in the original schedule, changes
(e.g., a local conflict-resolving action) to one portion of the schedule often have rip-
ple (non-local) effect. However, as pointed out in [?], it is generally not possible to
predict the ripple effect of a change nor to bound the scope of change required to the
original schedule in advance. Heuristic guidance may minimize this phenomenon,
but problem combinatorics prevent its elimination. Thus, when reasoning about
possible repair actions, an appropriate balance between achieving various schedul-
ing objectives and being computationally efficient is a difficult task.

5.2.1 A new approach is needed

Once an original schedule needs to be repaired, the human schedulers often tend
to adopt myopic “fire-fighting” tactics (where extinguishing one fire ignites the
next). Such simple tactics keep the execution moving, but the global system behav-
ior mostly deteriorates rapidly. As matters stand now, efficient search algorithms
for schedule optimization (except for a very limited set of simple objectives such
as make-span) are still not available and the amount of computation required for
finding a solution is generally unpredictable. Consequently, constructing a cheap
but suboptimal schedule that is then incrementally evolving to meet optimization
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objectives are well studied in repair strategies [?, ?]. The advantage of incremental
repair is that one can interrupt the repair (evolving) process and use the interim re-
sult for execution when no more time is allowed for further repair. This means that
a scheduling system can quickly respond to the unexpected environmental changes.
Nevertheless, the available incremental repair methods focus on the most conflicting
constraints (most contention resource) and start to repair the operations involved in
these constraints (resolve the contention on the resource). Attendance to primary re-
source contentions can lead to the emergence of secondary resource contentions; and
in some cases there is no dominant locus of resource contention in the overall man-
ufacturing system. Moreover, even though an operation is not involved in the most
conflicting constraint (i.e., the operation does not explicitly require a “repair” per
se), it might be possible to create a better schedule by altering its original start-time
assignment. For example, placing an operation uninvolved in the identified con-
straint much later in the schedule might cause little ripple effects and allow many
operations (which are involved in the identified constraint) to fit in their place. This
opportunity is missed if the uninvolved operations are not considered in the earlier
repairing process. Therefore, how similar should the new version of the schedule
be in relation to the old one is still an open question. Each of these circumstances
suggests that different problem-structuring decisions, and dynamically-determined
schedule-building strategies are needed.

Below, we present an innovative Repair-Based Scheduling approach which uses a
completely different problem solving structure and accordingly appropriate heuristics
to select operations to be repaired. In brief, the repair does not need to select the
operations involved in the most conflicting constraint prior to other operations.

5.2.2 Model modification

Due to a machine breakdown, the start times of some unprocessed operations on the
breakdown machine may need to be postponed. If no operation’s start time need
to be postponed which may happen in some scarce cases, the original schedule is
still valid which can be kept to run without any change. However, in most cases of
a machine breakdown, relaxing the due date (or make-span) to allow delays of the
start times of some operations is necessary.

From a JSSP point of view, some parameters in the original JSSP model need
to change when a machine breakdown takes place. Generally speaking, model mod-
ification reformulates the problem by constraint relaxation and (or) addition. The
constraint relaxation in model modification includes throwing away already exe-
cuted operations, changing release or due dates, increasing machine capacity, etc.
It facilitates the solution of the problem. But the constraint relaxation is costly
to implement in practice (e.g., buy new equipment to increase capacity, pay a fine
for the production delay, sub-contract jobs to outside contractors). Thus, it should
be made to the minimum extent possible. For this reason, we only assume two
inevitable constraint relaxations in a model modification for Repair-Based Schedul-



5.2. REPAIRING AN EXISTING SCHEDULE 77

ing. One is relaxing the due date. Another is lessening the number of operations
participating in the repair. The reason for the first relaxation has been stated in the
first paragraph of this subsection. The latter relaxation is based on the fact that
the executed portion of the original schedule no longer need to be considered with
time elapses.

Besides the two above-mentioned general constraint relaxations in model modifi-
cation, the constraint additions in the original JSSP model should be dealt with in-
dividually for each machine-breakdown instance. The added constraints in machine-
breakdown events impose that some operations processed by a breakdown machine
must be delayed with respect to their originally scheduled time and that the orig-
inal schedule should be preserved as much as possible. When the execution of an
operation is interrupted by a machine breakdown, a unary constraint must be added
to the new JSSP model which imposes that the start time of the uncompleted part
of the interrupted operation should be equal to the machine recovery time. The
process time of the interrupted operation is changed to be the process time of the
uncompleted part of the interrupted operation.

From a CSP point of view, Repair-Based Scheduling faces an extra set of con-
straints that must be resolved in the repair procedures. However, the existence of a
feasible solution in Repair-Based Scheduling is guaranteed in the special modifica-
tion context of assuming a constraint is “infinitely relaxable” along one dimension,
i.e., operations can always be delayed. This flexibility can be counterbalanced by
the inclusion of corresponding repair objectives to minimize relaxation to the extent
possible (e.g., minimized the disturbance on the original schedule).

5.2.3 Objectives and criteria for repairing a schedule

Some relatively simple optimization functions can be found in the literature for
predictive and reactive scheduling, such as the minimization of make-span [?], min-
imization of the average (or maximum) tardiness of operations (how much time the
operations finish after their due date), or some combination of other attributes (for
example, minimizing work-in-process combined with tardiness [?]).

For practical scheduling problems, it is desirable that multiple optimization ob-
jectives are satisfied simultaneously. However, optimization objectives often interact
and conflict with one another. To optimize along one objective alone could jeop-
ardize optimality along other objectives. The evaluation criteria for judging the
acceptability of the outcome of a repair action are often multiple, conflicting, and
context dependent. Therefore, it is difficult to describe the evaluation criteria and
the associated trade-offs in a simple manner.

From Repair-Based Scheduling point of view, the original schedule should not be
disturbed any more than necessary. So, the fundamental tasks of schedule repair are
to resume the feasibility and obtain a new schedule that has the minimum difference
with the original schedule. The latter requirement (objective) can be achieved by
either minimizing the number of start-time changes of all operations or minimizing
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the sum of the new start-time delays of all operations with respect to their original
start times. Two other possible objectives are minimizing the make-span and the
largest delay of the start times of all operations. The four objectives mentioned
above are formalized in Definition 21.

Definition 21 Let the set V1 denote all operations that participate in the repair,
Og : Ω → [0,H) be a original schedule of a JSSP, ST : V1 → [0, H) be a new schedule
of the operations in V1. For any operation o ∈ V1, the inequality ST (o) ≥ Og(o)
is assumed to hold; the delay of its ST (o) with respect to its Og(o) is defined by
ST (o)−Og(o). The maximum completion time of all operations in the new schedule
(make-span, MP), the sum of the delays of ST (SD), the largest delay of ST (LD),
and the number of assignment changes with respect to the original schedule (NC) are
defined by:

MP (V1) = max
o∈V1

(ST (o) + p(o)) (5.1)

SD(V1) =
∑

o∈V1

(ST (o)−Og(o)) (5.2)

LD(V1) = max
o∈V1

(ST (o)−Og(o)) (5.3)

NC(V1) = |{o ∈ V1, ST (o) 6= Og(o)}| (5.4)

These four objectives cannot be satisfied simultaneously, as it is illustrated by
the following example (see Figure 5.1, too).

Example The box A of Figure 5.1 depicts an instance of a JSSP and its original
schedule, where J1 consists of three operations o1, o3 and o5 : o1 ≺ o3 ≺ o5; J2

consists of two operations o2 and o4 : o2 ≺ o4; o1 is processed by M1; o2 and o3 are
processed by M2; o4 and o5 are processed by M3; p(o1) = 6, p(o3) = 4, p(o5) =
3; p(o2) = 2, p(o4) = 1. The original schedule of the JSSP instance is: Og(o1) =
0, Og(o2) = 1, Og(o3) = 6, Og(o4) = 3, Og(o5) = 10. The make-span of this
schedule is 13. Let us assume that machine M2 breaks down at time t = 1 and
recovers at time t′ = 6. The response time should be in the interval [1, 6]. In this
particular case, the execution of o2 has to be delayed at least 6 time units due to
the period between the M2 breaking down and recovering. However, the operation
o1 can be executed without being affected by the M2 breaking down and the delay
of o2. This is because o1 and o2 are processed by a different machine, M1 and
M2 respectively, and they do not belong to the same job. Therefore, they are not
subjected to any resource (capacity) constraint or precedence constraint. Obviously,
any start-time change (delay) of o1 will increase the sum of the start-time delays.
So, it is safe to exclude o1 for repairing. The operations that have to participate
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M1 O1

M2 O2 O3 O2 O3

1 6 1                6               11

M3 O4 O5 O4 O5

4 10 8 15

A B

M1

M2 O3 O2 O2 O3

1 6           10                         1                 6    8

M3 O5 O4 O4 O5

10        13                                       8            12

C D

Figure 5.1: Example of reactive scheduling

in the repair are collected in the set V1 (V1 := {o2, o3, o4, o5}). Since o2 and o3 are
on the breakdown machine, their earliest possible start time must be adjusted to 6.
Consequently, the earliest possible start times of o4 and o5 must also be adjusted to
new time points since o2 and o3 precedes o4 and o5, respectively.

1. The box B of Figure 5.1 depicts a Right Shift (denoted as RSH) strategy
to get a new schedule in responding to the machine-breakdown event. This
strategy implements a considerably less sophisticated reactive method that
resolves conflicts by simply “pushing” the scheduled start times of all the
operations in the set V1 forward with 5 time units, which are determined by the
o2 on the breakdown machine. In this way, the new schedule can be obtained
immediately after a machine breakdown. The execution of these designated
shifts introduces neither time conflicts nor capacity conflicts, but the obtained
schedule obviously is sub-optimal in terms of the make-span and the minimal
difference with the original schedule. The value of MP , SD, LD and NC of
the new schedule is 18, 20, 5 and 4, respectively.

2. The box C of Figure 5.1 depicts a strategy that minimizes the make-span
(denoted as SMP) after M2 breakdown. In this strategy, the start times of o3

and o5 are unchanged while the start times of o2 and o4 are pushed forward
some time units. The value of MP , SD, LD and NC of the new schedule is
14, 19, 10 and 2, respectively.

3. The box D of Figure 5.1 depicts a strategy that tries to minimize the sum of
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the new start-time delays of all operations in the set V1. The value of MP ,
SD, LD and NC of the new schedule is 15, 14, 5 and 4, respectively.

From the Example and Figure 5.1, we can see that schedule C has the minimal
make-span among three reactive schedules B, C and D. However, its SD is bigger
than that of schedule D. As a matter of fact, minimizing make-span does neither
automatically minimize the sum of the new start-time delays nor minimize the num-
ber of the start-time changes. Therefore, the objectives that minimize the difference
between the original schedule and the new schedules must be dealt with in a way
different from the traditional scheduling objectives, such as make-span.

5.2.4 Minimal perturbation problem

Since we modeled a JSSP as a CSP, the model modification after a machine break-
down actually creates a new CSP. Obtaining a feasible schedule and preserving the
original schedule as much as possible can be viewed as finding a new schedule with
a minimal cost λ (see definition 20).

According to Definition 20, the cost function λ is interpreted as the number
of different start-time assignments between the new and old schedules, i.e., λ =
NC. The algorithm developed for a DCSP in Chapter 4 could be used to minimize
NC for a repair-needed JSSP. Although NC can be a measure in some application
domains, it may not be suitable for Repair-Based Scheduling where a new schedule
is required to have the minimum difference with respect to the original schedule.
This is because keeping one operation’s start time unchanged may force a big delay
of another operation’s start time. The big start-time delay of a single operation may
be greater than the sum of the start-time delays of two or more operations where
each operation make a smaller delay. Apparently, the latter has a smaller difference
(closer start times) in total with respect to the original schedule. As shown in the
Example of Figure 5.1, only minimizing the number of different assignments does not
mean that operations have the new start times that are in total closer to the original
start times. In order to measure the difference adequately (preferably evenly) and
keep the operation’s start times in total as close as possible to the original schedule,
we define the cost function λ of a new schedule ST as the sum of its start-time
delays as compared to the original schedule Og (the SD in Definition 21), i.e.,

λ(ST ) :=
∑

o∈V1

(ST (o)−Og(o)) = SD (5.5)

Here, the new start times of all operations which participate in the repair are
greater than or equal to their start times in the original schedule (i.e., ∀o ∈ V1, ST (o) ≥
Og(o)).

In this section, Repair-Based Scheduling is interpreted as generating a new
schedule that has the minimal difference with the original schedule. Since the



5.3. FURTHER ANALYSIS OF THE PROBLEM 81

cost function λ (see formula 5.5) clearly and evenly represents the minimal dif-
ference between a new and an old schedule, we consider it as the core optimization
function to be achieved in Repair-Based Scheduling activities.

Previously, the problem for obtaining a minimally disrupted schedule was for-
mally called Minimal Perturbation Problem by Sakkout and Wallace [?]. Although
their perturbation function differs from our cost function λ, we have adopted the
name minimal perturbation problem, where Sakkout and Wallace also measure their
perturbation function in terms of costs. An elaboration of their function shows sim-
ilarities to our function λ(ST ) in 5.5.

5.3 Further analysis of the problem

From a constraint-based scheduling perspective, Repair-Based Scheduling has to
deal with an extra set of constraints added to the new JSSP model except for the
precedence and capacity constraints in the original JSSP which must be satisfied in
predictive scheduling. These new constraints are related to imposing start-time de-
lays of some operations and insuring smaller differences as much as possible between
the original schedule and the new schedules.

Generally speaking, schedule repair (revision) is often driven by detecting and
analyzing constraint conflicts in the original schedule that are introduced by changes
to the JSSP model. In Repair-Based Scheduling, the original JSSP together with
the original schedule needs to be scrutinized so that the proper decision can be made
to cope with the unexpected events.

In this section, we first analyze the problem characteristics after an unexpected
event (machine breakdown) has happened on a job-shop floor. Then, we identify
some key issues which bring about the constraint changes (additions) to a JSSP
model. In Subsection 5.3.1, a key-operation on the breakdown machine is identified.
The operations that need to participate in the repair are determined in Subsection
5.3.2. The formal definition of a repair-needed JSSP is given in Subsection 5.3.3.

5.3.1 The key-operation

Given an instance of JSSP (J , Ω,M,H,≺, J,M, p) and a function Og : Ω → [0,H)
representing an original schedule of the given JSSP, Figure 5.2 graphically represents
a portion of an original schedule for a hypothetical job shop. For some machines,
the start and finish times of some operations are shown in the Figure. In order
to analyze conveniently the characteristics and complexities of the schedule-repair
task, we assume that machine Mi(Mi ∈M) breaks down at time t; the anticipated
recovery time period of Mi is r (we assumed that the anticipated recovery time
period is always available in Repair-Based Scheduling); the operations processed by
Mi is in the set Ωi = {o | o ∈ Ω,M(o) = Mi}; the operations that are scheduled to
execute on Mi in the interval [t, t + r) are in the set:
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Figure 5.2: Machine Mi breaks down at time t.

δ = {o | o ∈ Ωi, Og(o) < t + r ∧Og(o) + p(o) > t}. (5.6)

With the previous assumptions and corresponding notations, we proceed with our
investigation and analysis of current problem structure by focusing on the breakdown
machine. Two cases resulting from the event can be identified as follows.

1. δ = ∅. This means that no operations are executing on Mi in the interval
[t, t + r), i.e., all operations processed by Mi either finished before time t or
did not start yet at time t + r according to the original schedule. Thereby,
rescheduling or repairing the original schedule is not necessary. The original
schedule is still valid.

2. δ 6= ∅. This means that at least one operation cannot be processed according
to the original schedule. Thus, reactive scheduling is required.

Hereafter, we concentrate our analysis on the machine breakdown instances in
which the set δ is not empty.

In order to take proper action, we first identify the key-operation ok which has
the minimal start time in the set δ, i.e.,

ok ∈ δ (∀o ∈ δ, Og(ok) ≤ Og(o)) (5.7)

Obviously, the operations of which start times are greater than that of ok on Mi

may need to be adjusted. In case of Og(ok) ≥ t, the new constraints, which specify
that the earliest possible start times of operations in δ must be greater than or equal
to the recovery time of the breakdown machine, should be added to the new JSSP
model.
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where Mi breaks down at t and recovers at t + r;

Figure 5.3: Two cases, the position of Ok is different in both cases.

In case of Og(ok) < t, the execution of ok is interrupted by the Mi breakdown.
Thus, ok can be split into two operation sequences (ok1 ok2) (as illustrated in Figure
5.2) reflecting already completed and uncompleted portions of ok. We pointed out
previously that only non-preemptive JSSPs in which an operation cannot be inter-
rupted are considered in Repair-Based Scheduling. For the interrupted execution of
ok, which is enforced by the Mi breakdown, we try to reduce the interruption as
much as possible by immediately restoring the execution of ok2 after machine Mi

has recovered. So, an unary constraint that specifies the start time of ok (i.e., ok2)
which should be t + r, is added to the new JSSP model. The process time of ok is
changed into the process time of ok2 which is shown in Equation 5.8.

pnew(ok) = p(ok)− (t−Og(ok)) (5.8)

The other constraints that should be added to the new JSSP model are as same
as those in the case of Og(ok) ≥ t.

5.3.2 Operations that participate in the repair

Determining the operations that must participate in the repair process is an impor-
tant issue. The set of repair-needed operations V1 should only contain operations of
which the original start time might have to change in order to minimize the λ value
specified by the objective function. Obviously, V1 will contain all operation that
can no longer be assigned their original start times as well as all their successors.
Hence, we only need to determine whether operations that precede the operations
that might no longer be assigned their original start times, should also participate
in the repair process.

According to the original start and finish time of the key operation, all opera-
tions of the given JSSP can be classified into three sets. The first set contains the
operations of which the original start time is greater than the original finish time of
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the key operation. These operations might be affected by the machine-breakdown
event and must participate in the repair activities. We use a set V1 to collect all
operations in this set and the key operation.

V1 = {ok} ∪ {o ∈ Ω | Og(o) ≥ Og(ok) + p(ok)}

The second set contains the operations of which the original finish time is less
than the original start time of the key operation. This means that any possible
changes caused by the breakdown machine happen after these operations finishing
their execution. Hence, the operations in this set can be excluded from the repair
activities.

The third set contains the operations (processed by machines other than the
breakdown machine) of which the original start time is less than and the original
finish time is greater than, respectively, the original finish time and the original
start time of the key operation. The following proposition will be used to determine
whether additional operations in this set must be considered.

Proposition 5 Let V1 = {o ∈ Ω | Og(o) ≥ Og(ok) + p(ok)} ∪ {ok} be a set of
operations that participate in the repair process. The start times of these operations
may be delayed in the repair process. Operations that are not in V1 receive their
original start times.

Adding any operation o′(o′ /∈ V1) to V1 will not decrease the λ value of the
objective function (Equation 5.5) on the set V1.

Proof

Let MSD be the minimal sum of the start-time delays on the set V1.
Then there exists a complete assignment ST1 repairing the operations in V1 such

that:

MSD = SDST1(V1) = min
ST

( ∑

o∈V1

(ST (o)−Og(o))

)
=

∑

o∈V1

(ST1(o)−Og(o)).

Let V ′
1 = V1 ∪ {o′} (o′ /∈ V1). This is the set of operations that are allowed to

be delayed. Moreover, let ST2 be a complete assignment repairing the operations in
V ′

1 . Clearly, if o′ is not delayed, i.e. ST2(o′) = Og(o′), we have SDST2(V
′
1) = MSD.

So assume that o′ is delayed, i.e. ST2(o′) > Og(o′).
There are two possibilities for this delay. We show that with both we run into a

contradiction:

1. There is a predecessor o∗ of o′ that is delayed in ST2. Clearly, for no o ∈ V1

we have o ≺ o′, since this would imply o′ ∈ V1. Hence, o∗ 6∈ V ′
1 and therefore,

by the assumption concerning V ′
1 , ST2(o∗) = Og(o∗); contradiction.
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2. There is a o∗ 6= o′, M(o′) = M(o∗) and o∗ interferes with o′ in ST2. That is,

ST2(o∗) + p(o∗) > Og(o′)

and
Og(o′) + p(o′) > ST2(o∗).

Clearly, o∗ ∈ V ′
1 since otherwise we would have ST2(o∗) = Og(o∗) and there

would be no conflict between the schedules of o∗ and o′. But then, since
o′ 6∈ V1, it follows by definition of V1 that Og(o′) < Og(o∗) and since both are
scheduled on the same machine we have Og(o′) + p(o′) < Og(o∗) < ST2(o∗),
contradicting Og(o′) + p(o′) > ST2(o∗).

Hence, our assumption that ST2(o′) > Og(o′) does not hold. Therefore, ST2(o′) =
Og(o′) and SDST2(V

′
1) = MSD. 2

From Proposition 5, any operation which is not in the set V1 can be excluded
from the repair without influencing the minimal sum of the start-time delays of the
repaired schedules on the operation set V1 (the operations that participate in the
repair).

By synthesizing the analysis in this section, the set V1 which represent the op-
erations that must participate in the Repair-Based Scheduling can be explicitly
expressed as follows:

V1 =
{ {ok} ∪ {o ∈ Ω | Og(o) ≥ Og(ok) + p(ok)} if δ 6= ∅
∅ if δ = ∅ (5.9)

Figure 5.3 (a,b) shows the operations (blank) which must participate in the repair
and those operations (black) which do not need to participate in the repair.

Some other unexpected events, such as supply-delivery delays, have similar char-
acteristics. Hence, they can be treated in a similar way.

5.3.3 Formal definition of a repair-needed JSSP

The problem to be solved by the Repair-Based Scheduling approach depends on
the JSSP instance, the original schedule Og for the problem instance, and the time
interval [tfailure, trecovery) in which some machine bdm ∈ M is unavailable because
of some unexpected event. We assume that the prediction of the machine recovery is
always available. An instance of a repair-needed JSSP can be expressed by a tuple
(V1,M,≺, Og, p, M, rt) where:

• V1 (as shown in Equation 5.9) is the set of the operations to be considered in
the repair process;

• M is a set of machines;
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• ≺⊆ Ω× Ω is a set of precedence constraints;

• Og : Ω → [0,H) is the original schedule for the operations of a JSSP;

• p : Ω → N gives the processing time of each operation;

• M : Ω →M is a function specifying the machine requirement of an operation;

• rt : V1 → N is a function specifying the release time of an operation o ∈ V1.
Here:

rt(o) = max(Og(o),max({Og(o′) + p(o′)|M(o′) = M(o), o′ ∈ Ω ∧ o′ /∈
V1})), if M(o) 6= bdm;

rt(o) = max(Og(o), trecovery), if M(o) = bdm and tfailure ≤ Og(ok);

rt(o) = max(Og(o), trecovery + pnew(ok)), if M(o) = bdm and Og(ok) <

tfailure < Og(ok) + p(ok);

where ok is the key operation (specified by Equation 5.7) on the failure ma-
chine; pnew(ok) is given by Equation 5.8.

A ‘repaired’ schedule ST for the new JSSP is a complete start-time assignment
of the operations in V1, ST : V1 → N such that:

• the total delays to the original schedule
∑

o∈V1
(ST (o)−Og(o)) is minimal;

• for every o ∈ V1 : rt(o) ≤ ST (o);

• for every (o, o′) ∈≺: ST (o) + p(o) ≤ ST (o′);

• for every o, o′ ∈ V1 : if M(o) = M(o′), then either ST (o) + p(o) ≤ ST (o′) or
ST (o′) + p(o′) ≤ ST (o).

If a Repair-Based Scheduling system responds to the unexpected events at time
t?, t? must be in the interval [t, t + r]. That is to say, the Repair-Based Scheduling
system must generate a new schedule before the time t + r. Therefore, except
for achieving the minimal λ value of the perturbation function, the efficiency of
the Repair-Based Scheduling system is an important issue to be considered when
developing such a system.

In the next section, we first give an outline of a repair-based scheduling algorithm
which is designed to solve the repair-needed JSSPs. Then we illustrate the details of
a new operation selection heuristic and the constraint-propagation techniques used
in the algorithm.
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5.4 A repair-based scheduling algorithm (RBS)

To overcome the drawbacks of the incremental repair strategy, an innovative Repair-
Based Scheduling algorithm (RBS) is developed. The RBS will be outlined and
illustrated in this section.

5.4.1 Outline of the RBS

The RBS algorithm is developed to generate a new schedule for a JSSP after oc-
currence of a machine failure. In rescheduling all operations that must participate
in the repair, RBS tries to minimize the perturbation value λ. Since minimizing λ
is the optimization objective and a constraint-based approach is the fundamental
of RBS, the optimization objective is approximated by iteratively putting a tighter
constraint on the maximum allowed value for λ. Each time a valid solution is found,
the λ is calculated and a new tighter constraint on the allowed λ value is introduced.
In each iteration, RBS completely restarts search a number of times for generating
different search paths. Each search node is coupled with a semi-randomized opera-
tion selection heuristic.

Besides the constraint-propagation techniques used in predictive scheduling (Two
Consistency Checking and Edge Finding), a newly developed constraint-propagation
technique which impose the minimal perturbation value λ to reduce the search space
(start-time domains) is used in RBS. The technique deals with the really consumed
sum of delays by already assigned operations and the delays which are anticipated
to be consumed in future search processes by yet unassigned operations. Both of
the delays are subtracted from the remaining total delays and enforced as an unary
constraint on the unassigned operations’ start-time domains. Since the constraint
on the maximum allowed value of λ is a global constraint involving the start times
of all operations, the pruning effect of the new constraint propagation is insufficient
to solve instances in which the maximum value for λ becomes tight. Therefore, a
new operation selection heuristic has been developed.

The heuristic is a semi-randomized operation-selection heuristic that constructs
a schedule from left to right (assuming that operations are ordered from left to right
with respect to the precedence constraint). This also implies that given a partial
schedule the heuristic determines which operation will be the next operation on some
machine. The heuristic consists of four steps. First, the heuristic determines the
operations that are candidates for assigning a new start time at the current node
of the search tree. Second, the heuristic randomly selects a machine. It does this
by randomly selecting one of the candidate operations where each operation has an
equal probability of being selected. Third, the heuristic estimates the ripple effect of
each candidate operation that requires the selected machine. Here, the ripple effect
is defined as the influence on the start-time domains of the unassigned operations
when the operation under consideration is assigned its best start time in the current
search node. The candidate operation with the lowest estimated ripple effect is
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chosen. The search is thus redirected and operation-selection decision is repaired.
Fourth, the operation selected by the heuristic is assigned its best start time.

To sum up, RBS is a rescheduling algorithm which combines generating a new
schedule with achieving the repair objective (minimizing the λ value of the pertur-
bation function).

In the successive subsections, we illustrate the semi-randomized operation selec-
tion heuristic and the constraint-propagation techniques used in RBS.

5.4.2 Main ideas behind the RBS

The success of the constraint-directed search in predictive scheduling motivated us
to adopt its framework as the basis of the novel RBS algorithm. Since Repair-Based
Scheduling problems are NP-hard problems [?], a randomized-restart strategy which
has been successfully used when generating a predictive schedule is adopted. How-
ever, minimizing the λ value of the perturbation function in RBS is completely
different from that of minimizing the make-span. A more sophisticated operation-
selection heuristic, which can map the optimization needs and opportunities implied
by the specific search states to the current repair actions, is required. Moreover, a
particular constraint-propagation technique which can impose the minimal perturba-
tion requirement (λ value) and simultaneously reduces the search space is necessary.

In order to search for a solution, RBS has to select an operation at each search
node, to assign a start time to the selected operation and to propagate the current
assignment to the start-time domains of yet unassigned operations.

Since we wish to minimize the perturbation value λ, a new schedule must be
left-justified. Left-justified schedules can be built in a way from left to right such
that the branching factor in each search node can be significantly reduced. During
the search processes, some operations must start before other operations and some
operations can start before other operations without increasing the λ value. We
use this knowledge to filter the operations that are candidates to be assigned in the
current search node. Therefore, when choosing the operation to be assigned next,
we only consider the operations that can start before the minimal earliest finish time
(EFT) of all unscheduled operations. We denote this set of candidate operations by
CV .

In order to make a good choice, we try to estimate the ripple effect of a candidate
operation. However, we do not evaluate all operations in CV with respect to their
ripple effects. Instead, we evaluate the operations in a subset of CV with respect
to their ripple effects. First, an operation in the candidate set CV is randomly
selected and the corresponding machine is determined. Here, every operation in CV
has an equal probability of being chosen. So, the machine with higher contentions
(the machine with more candidate operations on which processing could start) has
a higher probability to be chosen. Second, all operations in CV that are processed
by the chosen machine (a subset of CV ) are evaluated with respect to the ripple
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Figure 5.4: Operation start-time assignment.

effects. Third, the operation with the minimal estimated ripple effect is chosen to
replace the randomly selected operation as the next one on the selected machine.

The main reasons for developing such semi-randomized heuristic can be summa-
rized in two points. (1) Since the delays consumed by each assignment are obvious,
we know exactly how much delay is consumed by the start times of already assigned
operations. However, we do not know how much delay will be consumed by yet
unasssigned operations. The heuristic should make an estimate of how much delay
the start times of unassigned operations are to consume at least, and then lead the
search process in the direction determined by the lowest estimated ripple effect. (2)
In the set CV , no two operations belong to an identical job (the operations in a job
are assigned start times from left to right). However, some operations in CV might
be processed by the same machine. We know that on a machine, different orders
of operations have different ripple effects. If there exists at a search node several
candidate operations in CV to be processed by the same machine, the operation that
is selected to be the next operation on that machine may have a significant impact
on the ripple effects. Thus the operations in a subset of CV , which are processed
by the same machine, are evaluated with respect to their ripple effects. The subset
is randomly determined by selecting randomly an operation from CV .

We have also studied two alternative approaches. In the first alternative, the
operation with the lowest estimated ripple effect in CV will be assigned next. In the
second alternative, a machine is randomly selected with equal probabilities. Both
alternatives will be dealt with in the next chapter.

After selecting an operation, RBS always assigns the operation the earliest pos-
sible start time since it constructs a left-justified schedule (see Figure 5.4).

Following an operation start-time assignment, the constraint propagation will be
performed over the start-time domains of all unassigned operations. If the start-time
domain of an unassigned operation becomes empty after the constraint propagation,
then the currently selected operation cannot be the next operation on the selected
machine. The operation must be scheduled after at least one of the other operations
on that machine. So, the earliest possible start time of the operation should be
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Figure 5.5: Start-time domain calculation.

postponed to max(EFT ({o′|o′ ∈ Vx ∧M(o′) = M(o)}), est(o) + 1) (where Vx is the
set of operations which have not been assigned yet).

5.4.3 Propagating the λ value

As indicated in Section 3.6, search can drastically be reduced by enforcing various
degrees of consistency which are implemented by constraint-propagation techniques.
As well as in predictive scheduling, Repair-Based Scheduling needs to implement
proper constraint propagations in balancing the complexity and the facilitating of
the search effort. In this subsections, we introduce a new constraint-propagation
technique which was first proposed in our paper [?]. The technique imposes an
unary constraint derived from the λ value of the minimal perturbation function on
the start-time domains of all unassigned operations.

Given the objective of Repair-Based Scheduling as established in Subsection
5.2.4, we can use this objective to prune the search space. That is, applying con-
straint propagation to eliminate impossible start times from an operation’s start-time
domain in which the latest possible start times are “infinitely” relaxed.

From the original schedule point of view, the Repair-Based Scheduling assigns
each operation involved in the repair a new start time. According to Equation 5.5,
λ is a measure to rate the difference between the original schedule and the repaired
schedule. Let us assume that the operations of all but one job have the same start
times as those in the original schedule and that one job is causing the maximum
allowed delay λ. Figure 5.5 gives an illustration of the last four operations of such
a job Jk. Note that the total order of the operations on job Jk is defined by the
precedence constraint which will not change in Repair-Based Scheduling.

Let Og(on), Og(on−1), Og(on−2) and Og(on−3) be the original start times of
the last four operations in the original schedule; gi = Og(oi)− (Og(oi−1) + p(oi−1))
be the gap (slack) between the finish time of operation oi−1 and the start time of
operation oi. Given the maximum allowed delay λ for the operations on job Jk,
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we can calculate the latest possible start times of these operations. We start with
calculating the latest possible start time of the last operation on on the job Jk.

Since on is the last operation of job Jk, by assuming that all other operations
in the repair-needed JSSP will be assigned their original start times, the new start
time of on can thus be delayed to the maximum λ value (not infinitely be delayed).
So, the latest possible start time of on in the repaired schedule is bounded by:

lst(on) ≤ Og(on) + λ

The maximum time period of the delay of operation on−1 may be delayed depends
on the gap gn. If this gn is larger than or equal to the maximum λ value, on−1 can
be delayed without considering on. Hence, the latest possible start time of on−1 is
bounded by lst(on−1) ≤ Og(on−1) + λ. If gn is smaller than the maximum λ value,
on−1 can be shifted until the gap is zero at first, and then both on and on−1 are
shifted. When shifting both on and on−1, a shift of one time unit causes an increase
of two units of the λ value. Thus, the maximal remaining space for the delay of
on−1 start time is b(λ− gn)/2c. As a result, the latest possible start time of on−1 is
bounded by:

lst(on−1) ≤
{

Og(on−1) + λ if gn ≥ λ
Og(on−1) + gn + b(λ− gn)/2c if gn < λ

The latest possible start time of on−2 is determined by gn, gn−1 and λ. Three
situations should be taken into account, i.e., (1) gn−1 ≥ λ, (2) gn−1 < λ ∧ 2gn +
gn−1 ≥ λ, and (3) 2gn +gn−1 < λ. The latest possible start time of on−2 is bounded
by:

lst(on−2) ≤




Og(on−2) + λ if gn−1 ≥ λ

Og(on−2) + gn−1 + bλ−gn−1
2 c if gn−1 < λ ∧ wsg ≥ λ

Og(on−2) + sg + bλ−wsg
3 c if wsg < λ

where: sg := gn−1 + gn, wsg := 2gn + gn−1.
The latest possible start time of any operation on−j ( j ≥ 3) on job Jk thus can

be bounded by the formula below.

lst(on−j) ≤





Og(on−j) + λ if gn−j+1 ≥ λ

Og(on−j) + sg1 + bλ−wsg1
2 c if wsg1 < λ ∧ wsg2 ≥ λ

...
...

Og(on−j) + sgj + bλ−wsgj

j+1 c if wsgj < λ

Where:
sgx :=

∑n−j+x
q=n−j+1 gq

wsgx :=
∑n−1

q=n−x (n− q)g2n−q−j

1 ≤ x ≤ j.
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Figure 5.6: Anticipated delays.

The latest possible start times of operations on other jobs Ji(i 6= k) can be
calculated by the same formulas in which gi depends on the gaps (slacks) between
the operations on the job Ji.

5.4.4 Propagating allowed sum of delays

In Subsection 5.4.3 and our paper [?], a given λ value of the minimal perturbation
function is assumed to be the maximum allowed sum of delays for all operations
involved in repair. Propagating the λ value as described in Subsection 5.4.3 imposes
a unary constraint on the operations’ start-time domains (latest possible start times).
However, two factors have not been taken into account in the previous subsection.
Operations that have already been assigned a new start time may not have the
same start time as in the original schedule. Moreover, the domain of an unassigned
operation may no longer contain the start time of the original schedule (its earliest
possible start time is delayed). In both cases, a proportion of the maximum λ value
will certainly be used for these operations and can therefore no longer be used by
an unassigned operation. Hence, instead of using the maximum λ value, we should
use the remaining λ value AD (the maximum Allowed Sum of Delays) from which
the delays that have been consumed and will certainly be consumed have been
subtracted. Obviously at the current search node, propagating the AD as a unary
constraint on all unassigned operations’ start-time domains thus will further prune
the search space.

For a convenient description, the delay of the earliest possible start time of an
unassigned operation is called anticipated delay (ATD) of the operation. ATD1 and
ATD2 in Figure 5.6 show this kind of delays for the unassigned operations on job
Jk.

In the last subsection, an operation’s latest possible start time is determined
by setting the current λ value as the maximum allowed start-time delay for the
operations on each job, where the gap (slack) between two adjacent operations on
the same job is assumed to be a fixed value (see Figure 5.5), i.e., gi = Og(oi) −
(Og(oi−1)+ p(oi−1)) (if oi−1 ≺ oi). However, when propagating the AD from which
the unassigned operations’ ATDs have been subtracted, the gap (slack) between two
adjacent operations on a job may also change. Figures 5.7, 5.8, 5.9 and 5.10 show
four different situations in which the new gaps between two adjacent operations
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Figure 5.7: est(oi) = Og(oi) ∧ est(oi−1) = Og(oi−1).
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Figure 5.8: est(oi) = Og(oi) ∧ est(oi−1) > Og(oi−1).

should be calculated by the formulation below:

gi = est(oi)− (est(oi−1) + p(oi−1))

Moreover, from the analysis in Subsection 5.4.3, on how much delay could be
shared by two adjacent operations, it was clear that it depends on the gap between
them. Thus the maximum allowed delay for an operation’s start time also depends
on the gap between the operation and its successors on the same job. As a result,
the formulations in the last subsection are no longer correct for calculating the
operations’ latest possible start times.

In order to propagate the AD as a unary constraint on all unassigned operations’
start-time domains, we developed an algorithm to propagate the Allowed Sum of
Delay. Let us assume that the start times of the operations on one job maximally
have a delay of an allowed sum of AD from which the sum of ATDs and the delays
made by already assigned operations have been subtracted. To get the latest possible
start times of the operations on a job, similar steps as in the last subsection are
adopted. We first calculate the latest possible start time of the last operation on on
a job then calculate the other operations’ latest possible start times.

If on is the last operation on job Jk, the maximum allowed delay of ST (on) is AD
but the start point of ST (on)’s delay is dependent on whether the current est(on)
is greater than Og(on). If est(on)−Og(on) > 0 holds, the ATD (est(on)−Og(on))
has been subtracted from AD. So, when calculating the latest possible start time of
on, the start point of ST (on) delay becomes its earliest possible start time instead
of its original start time. If est(on)−Og(on) > 0 does not holds, est(on) = Og(on)

gi

Jk

Og(Oi-1) Og(Oi) est(Oi)

Figure 5.9: est(oi) > Og(oi) ∧ est(oi−1) = Og(oi−1).
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Figure 5.10: est(oi) > Og(oi) ∧ est(oi−1) > Og(oi−1).

holds. The start point of ST (on) delay is Og(on) which can be replaced by est(on).
Therefore, when on’s ATD has been subtracted from AD, the start point of ST (on)
delay can be expressed by est(on). The latest possible start time of on in the repaired
schedule is bounded by:

lst(on) ≤ est(on) + AD.

The time period that operation on−1 may be delayed depends on the gap gn

and AD. For the same reason as on, the start point of ST (on−1) delay can also be
expressed by est(on−1). If gn ≥ AD holds, the maximum allowed delay of ST (on−1)
is equal to est(on−1) + AD. If gn < AD holds, the maximum allowed delay of
ST (on−1) depends on the delay of ST (on). Once the ST (on−1) delays gn time units,
the remaining time units AD−gn should be shared by on and on−1 start time delays.
Thus, the maximum allowed delay for ST (on−1) is est(on−1) + gn + b(AD− gn)/2c.
Hence, the latest possible start time of on−1 is bounded by:

lst(on−1) ≤
{

est(on−1) + AD if gn ≥ AD
est(on−1) + gn + b(AD − gn)/2c if gn < AD.

The latest possible start time of any operation on−j ( j ≥ 2) on job Jk thus can
be calculated by the formula below.

lst(on−j) ≤





est(on−j) + AD if wsg1 ≥ AD

est(on−j) + sg1 + bAD−wsg1
2 c if wsg1 < AD ∧ wsg2 ≥ AD

...
...

est(on−j) + sgj + bAD−wsgj

j+1 c if wsgj < AD

Where:
sgx :=

∑n−j+x
q=n−j gq

wsgx :=
∑n−1

q=n−x (n− q)g2n−q−j

1 ≤ x ≤ j.

Based on the problem-solving exploration, a Repair-Based Scheduling (RBS)
algorithm is developed. The pseudo codes of RBS are presented in Section 5.5.
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5.5 Procedures in the RBS

Let (J , Ω,M,H,≺, J,M, p) be an instance of a JSSP and (V1,M,≺, Og, p, M, rt)
an instance of a repair-needed JSSP; AD denotes the maximal allowed sum of delays
for the start times of all unassigned operations; D(o) denotes the discrete domain
of possible start times of the operation o. The pseudo codes of RBS are presented
in the Figures 5.11, 5.12, 5.13 and 5.14. The RBS algorithm solves the Minimal
Perturbation Problem by calling the procedure Iterative Improve(V ).

5.5.1 Iterative improvements and restarts

The procedure Iterative Improve is given in Figure 5.11. It first identifies newly
introduced constraints caused by the machine-breakdown event to the original sched-
ule, such as the start times of some operations on the breakdown machine must be
enlarged with an amount greater than or equal to the time of the machine recov-
ery. Then, it determines a subset of V , V1, which contains all operations that
have to participate in the repair. As a result, a machine-breakdown instance of
a JSSP is modeled as a new CSP which has explicit variable and constraint sets,
whereas the variable domains (start-time domains of operations) are decided in each
iteration independently. Moreover, based on the original schedule, the procedure
Iterative Improve generates a right-shift schedule through relaxing the completion-
time bound but satisfying the newly added constraints, and the precedent and dis-
junctive constraints in the original JSSP. In more detail, the start times of all opera-
tions in the set V1 are pushed forward with the same time units which are needed to
recover the breakdown machine. This right-shift schedule is obviously a suboptimal
schedule in coping with the new environment. However it can be obtained immedi-
ately after getting the predicted machine-recovery time. The sum of the start-time
delays (λ value) of the right-shift schedule is used to be an initially allowed sum of
delays (denoted as AD) for the start times of all operations in V1 (i.e., AD := λ).
Successively, two important parameters of the RBS are introduced. They are the
backtracking factor BTF and the maximum number of restarts nrRestarts. The
BTF gives the average number of chronological backtrack steps that is allowed for
each operation, i.e., a maximum number of bBTF ∗ |V |c chronological backtrack
steps is allowed before RBS restarts the search. With nrRestarts = X, RBS allows
X number of tries to solve the instance, which corresponds to X − 1 times restart-
ing the search. Inside the WHILE loop of the Iterative Improve, a global variable
nrBT is set to zero, which is used to account the number of chronological backtrack
steps in one restart. Then a procedure Solve is called. If Solve returns True, the
new schedule S′ replaces the previous schedule S as the best solution and its λ value
minus 1 is taken as the new AD for the next restart improvement. If Solve does
not return True, Solve will be restarted with the same AD. Whether Solve returns
True or False, the restart number nr will increase by one. The iteration is repeated
until the stop criterion (nr > nrRestarts) is reached, after which the algorithm
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Iterative Improve(V )
Identify new constraints introduced by machine breakdown;
Create a subset V1 of V ;
Generate a right shift schedule S;
Initial AD := λ(S);
maxBT := bBTF ∗ |V |c;
nr := 1;
while (nr ≤ nrRestarts)

nrBT := 0;
if (Solve(V1, AD) = True)

S := S′;
AD := λ(S′)− 1;

end if;
nr:=nr+1;

end while;
return S;

end Procedure Iterative Improvement

Figure 5.11: Iterative Improvement.

returns the best schedule in terms of λ value. In each iteration, the cost bound AD
is used to decide the start-time domains of operations and removing domain values
that would lead to bigger λ values than those already found. Thus, each iteration,
if a solution is found, guarantees that the λ value of a new schedule will be smaller
than or equal to that of the previously found schedule.

5.5.2 Pre-treatment

The procedure Solve is given in Figure 5.12. At the beginning of the procedure
Solve, three constraint-propagation procedures are activated, which includes two
traditional constraint-propagation procedures used in predictive scheduling (Two
Consistency Check and Edge Finding) and a procedure Allowed Sum of Delays
Propagation (ASDP ). Naturally, before calling the procedure ASDP, the sum of
the anticipated delays (ATDs) which will certainly be made by all unassigned op-
erations (no operation has been assigned at the pre-treatment phase) must be sub-
tracted from AD. The three constraint-propagation subroutines are repeated until
all subroutines reach a stable state at which there is no change on any unassigned
operation’s start-time domain. After that, Solve calls the procedure Find. If the
call of Find returns True, Solve returns True. Otherwise Solve returns False.
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Solve(V1, AD)
repeat

Two Consistency Check(V1);
Edge Finding(V1);
AD2 := AD −New Anticipated Delays;
if (AD2 < 0)

return False;
end if;
ASDP (AD2, V1);

until (no more domain changes);
if (Find(V1, AD) = True)

return True;
else

return False;
end if;

end Procedure Solve

Figure 5.12: Solve: pre-treatment and restarts.

5.5.3 Semi-randomized heuristic for operation selection

RBS selects an appropriate operation at the current search node through calling the
procedure Find which is given in Figure 5.13. Find starts with determining the
minimal earliest possible finish time (EFT ) for all unassigned operations. Then,
all unassigned operations of which the earliest possible start times are smaller than
EFT are collected in the set CV . These two steps are more or less like those in
Nuijten’s predictive-scheduling algorithm [?].

While CV is not empty, an operation o is randomly selected from CV . If there
is any other operation in CV which is processed by the same machine with o, this
(these) operation(s) including o is (are) collected in the set SM . Since every oper-
ation o′ in the set SM would possibly be selected to be the next operation on the
considered machine and be assigned a new start time at the current search node, a
heuristic which includes a ripple-effect-estimation procedure is implemented in Find
to evaluate the priority of these operations for decision repair. The operation in SM
which has the minimal estimated ripple effect is then chosen at the current search
node to replace the randomly selected o. After making the decision of operation se-
lection, the procedure Assign is called. If Assign returns True, Find returns True.
If Assign returns False, Find will put o back to the set of unassigned operations
and increase the backtrack number nrBT by 1. If (nrBT > maxBT ) holds, Find
returns False. Otherwise, it backtracks to select another operation in CV unless it
is empty.
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Find(V2, AD)
TV := V2;
EFT := Min{eft(o) | o ∈ V2};
CV := {o | o ∈ V2 ∧ est(o) < EFT};
while (CV 6= ∅)

Randomly select an operation o(o ∈ CV );
MiniSD := AD;
SM := {o′ | o′ ∈ CV ∧M(o′) = M(o)};
if (SM.Length > 1)

for ( every o′, o′ ∈ SM)
Save (D(o), ∀o ∈ V2);
EstimateSD := LookAhead ABSD(o′, V2, SM, V2)
Recover (D(o), ∀o ∈ V2);
if (EstimateSD < MiniSD ∧ EstimateSD! = −1)

MiniSD := EstimateSD;
o replaced by o′(o := o′);

end if;
end for;

end if;
CV := CV − {o}, TV := TV − {o};
if (Assign(o, TV, AD) = True)

return True;
end if;
TV := TV + {o};
nrBT++;
if (nrBT > maxBT )

return False;
end if;

end while;
return False;

end Procedure Find

Figure 5.13: Find: Operation selection.
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5.5.4 Making assignment or backtracking decision

The selected operation is assigned a start time in the procedure Assign (see Figure
5.14). Since only start-time delays are considered in the Repair-Based-Scheduling
objective function, the inequation Og(o) ≤ est(o) always holds for all operations
in V1. So, the selected operation is assigned its earliest possible start time as its
best start time. Any other value assignment will increase the value AD more than
necessary.

Following the start-time assignment for the selected operation, Assign looks at
the unassigned operation set. If it is empty, Assign returns True. If the unassigned
operation set is not empty, Assign saves the start-time domains of all unassigned
operations. Then, it calculates the remaining sum of the delays (AD1) in which
only the sum of the consumed delays by the already assigned operations are sub-
tracted. Successively, Assign propagates the current assignment over yet unassigned
operations by performing repeatedly the three constraint propagations until no do-
main changes anymore. If no start-time domain of an unassigned operation becomes
empty after the constraint propagations, the procedure Find is recursively called.
Otherwise, all unassigned operation start-time domains are recovered. Subsequently,
the earliest possible start time of the currently selected operation is increased by
max(EFT ({o′|o′ ∈ Vx ∧M(o′) == M(o)}), est(o) + 1) time units and then Assign
returns False, i.e., RBS backtracks to select another operation.

The repeatedly performed constraint propagations in the procedure Assign in-
cludes Two Consistency Check, Edge Finding and ASDP. Before calling the subpro-
cedure ASDP which propagates maximum allowed sum of delays, the new maximum
allowed delays for yet unassigned operations, AD2, is calculated. It is the result of
the count in which the new ATDs of all unassigned operations are subtracted from
AD1. If AD2 is less than or equal to zero, Assign returns False. Otherwise, AD2

is propagated over yet unassigned operations by calling the procedure ASDP.

5.6 Ripple-effect estimations

In this section, we first introduce the basic ripple-effect estimation which is adopted
in the procedure Find. Then, we present several design choices in the RBS in which
the basic ripple-effect estimation and the semi-randomized heuristic are extended.

5.6.1 Basic ripple-effect estimation

In RBS, the ripple-effect-estimation procedure is named LookAhead ABSD(o′,
Unassigned set, Ordering set, Fixed unassign set). The pseudo code is given
in Figure 5.15 and the procedure is called by procedure Find. Here, the set SM is
transferred to the parameter Ordering set. The procedure is used to estimate the
ripple effects of the candidate operations in the set SM for repairing the random
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Assign(o, Vx, AD)
ST (o) := est(o);
if (Vx = ∅)

return True;
else

Save (D(o′), ∀o′ ∈ Vx);
AD1 := AD −Already Consumed Delays;
repeat

Two Consistency Check(Vx);
Edge finding(Vx);
AD2 := AD1 −New Anticipated Delays;
if (AD2 < 0)

return False;
end if;
ASDP (AD2, Vx);

until (no more domain changes);
if (∀o′ ∈ Vx, D(o′) 6= ∅)

if (Find(Vx, AD) = True)
return True;

end if;
else

recover D(o′)(∀o′ ∈ Vx);
est(o) := max(EFT ({o′|o′ ∈ Vx ∧M(o′) = M(o)}), est(o) + 1);

end if;
end if;
return False;

end Procedure Assign

Figure 5.14: Assign: Making an assignment or a backtracking decision.
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selection decisions. When an operation o′(o′ ∈ SM) is temporarily selected, the idea
is to estimate its ripple effect with respect to the minimal λ value of the perturbation
function. Thereafter o′ will be tentatively assigned its earliest possible start time as
its start time and then it will be removed from Unassigned set and Ordering set.
Subsequently, the tentative assignment of o′ is propagated to Unassigned set by
traditional constraint propagations (Two Consistency Check and Edge Finding). If
in the current Unassigned set, there is an operation of which the domain becomes
empty, the LookAhead procedure returns -1. Otherwise, the LookAhead procedure
proceeds with checking the current Ordering set. When this set becomes empty, for
all operations in the Fixed unassign set, the differences between their temporarily
formed earliest possible start times and their assignments in the original schedule are
summed and returned as the estimated λ value. If the Ordering set is not empty,
another operation o′′ in the Ordering set is selected and its start time is tentatively
assigned to be its earliest possible start time. The tentative assignment is propa-
gated by calling recursively the routine LookAhead. In order to select an o′′ from
Ordering set, a minimal finish time sw1 for all operations in the Ordering set is
calculated. Then o′′ is randomly selected from a subset of the current Ordering set
in which all operations’ est are less than or equal to sw1.

Note that the LookAhead procedure implicitly uses the start-time domains as-
sociated with the unassigned operations. Any change on the start-time domains
resulted from the recursive calls of LookAhead will be recovered in the procedure
Find.

5.6.2 Enlarging the set of tentatively assigned operations

In some machine-breakdown instances, a large percentage of operations must par-
ticipate in the repair. So, at the beginning and in the early stages of the RBS search
process (closer to the root of a search tree), more operations need to be considered
for ripple impacts. Since the goal is far away, and since the number of the tentatively
assigned operations in the basic ripple-effect estimation is quite small in proportion
to all unassigned operations, the impacts of these tentative assignments on the ear-
liest possible start times of the unassigned operations are quite small and limited.
Thus, in the early stages of the RBS search processes, the information provided by
the basic ripple-effect estimation is quite incomplete and imprecise. The possibility
for RBS to make a wrong choice is increased. Furthermore, if a wrong selection is
made in an early stage, backtracking to correct the selection becomes pretty hard
in a large search tree.

Under the circumstances in which a large percentage (more than 80 percent) of
operations participate in the repair, the semi-randomized operation selection heuris-
tic may not work as well as we expected for the above reasons. (We will show the
performance evaluation in the next chapter.) So, our attention was focus on adapt-
ing the basic ripple-effect-estimation procedure. Let us therefore reexamine the pro-
cedure LookAhead ABSD(o′, Unassigned set,Ordering set, Fix unassigned set)
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LookAhead ABSD(o′, Unassigned set,Ordering set, F ix unassigned set)
retval:=0;
FV := Unassigned set;
FV.remove(o′);
ODS := Ordering set;
ODS.remove(o′);
if (FV 6= ∅)

Forward checking(o′, est(o′), FV );
repeat

Two consistency check(FV );
Edge finding(FV );

until (no domain changes);
if (∃o(o ∈ FV ), D(o) = ∅)

return -1;
else if (ODS = ∅)

for (every o, o ∈ Fixed unassign set);
retval := retval + est(o)−Og(o); (1)

end for;
else

select an operation o? from ODS;
sw1 := est(o?) + p(o?);
for (each o, o ∈ ODS)

if (est(o) + p(o) < sw1)
sw1 := est(o) + p(o);

end if;
end for;
CV1 := {o | o ∈ ODS, est(o) ≤ sw1};
randomly select o′′ from CV1;
retval := LookAhead ABSD(o′′, FV, ODS,F ixed unassign set);

end if;
end if;
return retval;

end Procedure LookAheadABSD

Figure 5.15: LookAhead: Estimating the sum of delays.
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presented in Figure 5.15. It has four parameters. When LookAhead ABSD is called
by Find, the parameter o′ will probe the operations in the set SM one by one. No
alternatives for this parameter could be considered. The parameter Unassigned set
and Fix unassigned set are the same set at the moment when LookAhead ABSD
is called by the procedure Find. The former is used to remove the tentatively as-
signed operations from the set and to propagate the tentative assignments to the
still remaining operations. The latter is used to calculate the sum of estimated de-
lays for all unassigned operations when the current procedure Find is called. The
set is not changed during the tentative assignment processes. If we removed some
operations out of the two sets, the ripple-effects-estimation would be on a subset of
all currently unassigned operations. Thus, the estimation is not a global but a local
estimation. That estimation would not provide much help for considering the global
impacts of an operation selection. So, we remark that, the alternatives of these two
sets are not considered adequately for their impact on the ripple effect.

The third parameter, Ordering set, takes the set SM in Find. Each operation
in the set is tentatively assigned a start time. We tried to transfer a large set to
this parameter. Namely, enlarging the operation set in which the operations need to
be tentatively assigned a start time in the ripple-effect-estimation procedure. The
idea is to have a wider picture of the ripple effects by tentatively assigning more
operations. For this purpose, the set CV was taken into account as the basic semi-
randomized heuristic extension. Thus the set CV is transferred to the parameter
Ordering set of the procedures LookAhead ABSD. The RBS algorithm which
uses this semi-randomized heuristic extension is denoted as RBS1 hereafter. The
performance of this extended heuristic will be evaluated in the next chapter.

5.6.3 Extending the ripple-effect estimation

Tentatively assigning more operations may not bring more precise information for
estimating ripple effects and the ripple-effect-estimation procedure itself will spend
more time. However, further enlarging the Ordering set would become too arbi-
trary. Therefore, we attempted another way to extend RBS1 and to improve its
performance.

As indicated in Subsection 5.6.2, the earlier the machine breaks down, the more
operations must participate in the repair and the more difficult it is for RBS to make
a right choice in the early stage of the search process. Estimating the sum of delays
of all unassigned operations (in RBS), even after enlarging the tentative assignment
set (in RBS1), would not provide precise guidance for the earlier search processes.
However, there is another kind of heuristic that could be exploited for guiding the
search processes.

Apparently, if the new start time of an operation is equal to its original start time,
its start-time delay is zero. The more operations have that their new start times
are equal to their original start times, the smaller the sum of the start-time delays
of these operations is. Thus, it is likely (but not certain) that the sum of the start-
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time delays of all unassigned operations becomes smaller. In the search process, this
knowledge, which enables more unassigned operations to maintain their original start
times in their start-time domains, could be exploited as a weak heuristic to select
an operation. Therefore, a small probability is designed to grant this heuristic for
selecting an operation as the next operation on the implicitly selected machine. To
estimate this kind of ripple effects, a new procedure, called LookAhead NUMB, is
developed. The majority of the pseudo codes of the procedure LookAhead NUMB
is the same as that of the procedure LookAhead ABSD (cf. Figure 5.15). Only line
(1) in the middle of the procedure LookAhead ABSD (cf. Figure 5.15) needs to be
replaced by the line:

if(Og(o) == est(o)) retval := retval + 1;

The procedure LookAhead NUMB estimates and returns the number of the
operations of which the earliest possible start times are equal to their original start
times. The set CV is transferred to the parameter Ordering set of the procedure
LookAhead NUMB.

To estimate the ripple effects in terms of the λ value and the NC (Equation 5.4)
value, the newly extended semi-randomized heuristic consists of two ripple-effect-
estimation procedures LookAhead ABSD and LookAhead NUMB. However, only
a small probability is granted to estimate ripple effects through calling procedure
LookAhead NUMB. The majority of probabilities is granted to estimate ripple
effects through calling procedure LookAhead ABSD. In both procedures, the set
CV is transferred to the parameter Ordering set. The adapted RBS algorithm with
the newly extended semi-randomized heuristic is denoted as RBS2. Except for the
procedure Find, the pseudo codes of the RBS2 are the same as those of the RBS.
The pseudo codes of the new Find procedure (denoted as Find2) is presented in
Figure 5.16, where the probaval is less than 0.5.

5.7 Procedure for propagating allowed sum of de-
lays

Before launching the search and during the search process, RBS executes three
constraint-propagation procedures which includes Two Consistency Checking, Edge
Finding and Allowed Sum of Delay Propagation(see Subsection 5.5.2 and Subsection
5.5.4). Two Consistency Checking and Edge Finding procedures are the traditional
constraint-propagation techniques used in predictive scheduling. Due to reasons of
efficiency, we have implemented Nuijten’s Edge Finding algorithm for calculating
LBest and UBlct [?]. Details on this implementation can be found in Nuijten’s work
[?]. In Figure 5.17, we present the Allowed Sum of Delay Propagation (ASDP )
procedure.
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Find2(V2, AD)
TV := V2;
EFT := Min{eft(o) | o ∈ V2};
CV := {o | o ∈ V2 ∧ est(o) < EFT};
while (CV 6= ∅)

Randomly select an operation o(o ∈ CV );
MiniSD := AD;
MaxNC := 0;
SM := {o′ | o′ ∈ CV ∧M(o′) = M(o)};
if (SM.Length > 1)

if (random [0, 1] > probaval)
for (every o′, o′ ∈ SM)

Save (D(o),∀o ∈ V2);
EstimateSD := LookAhead ABSD(o′, V2, CV, V2)
Recover (D(o), ∀o ∈ V2);
if (EstimateSD < MiniSD ∧ EstimateSD! = −1)

MiniSD := EstimateSD;
o replaced by o′(o := o′);

end if;
end for;

else
for (every o′, o′ ∈ SM)

Save (D(o),∀o ∈ V2);
EstimateNC := LookAhead NUMB(o′, V2, CV, V2)
Recover (D(o), ∀o ∈ V2);
if (EstimateNC > MaxNC)

MaxNC := EstimateNC;
o replaced by o′(o := o′);

end if;
end for;

end if;
end if;
CV := CV − {o}, TV := TV − {o};
if (Assign(o, TV, AD) = True)

return True;
end if;
TV := TV + {o};
nrBT := nrBT + 1;
if (nrBT > maxBT )

return False;
end if;

end while;
return False;

end Procedure Find2

Figure 5.16: New semi-randomized heuristic for operation selection.



106 CHAPTER 5. REPAIR-BASED SCHEDULING

Let V1 be the set of operations that must participate in the repair, AD be the
maximum allowed sum of delays for the start times of all unassigned operations, oi,j

be the operation in ith job at the jth position (oi,j−1 ≺ oi,j), gap be an array to
represent the gap (slack) between two adjacent operations on one job. Here, the
sum of the ATDs and the delays by already assigned operations have be subtracted
from AD. The AD is assumed to be completely consumed by the start-time delays
of the operations on one job. The ASDP algorithm presented in the Figure 5.17 is
based on the calculations introduced in Subsection 5.4.4. It determines the latest
possible start times of all operations participating in the repair after imposing the
new AD as a unary constraint.

5.8 Chapter conclusions

This chapter presented an explorative study for addressing the second part of the
general research problem given in the problem statement (Section 1.2). To cope with
the changes caused by an unexpected event (e.g., a machine breakdown) occurring in
a job shop, a new CSP model for the repair-needed JSSP has been proposed as well
as a novel Repair-Based Scheduling algorithm (RBS), which is developed under the
framework of constraint-directed search. An innovative operation-selection (semi-
randomized) heuristic based on ripple-effect estimation for a scheduling decision
and a new constraint-propagation technique, which imposes the optimization needs
on the operations’ start-time domains, form the key components of the algorithm
RBS. To make our Repair-Based Scheduling approach more efficient and robust,
different design choices for the ripple-effect estimations of the operation-selection
heuristic are proposed. The effects of the design choices will be evaluated in the
next chapter.
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ASDP (AD, V1)
for (each job Ji, i = 1 till the number of jobs in the JSSP)

for (each oi,j in Ji, j take value from the smallest to the largest)
if (oi,j is the first operation in Ji)

gap[i][j] := 0;
else

gap[i][j] := est(oi,j)− (est(oi,j−1) + p(oi,j−1));
end if;

end for;
end for;

for (each job Ji, i = 1 till the number of jobs in the JSSP)
for (each oi,j(oi,j ∈ V1) in Ji, j from the smallest to the largest)

sg1 := 0, wsg1 := 0;
for (each oi,k, from oi,j to the last operation in Ji)

if (oi,k is the last operation in Ji)
temp := est(oi,j) + sg1 + b(AD − wsg1)/(k − j + 1)c+ 1;
lst(oi,j) := min(lst(oi,j), temp);
break;

else if (wsg1 < AD <= wsg1 + (k − j + 1) ∗ gap[i][k + 1])
temp := est(oi,j) + sg1 + b(AD − wsg1)/(k − j + 1)c+ 1;
lst(oi,j) := min(lst(oi,j), temp);
break;

else
wsg1 := wsg1 + (k − j + 1) ∗ gap[i][k + 1];
sg1 := sg1 + gap[i][k + 1];

end if;
end for;

end for;
end for;

end Procedure ASDP

Figure 5.17: Algorithm for latest possible start times.
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Chapter 6

Performance Evaluation

In this chapter, we report the performance of our approaches for solving repair-
needed JSSP instances. The important parameters of a repair-needed (machine-
breakdown) JSSP instance are discussed and determined in Section 6.1. Section 6.2
presents the experimental results by using RBS to solve simple machine-breakdown
instances. In Section 6.3, the experimental results of different design choices of the
RBS, viz. RBS1 and RBS2 discussed in Subsection 5.6.2 and Subsection 5.6.3, are
compared with that of RBS. Section 6.4 deals with the experiments on the important
parameters of RBS2, which include the number of restarts, the backtracking factors
and the probability partition factors in the extended semi-randomized heuristic. The
experimental results of other alternative operation-selection heuristics are presented
in Section 6.6 and compared with the schedules generated by RBS2. The issue
about the comparison with other already developed reactive scheduling systems is
discussed in Section 6.7. More machine-breakdown instances of the JSSPs solved by
RBS2 are presented in the Appendix.

6.1 A repair-needed JSSP instance

As mentioned in Chapter 5, a repair-needed JSSP instance in our experiments orig-
inates from a standard JSSP in which a machine breaks down for a period of time.
To carry out the experiments for solving such repair-needed JSSPs, we use a num-
ber of the instances of standard JSSPs as introduced by Fisher and Thompson [?],
Carlier [?], Lawrence [?], Adams [?] and Yamada [?]. They are considered as the
given JSSPs.

To deal with machine-breakdown problems as broadly as possible, a machine-
breakdown instance of a given JSSP is randomly generated in our experiments. As
mentioned in Chapter 5, three random integers are required to generate randomly a
machine-breakdown instance. The first random integer is required to select randomly

109



110 CHAPTER 6. PERFORMANCE EVALUATION

a machine as the breakdown machine in the given JSSP. It is independently and
uniformly sampled from the interval [0, NM) (Machines in a standard JSSP are
numbered starting with 0), where NM denotes the number of machines in the given
JSSP. The second random integer is required to determine the breakdown time of
the selected machine. In our experiments this random integer is independently and
uniformly sampled from the interval [0, MP

2 ], where MP denotes the make-span
of the original schedule of the JSSP. It means that, when a machine breakdown
occurs, more than half a part of the original schedule has not been executed for the
generated instances. If the breakdown time is greater than MP

2 , the majority of the
operations has been executed and thus the generated problem instance would be
easier (since a smaller number of operations participate in the repair) than the ones
we considered in the experiments. So, the limitation for this integer guarantees that
the generated machine-breakdown instances do not represent the simple instances.
The third integer is required to anticipate the duration of the machine failure, that
is the time period between the machine breakdown and its recovery (or another
machine which can do the same job as the broken one is in place). This integer is
assumed to be equal to 20 percent of the make-span of the original schedule (20 ∗
MP
100 c). The reason for setting such anticipating duration is to generate appropriate
machine-breakdown instances from a given JSSP. If the anticipating duration is
too short, such as shorter than some gaps (slacks) between the originally scheduled
finish time and the start time of the two adjacent operations on the same machine,
the set V1 in Equation 5.6 would be empty. Thus the repair is not necessary for
the generated instance and the work is done. If the anticipating duration is too
long, generating a new schedule which has a minimal difference with the original
one may lose its significance. After getting the duration of the machine failure, the
recover time of the breakdown machine is obtained (trecover = tfailure + duration).
The number of the breakdown machine, the breakdown, and the recovery time are
called the three principal parameters of a repair-needed (machine-breakdown) JSSP
instance.

Note that the different seeds for the generator of a random number will generate
different machine-breakdown instances for a given JSSP. In order to investigate
machine-breakdown instances to a large extent and evaluate the performances of
RBS, RBS1 and RBS2, we adopted different seeds in the experiments to generate a
number of different repair-needed (machine-breakdown) JSSP instances for a given
JSSP.

6.2 Solving simple machine-breakdown instances

In order to evaluate conveniently the performances of RBS and its alternatives RBS1
and RBS2, the number of restarts, the backtracking factor and the probability par-
tition factor are fixed (in this section and in the next section). A maximum number
of 500 restarts is allowed for all iterations; b0.2 ∗ Nc backtracking steps (0.2 is the
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6 6

0 1 1 6 2 2 4 2 4 9

0 8 1 3 2 8 3 8 4 8

1 6 1 0 1 8 2 7 3 0

8 1 3 2 2 2 9 3 7 4 5

1 3 2 2 2 5 3 8 4 8 5 2

1 3 1 6 1 9 2 8 4 5 4 9

Figure 6.1: An original schedule of FT06.

backtracking factor and N is the number of the operations in the given JSSP) is
used in each search tree; probability 0.1 and 0.9 are granted to call the procedures
LookAhead NUMB and LookAhead ABSD respectively. The influences of the dif-
ferent number of restarts, backtracking factors and probability partition factors for
RBS and its alternative designs will be dealt with in Section 6.4.

Except for an explicit indication, all tests in this thesis are performed on a
Pentium-450MHz PC.

Let us first investigate a machine-breakdown instance originated from FT06 (6
jobs and 6 machines; FT means that the JSSP instance was introduced by Fisher
and Thompson [?]). An original schedule of FT06 which has the optimal make-span
55 is presented in Figure 6.1. Line 1 contains the number of jobs and the number of
machines; followed by 6 lines (for each job one line) listing the operations’ start times
of the original schedule in an ascending order, respectively. A machine-breakdown
instance of FT06 denoted as FT06a has the following three principal parameters:
machine 3 breaks down at time 2 and recovers at time 13. According to the analysis
described in Section 5.3, the Key-operation is identified as the second operation of
the third job which is denoted by the bold italic number in the Figure 6.1. There
are 30 operations participating in the repair. The bold numbers in the Figure 6.1
denote the corresponding start times of the operations that participate in the repair.
Henceforth, the same notations will be used for showing the original schedules of
other JSSP instances.

Figure 6.2 shows a new schedule obtained by the RBS algorithm. In this figure,
OG denotes that the corresponding operation does not need to participate in the
repair. The number followed by a symbol “=” means that the new start time
assignment of the corresponding operation made by RBS is equal to its original
start time. Henceforth, the same notations will be used for showing a repaired
schedule of another machine-breakdown instance. The λ value of the new schedule
is 113, i.e., the sum of the start-time delays of the new schedule with respect to the
original start times of the original schedule (Figure 6.1).

Table 6.1 shows the corresponding make-span (MP ) and the λ value of three
scheduling methods, where RSH denotes the right shift scheduling; SMP denotes
the scheduling algorithm developed by Nuijten [?] for approximating optimal make-
span. In comparison with the schedules generated by RSH and SMP, the schedule
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OG OG 16= 22= 44 54

OG OG 13= 34 44 54

OG 13 17 25 34 35

OG 13= 22= 29= 42 51

13= 22= 25= 47 54 58

13= 17 25 34 50 54

Figure 6.2: A new schedule of FT06a with the minimal λ value.

Schedule

Objective

RSH SMP RBS

MP 62 60 60

l 210 192 113

Table 6.1: Different schedules of FT06a.

generated by RBS has a much smaller λ value.
Since FT06 is an easy JSSP instance which consists of a small number of opera-

tions, the corresponding machine-breakdown instances are easy too. One may argue
that the techniques which are used for solving these instances may not be suitable
for the machine-breakdown instances of a JSSP which consists of a large number
of operations. Therefore, we turn to investigate a machine-breakdown instance of
FT10 (10 jobs and 10 machines) which is a very difficult JSSP instance for obtaining
a predictive schedule with an optimal make-span.

An original schedule of FT10 with a make-span 985, which is obtained by Nui-
jten’s algorithm [?] (the edge finding is implemented by calculating LBest and UBlct)
with a higher frequency, is presented in Figure 6.3. A machine-breakdown instance
of FT10 denoted as FT10a has the following three principal parameters: machine 8
breaks down at time 308 and recovers at time 505. The Key-operation is identified
as the eighth operation of the seventh job. There are 68 operations participating in
the repair.

Figure 6.4 shows a new schedule obtained by using RBS. The λ value of the
perturbation function for the new schedule is 3366, i.e., the sum of the start-time
delays of the new schedule with respect to the original start times of the original
schedule (Figure 6.3) is 3366 time units.

Table 6.2 shows the corresponding make-span (MP) and the λ values of three
scheduling methods. In comparison with the schedules produced by RSH and SMP,
the schedule produced by RBS has a much smaller λ value.

Although RBS is an approximate algorithm which uses a randomized restart
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10 10

205 472 559 596 650 699 710 812 868 952

234 469 575 650 661 730 772 818 868 940

381 472 557 596 670 760 775 818 907 952

147 228 323 407 516 596 654 782 880 902

0 113 274 375 436 506 575 605 715 907

45 145 147 250 345 393 557 613 780 787

0 76 113 174 187 219 240 393 482 725

14 119 228 301 375 525 648 667 739 880

0 76 174 250 323 465 476 516 699 760

296 394 408 469 482 546 622 730 786 940

Figure 6.3: An original schedule of FT10

OG 472= 559= 596= 650= 699= 710= 829 888 952=

OG 469= 575= 650= 661= 730= 772= 818= 943 1015

OG 472= 557= 596= 709 799 817 883 973 1018

OG OG OG 407= 516= 638 690 782= 880= 902=

OG OG OG OG 436= 506= 617 638 781 972

OG OG OG OG 569 661 733 818 883 918

OG OG OG OG OG OG OG 799 888 918

OG OG OG OG OG 525= 690 733 781 880=

OG OG OG OG OG 465= 476= 516= 699= 932

OG 394= 408= 469= 505 569 645 730= 786= 1015

Figure 6.4: A schedule of FT10a with λ=3366.

Schedule

Objective

RSH SMP RBS

MP 1145 1044 1060

l 10880 5013 3366

Table 6.2: Different schedules of FT10a.
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strategy in the framework of iterative improvement, it generates quite stable so-
lutions for the machine-breakdown instances FT06a and FT10a. Actually, in our
experiments, every run of RBS algorithm generates a new schedule with the same
λ value for FT06a and FT10a. Furthermore, RBS only takes two or three restarts
to get a schedule for the two machine-breakdown instances. So, RBS is fast and
effective to solve FT06a and FT10a. Is RBS still fast and effective for solving other
machine-breakdown instances of the JSSPs?

Let us examine a machine-breakdown instance LA09a which is originated from a
JSSP instance LA09 (LA means that the JSSP instance was introduced by Lawrence
[?]). The LA09a has the following three principal parameters: machine 3 breaks
down at time 166 and recovers at time 356. The key-operation is identified as
the second operation of the third job. There are 55 operations participating in
the repair. The initial λ value (produced by RSH) is 10450. However, the instance
LA09a is somewhat different from the instances FT06a and FT10a. In this instance,
the execution of the key-operation is interrupted by the breakdown machine. So,
a unary constraint that specifies the uncompleted part of the key-operation must
start at time 356 and should be added to the constraint set of LA09a. Moreover,
its process time should be adjusted to the duration of the uncompleted part of the
key-operation (according to Equation 5.8).

1 5 5

1 7 2 7 9 3 6 4 4 4 8 5 6 7

0 8 3 1 7 9 6 8 5 8 3 2

0 1 2 6 3 2 9 5 7 5 6 5 2

8 4 5 0 9 6 8 9 7 5 5 8 2 9

0 1 2 8 2 2 5 6 4 3 7 3 7

1 3 5 7 2 7 8 1 5 8 6 1 8 8 7

11 6 1 6 2 2 3 8 5 7 6 8 5 7

0 1 4 7 4 3 4 5 2 9 5 6 7

6 7 1 9 2 3 5 2 5 8 7 8 2 9

2 6 6 3 11 5 7 0 6 5 2 7 7 2

3 9 6 5 2 9 6 2 8 7 0 6 8 6 1

0 1 9 8 3 6 4 5 8 6 7 4 6

8 8 2 0 6 2 7 9 4 0 2 5 0 0

5 9 5 0 0 5 6 8 6 9 3 7 0 6

9 8 2 4 4 3 2 9 4 4 5 6 0 2

After running 10 times of RBS algorithm to solve LA09a, the biggest and smallest
λ values among all generated schedules are 5344 and 5257 respectively. The average
λ value of 10 repaired schedules is 5331.9. This means that RBS does not always
generate the schedules with the same λ value when it is used to solve more com-
plex machine-breakdown JSSP instances. The similar phenomena can be observed
from the algorithms which adopted a randomized strategy to generate a predictive
schedule for an optimal (near-optimal) make-span. For example, Vaessens, Aarts
and Lenstra [?] compare 20 of the best approaches to the JSSP for 13 instances.
Ranking the approaches that generate a predictive schedule according to effective-
ness, Nuijten’s [?] approach (using a randomized strategy) comes in the sixth place.
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The deviation of the lowest make-span found by Nuijten’s approach from the best
known lowest make-span is on average 2.26%.

In Subsection 5.6.2 and Subsection 5.6.3, we introduced two design alterna-
tives of RBS, RBS1 and RBS2. Both of them are designed to extend the basic
semi-randomized heuristic of RBS for improving its performance in terms of stabil-
ity (smaller deviations between the results of different executions) and optimality
(smaller λ value).

In the next section, we will present some experimental results to compare the
performance of RBS with its alternative designs.

6.3 Performances of RBS, RBS1, and RBS2

Let us start with examining a more complex machine-breakdown instance FT10b

which also originated from JSSP instance FT10. The original schedule of FT10 with
a make-span 985 is the same as the one presented in Figure 6.3. The three principal
parameters of the FT10b are as follows: machine 3 breaks down at time 118 and
recovers at time 315. The key-operation is identified as the third operation of the
seventh job. There are 88 operations participating in the repair. In this instance,
the execution of the key-operation is also interrupted by the breakdown machine.
The initial λ value (the sum of delays produced by RSH) is 17336. By running 10
times of RBS algorithm to solve FT10b, each run finds a solution. The average λ
value of the 10 repaired schedules is 7092.2.

In the instance FT10b, a large percentage (88 percent) of the operations must
participate in the repair while 68 percent and 73 percent of the operations must
participate in the repair in the instances FT10a and LA09a, respectively. So, at
the beginning and in the early stages of the RBS search process (closer to the root
of a search tree), more operations in the FT10b than in the FT10a need to be
considered for ripple impacts. To guide the search making a adequate decision in
the early stages of a search process, two alternative designs of the RBS, which are
introduced in Subsection 5.6.2 (RBS1) and Subsection 5.6.3 (RBS2), are developed
for solving such complex machine-breakdown instances.

By running 10 times the RBS1 and RBS2 respectively to solve the machine-
breakdown instances FT06a, LA09a, FT10a and FT10b, respectively, the average
λ value of the generated schedules are presented in Table 6.3. Compared with the
schedules obtained by RBS, we can conclude that RBS1 performed better than RBS
for the instances LA09a and FT10b, and RBS1 performed as well as RBS for the
instances FT06a and FT10a. However, slightly more restarts were needed for RBS1
than RBS. RBS2 performed slightly better than RBS1 for the instances LA09a, and
as well as RBS1 (and RBS) for the instances FT06a and FT10a, and considerably
better than RBS1 (and RBS) for the instance FT10b.

For simple repair-needed JSSP instances, RBS2 performed roughly the same
as RBS and RBS1. However, for complex repair-needed JSSP instances, RBS2 per-
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Instances

Algorithms
LA09a FT06a FT10a FT10b

RBS 5331.9 113 3366 7092.2

RBS1 5273.6 113 3366 7077.2

RBS2 5189.1 113 3366 6005.1

Table 6.3: Comparison of extended semi-randomized heuristics.

formed much better than RBS and RBS1 for some instances and slightly better than
RBS1 for other instances. By synthesizing their performances, we chose RBS2 as
the representative of our Repair-Based Scheduling algorithms in our further studies.

OG 396 481 565 627

OG OG OG 685= 880

OG 356 396 575= 713

OG 509= 689= 766 895

OG OG 225= 935 1019

OG 738 835 914 980

OG OG 238= 576= 905

OG OG 840 942 980

OG OG 352= 587= 1019

266= 311= 595 652= 820

396= 554 628= 754 881

OG OG 627 698 797

OG 481 627 737 846

OG 500= 568= 700 797

OG 244= 329= 445= 697

6.4 Important parameters in RBS2

In this section, we investigate the influence of three main parameters of RBS2,
namely (1) the backtracking factor BTF , (2) the number of restart nrRestarts (cf.
Figure 5.11) in the iterative improve procedure, and (3) the probability partition
factor probaval (cf. Figure 5.16) in the extended semi-randomized operation selec-
tion heuristic. For each parameter setting, we performed ten runs of RBS2.

6.4.1 Backtracking factors

In the following experiments we vary the value for the backtracking factor BTF of
Subsection 5.5.1. We chose to use BTF = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0. Observe
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Figure 6.5: Average λ value of RBS2 for LA09a, nrRestarts=500.

that BTF = 0 implies that each time a dead end was found, a restart is performed.
When we changed the BTF value, the number of restarts remained fixed to 500 and
the probabilities to call the procedures LookAhead NUMB and LookAhead ABSD
for ripple-effect estimations were fixed to 0.1 and 0.9, respectively.

The experimental results by running RBS2 which is coupled to different back-
tracking factors when solving LA09a, are shown in Figures 6.5 and 6.6. Figure 6.5
shows the corresponding average λ values and Figure 6.6 shows the corresponding
average CPU times.

It can be seen that with the increasing of BTF , the performance of RBS2 does
not improve uniformly. However, the time cost is steadily increased with the BTF
value increasing. For BTF = 0, i.e., no chronological backtracking is used at all, the
performance is clearly worse. From these experiments we conclude that any value
for BTF between 0.10 and 0.30 is reasonable for balancing the time cost of RBS2.

6.4.2 Number of restarts

A reasonable number of restarts is important for finding a schedule with a good λ
value in a certain time period. In the following experiments we vary the value for
the number of restarts nrRestarts of Subsection 5.5.1. We chose to use nrRestarts
= 200, 400, 600, 800, 1000, 1200, 1400. When we changed the nrRestarts value, the
backtracking factor BTF was fixed to 0.2 and the probabilities to call the procedures
LookAhead NUMB and LookAhead ABSD were fixed to 0.1 and 0.9, respectively.

The experimental results by running RBS2 which is coupled to a different number
of restarts when solving LA09a, are shown in Figures 6.7 and 6.8. Figure 6.7 shows
the corresponding average λ values and Figure 6.8 shows the corresponding average
CPU times.
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Figure 6.6: Average time of RBS2 for LA09a, nrRestarts=500.
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Figure 6.7: Average λ value of RBS2 for LA09a, BTfac=0.2.
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Figure 6.8: Average time of RBS2 for LA09a, BTfac=0.2.
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Figure 6.9: Average λ value of RBS2 for LA09a.

It can be seen that with the increasing number of restarts, the performance of
RBS2 improves steadily, i.e., the average λ value of the schedules decreases steadily.
However, the time cost is linearly increasing with the increasing number of restarts.
From these experiments we conclude that a moderate number of restarts is required
for balancing the time cost of RBS2. For real repair-needed JSSPs, the number
of restarts can be adjusted according to the constraint which specifies the time at
which the repaired schedule must be ready.

6.4.3 Probability partitions

In the following experiments we varied the value for the probability partition factors
probaval of the procedure Find2 in Subsection 5.6.3. We chose to use probaval =
0, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40. Observe that probaval = 0 implies that the
procedure LookAhead NUMB is not called, and the LookAhead ABSD is called
with probability 1 for ripple-effect estimation. When we changed the probaval value,
the number of restarts nrRestarts was fixed to 500 and the backtracking factor BTF
was fixed to 0.2.

The experimental results obtained by running RBS2, which is coupled to differ-
ent probability partition factors for calling ripple-effect-estimation procedures when
solving LA09a, are shown in Figures 6.9 and 6.10. Figure 6.9 shows the correspond-
ing average λ values and Figure 6.10 shows the corresponding average CPU times.

It can be seen that RBS2 gave the best performance with probaval = 0.1 and
a gradually decreasing performance for probaval values greater than 0.15. For
probaval = 0, the performance is clearly worse. This means that calling the proce-
dure LookAhead NUMB with zero (without calling) or a larger (greater than 0.15)
probability would hinder RBS2 to find a better schedule. From these experiments
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Figure 6.10: Average time of RBS2 for LA09a.

and the experiments presented in Section 6.3, we conclude that a small probability
can be used to call the procedure LookAhead NUMB for balancing the performance
of RBS2 when solving either moderate or very difficult repair-needed JSSPs.

6.5 Additional experimental results

To test the performance of our Repair-Based Scheduling approach (RBS2) on more
repair-needed JSSP instances, we chose nine JSSP instances: FT06, FT10, LA09,
LA30, CAR1, CAR5, ABZ5, ORB9 and YAM1. These instances are the represen-
tatives of standard JSSPs as introduced by Fisher and Thompson [?], Carlier [?],
Lawrence [?], Adams [?] and Yamada [?]. For each chosen JSSP instance, five dif-
ferent repair-needed JSSP instances were generated. We used the algorithm RBS2
to solve these instances in which the number of restarts (nrRestarts) and the back-
tracking factor (BTF ) are set to 500 and 0.2, respectively. The probability partition
factor probaval of the procedure Find2 is 0.1. For each repair-needed JSSP instance,
we performed ten runs using different seeds for the random number generator.

The results of the tests for the repair-needed JSSPs originated from FT10 are
given in Table 6.4. The column “JSSP” of Table 6.4 gives the JSSP instance name
and the number of jobs and machines. The column “MP” gives the make-span
of an original schedule. The column “Instance” indicates different repair-needed
JSSP instances originated from FT10. The column “bdm” gives the number of the
breakdown machine. The columns “t f” and “t r” give the machine breaking and
recovering time, respectively. The column “n” gives the number of operations that
must participate in the repair. The column “ini SD” gives the initial sum of delays
(λ value generated by RSH). The columns “avg SD” and “T” give the average sum of
delays (λ value) and the average running time (seconds) over ten runs, respectively.
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JSSP MP Instance bdm t_f t_r n ini_SD avg_SD T D

FT10 985 FT10a 6 308 505 68 10880 3366 249 0

(10*10) FT10b 3 118 315 88 17336 6005.1 319 1.05

FT10c 0 343 540 66 13002 6224.4 160 0.12

FT10d 6 147 344 84 13188 1296 192 0

FT10e 5 341 538 71 13987 3713.2 154 0.16

Table 6.4: Performance of RBS2 for FT10.

The column “∆” gives the deviation of the maximum found sum of delays from the
minimum found sum of delays in terms of percentage of the minimum found sum of
delays.

It can be seen that the deviation of the maximum found sum of delays from the
minimum found sum of delays is on average 0.266%; the running time is on average
214.8 seconds. This leads to the conclusion that RBS2 performs well in terms of
efficiency and solution stability.

For other repair-needed JSSPs, the results obtained by RBS2 are given in the
Appendix A and the same notations as above will be used for showing the exper-
imental results for those repair-needed JSSP instances.

6.6 Alternative design choices

In the empirical studies, we explored a large number of different designs to construct
a variety of search trees (spaces) for Repair-Based Scheduling. These approaches
include the operation-selection alternatives in RBS (keeping other parts of RBS
unchanged) and the completely different strategies to construct a search tree (space)
(such as selecting a machine at first and then ordering all operations processed by
the machine, Simulated Annealing etc.).

For the approaches in the first category, three alternatives are investigated: (1)
randomly selecting an operation from the set CV without using the ripple-effect
estimation; (2) selecting an operation which has the lowest ripple-effect estimation
in the set CV ; and (3) first randomly selecting a machine from the machines on which
the operations in the set CV are processed, and then selecting an operation processed
by the selected machine which has the minimum estimated ripple effects. In testing
these alternatives, the number of restarts (nrRestarts) and the backtracking factor
(BTF ) are set to 500 and 0.2 respectively.

For the first alternative (denoted as Alter1), the main drawback is that the search
may wander off, away from the objective in the search processes. By running the
modified algorithm ten times, the average λ value of the generated schedules are
presented in Table 6.5. We can see that, for LA09a, FT10a, and FT10b, the results
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Instances

Algorithms
LA09a FT06a FT10a FT10b

Alter1 5444.1 113 3500.4 6553.5

Alter2 5274.3 113 3366 6209.1

Alter3 5188.5 113 3366 6024.2

RBS2 5189.1 113 3366 6005.1

Table 6.5: Average sum of delays of alternatives.

are much worse than that of RBS2. Apparently, it cannot be used to obtain a
stable and near-optimal solution for complex machine-breakdown instances. These
observations inspired us to develop a new heuristic to select an operation in the
search processes.

For the second alternative (denoted as Alter2), the main drawback is that every
operation in the set CV is evaluated with respect to the ripple effects at a search
node, and that the time to make an operation-selection decision increases consider-
ably. So, much more time is required to generate a new schedule by this approach
than by RBS2. This may violate the practical constraints that require the reactive
scheduling to generate a new schedule as soon as possible. Moreover, the search pro-
cesses in the algorithm would become relatively more deterministic than in RBS2.
Restarting the search a number of times would search through a smaller part of
search space than RBS2 does. As a result, a better solution would not be found for
some problems. In the modified algorithm Alter2, the probability partition factor
granted to estimate ripple effects through calling the procedure LookAhead NUMB
and the procedure LookAhead ABSD is the same as in RBS2. After running ten
times Alter2 to solve the machine-breakdown instances, the average λ value (sum
of the delays) of the generated schedules are presented in Table 6.5 in comparison
with the average λ value of RBS2. It can be seen that the schedules generated by
Alter2 are not too bad with respect to the schedules generated by RBS2 in terms of
λ value. However, the average running time of Alter2 in solving FT06a, LA09a and
FT10a is three or four times as RBS2 needs, in solving FT10b it is 5 to 6 times as
RBS2 needs. So, Alter2 has no practical significance.

For the third alternative (denoted as Alter3), the machines which process the
operations in the current set CV have the same probability of being selected. How-
ever, in contrast with RBS2, the more operations a machine process in the current
CV , the higher probability a machine has to be selected. The probability partition
factor granted to estimate the ripple-effect of an operation through calling the pro-
cedure LookAhead NUMB and the procedure LookAhead ABSD is the same as
in RBS2. By running the modified algorithm ten times, the average λ value (sum of
the delays) of the generated schedules is presented in Table 6.5. Although the time
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cost of Alter3 is roughly the same as that of RBS2, its solution result in terms of
the λ value is worse than RBS2 in solving FT10b and roughly the same in solving
LA09a. So, it is not considered to be a better operation-selection heuristic.

Some of the approaches in the second category which use completely different
strategies to construct a search tree (space) (such as selecting a machine at first and
then ordering all operations processed by the machine) are also constraint-based
strategies. However, the search is resource (machine) oriented. It means that an
appropriate machine is selected at first and then all operations processed by the
selected machine are ordered and assigned sequentially. We have tried the heuristic
which selects a machine that has the largest number of start-time conflicts and then
order operations on the selected machine. But the algorithm fails to generate a
schedule for the instances FT10a and LA09a within the same time period in which
RBS2 runs 500 restarts. Then we tried the heuristic which is developed by Baptiste
[?] to generate a schedule with the minimal make-span. It works as follows. For
the operations participated in the repair, it first determines that their earliest and
latest start and finish times are globally consistent with all the temporal constraints.
Then, a machine among the machines required by unordered operations is selected
and all operations that require the selected machine are sequenced to satisfy the
resource (machine) constraints. The algorithm can generate a schedule for FT10a
and LA09a, but the result is much worse than that of RBS2 in terms of the λ value.
In combination with the above two machine-selection heuristics, we attempted a
large number of other heuristics to sequence the operations on the selected machine.
However, none of them significantly improved the performances of the approaches.

6.7 Comparison with other methods

In Section 3.7, we mentioned that many reactive-scheduling systems were developed
in the past decade. Although the reactive-scheduling systems currently in existence
claim to emphasize on keeping the minimal changes to the original schedule, most
of them primarily try to balance this objective with the traditional optimization
objectives, such as minimizing make-span, work-in-process (WIP) inventory, mean
tardiness of jobs etc [?]. However, our Repair-Based Scheduling approach emphasizes
the importance of keeping the continuity of execution and the real-time response to
reduce the disruption in the original schedule. The original schedule is modified
to the minimum extent possible by reaching a specific objective function (Equation
5.5). Since an iterative improvement over the λ value is adopted, a new schedule
can be obtained in the time window in which the schedule must be ready.

As pointed out in [?], comparing the performance of the different reactive-
scheduling methods (algorithms) is far from straightforward, because there are many
dimensions along which an algorithm’s performance can be measured. For instance,
in a particular application, the most important performance measures are probably
run time and solution optimality. Unfortunately, the run time of program could
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be affected by many factors, including the choice of programming language, the
data structure, the programming style, the machine used, etc. Some methods (al-
gorithms) could be implemented more efficiently in one language than in another,
and comparing the run time of programs written in different languages is not very
significant in general.

Since different objectives are pursued and different constraint relaxations are
allowed in reactive-scheduling systems, comparing RBS (RBS2) with other reactive-
scheduling systems is not meaningful at present. For instance, in OPIS, the perfor-
mance was evaluated with respect to weighted criteria reflecting optimization, sta-
bility, and efficiency objectives, where the optimization goal is to balance weighted
tardiness and WIP minimization. The goals of CABINS are (1) to arrive at a schedule
that does not violate any constraint, (2) to optimize the modified schedule accord-
ing to the user’s preference, and (3) to minimize the schedule disruption. However,
only the outcome of experiments which reflect the user’s preference for minimizing
weighted tardiness and minimizing the combination of weighted tardiness and WIP
are presented. Yet the “Probe Backtrack Search” developed by Sakkout [?, ?] claims
to reconfigure minimally the schedules in response to a changing environment. Nev-
ertheless, the approach was developed to handle specific application problems only.
In the benchmark problems they solve, the duration of an activity is a variable and
the resources available for activities are allowed to be reduced in the dynamic chang-
ing environment. The general aim of their approach includes to re-assign activity
start times to reduce the number of resources needed by the schedule. That aim is
not pursued in our Repair-Based Scheduling approaches.

Some research focused on generating robust schedules (solutions) [?, ?] that
are likely to remain valid after minor changes to the problem. Nevertheless, ma-
jor changes (for instance machines breakdown) usually make the modifications in-
evitable to very robust schedules.

Since the difficulty in comparison, no experimental evidence has been provided
so far in favor of incremental schedule repair as opposed to rescheduling. Like for
predictive scheduling problems, no polynomial-time solution algorithm is known for
reactive-scheduling problems. The computation times for reactive scheduling are
usually highly variable and unpredictable [?]. In order to bridge the gap between
capabilities and requirements, a reactive-scheduling system is considered as real-time
response only in the simplest sense in which the program runs fast enough to cope
with the job shop events. As shown in the experimental results, the Repair-Based
Scheduling approach developed in our research well balances the response time and
the solution optimality in terms of the sum of delays with the originally scheduled
start times.
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6.8 Chapter conclusions

This chapter presented the experimental results of our Repair-Based Scheduling ap-
proaches. We conclude that the basic Repair-Based Scheduling algorithm (RBS)
works quite well for solving simple repair-needed JSSP instances in terms of solu-
tion quality (with respect to the λ value) and the computational time cost. However,
RBS did not always generate the schedules with the same λ value when it was used
to solve more complex machine-breakdown JSSP instances. For this reason, two
design alternatives of RBS, RBS1 and RBS2 were examined. We found that RBS2
had roughly the same performance as RBS and RBS1 in solving simple repair-needed
JSSP instances. For complex repair-needed JSSP instances, RBS2 performed much
better than RBS and RBS1 for some instances and slightly better than RBS1 for
other instances. After comparing the performances, we chose RBS2 as the represen-
tative of our Repair-Based Scheduling algorithms.

Then, we investigated the influence of three main parameters of RBS2, namely
(1) the backtracking factor BTF , (2) the number of restart nrRestarts (cf. Figure
5.11) in the iterative improve procedure, and (3) the probability partition factor
probaval (cf. Figure 5.16) in the extended semi-randomized operation selection
heuristic. We arrived at three conclusions: (1) any value for BTF between 0.10
and 0.30 is reasonable for balancing the time cost of RBS2; (2) a moderate number
of restarts is required for balancing the time cost of RBS2 (for real repair-needed
JSSPs, the number of restarts can be adjusted according to the constraint which
specifies the time at which the repaired schedule must be ready); and (3) a small
probability can be used to call the procedure LookAhead NUMB for balancing
the performance of RBS2 when solving either moderate or very difficult repair-
needed JSSPs. Scrutinizing additional experimental results, we concluded that RBS2
performed well in terms of efficiency and solution stability.

Finally, in this chapter we showed some experimental results of three alternative
design choices for Repair-Based Scheduling. These alternative designs either cannot
find good solutions or take too much time to obtain a similar solution in terms of
λ value as RBS2 arrived at. So, they are not considered as good as Repair-Based
Scheduling approaches as RBS2.

In closing we would like to remark that comparing RBS (RBS2) with other
reactive-scheduling systems is not meaningful at present, since completely different
objectives are pursued and different constraint relaxations are applied in reactive-
scheduling systems currently in use.
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Chapter 7

Concluding Remarks

In this thesis we addressed the general research problem given in the problem state-
ment (Section 1.2), and developed a range of repair-based approaches for solving
DCSPs and repair-needed JSSPs; both may arise from a dynamically changing en-
vironment. The DCSPs are the result of constraint additions in a series of CSPs,
and the repair-needed JSSPs are caused by unexpected events (machine breakdown)
occurring in a job shop. The problems of solving DCSPs and repair-needed JSSPs
are NP-hard. Our investigations led to new solution methods for these problems in
the field of AI. The principal issues characterized in the problem statements (Section
1.2) were successfully addressed and a number of innovative repair-based algorithms
under the framework of constraint-directed search were developed accordingly. The
experimental results showed that the resulting algorithms are capable of dealing
with the computational complexity in a reasonable way and generate high quality
solutions with respect to the specific objective functions.

We remark that our main conclusions are already given in Chapters 4 and 6. In
this final chapter we confine ourselves to concluding remarks, a list of contributions,
and some future research directions. We start making some concluding remarks
on repair-based approaches for DCSPs (Section 7.1) and on repair-based scheduling
approaches (Section 7.2). We list our contributions in Section 7.3 and provide future
research directions in Section 7.4.

7.1 Repair-based approaches for DCSPs

For solving DCSPs, we have proposed a complete algorithm, RB-AC, and two ap-
proximation algorithms, BS and RS. All algorithms aim at finding a solution for
a CSP requiring a minimal or a near-minimal number of assignment changes with
respect to its infringed solution. Although RB-AC theoretically will find a solution
with a minimal number of assignment changes for a CSP (if such a solution exists)
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in a DCSP, we have shown that the time complexity of RB-AC is too high to solve
large CSPs which consist of a large number of variables and have large domains for
these variables. Therefore, two approximation algorithms were proposed to bring
the computational time and the solution quality in a more balanced position. The
experimental results showed that in a limited period of time both approximation al-
gorithms can obtain solutions that are close to a solution with the minimal number
of assignment changes. Moreover we showed that RS clearly outperformed BS.

Concerning the parameter combinations in RS, we concluded that independent
of whether a general CSP has looser or tighter constraints, using a sufficiently large
number of restarts, a moderate number of backtracks, an adequate mini-conflict
value selection and an appropriate search-depth adaptation in RS is regarded as the
best parameter combination for getting a solution with a near minimal number of
assignment changes in solving a CSP.

Comparing RB-AC (or RS) with other repair-based methods is not straightfor-
ward. First, there exists currently no method using the same objective function as
we adopted for RB-AC (or RS). Second, most of the methods are limited to a specific
application domain (e.g., the methods developed by Verfaillie and Schiex [?, ?]) or
based on some particular assumptions which are not well-founded for changes caused
by unexpected events (e.g., proposals by Wallace and Freuder [?]).

The exploration of Repair-Based methods in solving DCSPs is oriented towards
general CSPs, in which no domain knowledge is available for guiding the search
processes. However, in practical situations the domain knowledge can be quite useful
for identifying the characteristics of the constraints, selecting adequately a variable
or a value at a search node, and designing specific constraint-propagation techniques
to prune the search space as we did in Chapter 5. Hence, when solving the real-world
problem of the minimal number of assignment changes for a DCSP, the RB-AC (or
RS) should be combined with specific domain knowledge. This will further improve
the solution quality and reduce the computational time cost.

7.2 Repair-based scheduling approaches

In exploring Repair-Based Scheduling methods for repair-needed JSSPs caused by
machine-breakdown events in a job shop, the key characteristics of the repair-needed
JSSPs were first identified and analyzed. Then, the essential model modifications
(constraint additions and relaxations) on the original JSSP model and the optimal
objective to be achieved by Repair-Based Scheduling activities were broadly investi-
gated and clearly designated. Concerning the model modifications, we demonstrated
which operations can be safely excluded from repair activities; and which constraints
must be added to the set of constraints of the original JSSP model under different
circumstances. Subsequently, a new CSP model of a repair-needed JSSP and an
innovative approximate algorithm (RBS2) based on the framework of constraint-
directed search were designed and built.
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In Subsection 5.2.4, the objective of Repair-Based Scheduling was set to generate
a new schedule that has a minimal sum of start-time delays with the original schedule
(this was defined by a perturbation function, Equation 5.5). Since the objective
is completely different from those of predictive scheduling, new approaches with
a variety of architectures, methodologies and tools were extensively investigated
and explored. The development of our Repair-Based Scheduling approach has been
influenced by previous work on predictive job shop scheduling. This influence can be
observed from three structural aspects in our approach: (1) the construction of the
search tree (under the framework of constraint-directed search); (2) the adoption of a
randomized restart; and (3) the iterative improvement of the requirement specified
by the objective function. Our approach deliberately combines the architectural
design of a search algorithm with seeking intelligently a specific solution that meets
the demands of Repair-Based Scheduling. In detail, we developed a sophisticated
operation-selection (semi-randomized) heuristic and a novel constraint-propagation
technique, which imposes the optimization needs for Repair-Based Scheduling, being
the key components of the approximation algorithm RBS2. As the experimental
results shown in Chapter 6 and the Appendix, the approximation algorithm RBS2
is able to obtain a good quality solution with a low computational time cost.

In the search process of RBS2, first the candidate operations which will likely
be selected at a search node are determined. Then, the semi-randomized heuristic
is invoked; the heuristic is largely dependent on the estimation of the ripple-effect
(with respect to the sum of the start-time delays) of the candidate operations. Since
directly estimating the sum of the start-time delays in an early stage of a search pro-
cess does not work well for a large repair-needed JSSP, an indirect estimation which
estimates the maintenance of the original start-time assignments, is carried out with
a small probability included in the heuristic. Considering both the efficiency of the
search processes and the approximation of the optimal solution, only a limited num-
ber of the candidate operations are evaluated with ripple-effect at a search node and
only a part of constraint-propagation techniques (two consistency and edge-finding)
are carried out in the estimation procedure. By using the semi-randomized heuristic,
the search process in RBS2 is thus opportunistically directed. Therefore, different
executions of RBS2 need not to produce the same solutions. However, the devia-
tions with respect to the best solution found, are small. As pointed out by Jain
and Meeran [?], approximation methods do not guarantee achieving exact solutions.
They are, however, able to obtain near-optimal solutions, within moderate comput-
ing times and are therefore more suitable for larger problems. The importance of
approximation methods is indicated by Glover and Greenberg [?] who suggest that
direct tree searching is rather unsatisfactory for combinatorially difficult problems.
They indicate that heuristics inspired by natural phenomena and intelligent prob-
lem solving are most suitable in bridging the gap between operations research and
artificial intelligence.

The new constraint-propagation technique (propagating the allowed sum of de-
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lays) was developed through analyzing and capturing the dependencies and correla-
tions between the optimization needs (achieving the minimal sum of the start-time
delays) and the possible start-time delay of an individual operation. The precedence
constraints between operations of a job and the assumption that the operations on
one job are responsible for all the delays, form the basis of the technique. In this
constraint-propagation technique, the allowed sum of delays for all unassigned op-
erations is imposed on these operations’ start-time domains as a unary constraint.
The allowed sum of delays excludes not only the real consumed sum of delays caused
by already assigned operations, but also the anticipated sum of delays which consists
of unassigned operations’ delays in future search processes.

The parameter tuning of RBS2 for balancing the solution quality and time cost
in solving either moderate or very difficult repair-needed JSSPs were investigated
in Chapter 6. There, we concluded that (1) a small backtrack factor is adequate;
(2) a moderate number of restarts is required, and (3) a small probability can be
granted for indirect ripple-effect estimation. For solving real repair-needed JSSPs,
it is better to fix the backtrack factor and the probability partition factor, and to
change (increase or decrease) the number of restarts according to the time window
in which the repaired schedule must be ready.

The next section (Section 7.3) summarizes the main contributions of this thesis
and the Section 7.4 suggests future research directions based on the limitations of
the current methods.

7.3 Contributions

The main contribution of this thesis is the development of two sets of new repair-
based methodologies and techniques in the field of AI, viz. for adequately solving
DCSPs and repair-needed JSSPs. By implementing the corresponding designed al-
gorithms, we demonstrated that they are capable of repairing effectively successive
CSPs of a DCSP and repair-needed JSSPs with a reasonable computation-time cost.

The second contribution is establishing a CSP model for a repair-needed JSSP
when an unexpected event, i.e., a machine-breakdown, occurs in a job shop. The the-
sis presents an extensive and detailed analysis that facilitates the problem modeling
and problem-solving configurations.

The third contribution is the appropriate exploitation of the quantified objective
of Repair-Based Scheduling, i.e., guiding the search process and pruning the oper-
ations’ start-time domains. This is done by the development and application of a
novel semi-randomized operation-selection heuristic which is based on the direct and
indirect ripple-effect estimation and a new constraint-propagation technique.

The Repair-Based Scheduling approach developed in our research is different
from other reactive-scheduling systems mainly in the following four points: (1) our
approach reschedules all operations which participate in the repair; (2) the repair
activities are carried out on operations according to the precedence constraints, viz.
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the repair starts with (and persists in) the operations of which the earliest possible
start times are in front of the earliest possible finish times of the repair-needed
operations; (3) the repair decisions are made by considering the global (and not the
local) ripple-effect of the repair activities; and (4) optimization needs are utilized to
form a heuristic guiding the search processes and imposing a unary constraint on
the unassigned operations’ start-time domains.

The algorithms and solution methodologies developed in this research have suc-
cessfully demonstrated that it is possible to develop efficient procedures for Repair-
Based Scheduling in the field of AI.

7.4 Future research

There are a number of possible extensions to the work described in this thesis. As
pointed out in Sections 5.1 and 5.2, the Repair-Based Scheduling is one of reactive-
scheduling approaches which generates a new schedule that is minimally different
from the original schedule. It thus can be integrated into an automated schedul-
ing system which is capable of responding to a variety of events in a dynamically
changing environment and which will meet multi-criteria objectives.

Since dynamically changing environments invariably present different challenges,
there is a considerable diversity of problem characteristics along several dimensions
for reactive scheduling. We mention: (1) in the structure of different domains, (2) in
the types of constraints added, (3) in the performance objectives and preferences that
must be attended to, and (4) in the types of uncertainties that must be accommo-
dated. The problem characteristics along each of these dimensions might dominate
the model construction, the scheduling heuristic and the design of solution proce-
dure. Therefore, an automated scheduling system should address these issues so that
it can adequately deal with various types of uncertainties that exist in scheduling
problems and consider multiple criteria which describe various performance measures
of schedules. For instance, additional reactive-scheduling approaches are needed to
respond to the unexpected events, such as arrival of rush orders, which require that
the new start times of some operations are earlier than their existing start times.

Such extensions of the scheduling work need the attention of three research
themes (scheduling or reactive scheduling, fuzzy reasoning, multi-criteria decision
making) with the specific aim of successfully investigating difficult, uncertain and
dynamic real-world scheduling problems. Additional research is required in the area
of problem-solving method configuration. For instance, the integration of incremen-
tal repair methods with our Repair-Based Scheduling methods is another avenue of
research worth pursuing.
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Experimental results
The results of the tests for the repair-needed JSSPs originating from FT06, LA09,

LA30, CAR1, CAR5, ABZ5, ORB9 and YAM1 are given in Table 1.

• The column “JSSP” of Table 1 gives the JSSP instance name and the number
of jobs and machines.

• The column “MP” gives the make-span of an original schedule.

• The column “Instance” indicates 5 different repair-needed JSSP instances orig-
inating from each JSSP instance.

• The column “bdm” gives the number of the breakdown machine.

• The columns “t f” and “t r” give the machine breaking and recovering time,
respectively.

• The column “n” gives the number of operations that must participate in the
repair.

• The column “ini SD” gives the initial sum of delays (λ value generated by
RSH).

• The columns “avg SD” and “T” give the average sum of delays (λ value) and
the average running time (seconds) over ten runs, respectively.

• The column “∆” gives the deviation of the maximum sum of delays found from
the minimum sum of delays found in terms of percentage of the minimum sum
of delays found.
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JSSP MP Instance bdm t_f t_r n ini_SD avg_SD T D

FT06 55 FT06a 2 12 23 29 319 154 24 0

(6*6) FT06b 1 16 27 21 231 71 5 0

FT06c 0 10 21 23 184 88 6 0

FT06d 3 2 13 30 210 113 42 0

FT06e 5 15 26 23 253 150 17 0

LA09 951 LA09a 3 166 356 55 10450 5189.1 265 0.94

(15*5) LA09b 1 310 500 47 8930 3160 120 0

LA09c 4 154 344 57 10830 3041 207 0.65

LA09d 4 202 392 53 10070 2636 168 0.76

LA09e 0 290 480 45 8550 2110 76 0

LA30 1374 LA30a 1 239 513 160 43840 8994 1894 3.69

(20*10) LA30b 0 634 908 98 26852 5312.9 447 0.16

LA30c 6 258 532 155 42470 8660.1 1459 7.08

LA30d 3 171 445 175 47950 15112.2 3869 7.41

LA30e 5 641 915 88 24112 5631.3 327 0.83

CAR1 7038 CAR1a 3 2599 4006 29 40455 11797 31 0

(11*5) CAR1b 0 1370 2777 42 59094 40727.7 84 1.49

CAR1c 1 3361 4768 19 22078 15861 13 0

CAR1d 1 789 2196 43 60501 29866.9 84 2.39

CAR1e 0 1185 2592 42 59094 40840.1 83 2.05

CAR5 7767 CAR5a 3 2074 3627 43 46655 21864 64 0

(10*6) CAR5b 4 2304 3857 41 48872 6035 39 0

CAR5c 1 1149 2702 53 82309 61855.2 158 2.58

CAR5d 0 2032 3585 49 76097 40235 132 0

CAR5e 1 1549 3102 46 71208 45849 120 0

ABZ5 1242 ABZ5a 3 529 777 44 10076 3158 39 0

(10*10) ABZ5b 0 253 501 76 18848 4793 181 0

ABZ5c 6 173 421 79 19592 9412.1 307 2.03

ABZ5d 1 500 748 57 14316 5460.6 82 0.54

ABZ5e 5 275 523 70 16450 7800.2 224 1.8

ORB9 937 ORB9a 3 178 365 75 12975 4893.8 190 2.47

(10*10) ORB9b 0 235 422 73 13651 6778 166 0

ORB9c 6 229 416 59 7139 2195 88 0

ORB9d 1 116 303 76 11324 3018.8 206 1.13

ORB9e 5 401 588 50 9350 2388 64 0

YAM1 988 YAM1a 3 490 687 177 34869 9734.9 2157 1.84

(20*20) YAM1b 10 339 536 245 48265 9303 2094 3.11

YAM1c 6 177 374 302 59192 11478.9 10499 3.31

YAM1d 1 205 402 282 55554 11300.1 4989 3.68

YAM1e 15 271 468 256 46336 8539.4 5056 5.84

Table 1: Performance of RBS2 for more repair-needed JSSPs .



Summary

This thesis presents research in the field of AI (Artificial Intelligence) on repair-based
approaches for DCSPs (Dynamic Constraint Satisfaction Problems) and repair-
needed JSSPs (Job Shop Scheduling Problems). In Chapter 1 we provide some
background information and formulate the problem statement. We start with the
introduction of notions, definitions, and representations of (1) a DCSP which is de-
rived from a sequence of CSPs, and (2) a repair-needed JSSP which is the result of
an unexpected event (e.g., a machine breakdown). The goal in dealing with a DCSP
is to find a minimal number of assignment-change solutions for successive CSPs.
The goal in solving a repair-needed JSSP is to find a new schedule with a minimal
sum of start-time delays. Hence, the problem statement is twofold and reads: (1)
Is it possible to develop new methods that adequately solve DCSPs? and (2) Is it
possible to develop new methods that adequately solve repair-needed JSSPs?

In Chapter 2, the main subject is adequately handling DCSPs. Some important
issues on solving a CSP are discussed. These issues include the formal definition of a
CSP, complexity of a CSP, search methods for solving CSPs, constraint-propagation
techniques used to prune the search space, variable-selection and value-selection
heuristics for guiding the search, dead-end handling techniques, and optimization in
CSPs and Dynamic CSPs. Since CSPs are NP-hard problems, the derived DCSPs
are NP-hard problems too.

In Chapter 3, a formal definition of a JSSP and a useful CSP model of a JSSP
are presented. Then, a number of important notations in job-shop scheduling are
provided. Moreover, some powerful methods which have successfully been used for
solving JSSPs in the AI community are discussed and investigated. These methods
include constraint-based scheduling approaches, local-search algorithms and genetic
algorithms. Particular attention will be paid to the constraint-based scheduling
approaches which use a constraint-directed search framework for solving JSSPs.
We mentioned that the success of the constraint-based scheduling mainly can be
attributed to the following factors: (1) utilizing the constraint representations to
model the problem knowledge; (2) guiding the search process by operation selection
heuristics and start-time selection heuristics; (3) pruning the search space by using
constraint-propagation techniques; and (4) combining the techniques developed in
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Operation Research (OR) (such as edge-finding [?] etc.). Subsequently, the algo-
rithms based on constraint-directed search for constructing a job-shop schedule with
an optimal or a near-optimal make-span are discussed. These algorithms include
an optimization algorithm (Baptiste [?]), approximation algorithms (Applegate and
Cook [?], Nuijten [?]) and an ORR-FSS algorithm (Sadeh and Fox [?, ?]). Moreover,
a set of constraint-propagation techniques adopted from the job-shop scheduling do-
main are introduced, which include a time-table propagator, a disjunctive constraint
propagator, as well as edge-finding and energy-based reasoning techniques. Finally,
the concepts of predictive and reactive scheduling are examined. The rescheduling
and incremental repair strategies for reactive scheduling are briefly discussed and a
number of typical reactive-scheduling systems are mentioned.

In Chapter 4, three repair-based methods for solving DCSPs are proposed. They
are a complete repair-based algorithm (RB-AC) and two approximation algorithms
(BS and RS) (RB-AC stands for Repair Based - Arc Consistency, BS for Binary
Search, and RS for Restart). First, the necessity of finding a solution with a minimal
number of assignment changes for a CSP is given. Then, the idea and methodology
behind the method are presented. Subsequently, a complete repair-based algorithm
(RB-AC) which combines local search and constraint-propagation techniques is pro-
posed and the termination, correctness, completeness, and optimality of RB-AC are
proved. Following the analysis of the time complexity of RB-AC, two approxima-
tion algorithms are developed to obtain a solution with a near-minimal number of
assignment changes. After a series of empirical studies, we conclude that the ap-
proximation algorithm RS outperforms BS. Finally, we compose a best parameter
combination for RS.

Chapter 5 presents a broadly explorative study for Repair-Based Scheduling in
the field of AI. First, the motivation of conducting a repair for an existing schedule
is clarified. Then, we discuss the following four issues: (1) why an innovative Repair-
Based Scheduling approach is needed? (2) what kind of model modification should be
made to the original JSSP model? (3) what objective should be achieved in Repair-
Based Scheduling? and (4) what minimal perturbation function should be used?
Thereafter, we make a thorough analysis for an unexpected event (e.g., a machine
breakdown) that may occur in a job shop. We build a new CSP model for the repair-
needed JSSP, by identifying which operations need to participate in repair and what
constraints should be added to the original constraint set. Subsequently, we outline
a novel Repair-Based Scheduling algorithm (RBS) which is developed under the
framework of constraint-directed search for handling the machine-breakdown event.
The main ideas, related techniques and the pseudo codes of the RBS are presented
and illustrated in the chapter. Finally, the procedures which form the main part of
an innovative heuristic and the different design choices for RBS are presented. A
new constraint-propagation technique is developed and an algorithm to implement
this technique is shown. The new technique imposes the optimization needs on the
operations’ start-time domains and thus helps to prune the search space.
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Chapter 6 reports on the performance of our Repair-Based Scheduling approaches
in solving repair-needed JSSP instances. We start to explain how to generate a
repair-needed JSSP instance (caused by a machine breakdown) from a standard JSSP
instance fitting our experiments. The important parameters of a machine-breakdown
JSSP instance are discussed and determined. Subsequently, we present experimen-
tal results by using RBS to solve simple machine-breakdown instances. Thereafter,
three algorithms being the results of different design choices: RBS, RBS1 and RBS2,
are evaluated on simple, moderate, and difficult machine-breakdown instances. The
experimental results obtained with these algorithms for different problems are com-
pared. As a result, RBS2 is selected as the best representative of our Repair-Based
Scheduling approaches. The important parameters in RBS2 which include the num-
ber of restarts, the backtracking factors, and the probability partition factors in the
extended semi-randomized heuristic are evaluated for different values in a variety
of experiments. The impact of these parameters to RBS2 concerning efficiency and
optimality are clearly exhibited by the experimental results. Results of other al-
ternative operation-selection heuristics are presented too, and compared with the
schedules generated by RBS2. Finally, the issue about the comparison with other
existing reactive-scheduling systems is discussed.

Chapter 7 contains some concluding remarks on the methodologies followed.
Most importantly, it summarizes our three contributions: (1) developing two sets
of new repair-based methodologies and techniques for DCSPs and JSSPs, (2) es-
tablishing a new CSP model for repair-needed JSSPs, and (3) taking full advan-
tage of the quantified objective of repair-based scheduling for the development of a
novel semi-randomized operation-selection heuristic and a new constraint propaga-
tion technique. The contributions are an adequate answer to the problem statement
in Section 1.2. However, not all problems are solved by now. Chapter 7 finishes with
showing some future research directions, such as reactive scheduling in combination
with fuzzy reasoning and multi-criteria decision making.
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Samenvatting

Dit proefschrift beschrijft een vierjarig onderzoek op het gebied van AI (Artificial
Intelligence) over het onderwerp: reparatiegebaseerde benaderingen van DCPSs (Dy-
namische CSPs; CSP staat voor Constraint Satisfaction Problem) en reparatiebe-
hoevende JSSPs (Job Shop Scheduling Problems). In hoofdstuk 1 wordt de achter-
grond van het probleem behandeld en het onderzoeksdoel geformuleerd. Allereerst
worden begrippen, definities en representaties van een DCSP en een reparatiebeho-
evende JSSP gëıntroduceerd. Het doel bij een DCSP is het vinden van oplossingen
voor de achtereenvolgende CSPs die de DCSP vormen, waarbij de achtereenvol-
gende oplossingen minimaal van elkaar verschillen. Het doel van het oplossen van de
reparatiebehoevende JSSP is het vinden van een nieuw rooster waarin de som van de
vertragingen van de individuele operaties minimaal is. Derhalve is het onderzoeks-
doel tweeledig: (1) is het mogelijk om nieuwe adequate methoden voor het oplossen
van DCSPs te ontwikkelen? en (2) is het mogelijk om nieuwe adequate methoden
voor het oplossen van reparatiebehoevende JSSPs te ontwikkelen?

Hoofdstuk 2 richt zich op DCSPs. Belangrijke begrippen bij het oplossen van
een DCSP worden besproken. Deze begrippen betreffen de formele definitie van een
CSP, de complexiteit van een CSP, zoekmethoden voor het oplossen van een CSP,
constraint-propagatie-technieken voor het verkleinen van de zoekruimte, heuristieken
voor de keuze van een variabele en waarde waarmee het zoekproces gestuurd kan
worden, het adequaat hanteren van doodlopende zoekpaden, en optimale oplossin-
gen van een CSP en een DCSP. Daar een CSP een NP-moeilijk probleem is, geldt
hetzelfde voor een DCSP.

Hoofdstuk 3 begint met een formele definitie van een JSSP en een bruikbaar CSP-
model van een JSSP. Verder wordt een aantal belangrijke begrippen van een roost-
erprobleem behandeld. Ook wordt een aantal krachtige technieken die succesvol zijn
toegepast door de AI-gemeenschap bij het oplossen van een JSSP nader onderzocht
en besproken. Deze technieken zijn onder andere constraint-gebaseerde methoden
voor het roosteren, lokale zoekmethoden, en genetische algoritmen. In het bijzonder
wordt aandacht besteed aan constraint-gebaseerde methoden die constraint-gerichte
zoekmethoden toepassen voor het oplossen van een JSSP. Het succes van deze meth-
oden is voornamelijk te danken aan de volgende vier factoren: (1) probleemken-
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nis modelleren met behulp van constraints, (2) het sturen van het zoekproces met
behulp van heuristieken voor de keuze van een variabele en een waarde, (3) het
verkleinen van de zoekruimte door middel van constraint-propagatie-technieken, en
(4) het combineren van deze technieken met technieken zoals die ontwikkeld zijn
in het gebied van de Operations Research. De algoritmen die gebruik maken van
constraint-gebaseerd zoeken en die ontwikkeld zijn voor het creëren van roosters met
een optimale of bijna optimale verwerkingstijd worden besproken. Voorts wordt aan-
dacht besteed aan het wezen van constraint-propagatie-technieken. Tot slot worden
concepten van voorspellende en reactieve rooster-creatie onderzocht. Herroostering
en incrementele reparatie-strategieën worden kort besproken en een aantal typische
reactieve roostersystemen wordt genoemd.

Hoofdstuk 4 beschrijft drie nieuwe methoden voor het oplossen van DCSPs. Deze
methoden zijn een volledig reparatiegebaseerd algoritme RB-AC (een afkorting van
Repair-Based Arc Consistency), en twee benaderingsalgoritmen BS (Binary Search)
en RS (Restart Search). Allereerst wordt echter de noodzaak voor het vinden van
een oplossing met een minimaal aantal veranderingen ten opzichte van een vorige
oplossing besproken. Vervolgens worden de ideeën achter de voorgestelde methode
gepresenteerd. Hierna wordt het volledige reparatiegebaseerde algoritme RB-AC
gëıintroduceerd. Dit algoritme combineert lokaal zoeken met constraint-propagatie.
De eindigheid, correctheid, volledigheid en optimaliteit van het algoritme wordt be-
wezen. Na een analyse van de tijdscomplexiteit van RB-AC worden twee benader-
ingsalgoritmen, BS en RS, voorgesteld. Aan de hand van experimentele resultaten
wordt vastgesteld dat de prestaties van RS beter zijn dan die van BS. Met behulp
van aanvullende experimenten wordt een optimale parameter-instelling voor het al-
goritme RS vastgesteld.

Hoofdstuk 5 beschrijft een verkennende studie van reparatiegebaseerde roostering
binnen de AI. Eerst wordt een motivatie voor roosterreparatie besproken. Vervol-
gens wordt ingegaan op vier belangrijke vragen: (1) waarom is een reparatiege-
baseerde aanpassing van een rooster noodzakelijk? (2) welke aanpassingen zijn
nodig in het model van de originele JSSP? (3) welke doelen moeten worden bereikt
met reparatiegebaseerd roosteren? en (4) welke doelfunctie moet worden geopti-
maliseerd? Vervolgens wordt een analyse uitgevoerd van onverwachte gebeurtenis-
sen die kunnen optreden in de uitvoering van een rooster. Een nieuw CSP model
voor een reparatie-behoevende JSSP wordt opgesteld door het bepalen van de op-
eraties die van belang zijn voor het reparatieproces en door te bepalen welke aan-
vullende randvoorwaarden aan de nieuwe situatie opgelegd moeten worden. Hierna
wordt een nieuw reparatiegebaseerd roosteralgoritme RBS (Repair-Based Schedul-
ing) beschreven. Twee innovatieve heuristieken voor de keuze van operaties en
waarden worden verder geanalyseerd samen met een constraint-propagatie-techniek
waarvan RBS gebruik maakt.

Hoofdstuk 6 rapporteert over de prestaties van het reparatiegebaseerd rooster-
algoritme RBS. Eerst wordt uitgelegd hoe reparatiebehoevende testinstanties van
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een JSSP worden gegenereerd. Belangrijke parameters van deze instanties worden
besproken. De resultaten van het oplossen van simpele instanties wordt vervolgens
uitvoerig behandeld. Hierna worden drie algoritmen RBS, RBS1 en RBS2, die het
resultaat zijn van drie verschillende ontwerpkeuzen, geëvalueerd aan de hand van
simpele, gemiddelde en moeilijke reparatiebehoevende probleemgevallen. De hier
verkregen resultaten worden onderling vergeleken, waarna RBS2 als meest geschikte
algoritme wordt gekozen. Verschillende parameter-instellingen van RBS2 worden in
een groot aantal experimenten geëvalueerd. De invloed van de parameter-instellingen
op de efficiëntie en de optimaliteit wordt getoond aan de hand van experimenten.
Vervolgens worden de resultaten die verkregen zijn door middel van alternatieve
operatieselectieheuristieken, vergeleken met de roosters die met behulp van RBS2
gegenereerd zijn. Tot slot wordt ingegaan op de vergelijking met andere reactieve
roosterbenaderingen die in de literatuur beschreven zijn.

Hoofdstuk 7 bevat een aantal afsluitende opmerkingen over de gevolgde meth-
ode. Het hoofdstuk geeft een samenvatting van drie bijdragen: (1) de ontwikkeling
van twee verzamelingen van methoden en technieken voor DCPSs en JSSPs, (2)
het opstellen van een nieuw CSP-model van reparatiebehoevende JSSPs, en (3) het
volledig uitbuiten van het kwantitatieve doel van reparatiegebaseerd roosteren voor
het ontwikkelen van een vernieuwende semi-willekeurige operatieselectie heuristiek en
een nieuwe constraint-propagatie-techniek. De bijdragen geven een adequaat antwo-
ord op de probleembeschrijving geformuleerd in paragraaf 1.2. Niet alle problemen
zijn echter opgelost. Dit hoofdstuk besluit met het tonen van een aantal mogelijke
toekomstige onderzoeksrichtingen, zoals een combinatie met ’warrig redeneren’ en
multi-criteria beslissingen.
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