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Abstract

In many situations humans have to reason with inconsistent knowl-
edge. These inconsistencies may occur due to not fully reliable sources
of information or the use of general information like defaults. To be
able to reason with inconsistent knowledge it is not possible to view a
set of premisses as absolute truths as is done in predicate logic. View-
ing a set of premisses as a set of assumptions, however, makes it possi-
ble to deduce useful conclusions from an inconsistent set of premisses.
In this paper a preference logic for reasoning with inconsistent knowl-
edge is described. This logic is based on the work of N. Rescher [16].
In this logic a preference relation is used to choose between incompat-
ible assumptions. These choices are only made when a contradiction
is derived. As long as no contradiction is derived, the knowledge is
assumed to be consistent. This makes it possible to define an exe-
cutable deduction process for the preference logic. As a special case
of reasoning with inconsistent knowledge, the use of default rules is
considered. A default rule can be described in the preference logic by
an implication and appropriate preference relation. Hence the prefer-
ence logic enables default reasoning with a deduction process. For the
preference logic a semantics is defined. This semantics is based on the
ideas of Y. Shoham [18, 19]. The models for the preference logic are
those structures which satisfy more premisses with a higher preference
than some other structure.
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1 Introduction

Reasoning with inconsistent knowledge is very common in human reasoning.
Sometimes inconsistencies may occur because not all sources of information
are completely reliable. Different observations may result in different con-
clusions of what is observed. Also inconsistencies may occur if general rules
are used. General rules are the result of some induction process. There may
however exist specific cases, for which a general rule does not hold. In these
cases the general rule contradicts with the specific information, causing a
inconsistency. A special case of general knowledge are default rules.

1.1 Inconsistent knowledge

Reasoning with inconsistent knowledge can be traced back to Rescher [16].
In his book Hypothetical Reasoning, N. Rescher introduces Preferred Mazi-
mal Mutually Compatible subsets of an inconsistent set of premisses. These
PMMC subsets are consistent subsets of the set of premisses, are preferred
according to some condition and become inconsistent by adding more pre-
misses to it. The conclusions which may be drawn from the premisses are
the conclusions which follow from every PMMC subset. These conclusion are
said to be compatible-subset entailed. The preference of some maximal con-
sistent subset is based on a division of the premisses into modal categories.
This division can be based on alethic modalities, epistemic modalities or
probabilistic modalities. Rescher introduces this machinery to describe hy-
pothetical (counterfactual) reasoning. Unfortunately he does not specify a
deduction process for his logic.

An approach to deal with uncertain inconsistent knowledge is the system
Ponderosa of J. R. Quinlan [13]. ,In this system every premiss has a probabil-
ity value assigned to it. When selecting a consistent subset of the premisses
the system tries to minimize the risk of removing the wrong premiss. A dis-
advantage of this approach is that one has to specify a probability value for
every premiss.

A recent approach which deals with inconsistent knowledge is a framework
for default reasoning of D. Poole [12]. Poole argues that non-monotonic
reasoning should be viewed as ‘scientific theory formation’. From a set of
hypotheses a consistent subset has to be selected which together with a set
of facts can explain some closed formula. To determine an explanation one
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has to be able to carry out a consistency check. This makes it impossible to
apply the framework of Poole when using the full predicate logic.

1.2 Default reasoning

Over the past few years different approaches for default reasoning have been
developed. Some of the formally sound approaches are Circumscription
of J. McCarthy [10], Default logic of R. Reiter [14], A Conditional logic
of J. P. Delgrande [1, 2] and A logical framework for default reasoning of
D. Poole [12]. Each of these of these approaches have some drawbacks which
can not be solved.

Circumscription is a theoretical elegant approach. To reason with cir-
cumscription one has to be able to collapse the second order circumscription
formula into a first order formula. Since the completeness theorem does not
hold for circumscription theories, there exist no general way to do this.

In the Default logic default rules can be formulated explicitly. The dis-
advantage of this logic is that it does not have a deduction process. This
disadvantage can be overcome by combining default logic with the Truth
Maintenance System of J. Doyle [3]. In combination with T'MS an extension
of a default theory can be approximated. TMS does not make things better.
The labeling problem of a TMS graph is proven to be NP-complete.

In the Conditional logic of J. P. Delgrande new default rules can be de-
rived. In [2] he describes how to reason with these default rules. To do this
one has to be able to determine consistency. This, however, is an undecidable
problem.

The logical framework for default reasoning of D. Poole which is already
discussed in the previous section, is actually meant to model default rea-
soning. In this framework defiult reasoning is viewed as an special case of
reasoning with inconsistent knowledge.

2 The preference logic

To be able to reason with inconsistent knowledge in the preference logic
premisses are considered as assumptions. These assumptions are considered
to be true as long as no contradiction is derived from them. When, however, a
contradiction is derived, one of the assumptions on which the contradiction




is based has to be removed. The question is which assumption has to be
removed. To select the premiss to be removed, a preference relation which
is a strict partial ordering on the set of premisses, can be defined. If a
contradiction is derived the set of premisses on which the contradiction is
based, has to be determined. Using the preference relation a least preferred
premiss is removed from this inconsistent set thereby blocking the derivation
of the contradiction.

Example 1 Let ¥ denote a set of premisses,

Y= {0 —+_¢ﬁ¢}

and (¥, <) a preference relation on L:

(B, <) ={"Y <p,~ <9 — 2}

Since =) is the least preferred premiss on which the inconsistency in X is
based, ) has to be removed.

There are three problems which can arise when trying to remove an incon-
sistency.

o Firstly, one has to be able to determine the premisses on which an
inconsistency i1s based. To solve this problem justifications are intro-
duced. Such a justification which is called an in_justification, describes
the premisses from which a formula is derived.

e Secondly, a premiss which has been removed, may have to be placed
back because the contradiction causing his removal can not occur any
more. This may happen due to some other contradiction which will
be derived. To solve this, problem an other kind of justifications is
introduced. This type of justification is called an out_justification. An
out_justification describes which premiss must be removed when other
premisses are still assumed to be true.

o Thirdly, there does not have to exist a single least preferred premiss
in the set of premisses on which a contradiction is based. In such a
situation there are three possible choices.

— Do nothing. The contradiction is not solved but this does not
have to mean that the contradiction will not be solved at all [17].
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— Remove all the minimal premisses on which a contradiction is
based. Due to this policy it is possible that too much is removed
from the set of premisses.

— Consider the results of the removal of every alternative apart. As
a result of this policy different subsets of the set of premisses are
considered. It is possible that these subsets will converge to one
consistent subset of the set of premisses. If this happens the result
of all three approaches will be the same.

There is a relation between the last two approaches. Result of the
second approach is equal to the intersection of the set of premisses
which are the result of the last approach. Since the result of the second
approach can be determined in polynominal time, it can be used as
an approximation of the last approach. It determines what certainly
follows from the last approach.

As already was mentioned in the introduction, default reasoning can be
treated as a special case of reasoning with inconsistent knowledge. Default
rules are general rules which may contradict specific information. When this
occurs specific information has to preferred above general information.

Example 2 The specific information ‘Tweety can not fly because it is a pen-
guin’ should be preferred above the general information ‘Birds can fly’.

The question is how to represent the general information. It is not possible
to describe the sentence ‘Birds can fly’ by:

Va:[Bir:d(m) — Can_fly(z)]

If there is one bird who can not fly this premiss will be removed making it
impossible to derive for any bird that it can fly. Since this s undesirable,
an alternative approach for representing defaults is introduced here. In the
preference logic an alternative semantics is given to a formula containing
free variables. In the predicate logic a formula ¢ containing {ree variables
7 is equivalent to VZp. In the preference logic a formula ¢ cantaining free
variables is interpreted as denoting a set of instances of this formula. To make
it possible to derive new default rules, this set of instances is not limited to
ground instances only.




Hence, a premiss containing free variables denotes a set of premisses.
When a member of this set is the least preferred premiss of a set on which a
contradiction is based, only this instance is removed.

Example 3 Suppose that the following premisses are given.
1. Bird(z) — Can_fly(z)
2. Bird(Tweety)
3. =Can_fly(Tweety)

If the second and the third premiss are preferred above the instance of the

first premass:
Bird(Tweety) — Can_fly(Tweety)

then only this instance will be removed but not the first premiss.

A question which has to be answered yet is: ‘how is the preference relation
defined on the premisses related to a preference relation on instances of these
premisses ?’. To motivate the answer of this question, consider the following
example.

Example 4 Suppose a problem can be described by two premisses of which
one contains a free variable.

1. ¢(z)
2. Vz—p(z)

Clearly the set of premisses in the example is inconsistent. Now suppose that
the second premiss is preferred above the first, then the whole set of premisses
denoted by the first premiss has to be removed. Because with each instance
of the first premiss a contradiction can be derived, the second premiss has to
be preferred above each instance of the first premiss. Therefore each instance
of the set generated by a premiss containing free variables should have the
same preferences as this premiss.

Condition 1 Every instance of a premiss containing free variables should
have the same preference as this premiss.




3 Formal definitions

In the formal description of the preference logic, unification will be used
[9]. To unify two formulas a substitution of terms for free variables may
be required Such a substitution 0 for the free variables is denoted placing
[0] behind a formula. Substitution which has to be carried out on every
formula of a set of formulas or on every formula occurring in a justification,
are denoted in the same way.

The preference logic is based on an ordinary first order logic L. A set of
premisses & of this logic is some subset of this language L. On this set of
premisses a preference relation can be defined. This preference relation for a
set of premisses ¥ is defined as a strict partial order (£, <)

Because premisses containing free variables are viewed as representing a
set of instances of those premisses, an extended set of premisses ¥ which also
contains all instances, is introduced.

Definition 1 Let S be a set of formulas. By T an extended set of formulas
is denoted, which also contains all instances of the formulas of S.

S ={p|® €S and for some substitution o=}

In case a contradiction is derived a formula from the extended set of
premisses © has to be withdrawn. To be able to do this it is necessary
to extend the preference relation. This extended preference relation should
satisfy Condition 1 and should again be a strict partial order. The preference
relation for the extended set of premisses is defined as:

Definition 2 Let (T, <) denote the preference relation for B. (E,<) is the
smallest strict partial order confaining (X,<) which s closed under term
substitution in the premisses of X.

One should notice that the preference relation (T, <) is not always defined
as can be seen in the following example.

Example 5 S = {p(z),ela) ¥}
(2,<) = {e(z) < ¥,¥ < ¢la)}
Now the set of extended premisses and their preference relation has been

defined, the justifications can be defined. Two kinds of justifications, in-
justifications and out-justifications are distinguished. The in-justifications
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are used to denote that a formula is believed if the premisses in the antecedent
are believed, while the out-justifications are used to denote that a premiss
can no longer be believed (must be withdrawn) when the premisses in the
antecedent are believed.

Definition 3 In_Just = {P=¢|PCX andyp € L}
Out.Just = {P# ¢|PCY andyp € 3}

4 The deduction process

Instead of deriving new formulas, in the preference logic only new justifica-
tions are derived. These justifications are generated by the inference rules.
Because the inference rules are defined on justifications and not on formulas,
Reason (Truth) Maintenance is integrated in the deduction process. There-
fore the preference logic can be viewed as a process logic. A deduction in the
preference logic is a process of belief revision which occurs due to the addi-
tion of new justifications. See also [5]. This deduction process will finally
terminate with a belief set which is the theory of the models of the set of
premisses and the preference relation. How these model are defined can be
found in section 6.

A deduction process for the preference logic starts with a initial set of
premisses Jp. This initial set Jy contains an in-justification for every formula
which is a premiss. These justifications indicate that a formula is believed if
the corresponding premiss is believed.

Definition 4 Jo = {{¢} = ¢ | p € T}

Each set of justifications J; with 7 > 0 is generated from the set J;_; by adding
new justifications. How these justifications are determined depends on the
deduction system which is used. In the following description of the preference
logic it is assumed that an axiomatic deduction system for a language L which
only contains the logical operators — and — and the quantor V, is used. The
following axiom scheme will be used.

Tautologies

Vap(z) — ¢[0] where 6 denotes a substitution for =
Va(ip — ) = (Yo — Vap)

¢ — Yz where z does not occur in ¢

Ll i e
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Because an axiomatic approach is used, justifications for the axioms have to
be introduced. Since axioms can not be withdrawn an axiom will always have
an in-justification with an antecedent equal to the empty set. An instance
of the axiom scheme is introduced by the following axiom rule.

Rule 1 An instance ¢ of the an aziom scheme gets an in_justification 0= .

In the deduction system two inference rules will be used, namely the
modus ponens and the contradiction rule. The modus ponens introduces a
new in_justification for some formula. This justification is constructed from
the justifications for the antecedents of the modus ponens.

Rule 2 Let the formulas ¢ and ¢ — p have an in-justification of respectively
P=opandQ= (Y — p). If ¢ and i can be unified with a the most general
unifier 8, then the formula pl6) gets an in_justification (PUQ) = u)lf].

While the modus ponens introduces a new in_justification, the contradiction
rule introduces a new out_justification to eliminate a contradiction.

Rule 3 Let p and —1p be formulas with justifications P = ¢ and Q = .
Let ¢ and ¢ be unifiable and 0 be the most general unifier. If R = min(PUQ)
—minimal under the preference relation (T, <)—, then each premiss 1 € R

gets an out_justification (PUQ)/n) # n)6].

It is assumed that the process which creates a set of justifications Jrt1
from the set J, is fair. This means that this process does not forever defer the
addition of some possible justification to the set of justifications. If a fair pro-
cess is used, the following theorems hold. The first theorem guarantees the
soundness of the in_justificatiops. This means that for every in_justification
there exists a corresponding deduction from the premisses in the antecedent
to the formula in the consequent. The second theorem guarantees the com-
pleteness of the in_justifications. This means that for each deduction of a
formula from the premisses there exists a corresponding in_justification. Fi-
nally the third and the fourth theorem guarantee respectively the soundness
and the completeness of the out_justifications.

Theorem 1
For eachi > 0: if P = ¢ € J;, then for each substitution 6: Pl6) C Y. and
P[O) F ©l0)].
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Theorem 2
For each P C X: if P+ ¢, then for somei > 0: Q = o € J; and for some
substitution §: Q0] C P and ¥[6] = ¢.

Foreachi > 0: if P # ¢ € J;, then for each substitution 6: (PU{p})[0] C

Theorem 3
o>
(P U {p})[6] is inconsistent and for each 1 € P[0)] there holds: ¢ £ o[6)].

Theorem 4

For each P C T if P is a minimal inconsistent set and Q = min(P), then
for some ¢ > 0 there holds for each ¢ € Q: R # + € J;, and for some
substitution 0: P/ = R[0] and ¢ = [6].

Given a set of justifications there may exists one or more subsets of the
set of premisses which can be believed. Such a subset contains the premisses
which do not have to be withdrawn due to an out-justification. Since the
out-justifications which can be applied depend on the set of premisses which
are not withdrawn, the following fixed point definition should be satisfied.

Definition 5 Let A; denote the set containing all the subsets of the pre-
misses which can be believed given the out_justifications in J;.

A= {A] A =T - Outy(A))

where Outi(S) = {pl0] | P A ¢ € J;, and for some
substitution §: P[0) C S}

After having determined all the sets of premisses which can be believed,
the set of derived formulas which can be believed can be determined given
the in_justifications. This set is:defined as:

Definition 6 Let J; be a set of justifications and A; be the corresponding
sets of premisses. The set of formulas B; which can be believed is defined as:

B, = {¢| Foreach A€ A, thereis a P = ¢ € J;
and for some substitution 8: ¢ = [0] and P[f] C A}

Observation 1 For each ¢ € B; : [A & ¢ for each A € A;]

Joo is defined as the set of all justifications which can be derived.
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Definition 7 Joo = Uimoo i

The corresponding sets of premisses and formulas which can be believed
will be denoted by A and by Be. For Ju, A, and B, the following

observations can be made:

Observation 2 For each A € A: AC T.
Observation 3 For each A € Ay A is mazimal consistent.

Observation 4 If each minimal inconsistent subset of & has only one least
preferred element and there exists no infinite sequence of minimal inconsis-
tent subsets such that a minimal element of one subset 15 an element of an
other subset in which it is not @ minimal element, then | Ac |= 1.

Observation 5

where Th(S) = {p | S+ »}

5 Determination of the belief set

In this section two algorithms are described. The first algorithm determines
a single set A from A; given the justifications J;. The second algorithm
determines the intersection —(.A;— of all the sets of A;. The result of this
algorithm can be used as an approximation of the set A;. Both algorithms
are polynomial time algorithms.,

begin
prem := {¢p | ¢ occurs in some justification of J;};

min_out_just := {P # ¢ | P # ¢ € J; and there is no Q # o € J; such

that QU {¥} C PU{¢}};

for each P # ¢ € min_out_just and for each Q # ¥ € min_out_just:
P;:é><p>Q7$z/)ifandonlyifc,oGQandv,b%go;

delta := prem;

repeat
P # ¢ € maz(min_out_just);
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min_out_just := min_out_just — {P % p};

if P C delta

then delta := delta — {1 | 1 is an instance of ¢ and v € prem};
until min_out_just = §;
return delta;
end.

The algorithm above determines a set delta such that: delta € A;. It is not
difficult to modify the algorithm so that it determines every element of A;.
The following algorithm determines a set delta* such that: delta = NA;.

begin
prem = {p | ¢ occurs in some justification of J;};
min_out just := {P % ¢ | P % ¢ € J; and there is no Q % 1 € J; such
that QU {y} C PU {p}};
for each P # ¢ € min_out_just and for each Q # v € min_out_just:
P#¢>Q# ¢ifand only if p € Q and ¥ < ¢;
delta* := prem;
repeat
R := 0
S 1= maz(min_out_just);
min_out_just := min_out_just — S,
repeat
P#pesS;
Si=5—{P# o)
if P C delta”
then R := RU {3 | 4 is an instance of ¢ and ¢ € prem};
until S = §;
delta™ := delta™ — R;
until min_out_just = @;
return delta®;
end.

)
»o

6 The semantics for the logic

The semantics of the preference logic is based on the ideas of Y. Shoham [18,
19]. In [18, 19] Shoham argues that the difference between monotonic logic
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and non-monotonic logic is a difference in the definition of the entailment
relation. In monotonic logic a formula is entailed by the premisses if it is

true in every model for the premisses. In a non-monotonic logic however, a
formula is entailed by the premisses if it is preferentially entailed by a set of
premisses, i.e. if it is true in every preferred model for the premisses. These
preferred models are determined by defining an acyclic partial preference
order on the models.

The semantics for the preference logic differs slightly from the work of
Shoham. Since the set of premisses may be inconsistent, the set of models
for these premisses can be empty. Therefore, instead of defining a preference
relation on the models of the premisses, a partial preference relation on every
structure of the language is defined. Given such a preference relation on the
structures, the models of preference logic are the most preferred structures.
Hence, an appropriate preference relation on the structures has to be defined.
In the preference logic a structure which satisfies more premisses with a
higher preference (<) than some other structure, is preferred (C) above this
structure.

In the preference logic choices between premisses are made in case a min-
imal inconsistent subset of ¥ does not contain a least preferred element.
Choosing some premiss can be viewed as preferring the alternative choices
above this premiss. So the original preference relation 1s extended by making
choices. In case a premiss containing free variables is chosen, this choice is
made for every instance of this premiss. Hence, the extension of the prefer-
ence relation which belongs by this choice should also satisfy Condition 1.
Now, a structure satisfies more premisses than some other structure if this 1s
the case for every linear extension of (E, <) which satisfies Condition 1. The
following definitions describe this formally.

.

Definition 8 Let Prem(M) denote the subset of the premisses & which are
satisfied by the model M.

Prem(M) = {¢ | ¢ € T and M = ¢}

Definition 9 Let Str denote the set of structures for the language L and let
(Str,C) denote a preference relation on these structures. For each structure

M, N there holds: N T M if and only if Prem(M) # Prem(N) and for
every ¢ € (Prem(N) — Prem(M)), there is a Y € (Prem(M) — Prem(N))
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such that for every linear extension of (T, <) which satifies Condition 1:
@ < 1 and for non € (Prem(N) — Prem(M)): ¥ < 1.

Given the preference relation between the structures, the set of models for
the premisses can be defined.

Definition 10 Let Modc(X) denote the models for the premisses T.
M € Modr(X) if and only if there exists no structure N such that: M C N

Now the following important theorem which guarantees the soundness and
the completeness of the preference logic, holds:

Theorem 5

Modc(£) = |J Mod(A) = Mod(B.)

A€As

where Mod(S) denote the set of classical models for a set of formulas S.

7 Related work

In this section some related approaches are discussed.

7.1 Hypothetical reasoning

The preference logic which is presented in this paper is closely related with
the work of N. Rescher [16]. The modal categories which Rescher introduces
can be expressed with a partial preference relation. When these modal cat-
egories are described by a preference relation, the sets A of A, are equal to
the Preferred Mazimal Mutually: Compatible subsets of Rescher. Further the
compatible-subset entailed formulas of Rescher are the formulas of B,..

7.2 A framework for default reasoning

The preference logic is also related with the work of D. Poole [12]. Poole
introduces two sets of premisses, facts and hypothesis. The set of facts is
always consistent and can not be removed. The set of hypothesis, however,
may be inconsistent. Further a hypothesis may contain free variables. Each
hypothesis which contains a free variable denotes a set of instances of the
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hypothesis. From the hypothesis a maximal consistent subset has to be
selected which can explain together with the facts some closed formula.

This framework of Poole can be represented in the preference logic by pre-
ferring each fact above each hypothesis. A consistent set of hypothesis which
in the framework of Poole can explain some closed formula, corresponds with
set A of A,, which entails this closed formula.

Although the framework of Poole can be expressed in the preference logic,
one should realize that the philosophy behind the two approaches are quite
differently. The work of Poole is based on the idea that default reasoning 1s
a process of selecting consistent sets of hypothesis which can explain a set
of observations. In the preference logic however, a consistent set of preferred
assumptions is determined, from which conclusions are drawn. This set of
preferred assumption may change due to new information.

In the framework of Poole constraints can be added to denote that some
set, of hypotheses may not be used as an explanation. What these constraints
denote is that some explanations are preferred above others. This is realized
by making the latter explanation inconsistent through the addition of the
constraints. Because constraints are implemented with formulas which may
not be used in an explanation, in the opinion of the author constraints are
rather ad hoc.

As was argued above the framework of Poole without constraints can be
modeled in the preference logic. When constraints are added, one denotes
that some explanations are preferred above others. Since in the preference
logic a preference relation on the premisses generates a preference relation
on consistent subsets of the premisses, one can ask if the converse also holds.
Unfortunately the answer is ‘no’. This means that not every ordering of
explanations in the framework of Poole can be modeled using the preference
logic. If an ordering on the explanations which can not be modeled, make
sense, is something which has to be investigated.

7.3 Default logic

There also exist a relation between the Default logic of R. Reiter [14] and
the preference logic. If a default theory only contains normal default rules,
this default theory can be described in the preference logic. To describe such
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a default theory in the preference logic, one has to replace every default rule
p() : P(=)
»(T)

by a premiss containing free variables
¢(T) = $(7)
For the default ‘Birds can fly’ this becomes:
Bird(z) — Can_fly(z)

Further default rules are given a lower preference than the other premisses.
This assures that an instance of a default rule is withdrawn when it con-
tradicts specific information. When a default theory which contains only
normal defaults is described in this way with the preference logic, the set of
extensions of the default theory is equal to the set {Th(A) | A € Ay}.

Example 6

premisses: 1. Bird(Donald)

2. Bird(Woody)

3. Lazy_duck(Donald)

4. Bird(z) — Can_fly(z)

5. Vz[Lazy.duck(z) — —~Can_fly(z))

preference relations: 1 = 4,2 >4, 3> 4 and 5 - 4

conclusions: Can_fly(Woody)
=Can_fly(Donald)

In the preference logic new default rules can be deduced. This is illus-
trated using an example of Delgrande [1].

Example 7

premisses: 1. Raven(z) — Black(z)

2. Raven(z) A Albino(z) — = Black(z)

preference relation: 1 < 2

18




conclusion: Raven(z) A —~Albino(z) — Black(z)

In the example above the second premiss is preferred above the first because
the first is more general than the second. ’

It is also possible to derive new defaults using a transitive relation between
premisses. If the premiss ‘every eagle is a bird’ is added to Example 6,

Vz[Eagle(z) — Bird(z))
then the default ‘eagles can fly’ can be deduced.
Eagle(z) — Can_fly(z)

This default can be derived form the premisses ‘every eagle is a bird’ and
‘birds can fly’.

In the deduction of the the default ‘eagles can fly’, a transitive relation
between a default and an implication is derived. The possibility to derive
such a transitive relation is not always wanted. To avoid unwanted transitive
relations among defaults and other implications, Reiter and Criscuolo [15]
argued that it is not enough to have only normal defaults. They argue
that semi normal defaults are required. A semi normal default is used to
describe a default with exceptions on the application of this default. This
makes it possible to avoid unwanted transitive relations. The preference logic
does not have something equivalent to a semi normal default. In this logic
unwanted transitive relations are avoided by the addition of new defaults and
by defining the right preference relation.

Example 8
o University students are normally adults.

o Adults are normally employed.

From these two sentences one can conclude that university students are nor-
mally employed. One knows, however, that university students are normally
unemployed. By adding this information with the correct preference relation,
the unwanted transitive relation can be avoided.

1. Univ_Stud(z) — Adult(z)
2. Adult(z) — Employed(z)
3. Univ-Stud(z) — ~Employed(z)

PremiSses:

preference relations: 1 = 2 and 3 > 2
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7.4 Inheritance networks

An area where the preference logic can be used, is the formalization of inher-
itance hierarchies with exceptions. As was argued by D. S. Touretzky [20]
inheritance networks can be modeled by using only normal default rules and
by defining a correct ordering on these default rules. The ordering which
Touretzky specifies, models his inferential distance algorithm [21]. As was
shown by D. W. Etherington all the facts returned by the inferential dis-
tance algorithm lay in a single extension of the corresponding default theory
[4]. The ordering Touretzky specifies [20], selects this extension. Since nor-
mal default theories can be transformed into the preference logic, and since
preferences between default rules can be specified in the preference logic,
the preference logic can be used to model inheritance networks in which the
inferential distance algorithm is used. ‘

The preference relation specified in the following definition is the prefer-
ence relation which is required to model the inferential distance algorithm.

Definition 11 For each premiss ¢ — x,% — w € X: if ¢ — 1 € Be,
then [p — x| > (¥ — w]

Using this preference relation, also relations which hold between two different
inheritance hierarchies, can be handled.

Example 9

premisses: 1. Vz[Royal_Elephant(z) — Elephant(z)]
2. Elephant(z) A Mouse(y) — - Like(z,y)
3. Royal_Elephant(z) A Mouse(y) A White(y) — Like(z,y)

preference relation: 2 < 3

()
.

In [7] J. F. Horty, R. H. Thomason and D. S. Touretzky introduce an
alternative approach to inheritance networks. This approach can not be
modeled with the preference logic. In their approach two conflicting paths
can neutralize each other. This may enable other inheritance paths which
otherwise were not possible. Conflicting paths which neutralize each other,
can not be modeled using the preference logic.
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7.5 Truth maintenance systems

In preference logic justifications are introduced. Unlike the justification
which occur in the JTMS of J. Doyle [3] or the ATMS of J. de Kleer {8],
the justifications in the preference logic are a part of the logic. In this logic
the justifications follow directly from the requirement for a deduction pro-
cess (section 2). Also the justifications are different from the ones introduced
by Doyle and de Kleer. Both Doyle and de Kleer introduce local justifica-
tions while in the preference logic only global justifications are used. The
in_justifications of the preference logic can be compared with the labels which
de Kleer introduces in the ATMS [8]. Like a label an in_justification describes
from which premisses a formula is derived. An out_justification has more or
less the same function as the set nogood in ATMS. Like an element from the
set nogood the consequent and the antecedents of an out_justification may
not be assumed to be true at the same time. Unlike an element of the no-
good set an out_justification describes which element has to be removed from
the set of premisses (assumptions). Something like an non-monotonic justi-
fication as are used in the JTMS of Doyle does not occur in the preference
logic.

8 The Yale shooting problem

In this section it is shown how the Yale shooting problem can be solved. Since
this problem can not be solved by most approaches for default reasoning, it
illustrates that the preference logic possesses more expressive power than
these other approaches.

In [6] Hanks and McDermott describe a temporal projection problem for
which they showed that the non-monotonic logic they considered are to weak
to model it. They specified their problem in a situation calculus which has
been reformulated in the preference logic.




-

premisses: 1. Vs[T(Loaded, Result(Load,s))]

2. Vs[T(Loaded, s) — T(Dead, Result(Shoot, s))]
3. Vs[=(T(Alive,s) A T(Dead, s)))

4. T(f,s) = T(f, Result(e,s))

5. T(Alive, Sp)

6. S1 = Result(Load, Sy)

7. Sy = Result(Wait, S;)

8. S3 = Result(Shoot, S)

preference relation: 4 < 1,4 <2,4<3,4<5,4 < 6,4 <7and 4<8

From these premisses of the problem T'(Dead, S5) and T'( Alive, S3) can be de-
rived, causing a contradiction. Because in both the deduction of T'(Alive, S3)
and T(Dead, Ss) an instance of the same default 4 is used. And because no
preference relation between instances of the fourth premiss has been speci-
fied, one has to choose which instance has to be removed. Hence Ao will
contain two set of premisses, one from which 7'(Dead, S3) and one from which
T(Alive, Ss) can be derived. About the same problem arise when some other
form of non-monotonic reasoning is used. Hanks and McDermott suggested
the following solution [6, page 393]. One should prefer the chronological min-
imal models. These are the models in which the normality assumptions are
made in chronological order, i.e. those in which abnormality occurs as late as
possible. This solution can be realized in the preference logic by specifying a
preference relation on the instances of the default rule. By preferring one in-

stance above another instance when the time constant in the former is lower -

than the time constant in the latter, abnormality will occur as late as pos-
sible. The Yale shooting problem can be solved by extending the preference
relation:

*
v

Definition 12 The new preference relation is the transitive closure of:
* (T,<)

o Let p(f,e,s) denote T(f,s) — T(f, Result(e,s)). For each pair of
instances o(f, e,s) and o(f, e, Result(e, s)):

w(f e, 8) = o(f, e, Result(e,s)).

[S)
3]




9 Conclusion

The preference logic presented in this paper generalizes the work of N. Rescher
in four different ways. Firstly instead of a linear order of modal categories,
a partial preference relation is used. Secondly, the preference logic has a
deduction process. Thirdly, a semantics is defined for the logic. Fourthly,
due to the new interpretation of formulas containing free variable, default
reasoning can be modeled with this logic.

At this moment it is an open question if the preference logic is also a
generalization of the framework for default reasoning of D. Poole. To answer
this question, one has to determine first which ordering of the explanation in
the framework of Poole make sense. It will of course be nice if the ordering
which make sense are those which can be describe by specifying a preference
relation on set of hypotheses.
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Appendix

Theorem 1 For each i > 0: if P = ¢ € J;, then for each substitution 0:
P[0} C X and P[0] F ¢[0).

Proof The theorem will be proven by induction on the index of the sets of
justifications. For ¢ = 0: {¢} = ¢ € Jy if and only if ¢ € £. Since ¥ is
closed under termsubstitution, for each substitution 8: ¢[f] € ¥. Therefore
for each substitution 8: {p[0]} F ©[6)].

Proceeding inductively, suppose that P = ¢ € Jyy1. P = ¢ € Jyy, if and
only if P = ¢ € J; or P = ¢ has been added by Rule 1 or 2.

If P = ¢ € Ji, then by the induction hypothesis for each substitution :
P[8) C X and P[] F [d].

If P = ¢ is introduced by Rule 1, then it is an axiom. Therefore P = §§ and
for each substitution 8: F ¢[6].

If P = ¢ is introduced by Rule 2, then there is a Q = a € J;, R =
(B — ¥) € Ji, o and B are unifiable with a most general unifier § such
that: P = (Q U R)[f] and ¢ = 9[]. According to the induction hypothesis
for each substitution ¢: Q@ o (],R[f o (] C X, Q[0 o] F «[f o (] and
R[0 o] F (B — 9)[0 o (]. Therefore for each substitution ¢: P[¢] C ¥ and

P @[C].

Theorem 2 For each P C T: if P+ ¢, then for somei > 0: Q = ¢ € J;
and for some substitution 0: Q0] C P and ¢[0] = .

[

Proof Let P C ¥ and P F . Since P I ¢ there exists a deduction sequence
(o, @1, ..y n) such that ¢, = ¢ and for each j < n: either

o p, € P,or
® (o, 1s an axiom, or

o there exists a o and a ¢; with k,1 < j and ¢; = @ — ;.
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The theorem will be proven using induction to the length of the deduction
sequence.

Let (o) be a deduction sequence for P+ ¢.

If oo € P, then po € T and there exists a ¥ € X such that for some
substitution 8: ¥[0] = ¢.

If g is an axiom, then there exists some 1o > 0 such that J;, = J;;.1 U {0 =
¢o} and 0 = o 1s added by Rule 1.

Hence the theorem holds for a deduction sequence of length 1.

Proceeding inductively, let (@0, ¢1, ) ©m41) be a deduction sequence for P +
Pm+1

If omy1 € P, then {4} = ¢ € Jo and for some substitution 8: 4 = ¥[0)].

H @41 is an axiom, then there is some i,41 such that J; = J; . U{0 =
o1} and 0 = @myi1 s added by Rule 1.

If there exists a @x and a @ with k,] € m+1 and ¢ = @ — Pmt1,
then by the induction hypothesis there exists some 1 and some 2; such that
Q=acd, R=(B— ) € J;, and for some substitution 6: Q[f] C P and
¢k = alf], and for some substitution ¢: R[(] C P and ¢; = (8 — ¥)[(]. Since
alf] = BI¢] = ¢k, @ and B are unifiable. Let { be the most general unifier.
Now there exists some im41 With ik, < ims1 such that S = o € Ji .,
S = (Q U R)[¢] and for some substitution o @m41 = ¥[a]. e

Hence there exists some inq1 such that S = ¢ € J;,,, and for some substi-

tution 6: ©ma1 = P[0]-

Theorem 3 For each 1 2 0: ‘ifP 4 ¢ € J;, then for each substitution 0:

(P U {p}l0] € T, (P U {p})[0) is inconsistent and for each 3 € P[0] there
holds: ¢ 4 ©[0].

Proof The theorem is proven using induction to the index of the set of
justifications. ‘

For i = 0: the theorem holds vacuously because there is no P % ¢ € Jo.
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Proceeding inductively, suppose that P # ¢ € Jii. P % o € Jk41 if and
only if P # ¢ € J; or P % ¢ has been added by Rule 3.

If P # ¢ € Ji, then by the induction hypothesis for substitution 6 (PU
{e1[0] € X, (PU{p})[d] is inconsistent and for each ¢ € P[0] there holds:

P AL plf].

If P #% ¢ is introduced by Rule 3, then there is a R = a € Ji, @ =
—p € Ji and a and B are unifiable. If { is the most general unifier, then
v € min((QU R)[(]) and P = ((RU Q)[¢])/¢. By Theorem 1 for each
substitution & R[¢], Q[¢] € T, R[¢] b af¢] and @ F —B[€]. Hence for each
substitutuion 6: (PU{¢})[¢06] C T, (PU{¢})[¢ 0 6] is inconsistent and for
each ¥ € P[0]: ¥ < ¢[d).

Theorem 4 For each P C T if P is a minimal inconsistent set and Q =
min(P), then for some ¢ > 0 there holds for each o € Q: R # 1 € J;, and
for some substitution 8: P = Q[0] and ¢ = 3[f].

Proof Let P be a minimal inconsistent subset of & with Q = min(P). Since
P is inconsistent there exists a formula a such that P - o« and P F —a. By
Theorem 2 there exists a j > 0: $ = 8 ¢ J; and for some substitution ¢
S[¢] € P and a = B[(]. Also by Theorem 2 there exits a k > 0: T = -y € Jy
and for some substitution ¢: T'[¢] C P and o = ~[¢]. Since 8 and ~ are
unifiable, there exists a most general unifier . Hence, for some substitution
0: P = (SUT)[o06] and Q = min(P) = min((SUT)[o o 6]). Therefore,
there exists a [ > j, k such that for each ¢ € Q, there is a 3 € min(S U T):
(RU S5)/$)lo] # blo] € Ji, ¢ = $[6] and R = P/ = (((SUT)/%)[o])[4].

Hence for some ¢ > 0: P/¢ # 1 £ J; and for some substitution §: P = Q9]
and ¥[6] = . ‘

Observation 1 For each ¢ € B; : [A+ ¢ for each A € A;]

Proof Suppose ¢ € B;. Then for each A € A; there exists a P = Y € J; and
for some substitution §: ¢[0] = ¥ and P[f] C A. Therefore by theorem 1:
PF ¢ and P[0] C A. Hence, for each A € A;: A ©.

Observation 2 For each A'€ A,: ACY.
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Proof Since A =% — Out(A), A C T
Observation 3 For each A€ A A s mazimal consistent.

Proof Suppose that some A € A, is inconsistent. Then there exists a
minimal inconsistent subset M of A. Let ¢ € min{M). Then by Theorem 4
there exists an i with P # ¥ € J; and for some substitution : (PU{¥})[0] =
M and ¢ = [f]. Hence P # Y € Jeo. Because Plf] C A, » & A

Contradiction.

Suppose that some A € A, is not maximal consistent. Then there exists a
v € (T —A)and {p}UAIs consistent. Since ¢ € (T —A), ¢ € Outeo (D).
Therefore there exists a P # ¥ € Joo and for some substitution 8: P[0} € A
and ¢ = ¥[f]. Since P # ¢ € Joo, (P U {3})[6] is inconsistent. Hence
A U {¢} is inconsistent. Contradiction.

Observation 4 If each minimal inconsistent subset of & has only one least
preferred element and there ezists no infinite sequence of minimal inconsis-
tent subsets such that a minimal element of one subset is an element of an
other subset in which it is not a minimal element, then | Ax |= 1.

Proof Suppose that | As |> oo Then there exists at least two subsets
A, A, of T. Let ¢ be any formula such that ¢ ¢ A and ¢ € A'. By
Theorem 4 there exists a P # ¥ € Joo and for some substitution & such
that: ¢ = ¢[f] and (P U {1})[6] is a minimal inconsistent set. Because each
minimal inconsistent set has only one least preferred element, ¥[0) < n(0]
for every n € P. Since ¢ ¢ A and p € A’, there exists a 7 € P: n0] € A
and 5[0] € A’ Hence there existd an infinite sequence of minimal inconsistent
subsets such a minimal element of one subset is a non minimal element an
other subset.

Hence A is unique.

Observation 5

where Th(S) = {¢ | S+ ¢}




Proof For each A € A.,: B, C Th(A,) because according to Observation
1: if ¢ € B, then for each A € A: AF .

Suppose there exists a ¢ such that: ¢ € By, and ¢ € Naca, Th(AD). Since
¢ € Naea,, Th(A), for each A € A,: A F ¢. By Theorem 2 for each
A € A, there exists a P = ¢ € J; and P C A. Therefore P = @ € Joo,
and P C A. Hence ¢ € B,,. Contradiction.

Hence By, = Th(Ag)-

Theorem 5

Mode(S) = |J Mod(A) = Mod(B,,)

A€A
where Mod(S) denote the set of classical models for a set of formulas S.

Proof From Observation 5 follows immediately:

|J Mod(A) = Mod(B,,)
A€As
The proof of Mod-(X) = Upes. Mod(A) can be devided into the proof
of the soundness and the proof of the completeness of the preference logic.
Firstly the completeness is proven.

Suppose that for some A € A, and some M € Mod(A): M & Modc(T).
Then there exists a structure A': M C N. According Observation 3
Prem(M) ¢ Prem(N). Hence, there exists a ¢ € (A — Prem(N)) —
Prem(M) = A—. Now by Definition 9 for each linear extension of (X, <)
there exists a ¢ € (Prem(N) — A) and ¢ < 1. Since ¢ € A there exists
a P # n € Jo and for some substitution §: P[§] C A and % = 5[f]. Now,
P[0] € Prem(N), otherwise Prem(AN') would be inconsistent. Hence there
exists a u € P[0], p € (A — Prem(N)) and pu £ 1. Therefore there exists a
linear extension of (¥, <) such that ¢ < % < u, contradiction.

Hence, Upea,, Mod(A) C Modc(%).
Now the completeness has been proven, soundness is proven.

Suppose there exists structure M € Modr(T) such that: Prem(M) # 3 —
Outoo(Prem(M)). Then there exists a ¢ and either » € Prem(M) and
¢ € X—Outeo(Prem(M)) or p & Prem(M) and ¢ € T —Outo,(Prem(M)).
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Suppose ¢ € Prem(M) and ¢ ¢y — Outoo( Prem(M)). Hence, there exists
a P # 1 € J and for some substitution : P[#] € Prem(M) and ¢ = p[0)].
Because P[] C Prem(M), Prem(M) is inconsistent. Contradiction.

Hence Prem(M) C T — Outoo(Prem(M)).
Suppose ¢ ¢ Prem(M) and ¢ € T — Outeo(Prem(M)). Then Prem(M)U

{} is either consistent or inconsistent. If it is consistent, then for each

structure N € Mod(Prem(M) U {¢}): M C N. Contradiction.

Hence Prem(M) U {¢} is inconsistent. Therefore there exists at least one
minimal inconsistent subset of Prem(M) U {¢}. Let P be such a minimal
inconsistent subset. Now suppose that ¢ € min(P). Then by Theorem 4
there exists a R # % and for some substitution 9: P/ = R[0] and ¢ = P[0
Since R[f] C Prem(M), ¢ ¢ T — Outoo(Prem(M)).

Hence for each minimal inconsistent subset P: ¢ ¢ min(P).

Let MI the union of all the sets min(P) for each minimal inconsistent subset
P of Prem(M) U {p}. Foreachn € M1 there holds n < ¢. Clearly the set
(Prem(M) U {g}) — M1 is consistent. Let N € Mod((Prem(M)U {¢}) —
MTI). Because for each 1 € (Prem(M) — Prem(N): n < ¢, and because
¢ € (Prem(N') — Prem(M)) there holds: M C A. Contradiction.

Hence T — Outoo(Prem(M)) C Prem(M).
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