
Computational Intelligence, Volume 16, Number 3, 2000

ON RESOLVING CONFLICTS BETWEEN ARGUMENTS

Nico Roos
Institute for Knowledge and Agent Technology, Maastricht University,

P.O. Box 616, 6200 MD Maastricht, The Netherlands, e-mail: roos@cs.unimaas.nl

Argument systems are based on the idea that one can construct arguments for propositions;
i.e., structured reasons justifying the belief in a proposition. Using defeasible rules, arguments need
not be valid in all circumstances, therefore, it might be possible to construct an argument for a
proposition as well as its negation. When arguments support conflicting propositions, one of the
arguments must be defeated, which raises the question of which (sub-)arguments can be subject to
defeat?

In legal argumentation, meta-rules determine the valid arguments by considering the last defea-
sible rule of each argument involved in a conflict. Since it is easier to evaluate arguments using their
last rules, can a conflict be resolved by considering only the last defeasible rules of the arguments
involved?

We propose a new argument system where, instead of deriving a defeat relation between ar-
guments, undercutting-arguments for the defeat of defeasible rules are constructed. This system
allows us, (i) to resolve conflicts (a generalization of rebutting arguments) using only the last rules
of the arguments for inconsistencies, (ii) to determine a set of valid (undefeated) arguments in linear
time using an algorithm based on a JTMS, (iii) to establish a relation with Default Logic, and (iv)
to prove closure properties such as cumulativity. We also propose an extension of the argument
system that enables reasoning by cases.
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This revised version of the paper provides a more clear explanation of reasoning by cases
(Section 8), fixes an issue in the proof of the closure property Cautious Monotony mentioned
in Theorem 3, and corrects several small errors.

1. INTRODUCTION

Argument systems originate from philosophy (Toulmin 1958). More recently they have
also been studied in AI (Bondarenko et al. 1997; Cayrol 1995; Dung 1993; Dung 1995;
Fox et al. 1992; Geffner 1994; Hunter 1994; Kraus et al. 1995; Lin & Shoham 1989; Loui
1987; Loui 1998; Pollock 1987, 1992, 1994; Poole 1988; Prakken 1993; Prakken & Vreeswijk
1999; Simari & Loui 1992; Vreeswijk 1991, 1997). When such argument systems are used
for reasoning with defeasible rules (Fox et al. 1992; Geffner 1994; Hunter 1994; Kraus et
al. 1995; Loui 1987; Pollock 1987; Prakken 1993; Prakken & Vreeswijk 1999; Simari & Loui
1992; Vreeswijk 1991, 1997), a rule is viewed as a justification for believing the consequent
of the rule whenever we have a justification for believing its antecedent (Toulmin 1958). A
justification for believing the antecedent can consist of facts about the world, denoted as
evidence or premises, and of propositions that are justified by other defeasible rules. So,
we can construct a tree of defeasible rules that justifies the belief in some proposition with
respect to some evidence. This tree is called an argument for the proposition.

Since the rules used in the construction of arguments are defeasible, it might be possible
to construct an argument for a proposition as well as its negation. Clearly, only one of these
arguments can give a valid justification for the proposition it supports. In most argument
systems proposed in the literature, one of the arguments supporting the conflicting propo-
sitions; i.e. for a proposition and its negation, is defeated (Loui 1987; Pollock 1987, 1992,

0This paper extends (Roos 1997b).
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1994; Prakken 1993; Prakken & Vreeswijk 1999; Simari & Loui 1992; Vreeswijk 1991, 1997).
Generally, if an argument is defeated, there is a defeated sub-argument (not necessarily a
proper sub-argument) that has a single last defeasible rule, and no sub-argument of this
sub-argument is defeated. An exception are arguments that are based on defeasible causal
relations. Geffner (1994), for example, allows the chain of causal arguments to be broken
at any rule of an argument if the proposition supported by the argument conflicts with an
observed fact.

Defeasible rules representing causal relations have one property, not found in non causal
defeasible rules. Causal defeasible rules can be used in contraposition. This raises the
following question. If rules cannot be used in contraposition, can a conflict be resolved by
defeating a last defeasible rule of the argument supporting one of the conflicting propositions?

In legal argumentation, meta rules are used to resolve conflicts (Prakken 1993). These
meta rules determine the valid arguments by considering the last defeasible rule, with re-
spect to the chain of argumentation, of each proposition involved in the conflict. Hence, an
argument should not only reflect the information used in an argumentation, but also the
structure of the argumentation.

Some argument system represent this structure explicitly (Vreeswijk 1991, 1997), while
others represent it implicitly (Pollock 1987, 1992). Vreeswijk (1991, 1997) only considers
defeasible rules that are definite horn clauses and a special symbol ⊥ to denote an inconsis-
tency. In this language, each argument for a conflict; i.e. for ⊥, is unique. If we use, however,
full propositional or predicate logic, there can be more than one way of argumentation for
deriving ‘the same conflict’.

Suppose for example that we have the following three defeasible rules: {a ; ¬d, b ;

¬e, c ; (d ∨ e)} and the facts: {a, b, c}. Then we can construct arguments for conflicting
propositions in at least three different ways.

a
a; ¬d

}
¬d

c
c; (d ∨ e)

}
d ∨ e

 e and
b

b; ¬e

}
¬e

b
b; ¬e

}
¬e

c
c; (d ∨ e)

}
d ∨ e

 d and
a

a; ¬d

}
¬d

b
b; ¬e

}
¬e

a
a; ¬d

}
¬d

¬d ∧ ¬e}¬(d ∨ e) and
c

c; d ∨ e

}
d ∨ e

Each of these three couples of arguments supporting conflicting propositions, uses exactly
the same information to derive a conflict. We would therefore expect that we have only one
argument for the conflict instead of three.

The heart of the problem is that the consequences of the three defeasible rules used in
the above presented arguments are logically inconsistent. How these three rules are used to
derive an inconsistency, should not matter. The derivation of the inconsistency takes place
through logically sound deductions which cannot be subject to defeat. The line of reasoning
that is followed using the logical sound deductions should not matter. Therefore, in the
definition of an argument given in the next section, we abstract away from the actual logical
sound deductions. For the same reason, we consider arguments for inconsistencies ⊥, instead
of arguments of the conflicting propositions.
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As mentioned above, in legal argumentation only the last rules for an inconsistency are
considered in order to resolve the inconsistency. Using a preference relations, one of the last
rules is identified as the culprit. There are 1

2n(n − 1) pairs of rules between which there
can be a preference, where n is the number of defeasible rules. If we use a preference on
the arguments, ignoring the structure of the arguments, there can be at most 1

22n(2n − 1)
pairs of arguments between which there can be a preference. Clearly, it is easier to evaluate
arguments using their last rules, than using the whole argument. We will therefore investigate
the following question. Is there a need for considering more than only the last rules of an
argument for an inconsistency?

The next section formalizes the arguments that can be constructed using defeasible rules.
The here defined arguments do not only represent the defeasible rules that are used, but also
the line of reasoning. Section 3 discusses whether we can resolve an inconsistency just by
defeating one of the last defeasible rules of the argument for the inconsistency. Section 4
investigates whether we can select the rule (or argument) to be defeated just be looking at
the last rules of the argument for the inconsistency. Based on the results of Sections 3 and 4,
Section 5 proposes a new argument system. What is essentially new is that inconsistencies
are resolved by constructing an argument for the undercutting defeat of one of the defeasible
rules of the argument for the inconsistency. Section 6 discusses how to compute an extension
and presents a linear time algorithm for doing so. Section 7 discusses closure properties of
the argument system and the relation with default logic. Section 8 presents an extension of
the presented argument system that enables reasoning by cases. Finally, Section 9 discusses
related work and Section 10 concludes the paper.

2. THE ARGUMENT SYSTEM

We will derive arguments using a defeasible theory 〈Σ, D〉. Here, Σ represents a set of
premises and D represents a set of defeasible rules. The set of premises Σ is a subset of the
propositional logic L. L is recursively defined from a set of atomic propositions At and the
operators ¬, ∧ and ∨.

For every defeasible rule ϕ ; ψ ∈ D there holds that ϕ is a proposition in L and that
ψ is either a proposition in L or the negation of a defeasible rule in D; i.e. ψ = ¬(α ; β)
and α ; β ∈ D. The negation of a defeasible rule ¬(α ; β) will be interpreted as: ‘α may
no longer justify β’. So the negation of a rule explicitly blocks the conclusive force of the
defeasible rule. It will be used to describe the undercutting defeat of rule. If we have a valid
argument for ¬(α ; β), then no argument containing the rule α ; β can be valid. For
example, we can undercut the rule: ‘something that looks red is red’ by the rule: ‘something
that stands below a red light need not be red if it looks red’.

Notice the correspondence of the defeasible rules α; β and ϕ; ¬(α; β) with respec-
tively the semi- and non-normal default rules α:β,ω1

β and ϕ:ω2

¬ω1
where ω1 and ω2 summarize the

exceptions on the default rules. Also notice the difference with Nute’s (1988, 1994) defeater
rule ϕ ?→ ¬β. If we have a valid argument for ϕ, Nute’s defeater rule ϕ ?→ ¬β defeats
any argument containing a rule of the form α ; β. We can, however, use the defeater rule
ϕ ∧ α ?→ ¬β to describe ϕ; ¬(α; β).

In an argument system, a defeasible rule is viewed as a justification for believing the
consequent of the rule whenever we have a justification for believing its antecedent (Toulmin
1958). A justification for believing the antecedent can consist of facts about the world,
denoted as evidence or premises, and of propositions that are justified by other defeasible
rules. So, we can construct a tree of defeasible rules that justifies the belief in some proposition
with respect to some evidence. This tree is called an argument for the proposition.



472 Computational Intelligence

Logically sound deduction steps need not be represented explicitly in an argument. None
of these deduction steps can be subject to defeat. Only the relations described by defeasible
rules need not be valid in all circumstances.

Definition 1. Let 〈Σ, D〉 be a defeasible theory where Σ is the set of premises and D is the
set of rules.

Then an argument1 A for a proposition ψ is recursively defined in the following way:

� For each ψ ∈ Σ: A = {〈∅, ψ〉} is an argument for ψ.
� Let A1, ..., An be arguments for respectively ϕ1, ..., ϕn. If ϕ1, ..., ϕn ` ψ, then A =

A1 ∪ ... ∪An is an argument for ψ.
� For each ϕ; ψ ∈ D if A′ is an argument for ϕ, then A = {〈A′, ϕ; ψ〉} is an argument

for ψ.

Let A = {〈A′1, α1〉, ..., 〈A′n, αn, 〉}. Then:

~A = {α1, ..., αn} ∩D;

Â = {c(α1), ..., c(αn)} where c(α) = α if α ∈ L and, c(α; β) = β;

Ã = {αi | 1 ≤ i ≤ n, αi ∈ D} ∪
⋃n
i=1 Ã

′
i;

Ā = {αi | 1 ≤ i ≤ n, αi ∈ Σ} ∪
⋃n
i=1 Ā

′
i

Example 1. Let A = {〈∅, α〉, 〈{〈{〈∅, β〉}, β ; γ〉}, γ ; δ〉} be an argument for ϕ.

α
β ` β ; γ ` γ ; δ

∣∣∣∣− ϕ
Then ~A = {γ ; δ} denotes the last rules used in the argument A. Furthermore, Â = {α, δ}
denotes the propositions that represent the beliefs Th({α, δ}) supported by the argument A.
Clearly, A is an argument for every proposition ϕ ∈ Th({α, δ}). Ã = {γ ; δ, β ; γ} denotes
the set of all rules in A, and Ā = {α, β} denotes the premises used in the argument A.

In the above definition of an argument, we do not apply the contraposition of a defeasible
rule in the construction of an argument. In general, the contraposition of a defeasible rule
is invalid. A rule describes that its consequent should hold or probably holds in context
described by its antecedent. By no means this implies that the antecedent does not hold if
the consequent does not hold.

If the defeasible rule is interpreted as describing a preference, the negation of the conse-
quent does not imply that the negation the antecedent should hold. A rule describes what
should hold in the context described by its antecedent. The converse need not hold. So,
knowing that John may not drive a car, we may not conclude that he does not own a driving
license. It may just be the case that we have an exceptional situation, e.g. John is drunk,
John has collected too many speeding tickets, John may not drive a car on doctors orders,
and so. Especially if most people own a driving license, an exceptional situation need not be
unlikely.

Also if the defeasible rule is interpreted as describing a conditional probability, Pr(ψ |
ϕ) > t does not imply that Pr(¬ϕ | ¬ψ) > t. In fact, if Pr(ψ | ϕ) < 1, Pr(¬ϕ | ¬ψ) can have
any value in the interval [0, 1]. Only in the event that we also know the a priori probabilities
of Pr(ϕ) and of Pr(ψ), we can verify whether Pr(¬ϕ | ¬ψ) > t holds.

1We will sometimes add the index ψ to an argument (Aψ) to denote that it is an argument for ψ. Of
course there can be more than one argument for ψ.
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Causal rules are a special kind of defeasible rules that do possess a contraposition (Geffner
1994). If, ‘normally, ϕ causes ψ’, then ¬ψ implies ¬ϕ, unless we have an exceptional
situation. Such a rule can be described by a conditional probability, as is done in Bayesian
Belief Networks. This description is incomplete unless we know or we can calculate the a
priori probabilities of the antecedent and the consequent. Bayesian Belief Networks guarantee
the latter. Here, however, we do not have this information. Therefore, to guarantee that the
contraposition is applied correctly, we need a specialized approach. Geffner (1994) discusses
the properties of such an approach. In the remainder of this paper, however, we will not
consider causal rules.

Two arguments can be related to each other. The relation that is of interest for us is
whether one argument uses the same inference steps as another argument. If so, the former
is called a sub-argument of the latter. Though an argument can be viewed as a tree, a
sub-argument is not exactly a sub-tree.

Definition 2. An argument A is a sub-argument of B, A ≤ B, if and only if every 〈A′, α〉 ∈ A
is a sub-structure of the argument B.2

〈A′, α〉 is a sub-structure of an argument B if and only if

� either there exists a 〈B′, α〉 ∈ B such that A′ is a sub-argument of B′;
� or there exists a 〈B′, β〉 ∈ B such that 〈A′, α〉 is a sub-structure of B′.

Example 2. let A = {〈∅, α〉, 〈{〈{〈∅, β〉}, β ; γ〉}, γ ; δ〉} be an argument for ϕ.

α
β ` β ; γ ` γ ; δ

∣∣∣∣− ϕ
Then

A1 = {〈∅, α〉, 〈{〈{〈∅, β〉}, β ; γ〉}, γ ; δ〉}
α

β ` β ; γ ` γ ; δ

∣∣∣∣
A2 = {〈∅, α〉, 〈{〈∅, β〉}, β ; γ〉}

α
β ` β ; γ

∣∣∣∣
A3 = {〈∅, α〉, 〈∅, β〉}

α
β

∣∣∣∣
A4 = {〈∅, α〉}

α |
A5 = {〈{〈{〈∅, β〉}, β ; γ〉}, γ ; δ〉}

β ` β ; γ ` γ ; δ |
A6 = {〈{〈∅, β〉}, β ; γ〉}

β ` β ; γ |
A7 = {〈∅, β〉}

β |
are sub-arguments of A.

2Notice that we reach the base of the recursion if A is an empty set. If A is an empty set, it is trivial
that every 〈A′, α〉 ∈ A is a sub-structure of the argument B.
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An argument represents a derivation tree of defeasible rules. Since a rule in an argument
A gives a justification for its consequent, the argument can be viewed as a global justification
for a proposition ϕ, Â ` ϕ, that is grounded in the premises Ā. Whether an argument is
valid depends on whether the argument or one of its sub-arguments is defeated. When an
argument A for some proposition ϕ is valid we say that ϕ follows from the premises Ā using
the rules Ã.

3. DEFEATING A LAST RULE OF AN ARGUMENT

A defeasible rule ϕ; ψ describes either a preferred or a probabilistic relation. Therefore,
there may exist situations in which the relation it represents, is invalid. In these exceptional
situations, either ¬ψ must holds or both ψ and ¬ψ must be unknown. Since an argument is
basically a tree constructed using defeasible rules, an argument containing a rule that is not
valid in the current context, can neither be valid.

There are two reasons for an argument to become invalid. Either the argument contains a
rule α; β while we have a valid argument for ¬(α; β), or the argument is a sub-argument
of an argument for an inconsistency. In the latter situation the question is, which sub-
argument(s) of the argument for an inconsistency, can no longer be valid? In the discussion
of this question, we will use the term disagreeing arguments which is defined in the following
way.

Definition 3. LetA⊥ = {〈A′1, µ1〉, ..., 〈A′n, µn〉} be an argument for and inconsistency (Â⊥ `⊥).
Then, the arguments A1 = {〈A′1, µ1〉}, ..., An = {〈A′n, µn〉} are said to disagree.

Clearly, in order to restore consistency, some of the disagreeing arguments can no longer
be valid. These arguments are said to be defeated because of the other arguments. It is
also clear that it is sufficient to defeat only one of the disagreeing arguments in order to
restore consistency if the argument for the inconsistency is a (subset) minimal argument.
Without lost of generality, we may assume that the argument for the inconsistency is a
minimal argument. Resolving inconsistencies using the minimal arguments will also resolve
inconsistencies based on non minimal arguments. We can therefore reformulate the above
raised question. Is it sufficient to defeat a disagreeing argument, but no proper sub-argument
of this disagreeing argument, to resolve an inconsistency? We will see that a set of defeasible
rules can always be extended such that indeed no proper sub-argument of a disagreeing
argument needs to be defeated.

Let
A1 = {〈A′1, µ1〉}, ..., An = {〈A′n, µn〉}

be a set of disagreeing arguments; i.e. A =
⋃n
i=1Ai is an argument for ⊥. Suppose that some

proper sub-argument Aϕ = {〈A′, α ; ϕ〉} of the disagreeing argument Ak = {〈A′k, µk〉} is
defeated because of the inconsistency and that no proper sub-argument of Aϕ is defeated.
Then,

⋃n
i=1 Āi represents an exceptional situation in which either ¬ϕ holds or ϕ is unknown.

Suppose that ¬ϕ holds. We cannot use the contraposition of the rules to derive ¬ϕ. We
can, however, introduce rules that enable us to construct an argument A¬ϕ for ¬ϕ such that
Ā¬ϕ ⊆

⋃n
i=1 Āi. In that case Aϕ is a disagreeing argument in another inconsistency. This

inconsistency can be used to defeat Aϕ. Hence, there is no need for defeating Aϕ because of
the argument A for ⊥. For example, let

A⊥ = {〈{〈{〈∅, α〉}, α; ϕ〉}, ϕ; η〉, 〈{〈{〈∅, β〉}, β ; ψ〉}, ψ ; ¬η〉}

α ` α; ϕ ` ϕ; η
β ` β ; ψ ` ψ ; ¬η

∣∣∣∣− ⊥
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be an argument for ⊥. Then we can defeat α; ϕ by introducing the rule α ∧ β ; ¬ϕ.
Now suppose that ϕ is unknown. We cannot introduces rules that enable us to construct

an argument A¬ϕ since ϕ is unknown. We can, however, introduce rules that enable us
to construct an argument A¬(α;ϕ) = {〈A′, ξ ; ¬(α ; ϕ)〉} for ¬(α ; ϕ) such that
Ā¬(α;ϕ) ⊆

⋃n
i=1 Āi. Since Aϕ = {〈A′, α ; ϕ〉} is defeated if A¬(α;ϕ) is valid, there is no

need for defeating Aϕ because of the argument A for ⊥. For example, let

A⊥ = {〈{〈{〈∅, α〉}, α; ϕ〉}, ϕ; η〉, 〈{〈{〈∅, β〉}, β ; ψ〉}, ψ ; ¬η〉}

α ` α; ϕ ` ϕ; η
β ` β ; ψ ` ψ ; ¬η

∣∣∣∣− ⊥
be an argument for ⊥. Then we can defeat α; ϕ by introducing the rule α∧β ; ¬(α; ϕ).

Hence, we can avoid the need for defeating a proper sub-argument of a disagreeing
argument, if necessary by introducing additional rules. Since a disagreeing argument has a
unique last rule, defeating a disagreeing argument implies defeating its last rule. Hence, it
suffice to defeat one of the last rules ~A of an argument A for an inconsistency.

4. A PREFERENCE RELATION ON RULES

In the previous section we have seen that no proper sub-argument of one of the disagreeing
arguments needs to be subject to defeat. This makes it possible to defeat a disagreeing
argument by defeating its last rule. We will now investigate whether we can determine the
rule to be defeated by considering only the last rule of each of the disagreeing arguments; i.e.
the last rules of the argument for the inconsistency.

Defeating the last rule of one of the disagreeing arguments in case of an inconsistency
offers three advantages. Firstly, we on longer have to consider a defeat relation between
arguments as is done in: (Pollock 1987, 1994; Simari & Loui 1992; Vreeswijk 1997). This
significantly simplifies the preference relation that we must consider. If we use a preference
relation on rules, then there are 1

2n(n − 1) pairs of rules between which there can be a
preference, where n is the number of defeasible rules. If we use a preference on the arguments,
ignoring the structure of the arguments, there can be 1

22n(2n−1) pairs of arguments between
which there can be a preference.

Secondly, an argument looses its conclusive force (is defeated) if it contains defeated
rules. This simplifies the handling of arguments. And, as we will see in Section 6, it enables
us to determine a set of valid arguments in linear time.

Thirdly, the resolution of inconsistencies will be cumulative. It does not matter whether
the antecedent of a last rule is an observed fact or derived through reasoning. This is an
important property since an observed fact may be based on some hidden reasoning of which
we are not aware.

To show that there is no need for a preference relation on arguments, we will show that
a dependence on sub-arguments can be removed by reformulating the set of rules. Suppose
that we have two different arguments for an inconsistency where both arguments have the
same set of last rules.

A⊥ = {〈{〈{〈∅, α〉}, α; ϕ〉}, ϕ; η〉, 〈{〈{〈∅, β〉}, β ; ψ〉}, ψ ; ¬η〉}

α ` α; ϕ ` ϕ; η
β ` β ; ψ ` ψ ; ¬η

∣∣∣∣− ⊥
and

A′⊥ = {〈{〈∅, ϕ〉}, ϕ; η〉, 〈{〈∅, ψ〉}, ψ ; ¬η〉}.
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ϕ ` ϕ; η
ψ ` ψ ; ¬η

∣∣∣∣− ⊥
Also suppose that ϕ ; η must be defeated given A⊥ and ψ ; ¬η must be defeated given
A′⊥. In the former case, the situation described by α and β represents an exception on the
rule ϕ; η. We can, for example, describe this exception by introducing the rule α∧β ; ¬η
with preference α ∧ β ; ¬η � ϕ ; η, or the rule α ∧ β ; ¬(ϕ ; η). Since each of these
rules defeats ϕ ; η, ϕ ; η can no longer defeat ψ ; ¬η. Hence, we only have to consider
the last rules of an argument for an inconsistency.

Another possibly problematic situation arises when a set of arguments supporting a
proposition, is stronger than each individual argument. This is known as accrual of reasons.
Such a situation suggest that we need to consider preferences between sets of rules. We can,
however, handle such situations by using a rule that combines the last rules of each argument
for that proposition. To illustrate this, suppose that we have the following defeasible rules:
α ; ψ, β ; ψ and γ ; ¬ψ. Let the last rule be preferred to the first two rules. Then ¬ψ
must hold if γ and either α or β hold. By introducing a rule α ∧ β ; ψ and by preferring it
to γ ; ¬ψ, we can assure that ψ holds whenever α, β and γ hold.

Another problem arises when a set of arguments for a proposition weakens the support
for the proposition. The approach presented here offers no solution for such situations.
Fortunately, a set of arguments that weakens the support for a proposition, seems to be
counter-intuitive.

A last motivation for using a preference relation on rules, comes from Prakken’s (1993)
investigation of legal argumentation. He points out that in legal argumentation, meta rules,
such as ‘lex superior’ and ‘lex posterior’, are used to resolve the inconsistency. These meta
rules define a preference relation on legal norms (the defeasible rules). When arguments
disagree, the meta rules are applied to the last rules of the disagreeing arguments in order
to determine the argument to be defeated. Prakken illustrates this with legal examples.
Also notice that meta rules can also be subject to defeat in situations where they specify
incompatible relations between rules (Brewka 1994).

From the above discussion, we can draw the following conclusion.

Let 〈Σ, D〉 be a defeasible theory and let � be a partial preference relation on D.
Furthermore, let

A⊥ = {〈A′1, η1 ; ψ1〉, . . . , 〈A′k, ηk ; ψk〉〈∅, σ1〉, . . . , 〈∅, σj〉}

be an argument for an inconsistency. So,

A1 = {〈A′1, η1 ; ψ1〉}, ..., Ak = {〈A′k, ηk ; ψk〉},
Ak+1 = {〈∅, σ1〉}, . . . , An = {〈∅, σj〉}

are disagreeing arguments.
Then, if ηi ; ψi is the least preferred last rule in ~A⊥, ηi ; ψi must be defeated.

Since we are using a preference relation on the set of defeasible rules in order to resolve
conflicts, we should extend the definition of a defeasible theory 〈Σ, D〉 with the preference
relation �, i.e. 〈Σ, D,�〉. Certainly, to describe legal argumentation, this extension is nec-
essary. If we restrict ourselves to one specific preference relation, namely specificity, there is
also no need to extend the definition of a defeasible theory. The specificity preference relation
can be derived from the set of defeasible rules of a defeasible theory.3

3Since the set of rules D is usually considered as background knowledge, we can determine the specificity
preference relation in advance.
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Specificity is the principle by which rules applying to a more specific situation override
those applying to more general ones. The most specific situation to which a rule can be
applied is the situation in which only its antecedent is known to hold. In that situation, its
consequent must hold. The following preference relation is based on the fact that the most
specific situation to which a rule can be applied is the situation in which only its antecedent
is known to hold.

Definition 4. Let K ⊆ L be some general background knowledge, let D be a set of defeasible
rules, and let ϕ; ψ, η ; µ be two rules in D.

ϕ ; ψ is more specific than η ; µ if and only if, given the premises {ϕ}, there is an
argument Aη for η such that Āη ⊆ {ϕ} ∪K.

ϕ; ψ is strictly more specific than η ; µ, ϕ; ψ �spec η ; µ, if and only if ϕ; ψ is
more specific than η ; µ and η ; µ in not more specific than ϕ; ψ.

Example 3. Let ϕ; ψ, ϕ; η and η ; ¬ψ be three defeasible rules.
Given the premises {ϕ}, we can derive the argument Aη = {〈{〈∅, ϕ〉}, ϕ ; η〉}. Since

Āη ⊆ {ϕ} ∪K, ϕ; ψ is more specific than η ; ¬ψ. Furthermore, since, given the premises
{η}, there is no argument for ϕ, ϕ; ψ is strictly more specific than η ; ¬ψ.

The above defined specificity preference relation corresponds with definition of speci-
ficity implied by the axioms of conditional logics (Geffner & Pearl 1992). This definition of
specificity is relatively weak. Vreeswijk (1991) presents an example showing that a slightly
stronger definition can result in counter intuitive conclusions.

5. THE BELIEF SET

An inconsistency can be resolved considering the last rules of the argument for the
inconsistency. This implies that in case the inconsistency is resolved, one of these last rules
may no longer justify the belief in its consequent; i.e. the rule is defeated. For this rule we
can construct an argument supporting the undercutting defeat of this rule.

Definition 5. Let A⊥ be an argument for an inconsistency and let ϕ ; ψ ∈ min�( ~A⊥) be
a least preferred last rule for the inconsistency.

If 〈Aϕ, ϕ; ψ〉 ∈ A⊥, then A¬(ϕ;ψ) = (A⊥\{〈Aϕ, ϕ; ψ〉})∪Aϕ is an argument for the
defeat of ϕ; ψ.

Example 4. Let

A⊥ = {〈{〈{〈∅, α〉}, α; ϕ〉}, ϕ; ψ〉, 〈{〈∅, η〉}, η ; µ〉}

α ` α; ϕ ` ϕ; ψ
η ` η ; µ

∣∣∣∣− ⊥
If η ; µ is preferred to ϕ; ψ, then

A¬(ϕ;ψ) = {〈{〈∅, α〉}, α; ϕ〉, 〈{〈∅, η〉}, η ; µ〉}

α ` α; ϕ
η ` η ; µ

∣∣∣∣◦ ¬(ϕ; ψ)

We use the symbol |◦ to denote that ¬(ϕ ; ψ) does not deductively follow from ϕ and µ.
¬(ϕ; ψ) “follows” from ϕ; ψ, Aϕ, Aµ and �.
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Given these arguments for the defeat of rules, we can define an extension. Here an
extension is a set of propositions for which we have valid arguments. A valid argument is
an argument of which the rules are not defeated. This also holds for the arguments for the
defeat of rules. A rule is defeated if the argument for its defeat is valid; i.e. the argument
does not contain defeated rules.

Definition 6. Let A be a set of all derivable arguments, let Γ be a set of defeasible rules and
let

Defeat(Γ) = {α; β | A¬(α;β) ∈ A, Ã¬(α;β) ∩ Γ = ∅}.

Then the set of defeated rules Ω is defined as:

Ω = Defeat(Ω).

Proposition 1. The set of defeated rules Ω are incomparable. I.e. for each Λ 6= Ω such that
Λ = Defeat(Λ), neither Λ ⊂ Ω nor Λ ⊃ Ω holds.

Proofs can be found in Appendix A.
Notice that the set of defeated rules need not be unique. Even if every inconsistency has

a unique least preferred last rule, the set of defeated rules need not be unique. Consider for
example the facts α and β and rules α; γ, β ; δ, γ ; ¬δ and δ ; ¬γ, where the last two
rules are preferred to the first two. Here there are two sets of defeated rules Ω; {α; γ} and
{β ; δ}.

Given the sets of defeated rules, the extensions and the belief set can be defined. An
extension consists of all propositions for which we have a valid argument. Following Pollock
(1987), these propositions are said to be warranted.4

Definition 7. Let Ω be a set of defeated rules and let A be a set of all derivable arguments.
Then an extension E is defined as:

E = {ϕ | Aϕ ∈ A, Ãϕ ∩ Ω = ∅}.

The belief set contains the propositions that hold in every extension. This is the skeptical
view in which the belief set consists of every proposition for which we have a valid argument
in every extension.

Definition 8. Let 〈Σ, D,�〉 be a defeasible theory. Furthermore, let E1, ..., En be the corre-
sponding extensions.

Then the belief set B is defined as:

B =

n⋂
i=1

Ei.

It is possible to have a set of arguments for which no extension exists. Such a situation
can arise when the set of arguments contain self-defeating arguments. In its most simple
form, self-defeat is related to one argument α ; β ∈ Ã¬(α;β).

5 Since the set of defeasible

4Some proposals made in the literature do not consider multiple extensions. Instead, they consider
provisionally defeated arguments. These are arguments that are valid in some extensions but not in all
extensions. For a discussion see (Vreeswijk 1997; Prakken & Vreeswijk 1999).

5Prakken & Vreeswijk (1999) present an instance of the liar’s paradox as an example of self-defeat. With
a different formulation of the example, however, we can solve the paradox by using defeasible rules without
introducing self-defeat.
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rules belong to the background knowledge, self-defeat seems to present a defect in our knowl-
edge. Hence, a revision of the set of rules D is needed. I.e. some rules must be removed
or reformulated. Though this is an important topic, it does not help us much in practical
situations. Hence, we need a way to draw useful conclusions even if self-defeat occurs. Pol-
lock (1994) introduces partial status assignments to deal with the problem. Here, we can do
something similar. Firstly, we will reformulate Definition 6 in terms of a status assignment.

A status assignment is an assignment of defeated and undefeated to rules in D based
on the following condition.
A rule ϕ ; ψ ∈ D is assigned defeated if and only if there is an argument A¬(ϕ;ψ)

such that every α ; β ∈ Ã¬(ϕ;ψ) is assigned undefeated. Otherwise, the rule
ϕ; ψ ∈ D is assigned undefeated

Ω is the set of rules that are assigned the status defeated.

Proposition 2. A set of rules Ω is a fixed point of Defeat if and only if there is a status
assignment such that Ω is the set of rules that are assigned the status defeated.

To deal with self-defeat, following Pollock (1994), we can use a partial status assignment.

A partial status assignment is an assignment of defeated and undefeated to a largest
subset of the rules in D based on the following conditions.

� A rule ϕ ; ψ ∈ D is assigned defeated if and only if there is an argument
A¬(ϕ;ψ) such that every α; β ∈ Ã¬(ϕ;ψ) is assigned undefeated.

� A rule ϕ ; ψ ∈ D is assigned undefeated if and only if for every argument
A¬(ϕ;ψ) there is a rule α; β ∈ Ã¬(ϕ;ψ) that is assigned defeated.

A rule ϕ; ψ ∈ D that is not is assigned defeated or undefeated are denoted as being
undetermined

Since we should only consider conclusions based on arguments containing undefeated rules,
Ω is the set of rules that are not assigned the status undefeated.

In the remainder of this paper, with exception of the next section, we will assume that
status assignments are complete.

6. DETERMINATION OF THE FIXED POINT OF DEFEAT

The determination of the fixed points of Defeat can be viewed as a labeling problem of
a JTMS (Doyle 1979). A JTMS consists of nodes representing propositions, and of justifica-
tions. A node is either labeled in or out, which corresponds with respectively ‘is believed’
and ‘is not believed’. A justification is a triple consisting of a set of in-nodes, a set of out-
nodes and a consequent node. The consequent node is labeled in if all in-nodes are labeled
in and no out-node is labeled in.

Such a JTMS must contain a node N for every proposition of the form ¬(α ; β) for
which we have an argument in A. Furthermore, for each node N¬(α;β) representing ¬(α;

β) and for each argument in A supporting ¬(α ; β), the JTMS contains a justification
〈in-nodes, out-nodes, N¬(α;β)〉. Such a justification consists of an empty set of in-nodes and
a set of out-nodes. If A is an argument for ¬(α; β), then

〈∅, {N¬(ϕ;ψ) | ϕ; ψ ∈ Ã}, N¬(α;β)〉
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is a justification for N¬(α;β).
It is not difficult to verify that each valid labeling of the nodes corresponds one to one

with status assignment to the corresponding rules. A rule is assigned the status defeated if
and only if the corresponding node of the JTMS is labeled in.

Much research has been done on algorithms for labeling nodes in a JTMS network (Doyle
1979; Goodwin 1987; Reinfrank 1989; Witteveen & Brewka 1993). Some also deal with
situations in which no admissible labeling exists (Witteveen & Brewka 1993). Partial labeling
has been proposed for these situations.

When no admissible labeling exists, the set of arguments A contains self-defeating argu-
ments. In its most simple form, self-defeat is related to one argument α; β ∈ Ã¬(α;β). In
general, self-defeat is represented by odd loops in the corresponding JTMS.

Odd loops in the network can be determined in linear time with respect to n · d where n
is the number of nodes and d is the maximum number of outgoing justifications of any node.
After detecting an odd loop we can mark the nodes involved as being ‘undetermined’, as
well as the nodes that necessarily depend on nodes in an odd loop. This labeling of some of
the nodes can subsequently be replaced by in or out if the labeling of the remaining nodes
enforces this. Hopefully, after labeling all nodes, no undetermined nodes remain. By doing
so, we handle odd loops in a pragmatic way.

Finding a labeling of a JTMS network is, in general, an NP-Hard problem. Fortunately,
for the above presented JTMS networks without odd loops, we can find a labeling in linear
time with respect to n · d+ j where n is the number of nodes, d is the maximum number of
outgoing justifications of any node and j is the total number of justifications. An algorithm
for finding a labeling will be given in Appendix B. Although a labeling can be found in linear
time, the number of possible labelings can be exponential in number of minimal arguments
for inconsistencies if no preference relation over the defeasible rules is specified; i.e. �= ∅.

7. PROPERTIES

Default logic. In Section 3, we have seen that it suffices to consider only the last rules
of an argument for an inconsistency. This property enables us to define a default logic that
is equivalent with respect to the belief set. This default logic will be based on Brewka’s
prioritized default logic (Brewka 1994). Brewka argues that it is sufficient to use only normal
default rules in combination with a preference relation on these rules. Semi-normal and
non-normal default rules are used to realize undercutting defeat or to define preferences
between default rules. Using semi-normal and non-normal default rules for the encoding
of preferences is not very elegant. A more important problem is, however, that we cannot
specify preferences between default rules that cause an inconsistency because of contingent
information. Prioritized default logic does not have this drawback. The prioritized default
logic proposed below is similar to Brewka’s prioritized default logic. We will, however, use
the preference relation in a different way as Brewka proposes.

Since we only consider normal default rules, it suffices to verify whether a rule is appli-
cable –its antecedents hold–, and whether it is not defeated by other rules –its consequent
holds–. The consequences of a set of applicable rules, together with the premises, may form
an inconsistent set of propositions. Since defeasible rules are viewed as normal default rules,
one of these rules must be defeated. The partial preference relations on the rules will be used
to determine the rule that must be defeated. If an applicable rule is defeated, there must be
a set of non-defeated applicable rules that implies, together with the premises, the negation
of its consequent. Furthermore, the defeated rule may not be preferred to any of rules that
causes its defeat.



On resolving conflicts between arguments 481

Definition 9. Let 〈Σ, D,�〉 be a defeasible theory.
Let Γ(S) be a smallest set, with respect to the inclusion relation (⊆), for which the

following conditions hold:

1. Σ ⊆ Γ(S);
2. Γ(S) = Th(Γ(S));
3. if there is a ∆ ⊂ D that defeats ϕ; ψ with respect to �, then ¬(ϕ; ψ) ∈ Γ(S);
4. if ϕ ∈ Γ(S), ϕ; ψ ∈ D and ¬(ϕ; ψ) 6∈ S, then ψ ∈ Γ(S).

∆ defeats ϕ; ψ with respect to � if and only if

� ϕ ∈ Γ(S),
� ∆ ⊆ {η ; µ ∈ D | {η, µ} ⊆ Γ(S)},
� {µ | η ; µ ∈ ∆} ∪ Σ ` ¬ψ and
� for no η ; µ ∈ ∆ there holds: ϕ; ψ � η ; µ.

E is an extension of the default theory if and only if E = Γ(E)

Theorem 1. Let 〈Σ, D,�〉 be a defeasible theory. The set of extensions determined by the
argument system is equal to the set of extensions determined by the default logic.

Example 5. Let 〈Σ, D,�〉 be a defeasible theory where Σ = {α, β}, D = {α ; δ, β ; ¬δ}
and �= {(β ; ¬δ, α; δ)}.

Then we can construct the following arguments.

Aδ = {〈{〈∅, α〉}, α; δ〉};
A¬δ = {〈{〈∅, β〉}, β ; ¬δ〉};
A¬(α;δ) = {〈{〈∅, β〉}, β ; ¬δ〉, 〈∅, α〉}

This set of arguments result in one fixed point, Ω = {α ; δ} and for the function Defeat.
So, we have an extension

E = Th({α, β,¬γ,¬δ,¬(α; δ)}).

According to the default logic given in this section, an extension must at least contain
the premises Σ = {α, β}.

Suppose now that we cannot defeat α ; δ. Then δ must belong to the extension.
Furthermore, since β ; ¬δ � α; δ, β ; ¬δ will not be defeated either. Therefore, ¬δ will
belong to the extension. But then α; δ will be defeated. Contradiction.

Hence, α ; δ must be defeated. Since we cannot defeat β ; ¬δ, ¬δ will belong to the
extension. Therefore we can derive ¬(α; δ).

So, we have one extension

E ′ = Th({α, β,¬γ,¬δ,¬(α; δ)}).

We can establish a relation between this new prioritized default logic and Reiter’s default
logic. Firstly, we can translate defeasible rules to default rules. Since we must be able to
denote that the application of a default rule is no longer valid, ¬(α; β), we will associate a
name with each default rule. This name will be used to denote that the rule may no longer
be applied. So if nα;β is the name of the translation of α ; β, then ¬nα;β will be the
translation of ¬(α ; β). To ensure that a default rule named nα;β will not be applied if
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¬nα;β holds, we must use the name of the default rule as one of the justifications of this
default rule. Hence, we translate a defeasible rule α; β to the default rule

α : β, nα;β

β
.

The translations of the defeasible rules are all semi-normal default rules.
It is not difficult to verify that every extension according to Definition 9 is also a Reiter-

extension. Since the preference relation on the defeasible rules is not taken into account,
some Reiter-extensions need not be extensions according to Definition 9. To eliminate these
extensions, we must encode the preference relation using default rules. To do this properly,
we must also change the translation of α; β.

For every rule α; β ∈ D, introduce a non-normal default rule:

α : nα;β

β
.

For every set of rules {η1 ; µ1, ..., ηk ; µk} ⊆ D and for every ϕ ; ψ ∈ D such
that Σ ∪ {µ1, ..., µk} ` ¬ψ and for no ηi ; µi there holds: ϕ ; ψ � ηi ; µi,
introduce a default rule:

η1 ∧ ... ∧ ηk : nη1;µ1
, ..., nηk;µk

,¬nϕ;ψ

¬nϕ;ψ
.

A disadvantage of this translation is that it depends on the premises Σ.
We can also translate default rules to defeasible rules, with the exception of non-normal

default rules. Consider a normal or semi-normal default rule of the form:

α : β1, ..., βk, γ

γ
.

We can translate this default rule to the following defeasible rules:

α; γ,¬β1 ; ¬(α; γ), ...,¬βk ; ¬(α; γ).

Specificity. Poole (1985) gives a semantic definition of specificity based on the compar-
ison of arguments (theories). His definition does not use the last rules of an argument as a
starting point. Instead, Poole compares sets of rules. A Poole-argument 〈D,α〉 for a propo-
sition α describes a set of rules D needed to derive α; Fc ∪D ∪Fn |= α. Here, the defeasible
rules D are represented by implications. Furthermore, Fc and Fn denote the contingent and
the necessary facts respectively.

According to Poole (1985), 〈D1, ψ〉 is more specific than 〈D2, µ〉, if for every set of possible
fact Fp:

if Fp ∪D1 ∪ Fn |= ψ and Fp ∪D2 ∪ Fn 6|= ψ, then Fp ∪D2 ∪ Fn |= µ.

In this paper, another definition has been given. This definition can be related to Poole’s
definition of specificity.

Theorem 2. Let ϕ; ψ and η ; µ be two rules.
If ϕ ; ψ is more specific than η ; µ according to Definition 4, then there are two

Poole-arguments 〈D1, ψ〉 and 〈D2, µ〉 with ϕ ; ψ ∈ D1 and η ; µ ∈ D2 for which there
hold that 〈D1, ψ〉 is more specific than 〈D2, µ〉.
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The converse of this theorem need not hold. The reason why the converse need not
hold is because a set of rules (D1 or D2) need not uniquely determine a single argument.
Furthermore, D1 = {ϕ ; ψ} is more specific than D2 = {η ; µ} according to Poole’s
definition while it is only more specific according to the definition given in this paper if there
exists an argument Aη such that Ãη ⊆ {ϕ}.

Closure properties. Gabbay (1985) has initiated the study of the closure properties of
the non-monotonic derivability relation: ‘|∼’ (Gabbay 1985; Kraus et al. 1990; Makinson
1988). Here, the non-monotonic derivability relation is defined as:

Σ |∼ ϕ if and only if B is the belief set of 〈Σ, D,�〉 and ϕ ∈ B.

Gabbay (1985) argues that there are three axioms that must be satisfied by all non-
monotonic logics.

Reflexivity
if ϕ ∈ Σ, then Σ |∼ ϕ;

Cut
if Σ |∼ ϕ and Σ ∪ {ϕ} |∼ ψ, then Σ |∼ ψ;

Cautious Monotonicity
if Σ |∼ ϕ and Σ |∼ ψ, then Σ ∪ {ϕ} |∼ ψ;

These axioms characterize the property called cumulativity.
We wish, of course, that all logical consequences of the set of premises are also derivable.

Deduction
if Σ ` ϕ, then Σ |∼ ϕ;

This axiom implies Reflexivity, it implies together with Cut the axiom Right Weakening, and
it implies together with Cautious Monotonicity and Cut the axiom Left Logical Equivalence.
The latter two axioms have been proposed by Kraus, Lehmann and Magidor (1990). They
also proposed an axiom characterizing reasoning by cases.

Or
if Σ ∪ {ϕ} |∼ η and Σ ∪ {ψ} |∼ η, then Σ ∪ {ϕ ∨ ψ} |∼ η;

Non-monotonic logics satisfying Deduction, Cautious Monotonicity, Cut and Or are said
to belong to system P.

Theorem 3. The defeasible theory 〈Σ, D,�〉 satisfies:
Reflexivity, Deduction, Cut and, in the absence of odd loops, Cautious Monotony.
An odd loop is an odd number of arguments A1, . . . , An where every Ai+1 defeats a rule in
Ãi, and A1 defeats a rule in Ãn.

A defeasible theory does not satisfy the closure property Or, and therefore does not allow
for reasoning by cases.

8. REASONING BY CASES

To enable reasoning by cases in an argument system, the usual approach is to use indirect
argumentation. Indirect argumentation involves subsidiary arguments that justify a conclu-
sion with respect to the premises and some assumptions. If we have an argument for ϕ under
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the assumption α, an argument for ϕ under the assumption β and an argument for α ∨ β,
then we can construct an argument for ϕ without the assumptions α and β using reasoning
by cases. Most argument systems, however, do not allow for subsidiary argumentation and
therefore are not able to reason by cases. This also holds for the argument system proposed
in the previous sections.

We can of course extend the argument system by (i) allowing for subsidiary arguments
and (ii) introducing a rule for combining arguments through reasoning by cases. If arguments
were not defeasible, such a simple extension would suffice. Unfortunately, arguments are
defeasible, so we must also address the defeasibility of an argument when reasoning by cases.
The question that we have to address is whether an argument can be defeated by a subsidiary
argument when reasoning by cases. If an argument is defeated by a subsidiary argument in
every case described by a disjunction, then the answer is clearly Yes. Roos (1997a, 1998)
has argued that the answer must also be Yes when an argument is defeated by only one
subsidiary argument corresponding with a case of a disjunction. He illustrates the necessity
for this with the following example.

Suppose that we have the following rules:

� A person who injures another person must be punished.
� A person who injures another person in self-defense, should not be punished.
� A person who is dragged into a fight against his/her will, is acting in self-defense.

Now suppose that John has injured Peter and that a reliable witness testifies that either John
or Paul has been dragged into the fight against his will. If the argument for not punishing
John in case he acted in self-defense, would not defeat the argument for punishing John, we
will conclude that John must be punished. This would be most unfortunate for John if he
was dragged into the fight against his will.

When reasoning by cases, we should be able to apply defeasible rules in a case. The
above example suggests that we should also resolve conflicts within the context of a case.
There is one issue with resolving conflicts within the context of a case, as is illustrated by
the following example.

John normally attends a party when he is invited: ji ; jp. Bob and John never
attend the same party: ¬(jp ∧ bp). John is invited to a party: ji.

The proposition ¬(jp ∧ bp) implies two cases, one in which John does not attend the party,
and one in which Bob does not. Clearly the former case conflicts with the conclusion of the
rule ji; jp. Since facts defeat defeasible rules, we would conclude that John will not attend
the party, in the former case. This conclusion is not valid because the conclusion of the rule
ji; jp is consistent with the other case described by the proposition ¬(jp ∧ bp).

To address the above described problem, we will use the following principles for reasoning
by cases:

� Conclusions drawn in a case may not change when other cases are eliminated because
of additional information. Of course the overall conclusions may change because they
depend on all cases.

� Conflicts must be evaluated using the initial information and the conclusions of applied
defeasible rules. The defeasible rules may be applied in a case implied by one or more
propositions.

A possible way to enable reasoning by case proposed in (Roos 1997a) is by introducing
special defeasible rules, called hypotheses, that generate cases. To avoid that we consider
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cases α and β that follow from the disjunction α ∨ β, simultaneously, we ensure that the
cases are mutually exclusive. Considering cases α and β simultaneously corresponds to the
case α ∧ β, which is only one of the three possibilities implied by the disjunction α ∨ β. The
following set of hypotheses can be used to introduce the mutually exclusive cases.

H = {α ∨ β ; α ∧ ¬β, α ∨ β ; α ∧ β, α ∨ β ; ¬α ∧ β | α ∨ β ∈ L }

For every proposition ψ that is unknown with respect to the partial models, we can
derive ψ ∨ ¬ψ and ϕ ∨ ψ where ϕ is a known proposition. These disjunctions should not
be considered for reasoning by cases. If we would, we could defeat the rule ‘birds fly’ using
the disjunction penguins∨¬penguins and the rule ‘penguins do not fly’. Clearly, we do not
want this.

The reason why we should not consider these disjunctions is because of the difference
between unknown and uncertain. Uncertainty is expressed by multiple cases, while unknown
is expressed by a single case of which we do not (yet) know the truth-value some atomic
propositions. Some of the rules may fill in the yet unknown information.

We may apply a disjunction α∨β for reasoning by cases if α∨β is not a derived tautology
and if α∨ β has not been derived from α or β. A characteristic of these requirements is that
α∨β may not contain more atomic propositions than the proposition from which it is derived.
This requirement blocks the possibility of introducing irrelevant cases. Furthermore, the only
tautologies that are allowed according to this requirement, cannot do any harm as we will
see below. Hence, we can formulate the following modified definition of an argument.

Definition 10. Definition 1 revised. Let 〈Σ, D,�〉 be a defeasible theory where Σ is the set
of premises and D is the set of rules.

Then an argument A for a proposition ψ is recursively defined in the following way:

� For each ψ ∈ Σ: A = {〈∅, ψ〉} is an argument for ψ.
� Let A1, ..., An be arguments for respectively ϕ1, ..., ϕn. If ϕ1, ..., ϕn ` ψ, then A =

A1 ∪ ... ∪An is an argument for ψ.
� For each ϕ; ψ ∈ D if A′ is an argument for ϕ, then A = {〈A′, ϕ; ψ〉} is an argument

for ψ.
� For each ϕ ; ψ ∈ H if A′ is an argument such that Â′ ` ϕ and At(ϕ) ⊆ At(Â′), then

A = {〈A′, ϕ; ψ〉} is an argument for ψ.

The function At(·) denotes the set of atomic propositions used in a propositions or a set of
propositions.

If we have, for example, and argument for α ∧ β, we can derive an argument for α ∨
¬α and for α ∨ ¬β. It is, however, invalid to apply α ∨ ¬α and α ∨ ¬β for reasoning by
cases. Fortunately, since any argument for the cases ¬α and ¬β will be inconsistent with the
argument for α∧β, we can resolve the problem using preferences. By preferring any defeasible
rule in D to any hypothesis in H, we guarantee that a case described by a disjunction will
not be considered if another case described by the disjunction is derivable.

Definition 11. Let D be a set of defeasible rules and let H be a set of hypotheses.
For each α; β ∈ D and for each γ ; δ ∈ (H\D): α; β � γ ; δ.

The above definitions allows us to construct an argument for a case described by a
disjunction. The preference relation ensures that we can apply reasoning by cases if no
constituent of a disjunction is derivable. Furthermore, since the cases introduced by the
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hypotheses are mutually exclusive, each case will be represented by a separate extension. So,
disjunctions can be viewed as describing possible extensions.

Viewing a disjunction as describing possible extensions is an important deviation from
the ‘normal’ interpretation of a disjunction. In argument systems multiple extensions arise
because there is no preference between two or more conflicting arguments; e.g. the Nixon
diamond. This can be interpreted as a disjunction stating that one of the arguments is valid.
For each case described by this disjunction, we create an extension describing that case. For
real disjunctions we can do the same. We can introduce an extension for each case described
by a disjunction. Above we have realized this by using hypotheses. These hypotheses create
an extension for each case described by a disjunction.

To illustrate reasoning by cases using defeasible rules, we will apply the above presented
results to the example of John who might be dragged into a fight.

John injures Peter
John dragged into fight ∨ Paul dragged into fight
¬(John dragged into fight ∧ Paul dragged into fight)
John dragged into fight ; self defense John
John injures Peter ; John must be punished
self defense John ; ¬John must be punished

(self defense John ; ¬John must be punished) � (John injures Peter ; John must be punished)

Using these facts and rules, we can construct arguments. Two of these argument are:

AJohn must be punished =
John injures Peter `

John injures Peter ; John must be punished `
John must be punished

A¬John must be punished =
John dragged into fight ∨ Paul dragged into fight `

John dragged into fight ∨ Paul dragged into fight ;

John dragged into fight ∧ ¬Paul dragged into fight `
John dragged into fight ; self defense John `

self defense John ; ¬John must be punished `
¬John must be punished

Using all derivable arguments, we can determine the following two extensions.

E1 = Th({ John injures Peter ,
John dragged into fight ,
¬Paul dragged into fight ,
self defense John,
¬John must be punished ,
¬(John injures Peter ; John must be punished) })

E2 = Th({ John injures Peter ,
Paul dragged into fight ,
¬John dragged into fight ,
John must be punished })

Since in only one of the two situations John must be punished, we do not know whether John
must be punished. Additional information should be collected to enable us to make a choice
between the two situations that are represented by the two extensions.
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Reasoning by cases does not guarantee that the closure property Or holds because cases
are mutually exclusive. We can, however, proof an Exclusive Or property.

Theorem 4. The defeasible theory 〈Σ, D,�〉 satisfies Exclusive Or:
if Σ ∪ {ϕ ∧ ¬ψ} |∼ η, Σ ∪ {¬ϕ ∧ ψ} |∼ η, then Σ ∪ {ϕ ∨− ψ} |∼ η;

9. RELATED WORK

In the literature, several argument systems that apply defeasible rules have been proposed
(Fox et al. 1992; Geffner 1994; Krause et al. 1995; Pollock 1987; Prakken 1993; Prakken &
Vreeswijk 1999; Simari & Loui 1992; Vreeswijk 1991; Vreeswijk 1997). These related papers
can roughly be divided in three groups; those that discuss the strength of an argument (Fox
et al. 1992; Krause et al. 1995), those that discuss the evaluation of arguments supporting
conflicting propositions (Geffner 1994; Prakken 1993; Simari & Loui 1992; Vreeswijk 1991)
and those that discuss validity of arguments (Pollock 1987; Pollock 1994; Prakken & Vreeswijk
1999; Simari & Loui 1992; Vreeswijk 1997).

Krause, Ambler, Elvang-Gøransson and Fox (Fox et al. 1992; Krause et al. 1995) present
argument systems that enable us to determine the strength of an argument for a proposition
They use a simple logic consisting of atoms, including ⊥, and Horn clauses. For this logic
they develop an argument system that enables them to evaluate the strength of arguments
for a consistent set of propositions probabilistically6. Furthermore, the argument system
enables them to evaluate the strength of arguments for an inconsistent set of propositions
symbolically. Krause et al. do not, however, discuss how to defeat one of the disagreeing
arguments.

Closely related to the strength of an argument is the evaluation of disagreeing arguments
that support an inconsistency. Simari and Loui (1992) have proposed to apply Poole’s def-
inition of specificity for this purpose. In this definition it is necessary to consider all the
rules of the disagreeing arguments. The same approach is taken by Prakken (1993). Prakken
argues that in legal argumentation only the last rules of an argument for an inconsistency
are considered. In case of specificity, however, he uses Poole definition.

Vreeswijk (1991) discusses some general principles to evaluate disagreeing arguments.
He proposes a scheme for evaluating disagreeing arguments based on the types of these
arguments. He derives these types from the structure of the arguments. Furthermore, he
argues that beside these weak general principles there are no general guild-lines to evaluate
arguments. The definition of specificity given in Section 4 correspond with the general
principles of Vreeswijk. However, applying it as a preference relation does not.

Geffner (1994) argues that any rule of an argument for a proposition ϕ can be defeated
if ¬ϕ is a known fact. As we have seen in Section 2, Geffner uses causal rules which are
a special kind of defeasible rules. These kind of rules have been excluded from this paper.
Many defeasible rules are not causal rules. Furthermore, a discussion of causal rules would
also require a study of causality.

The theory of warrant is concerned with the validity of arguments. These are the argu-
ments that are not defeated by other arguments. In (Pollock 1987), Pollock introduces the
theory of inductive warrant. Simari and Loui (1992) combine the theory of inductive warrant
with Poole’s definition of specificity and study the mathematical properties of the resulting
system.

Pollock (1990) observes that his theory of inductive warrant is not without problems.

6A rule is not interpreted as representing a conditional probability.
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Therefore, he introduces a new theory of warrant based on the idea of multiple extensions.
Vreeswijk (1991) has made a similar proposal.

In (Vreeswijk 1997), Vreeswijk relates the theory of inductive warrant to a theory of
warrant based on extensions. He discusses several ways of defining a theory of warrant and
discusses the mutual relation.

Dung (1995) discusses the theory of warrant on an abstract level. He presents several
notions of acceptable arguments based on a set of arguments and a binary attack relation
on the set of arguments. Here, arguments are considered as atomic entities. No relation
with an argument system is specified. The different notions of acceptability correspond with
different ways of dealing with self-defeat and with multiple extensions. The extensions based
on Definition 6 correspond with Dung’s stable extensions and the extensions based on the
partial status assignment correspond with Dung’s preferred extensions.

Prakken and Vreeswijk (1999) give an overview of argument systems proposed in the
literature. In their overview they discuss the strong and weak points of many theories of
warrant that have been proposed in the literature. One of the aspect they look at is the
handling of self-defeat. Furthermore, they discuss several arguments systems in detail.

The theories of warrant presented by Pollock (1987, 1994), Dung (1995), Vreeswijk
(1997), and Prakken and Vreeswijk (1999), start from a defeat relation on the set of de-
rived arguments. This relation is the result of resolving conflicts between the propositions
supported by the arguments. The theory of warrant as described by these authors is con-
cerned with selecting a set of valid arguments. It seems more natural, however, to express
the validity of an argument in terms of the validity of the defeasible steps that are used in
the argument. In this respect, the theory of warrant proposed in this paper differs from the
above mentioned proposals.

Nute (1988, 1994) proposes a defeasible logic that is closely related to argument sys-
tems for reasoning with defeasible rules. Nute’s logic, which seems to be inspired by logic
programming, does not derive arguments that are subsequently evaluated to determine the
valid conclusions. Instead, Nute introduces a proof system that guarantees that only valid
conclusions are derived. The proof system consists of four rules for deriving formulas that
hold and three rules for formulas that cannot hold (Nute 1994). Since the preference relation
‘specificity’ is an integral part of these rules, the formulation of the rules is rather com-
plex. Furthermore, the approach is less flexible. Adding other preference relations requires
a reformulation of the rules.

Conclusions that follow form the defeasible logic can be weaker than the conclusions one
would expect. Ideally, in case of multiple extensions, conclusions should be based on those
arguments that are valid in all extensions. Prakken & Vreeswijk (1999) point out that in
Nute’s defeasible logic, this is not always the case. Nute’s approach sometimes allows for a
smaller number of conclusions than necessary.

An advantage of Nute’s approach is its suitability for realizing an implementation. His
approach gives us a recursive procedure for the determination of validity of a conclusion.
This is in contrast with the procedure proposed by Loui (1998). Loui views the procedure of
determining the validity of a conclusion as a dialectics satisfying some protocol.

10. CONCLUSION

A defeasible rule describes a preferred or a probabilistic relations between propositions.
Such defeasible rules can be used to construct arguments for propositions. For both interpre-
tations of a defeasible rule, we conclude that an inconsistency can be resolved by defeating
one of the last rules of the argument supporting the inconsistency. Furthermore, we conclude
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that it suffices to consider only the rules are candidates for defeat, to select the rule to be
defeated. For this purpose, a preference relation on the set of rules has been proposed. A
definition of specificity that generates such a preference relation on the set of rules has been
given.

Since one of the last rules of the argument for an inconsistency must be defeated, we
can formulate an argument for the defeat of this rule. Such an argument undercuts the
application of the rule. Hence, rebutting defeat is reformulated as undercutting defeat after
determining the rule to be defeated. Although this approach does not lead to new results,
it is more intuitive. An argument gives a valid justification for a conclusion, if all step (the
rules) of the justification are valid. Furthermore, it enables us to determine the extensions
of valid beliefs using a Reason Maintenance System.

A relation between default logic and the proposed argument system has been established
and closure properties have been studied. Finally, an extension of the argument system
enabling reasoning by cases has been proposed.

APPENDIX A

Proposition 1. The set of defeated rules Ω are incomparable. i.e. for each Λ 6= Ω such that
Λ = Defeat(Λ), neither Λ ⊂ Ω nor Λ ⊃ Ω holds.

Proof. Suppose Λ ⊂ Ω. Then, by the definition of Defeat: Defeat(Λ) ⊇ Defeat(Ω). Hence,
Λ ⊇ Ω. Contradiction.

Suppose Ω ⊂ Λ. Then, by the definition of Defeat: Defeat(Ω) ⊇ Defeat(Λ). Hence,
Ω ⊇ Λ. Contradiction.

Proposition 2. A set of rules Ω is a fixed point of Defeat if and only if there is a status
assignment such that Ω is the set of rules that is assigned the status defeated.

Proof. Let Ω = {ϕ; ψ | ϕ; ψ is assigned the status defeated}.
Suppose that Ω is not a fixed point. Then, for some ϕ ; ψ, ϕ ; ψ ∈ Defeat(Ω) and

ϕ; ψ 6∈ Ω or ϕ; ψ 6∈ Defeat(Ω) and ϕ; ψ ∈ Ω.
Suppose that ϕ ; ψ ∈ Defeat(Ω) and ϕ ; ψ 6∈ Ω. Since ϕ ; ψ ∈ Defeat(Ω), there is

an argument A¬(ϕ;ψ) such that A¬(ϕ;ψ) ∩ Ω = ∅. But then, by the definition of a status
assignment, ϕ; ψ is assigned the status defeated. Contradiction.

Suppose that ϕ ; ψ 6∈ Defeat(Ω) and ϕ ; ψ ∈ Ω. Since ϕ ; ψ 6∈ Defeat(Ω), there is
no argument A¬(ϕ;ψ) such that A¬(ϕ;ψ) ∩ Ω = ∅. But then, by the definition of a status
assignment, ϕ; ψ is assigned the status undefeated. Contradiction.

Hence, Ω is a fixed point.
Now let Ω be a fixed point of Defeat. We assign the status defeated to all rules in Ω and

undefeated to all rules not in Ω.
Suppose that this is not a valid status assignment. Then there is a rule ϕ ; ψ that is

assigned the status defeated while there is no argument A¬(ϕ;ψ) such that every α ; β ∈
Ã¬(ϕ;ψ) is assigned the status undefeated, or ϕ ; ψ that is assigned the status undefeated

while there in an argument A¬(ϕ;ψ) such that every α; β ∈ Ã¬(ϕ;ψ) is assigned the status
undefeated.

In the former case, for every argument A¬(ϕ;ψ) there is a rule α ; β ∈ Ã¬(ϕ;ψ) that

is assigned the status defeated. Therefore, for every argument A¬(ϕ;ψ), Ã¬(ϕ;ψ) ∩ Ω 6= ∅.
Hence ϕ; ψ 6∈ Ω and therefore ϕ; ψ is assigned the status undefeated. Contradiction.
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In the latter case, there is an argument A¬(ϕ;ψ) such that every α ; β ∈ Ã¬(ϕ;ψ) is

assigned the status undefeated. Therefore, Ã¬(ϕ;ψ)∩Ω = ∅. Hence ϕ; ψ ∈ Ω and therefore
ϕ; ψ is assigned the status defeated. Contradiction.

To prove Theorem 1, the following lemmas will be used.

Lemma 1. Let Γ be a set of propositions and let E be the deductive closure of Γ. Further-
more, let there be an argument for each proposition in Γ.

Then for each proposition in E we can construct an argument A.

Proof. For each ϕ ∈ E\Γ there holds that Γ ` ϕ. Hence,
⋃
{Aψ | ψ ∈ Γ} is an argument for

ϕ.

Lemma 2. Let E be an extension according to Definition 9 and let Ω = {α ; β | ¬(α ;

β) ∈ E}. Furthermore, let there be an argument A for each proposition in E and let Ã∩Ω = ∅.
Then Ω satisfies Definition 6, Ω = Defeat(Ω).

Proof. Suppose that α; β ∈ Ω and α; β 6∈ Defeat(Ω).
Since α; β ∈ Ω, either there exists a γ ; ¬(α; β) and γ ∈ E , or there exists a ∆ that

defeats α; β, α ∈ E and ∆ ⊆ {η ; µ ∈ D | {η, µ} ⊆ E} such that {µ | η ; µ ∈ ∆}∪Σ ` ¬β
and for no η ; µ ∈ ∆ there holds: α; β � η ; µ.

In the former case there exists an argument A¬(α;β) = {〈Aγ , γ ; ¬(α ; β)〉} and

Ã¬(α;β) ∩ Ω = ∅. Hence, α; β ∈ Defeat(Ω). Contradiction.
In the latter case there exists an argument A¬(α;β) = {〈Aη, η ; µ〉 | η ; µ ∈ ∆} ∪

{〈∅, ϕ〉 | ϕ ∈ Σ} ∪ Aα. Furthermore, Ã¬(α;β) ∩ Ω = ∅. Hence, α ; β ∈ Defeat(Ω).
Contradiction.

Hence, Ω ⊆ Defeat(Ω).
Suppose that α ; β 6∈ Ω and α ; β ∈ Defeat(Ω). Then there exists an argument

A¬(α;β) such that A¬(α;β) ∩ Ω = ∅. This implies that either there exists an argument Aα
for α such that Aα ∩ Ω = ∅ and an argument A¬β for ¬β such that A¬β ∩ Ω = ∅, or that
γ ; ¬(α; β) ∈ D and there exists an argument Aγ for γ such that Aγ ∩ Ω = ∅.

In the former case, α ∈ E and ¬β ∈ E . But then ¬(α; β) ∈ E . Contradiction.
In the latter case, γ ∈ E . But then ¬(α; β) ∈ E . Contradiction.
Hence, Ω = Defeat(Ω).

Theorem 1. Let 〈Σ, D,�〉 be a defeasible theory. The set of extensions determined by the
argument system is equal to the set of extensions determined by the default logic.

Proof. Let E be an extension according to Definition 7. We will proof that E is also an
extension according to Definition 9 by showing that it is a fixed point satisfying the four
requirements of Definition 9; i.e., we assume that E = Γ(E).

1. Clearly for each α ∈ Σ we have an argument {〈∅, α〉}. Since it contains no rules, it cannot
be defeated. Therefore, Σ ⊆ E .

2. According to the definition of an argument, E is deductively closed.
3. Let ∆ = {η1 ; µ1, ..., ηn ; µn} defeat α; β given E . Then {µ1, ..., µn, α} ⊆ Γ(E) = E

and for no ηi ; µi ∈ ∆: α ; β � ηi ; µi. Since {µ1, ..., µn, α} ⊆ E , we have valid
arguments Aµ1

, ..., Aµn
, Aα. Hence, we have a valid argument A¬(α;β) for ¬(α ; β).

Therefore, ¬(α; β) ∈ E .
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4. Let α ∈ Γ(E) = E and ¬(α ; β) 6∈ E . Then there exists a valid argument Aβ =
{〈Aα, α; β〉} for β. Hence, β ∈ E = Γ(E).

Hence, Γ(E) ⊆ E .
Suppose that E is not a minimal set satisfying the requirements of Γ(E). Then there is a

ϕ ∈ E\Γ(E) and a corresponding valid argument Aϕ. Let Aψ be the smallest sub-argument
such that ψ 6∈ Γ(E).

Suppose that Aψ = {〈∅, ψ〉}. Since ψ ∈ Σ, ψ ∈ Γ(E). Contradiction.
Suppose that ϕ1, ..., ϕn ` ψ and {Aϕ1 , ..., Aϕn} ⊆ A. Then, since Aψ is the smallest

sub-argument, {ϕ1, ..., ϕn} ⊆ Γ(E). Therefore ψ ∈ Γ(E). Contradiction.
Suppose that Aψ with ψ = ¬(ηi ; µi) is the result of an argument A⊥ = {〈A′1, η1 ;

µ1〉, . . . , 〈A′k, ηk ; µk〉〈∅, σ1〉, . . . , 〈∅, σ`〉} for an inconsistency. Clearly for no j 6= i: ηj ;

µj � ηi ; µi. Since Aψ is the smallest sub-argument, {µ1, ..., µi−1, µi+1, ..., µk, σ1, ..., σ`} ⊆
Γ(E). Therefore ψ = ¬(ηi ; µi) ∈ Γ(E). Contradiction.

Suppose that Aψ = {〈Aµ, η ; ψ〉}. Since E is an extension according to Definition 7,
there is no valid argument for ¬(η ; ψ). Therefore, ¬(η ; ψ) 6∈ E . Hence, ψ ∈ Γ(E).
Contradiction.

Hence, E is a fixed point of Γ.

Let E be an extension according to Definition 9 and let Ω = {α ; β | ¬(α ; β) ∈ E}.
So, E = Γ(E). We will proof that E is an extension according to Definition 7 by showing that
for each proposition in E there is a valid argument and for each proposition not in E there is
no such argument. We will show that there is a valid argument for each ϕ ∈ E by showing
that we can construct an argument A for each ϕ ∈ E such that Ã ∩ Ω = ∅. If we have an
argument for each ϕ ∈ E , then, by Lemma 2, Ω satisfies Definition 6, i.e. Ω = Defeat(Ω).
Since for each ϕ ∈ E , we have an argument A such that Ã ∩ Ω = ∅, A must be a valid
argument for ϕ

Let Γ0 = Σ and let E0 ⊆ E be a smallest deductively closed subset such that Γ0 ⊆ E0.
For each ϕ ∈ Γ0 we can construct an argument Aϕ = {〈∅, ϕ〉}. Furthermore, by Lemma 1,

we can construct an argument for each ϕ ∈ E0. Clearly, Ãϕ ∩ Ω = ∅.
Proceeding inductively, let Ei ⊆ E be a smallest deductively closed subset such that

Γi ⊆ Ei. Suppose that Ei ⊂ E . Then there is a ϕ ∈ (E\Ei) such that either ϕ = ¬(α ; β)
and α; β is defeated given Ei, or α ∈ Ei, α; ϕ ∈ D and ¬(α; ϕ) 6∈ E , or neither of these
two possibilities.

In the third case, Γ(E) is not a minimal set. Hence, this case is impossible.
In the first case there is a ∆ ⊆ {η ; µ ∈ D | {η, µ} ⊆ Ei} that defeats α; β. Hence we

can construct an argument A¬(α;β) for ϕ such that Ã¬(α;β) ∩ Ω = ∅.
In the second case Aϕ = {〈Aα, α; ϕ〉} is an argument for ϕ such that Ãϕ ∩ Ω = ∅.
Let Ei+1 be the deductive closure of Γi+1 = Γi ∪ {ϕ}. According to Lemma 1, for every

proposition in Ei+1 we can construct an argument A such that Ã ∩ Ω = ∅.
Hence, for every proposition in E we can construct an argument A such that Ã ∩Ω = ∅.

Given these arguments, there holds according to Lemma 2 that Ω = {α; β | ¬(α; β) ∈ E}
satisfies Definition 6, i.e. Ω = Defeat(Ω). Hence, the arguments for the propositions in E are
valid arguments.

Now suppose that we can construct a valid argument Aϕ for a proposition ϕ 6∈ E , i.e.,

Ãϕ ∩ Ω = ∅. Since Āϕ ⊆ Σ, either for some rule α ; β ∈ Ãϕ there holds: α ∈ E and β 6∈ E .
So, α; β ∈ Ω. Contradiction.

Hence, E is an extension according to Definition 7.

Theorem 2. Let ϕ; ψ and η ; µ be two rules.
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If ϕ ; ψ is more specific than η ; µ according to Definition 4, then there are two
Poole-arguments 〈D1, ψ〉 and 〈D2, µ〉 with ϕ ; ψ ∈ D1 and η ; µ ∈ D2 for which there
hold that 〈D1, ψ〉 is more specific than 〈D2, µ〉.

Proof. We must prove that for every set of possible facts Fp there must hold: if Fp ∪D1 ∪
Fn |= ψ and Fp ∪ D2 ∪ Fn 6|= ψ, then Fp ∪ D2 ∪ Fn |= µ. Let D2 = Ãη ∪ {η ; µ} and
D1 = {ϕ; ψ}.

Since ϕ ; ψ is more specific than η ; µ, given the premise {ϕ} there must exist an
argument Aη for η.

Suppose that Āη = ∅. Then 〈D1, ψ〉 is more specific than 〈D2, µ〉.
Suppose that Āη = {ϕ}. Then, any possible fact Fp for which the antecedent of Poole’s

definition holds, must imply ϕ. Hence, 〈D1, ψ〉 is more specific than 〈D2, µ〉.

Theorem 3. The defeasible theory 〈Σ, D,�〉 satisfies:
Reflexivity, Deduction, Cut and, in the absence of odd loops, Cautious Monotony.
An odd loop is an odd number of arguments A1, . . . , An where every Ai+1 defeats a rule in
Ãi, and A1 defeats a rule in Ãn.

Proof. Reflexivity. For each ϕ ∈ Σ, A = {〈∅, ϕ〉} is an argument for ϕ. Since A contains no
rule, it cannot be defeated. Therefore, ϕ ∈ B.

Deduction. For each ϕ such that Σ ` ϕ, A = {〈∅, ψ〉 | ψ ∈ Σ} is an argument for ϕ.
Since A contains no rules, it cannot be defeated. Therefore, ϕ ∈ B.

Cut. Let E be an extension of the defeasible theory 〈Σ, D,�〉, let B be the belief set of
〈Σ, D,�〉, and let ϕ ∈ B

Suppose that E is no longer an extension after adding some ϕ ∈ B to Σ. Let Ω be the set
of defeated rules that correspond with the extension E . Then after adding ϕ there must be a
new argument A¬(α;β) such that Ã¬(α;β) ∩Ω = ∅ and α; β 6∈ Ω. Since Ã¬(α;β) ∩Ω = ∅
and α; β 6∈ Ω, {〈∅, ϕ〉} must be a sub-argument of A¬(α;β)

Now three situations are possible.

� A¬(α;β) = {〈Aξ, ξ ; ¬(α ; β)〉}. Then there is an A∗¬(α;β) in which {〈∅, ϕ〉} is

replaced by Aϕ. Since Aϕ is valid; i.e. Ãϕ ∩ Ω = ∅, there holds that α ; β ∈ Ω.
Contradiction.

� A¬(α;β) is derived from A⊥ and {〈∅, ϕ〉} is not a disagreeing argument. Since {〈∅, ϕ〉}
is a sub-argument of A⊥, there is an A∗⊥ in which {〈∅, ϕ〉} is replaced by Aϕ. Clearly,
~A⊥ = ~A∗⊥. Hence, since Aϕ is valid, α; β ∈ Ω. Contradiction.

� A¬(α;β) is derived from A⊥ and {〈∅, ϕ〉} is a disagreeing argument. Then there is an
A∗⊥ in which {〈∅, ϕ〉} is replaced by Aϕ. Hence, Aϕ ⊆ A∗⊥. Since Aϕ is valid, for no η ;

µ ∈ ~A∗⊥: α ; β � η ; µ. Therefore, there is an A∗¬(α;β) = (A∗⊥\{〈Aα, α ; β〉}) ∪ Aα
and A∗¬(α;β) ∩ Ω = ∅. Hence, α; β ∈ Ω. Contradiction.

Cautious Monotonicity. Let 〈Σ, D,�〉 be a defeasible theory, and let B be the belief set
of 〈Σ, D,�〉.

Suppose that E is an extension of the defeasible theory 〈Σ ∪ {ϕ}, D,�〉 for some ϕ ∈ B,
but not of 〈Σ, D,�〉. Let Ω be the set of defeasible rules determining the extension E . Every
extension E ′ of 〈Σ, D,�〉 determined by the defeasible rules Λ, is also an extension of the
defeasible theory 〈Σ∪{ϕ}, D,�〉 according to the property Cut. Therefore, Λ 6⊆ Ω and Ω 6⊆ Λ
according to Proposition 1.

Consider an extension E ′ of the defeasible theory 〈Σ, D,�〉 determined by the defeasible
rules Λ. Since ϕ ∈ B, there is an argument Aϕ generated by 〈Σ, D,�〉 such that Ãϕ ∩Λ = ∅.
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Every argument determined by the defeasible theory 〈Σ, D,�〉 is also an argument of the
defeasible theory 〈Σ∪{ϕ}, D,�〉. Moreover, every argument Aψ determined by the defeasible
theory 〈Σ ∪ {ϕ}, D,�〉 is either an argument of the defeasible theory 〈Σ, D,�〉, or contains
{〈∅, ϕ〉} as a sub-argument. If we replace every sub-argument {〈∅, ϕ〉} in Aψ by Aϕ, denoted
by A∗ψ, then we get an argument of the defeasible theory 〈Σ, D,�〉.

Consider the above mentioned extension E of 〈Σ∪{ϕ}, D,�〉 determined by the defeated
rules Ω. Clearly, Ãϕ ∩ Ω 6= ∅ otherwise E would als be an extension of 〈Σ, D,�〉. Therefore,

there is a defeasible rule α ; β ∈ (Ãϕ ∩ Ω) and a corresponding argument A¬(α;β) of the
defeasible theory 〈Σ ∪ {ϕ}, D,�〉. In no extension E ′, A∗¬(α;β) is a valid argument. This
is only possible if the validity of A¬(α;β) given Ω depends, directly or indirectly through
arguments defeating other arguments, on ϕ. So, A¬(α;β) depends, directly or indirectly, on
an argument that has {〈∅, ϕ〉} as a sub-argument. Hence, if we replace all arguments A on
which A¬(α;β) depends by A∗, then A∗¬(α;β) is part of an odd loop. This contradicts the
condition of the theorem.

Theorem 4. The defeasible theory 〈Σ, D,�〉 satisfies Exclusive Or:
if Σ ∪ {ϕ ∧ ¬ψ} |∼ η, Σ ∪ {¬ϕ ∧ ψ} |∼ η, then Σ ∪ {ϕ ∨− ψ} |∼ η;

Proof. Let r1 = ϕ ∨ ψ ; ϕ ∧ ¬ψ, r2 = ϕ ∨ ψ ; ϕ ∧ ψ and r3 = ϕ ∨ ψ ; ¬ϕ ∧ ψ.
To proof the theorem, we must prove that for every extension E of the defeasible theory

〈Σ ∪ {ϕ ∨ ψ}, D,�〉, either that E is an extension of 〈Σ ∪ {ϕ ∧ ¬ψ}, D,�〉 or that E is an
extension of 〈Σ ∪ {¬ϕ ∧ ψ}, D,�〉. Since for every extension E ′ of 〈Σ ∪ {ϕ ∧ ¬ψ}, D,�〉 and
of 〈Σ ∪ {¬ϕ ∧ ψ}, D,�〉, η ∈ E ′ holds, and since B =

⋂
i Ei, Σ ∪ {ϕ ∨ ψ} |∼ η.

Let E be an extension of 〈Σ ∪ {ϕ ∨ ψ}, D,�〉. Then because of the set of hypotheses H,
ϕ ∧ ¬ψ ∈ E or ¬ϕ ∧ ψ ∈ E . Notice that for no E , ϕ ∧ ψ ∈ E unless Σ is inconsistent.

Suppose that ϕ ∧ ¬ψ ∈ E . Then Ω = {α ; β | ¬(α ; β) ∈ E}. To prove that E is an
extension of 〈Σ ∪ {ϕ ∧ ¬ψ}, D,�〉, we have to prove that α ∈ E if and only if there is an
argument A∗α such that A∗α ∩ Ω = ∅ given 〈Σ ∪ {ϕ ∧ ¬ψ}, D,�〉.

Let α ∈ E . Then there is an Aα given 〈Σ ∪ {ϕ ∨ ψ}, D,�〉 with Ãα ∩ Ω = ∅. Therefore,
we can construct an A∗α given 〈Σ ∪ {ϕ}, D,�〉 such that A∗α ∩ Ω = ∅ by first replacing
each sub-argument {〈{〈∅, ϕ∨ψ〉}, r1〉} in Aα by {〈∅, ϕ〉} and subsequently by replacing each
remaining sub-argument {〈∅, ϕ∨ψ〉} also by {〈∅, ϕ〉}. Hence, there is an argument A∗α given
〈Σ ∪ {ϕ ∧ ¬ψ}, D,�〉 with Ã∗α ∩ Ω = ∅.

Let A∗α be an argument given 〈Σ ∪ {ϕ ∧ ¬ψ}, D,�〉 with Ã∗α ∩ Ω = ∅. Then we can
construct an Aα given 〈Σ ∪ {ϕ ∨ ψ}, D,�〉 by replacing each sub-argument {〈∅, ϕ〉} in A∗α
by {〈{〈∅, ϕ ∨ ψ〉}, r1〉}. To make sure that Aα ∩ Ω = ∅, we must make sure that r1 is not
defeated. If r1 is defeated, there must be a valid argument for ¬(ϕ∧¬ψ). Since ϕ∧¬ψ ∈ E ,
there is no such argument.

In case ¬ϕ ∧ ψ ∈ E , the proof is similar to the one given above.

APPENDIX B

Associate with each node and with each justification of the JTMS a counter. Initially,
set the counter of a node equal to the number of incoming justifications and the counter of
each justification equal to the number of the of out-nodes of the justification. Determine all
the nodes that have a justification with an empty set of out-nodes. Label these nodes in,
and place them on the in-list. Next execute propagate.

propagate:
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for each node on the in-list
and for each out-going justification do

decrement the counter of its consequent node;
remove the justification;
if the counter of the node is equal to 0 then

label the node OUT;
place the node on the out list;

end
end
delete the in-list;
for each node on the out-list
and for each out-going justification do

decrement the counter of the justification;
if the counter of the justification is equal to 0 then

label its consequent node IN;
place its consequent node on the in-list;

end
end;
delete the out-list;
if the in-list is not empty then

repeat propagate;
end

end

The above described procedure need not result in a complete labeling of the JTMS. When
this is the case, more than one labeling exist. To create a complete labeling, we must choose
one of the unlabeled nodes, a node that is not labeled in, out or undetermined, and label
in in or out. If we label the node in, we place the node on the in-list, if we label it out, we
place it on the out-list. Subsequently, we must execute the procedure propagate.

We repeat the selection of a node, giving it a label and propagating the consequences,
till all nodes are labeled. By backtracking on the choices that are made, we determine every
labeling of the JTMS.
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