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Abstract. Human reasoning under uncertainty is conjectured to use
Mental Models as a representation format. Each Mental Model charac-
terizes a possible state of the world based on and constrained by the
available information. Conclusion about the world must hold in each
of these Mental Models. An important task in human reasoning is the
construction these Mental Models using the available information. This
paper investigates whether it is possible to design a neural network ar-
chitecture that enables the construction of Mental Model, similarly to
the conjectured way that humans reason. The paper investigates differ-
ent architectures in an incremental way. The final architecture not only
produces the correct mental models but also learns correct mental mod-
els for intermediate representation without being explicitly trained to do
so. This contributes to the explainability of the approach.

Keywords: Machine Learning · Mental Models · Neural Networks · Rea-
soning

1 Introduction

Machine Learning and reasoning have been extensively researched in the past,
with different attempts to combine those two research fields by encoding rule
sets, with which a neural network learns the ability to reason through specified
rules [4,12]. Human reasoning however, is not thought to work with a fixed
set of reasoning rules that is encoded in the human natural neural network
(the brain). Reasoning in the human mind comes with the concept of Mental
Models (MMs), a simplified representation of how humans understand the
world [7]. A single MM is an abstract representation, an internal picture, of one
distinct possible instantiation of the world. For example, if you are concerned if
you can wear your new all-white sneakers the next day under the uncertainty of
the weather, you might have two MMs for tomorrow: either it is good weather
and you wear your sneakers, or it is bad weather and you will not wear your
sneakers. These models allow complex situations to be simplified by getting rid
of uncertainty through duplication and help make decisions based on similar

Regular papers BNAIC/BeneLearn 2021

256



2 P. Mąka et al.

situations. Reasoning can be defined as “Algebraic manipulation of previously
acquired knowledge in order to answer a new question”.[1] Humans can combine
two or more mental models representing pieces of information in order to reach
a conclusion. For example, knowing that both “p ∨ q” and “¬q” is true, we can
conclude that p must be true. We should therefore be able to generate MMs
and algebraically manipulate them in a machine learning setting to produce a
conclusion (possibly a single or multiple MMs). Since it is not obvious what
a mathematical definition of a MM could be, the first task of this paper is to
translate this concept into a machine learning setting.

This paper investigates whether it is possible to design a neural network
architecture that enable the construction of Mental Model, similarly to the con-
jectured way that humans reason. The approach differs from, for instance, neuro-
symbolic computing by not explicitly encoding knowledge in link of the neural
network. All information / knowledge is provided as input to the neural network.
In this investigation, we start with information formulated in Boolean algebra
sentences. Of course it is not difficult to create a neural network that answers
queries for such inputs. However, that is not the goal of this investigation.

The remainder of this paper is organized as follows. The next section describes
related work. Section 3 defines the setting in which we do our research. Section 4
describes the neural network architectures that we have developed and Section 5
describes the experiment that we have performed with these architecture. Section
6 concludes the paper.

2 Related Work

Machine Learning and reasoning originated as separate research fields of Artifi-
cial Intelligence in the past, but have recently seen different approaches of com-
bining those in conjuncted research [4,12]. The research field of Neural-Symbolic
Computing aims to embed the two most fundamental human cognitive abilities
into a system: “the ability to learn from the environment, and the ability to
reason from what has been learned.” [4] They make use of neural networks, by
encoding reasoning rules in between the layers of a neural network.

However, it has been argued that humans reason with the use of MMs, aiming
to find conclusions that are true [9]. Those conclusions can be an outcome of a
conjunction or a repetition of the premise concerned. Humans search for relations
that are not explicitly asserted in the premises, reaching conclusions that seem
the most probable [8]. Since the implementation of MMs in this project does
not hard-code reasoning rules in between the layers of a neural network, it adds
to current research by investigating a more general and flexible approach to
reasoning in neural networks.

Since MMs are an integral component of this paper, we repeat some of the
theory on MMs. As Johnson-Laird explains, “[...], each mental model represents
what is common to a distinct set of possibilities.” [8, p. 2]. They do not reflect
every detail of that distinct state of the world, but reduce the available infor-
mation to the aspects necessary for the context. In the sneaker example that
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Combining Mental Models with Neural Networks 3

was given in Section 1, the only necessary information in the context of deciding
whether or not to wear new, white sneakers (without getting them dirty on the
first day) are the weather conditions, which can be good or bad in this case. All
other information that might be available is not reflected in the two MMs that
arise from this context. It does not matter if the person had one or two cups
of coffee in the morning, it is irrelevant what was in TV the night before. MMs
reduce the mental load by excluding unnecessary information.

To further reduce load on our working memory, humans build MMs on the
principle of “truth” [9]. The principle of truth dictates that MMs only repre-
sent propositions of the premise that are true and neglect those that are false,
i.e. they follow the closed world assumption. For instance, when considering the
exclusive disjunction “I can go on holiday or else I can finish the project I am
working on”, humans would build two MMs according to the principle of truth:
“I go on holiday” and “I finish my project”. Observe that each model does not
include the falsification of the respective other premise. If one would to be pre-
cise and construct complete models, we would get “I go on holiday and I don’t
finish my project” and “I do not go on holiday and I finish my project”. However,
this shortcut used by our brains results in predictable misjudgement in deduc-
tion, which we do not want to imitate with neural networks. Therefore, we will
disregard the principle of truth when constructing the MMs for our networks in
Section 3.

Another assumption of MM theory states that MMs are iconic. "The struc-
ture of a [Mental Model] representation corresponds to the struc-ture of what
it represents.”[8, p. 2]. This is intuitive, as we think about different topics in
different ways. The concept of biological evolution for example is entirely dif-
ferent from theory on radioactive decay. The considerations and dependencies
that need to be taken into account greatly change from one context to another,
implying that the structure of corresponding MMs also differ. This paper will
take all of the three mentioned aspects of MM theory into account when defining
the MMs in the next section.

3 Defining the Setting

In this section, the representation of MMs used in this paper will be described.
As stipulated by iconicity, a MM needs to resemble the structure of what it
represents. Therefore, it is necessary to first fix the context, i.e. whatever it is that
the MM should represent. For this paper, a MM will be defined in the context of
boolean algebra, because of its scalability, modularity 1, and relative simplicity.
The sentences used in the datasets are composed of two simple sub-sentences,
which are both assumed to be true. To increase complexity, sub-sentences can
be combined with the “and” operator in order to obtain a single more complex
sentence. This process can be repeated for further complexity.

1 This results from the fact that any sentence can be transformed into conjunctive
normal form [11, p. 253]
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The truth table of a logical sentence represents a possible state of the world
and can be interpreted as a MM, which allows us to think about the information
contained in a logical sentence and helps us to perform further reasoning tasks.
Even though the human mind might not need to fall back on truth tables and
rather represents Boolean algebra in a more advanced way [9, p. 114], this does
not compromise the validity of using truth tables for this context.

There is one modification to traditional truth tables used in this paper: when
a variable does not appear in a sentence, or if the value of the variable does not
influence the value of the sentence given the other variables, a value of “none”
will be assigned to this variable, instead of “true” or “false”. This modification
is again inspired by MM theory, which states that MMs reduce the amount of
stored information to a minimum in order to preserve cognitive capacity. The
value of a variable that does not appear in a sentence has no effect on the value
of the sentence. Hence, a single MM which assigns such variable the “none"
value contains the same information of two other MMs which are identical to
the first, except that the value of the variable is now changed to “true” and “false”
respectively.

4 Methodology

This section describes the datasets we created to evaluate the architectures on
a Boolean algebra reasoning task and gives a detailed description of the created
neural networks. The neural networks can be divided into architectures predict-
ing conclusion in the form of one MM or multiple MMs. This is also reflected in
the structure of the datasets.

4.1 Creating the Learning Data

The datasets consist of inputs in the form of two logical sub-sentences2 (Boolean
expressions) and labels that represent a single or multiple MMs induced by both
of the sub-sentences being true. For all datasets in this paper, it is always as-
sumed that the logical sentence (or both sub-sentences) given as input is “true”.

When creating the datasets a parameter representing the “depth” of a logical
sentence is used. A sentence can be represented as a tree-structure with the
variables in the leafs and non-terminal nodes containing logical operators. This
means that a sentence of depth 1 consists of at most one logical operator and
two variables. Examples for sentences of depth 1 are “x1 or x2" and “not x3”;
and of depth 2 are “x1 or not x2” and “(x1 or x2) and x3”.

The labels (MMs) use a vector representation. The length of the vector n
corresponds to the number of logical variables used in the dataset. In the experi-
ments n = 5, the logical variables are denoted with symbols x1-x5. Each element
in the vector encodes the value of one variable in the MM. A value of 1 indicates
2 If the evaluated neural network requires exactly one sentence as the input, the two
sub-sentences can be concatenated with the “and” operator between them.
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Combining Mental Models with Neural Networks 5

that the variable is true in the MM, the value -1 indicates false. Additionally,
a variable in the vector can be assigned a value of 0, which corresponds to the
“none” value described in Section 3.

All datasets were created by implementing the generate-and-test approach.
We randomly generate a sentence and algorithmically determine what MMs
are compatible with the sentence. If both the sentence and the resulting MMs
(conclusion) fulfil the specifications, the sentence is added to the dataset. These
steps were performed a specified number of times.

The first two datasets are called Many-to-Single MM Small and Many-
to-Single MM Big respectively. Examples in these datasets induce one single
MM, where any number of variables can be true or false (as long as at least
one variable is not “none”). Additionally, The difference between the small and
big version is the depth of the two sub-sentences. In Many-to-Single MM Small
dataset, sub-sentences have a maximum depth of 1. This leads to a combined
sentence of a maximum length of 11 (the length of the sequence of variables,
operators and brackets that forms a sentence) with the sub-sentences of length
5 at most. This dataset contains 2369 sentences (consisting of two sub-sentences
each). On the other hand, sub-sentences in the Many-to-Single MM Big dataset
can have a maximum depth of 2 therefore the maximum length of a sentence is
increased to 27. Each subsentence has 2 · 13 (including the outer brackets) plus
1 for the combining “and" operator. The size of this dataset is 276178 sentences
and labels. The third dataset is called Many-to-Many MM. For this dataset,
no restrictions were put on number of the induced MMs. Again, sentences are
made up of two conjuncted sub-sentences, each of depth 2 at maximum. This
dataset contains 3489 datapoints. Both Many-to-Single MM Small and Many-
to-Many MM datasets consist of all possible sentences fulfilling the conditions
(depth and number of conclusion MMs). The size of Many-to-Single MM Big
dataset results from running the generate-and-test algorithm until less than 1%
of generated sentences were not already included in the dataset.

4.2 Constructing the Architecture

The goal of our design is to encourage the network to not only output vectors
which we interpret as MMs, but also to internally use these MMs in order to
derive the desired output. In addition to testing if we can increase performance
this way, we hope to achieve greater interpretability for the internal reasoning
process of the neural network.

For the task of predicting MMs we designed a neural network that accepts
two logical sub-sentences as input and predict a single or multiple mental mod-
els that are a conclusion of the input (with the assumption that both the sub-
sentences are true). The first network we implement in this context is called
Single-mental model Net (Single-mmNet) and is trained on the Many-
to-single MM datasets. In addition, we define two other networks, that go by
the names of Multi-mental model Net with direct input (Multi-mmNet
direct), and Multi-mental model Net combination (Multi-mmNet com-
bination). These networks are trained on the Many-to-multiple MM dataset.
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To encourage our networks to internally use MMs, sub-sentences are fed into
a shared sub-sentence encoder, before a final reasoning module combines the
outputs for each sub-sequence (see Figure 1). Conceptually, we want our network
to generate the MMs for every sub-sentence before merging the information in
those sub-sentences in the final reasoning module. This concept is rooted in the
modularity property described in Section 3. We introduce the inference layer
that combines the MMs induced by sub-sentences. While not explicitly forced
into a specific representation for sub-sentence MMs, the sub-sentence encoder
adopts our definition of MMs during training.

To implement this architecture, it is sufficient to use a simple feed-forward
architecture with an embedding layer and one fully-connected hidden layer. The
activation functions were set to hyperbolic tangent for the output layer and
ReLU for the hidden layer. The output is reshaped to a matrix Y ∈ RM×D ,
where M is a constant number of MMs (specified as a hyper-parameter) and D
is the number of logic variables (five in our case).

Fig. 1: General architecture of neural network consisting of shared sub-sentence
encoders and a final reasoning module

Predicting a Single Mental Model The Single-mmNet architecture uses a
fully connected network as a sub-sentence encoder and the reasoning module
described in detail below. It is trained end-to-end using standard gradient-based
optimization on the Many-to-single MM dataset.

The reasoning module dubbed "MM-Inference Layer" is meant to combine
two outputs of the sub-sentence encoder (one output for every sub-sentence). The
inference layer accepts two matrices, each representing the MMs induced by one
sub-sentence. We denote the matrices with Y 1 ∈ RM×D and Y 2 ∈ RN×D, where
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M and N are the numbers of MMs induced by the first and second sub-sequence
respectively, and D is the number of variables. It is assumed that all elements
of the two matrices are in the range [−1, 1]. Let Y 1

m for m ∈ {1, 2, . . . ,M}
denote a MM model from the first sub-sentence (i.e. a row of Y 1) and Y 2

n for
n ∈ {1, 2, . . . , N} a MM model from the second sub-sentence (i.e. a row of Y 2).
For every pairing m, n, we calculate two quantities: Vm,n ∈ RD and Cm,n ∈ R,
which we call value and correctness. To obtain the value Vm,n between two MMs,
we simply add the two MMs element wise and “clamp"3 the resulting numbers
between -1 and 1.

This approach disregards the situation when two MMs are incompatible with
each other. Two MMs are incompatible when the same variable is true in one
model and false in the other. (We will sometimes refer to such a variable as an
incompatible variable). To indicate when two MMs are incompatible, we intro-
duce correctness. For “perfect” values for variables of either exactly -1, 0, or 1,
the correctness of a pair of MMs will be 1 if the two models are compatible
(i.e. no variable is true in one of the models and false in the other) and 0 other-
wise. During training and testing however, the sub-sentence encoder could assign
any value between -1 and 1 to the variables. As a consequence, the correctness
becomes a number between 0 and 1. Therefore in practice, two MMs become
increasingly incompatible, as the absolute difference between the variables in-
creases. The two quantities (value and correctness) are calculated using Eq. 1
and 2 respectively.

Vm,n = min(1, max(−1, Y 1
m + Y 2

n ))

∀m = 1, ...,M, ∀n = 1, ..., N
(1)

Cm,n =

D∏

d=1

[1−max(0, |Y 1
m − Y 2

n | − 1)]d

∀m = 1, ...,M, n = 1, ..., N

(2)

The Single-mmNet network only outputs one MM, which is calculated us-
ing Eq. 3. In essence, Z is a sum of all values weighted with their respective
correctness and normalised by the sum of all correctness.

Z =

∑M,N
m=1,n=1 Vm,n · Cm,n
∑M,N

m=1,n=1 Cm,n

(3)

The use of a fully-connected network as a sub-sentence encoder means that
the number of MMs is set beforehand and identical for each sub-sentence. To
allow a variable number of sub-sentence MMs, we added a second type of output
to the fully-connected network - scores S1 ∈ RM and S2 ∈ RN for the first and
second sub-sentence respectively. Each MM has a corresponding score, where the
value of 1 indicates that the MM is correct and contains important information
and value of 0means that the MM is erroneous or redundant. In contrast to value
3 Clamping indicates setting all values < −1 to −1 and all values > 1 to 1
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and correctness, scores are taken directly from the outputs of sub-sentence en-
coders. The MM-Inference Layer is subsequently adapted to accept these scores
as additional inputs and take them into account when calculating the output -
Eq. 4 shows the formulation used. The introduction of scores does not change
the dimension of the output Zs ∈ RD. It was empirically found that normalizing
the sum by the summed correctness (hence without scores) yields more stable
results in terms of test accuracy.

Zs =

∑M,N
m=1,n=1 Vm,n · Cm,n · S1

m · S2
n∑M,N

m=1,n=1 Cm,n

(4)

Predicting Multiple Mental Models Allowing more MMs as a conclusion is
inherently a many-to-many problem. For this problem we propose two encoder-
decoder architectures built around a modified version of the MM-Inference Layer
for the encoder part, and an LSTM layer for the decoder part. Both models use
the same shared fully-connected sub-sentence encoder with scores. The MM-
Inference Layer is modified to produce values (see Eq. 1) and scores based on
correctness and input scores as defined in Eq. 5.

Sm,n = Cm,n · S1
m · S2

n (5)

The output values V and scores S are flattened and concatenated, and are
used as the initial hidden state and cell state of the LSTM in the decoder part.
The output of the LSTM feeds into the fully-connected layer.

In the first architecture Multi-mmNet (direct output) the fully-connected
layer has a number of neurons equal to the number of variables n and uses a hy-
perbolic tangent activation function. The outputs of this layer are interpreted as
predicted MMs (see Figure 2a), and are auto-regressively fed back as the input
for the prediction of the next MM. We stop the model when the end-of-sequence
token is reached.

In the second architecture Multi-mmNet (combination) the fully-connected
layer has a number of neurons equal to the number of mental models returned
by the encoder (M ·N), and a sigmoid activation function. Its output S′ is inter-
preted as scores for combining the MMs obtained from the MM-Inference Layer
of the decoder part. This combination happens through a MM-Combination
Layer that computes the sum of MMs weighted by the scores predicted by the
decoder (see Figure 2b). The following shows the calculation for the p-th output
of the network:

Zc
p =

∑M ·N
i=1 Vi · Si · S′p,i

max(1,
∑M ·N

j=1 Sj · S′p,j)
. (6)

To avoid division by 0, we do not allow the deliminator to be less than 1.
During training we use teacher forcing [14,5], where the training data is used as
the input to the decoder instead of the output generated by the network in the
previous step. During inference the resulting output is used auto-regressively
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(a) Multi-mmNet (direct output) (b) Multi-mmNet (combination)

Fig. 2: Schematic connections of Multi-mmNet (direct output) architecture on
the left and Multi-mmNet (combination) on the right, where X1 and X2 are the
input sub-sentences, M1 to Mp are the output MMs, and S′1 to S′p are the scores
returned by the decoder of the Multi-mmNet (combination).

to predict the next output, until the end-of-sequence token is reached. This
technique is used to mitigate the network instability, and make it converge faster.
In the experiments, we chose a MM containing only 0s as the end-of-sequence
token for both architectures.

5 Experiments

Each dataset is split into training, validation and test subsets according to 80%,
10% and 10% ratios respectively. Training used the Adam optimizer [10] and
a mean squared error as loss function for all models. Training was terminated
early based on the validation loss.

5.1 Many-to-single Mental Model Architectures

As discussed above the Single-mmNet architecture predicts one MM given two
sub-sentences. The number of mental models of the fully-connected sub-sentence
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encoder was set to 3 for the Many-to-Single MM Small dataset experiments. For
the Many-to-Single MM Big dataset it was experimentally found that using 6
mental models resulted in the best performance. The network was evaluated both
without and with the use of scores. With the use of scores, the Single-mmNet
with scores theoretically has the ability to distinguish which MM is important
and which is not. In practice however, scores converge to 1.0 and are not used
by the network as intended. For comparison we trained a standard LSTM [6]
on the datasets concatenating the two sub-sentences using an and operator. We
choose the LSTM as baseline after empirically comparing alternatives on the
simple task of predicting a single true variable in a logical sentence.4

Results reported on the small version Many-to-Single MM dataset summarise
6 repetitions of the experiment, while those on the big version stem from 3
repetitions. Because Single-mmNet with scores performed better than the one
without, only this architecture was evaluated on the big dataset.

Observations and Discussion Table 1 summarises the performances. The
addition of scores seems to increase the robustness of the single-mmNet archi-
tecture, despite the fact that they converged to 1.0 during training. The model
with scores achieved similar accuracy as the LSTM.

Table 1: Experiments with the small and big version of the Many-to-single MM
dataset

Model
Average
Accuracy

Small
Dataset

Big
Dataset

LSTM 100% 99.80%

Single-mmNet
without scores 96.84% -

Single-mmNet
with scores 100% 99.96%

The LSTM and Single-mmNet with scores both reached perfect accuracy on
the small version of the dataset. They also performed very well on the big dataset
with an average accuracy of 99.80% and 99.96% respectively. The Single-mmNet
without scores reached this perfect accuracy only in some runs (on the small
dataset).

While the scores don’t seem to fulfill the purpose of indicating which MM is
relevant, their use improved accuracy and stability of the architecture, possibly
4 The LSTM outperformed a Vanilla RNN [3], a GRU [2], and a simplified Transformer
[13] that consisted of the encoder part of the Transformer with a fully-connected
output layer.
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being of use during the training phase, so it was decided to keep them in the
subsequent, more complex architectures as well.

5.2 Many-to-many Mental Model Architectures

Many sentences imply multiple MMs, so the Many-to-Many MM dataset was
used to reflect this fact. Based on the performance of the Vanilla LSTM, the
Single-mmNet architecture was expanded by feeding the encodings into an LSTM
decoder as discussed in Section 4.2. The MMs and scores are used as initiali-
sation of the LSTM-decoder, which outputs MMs directly for "Multi-mmNet
(direct output)" or outputs scores used in the Mental Model Combination Layer
for "Multi-mmNet (combination)". The number of mental models of the fully-
connected sub-sentence encoder was once again set to 3.

As benchmarks, we used encoder-decoder networks based on an LSTM. The
first two architectures use sub-sentence representations where one uses specific
Start of Sequence (SOS) and End of Sequence (EOS) tags, while the other does
not. The third model uses a symbolic concatenation of the two sub-sentences
and without specific SOS/EOS tags.

Observations and Discussion The performance of the Multi-mmNet archi-
tectures (both "direct output" and "combination") and benchmark networks can
been seen in Table 2. These results are achieved after fine-tuning the models’
parameters. A perfect accuracy was achieved by the model outputting MMs and
an average 99.67% accuracy by the model outputting scores for combining MMs,
actually reaching perfect accuracy 4 out of 6 times.

The two LSTM networks using sub-sentences exhibit the similar accuracy,
while the encoder-decoder model using symbols performed even slightly better,
but the differences are very small. In fact, all models performed comparable to
the benchmarks when judging accuracy. Beside predicting the correct MM, the
model predicts the MMs in the same order they were listed in the dataset. This
is an expected result for an LSTM network.

Table 2: Experiments with Many to Many dataset

Model Average
Accuracy

LSTM – Encoder decoder
sub sentences no start index 99.70%

LSTM – Encoder decoder
sub sentences with start index 99.70%

LSTM – Encoder decoder
symbol no index 99.95%

Multi-mmNet (direct output) 100%
Multi-mmNet (combination) 99.67%
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Contrary to single-mmNet with scores however (see Section 5.1) Multi-mmNet
(combination) does use the scores to mark the importance of the MMs. This
was not observed for the Multi-mmNet (direct output) - the sub-sentence en-
coder of this model did not output MMs at all. Using MMs as output of the
decoder, resulted in reverting back to an uninterpretable latent representation
of sub-sentences, not unlike the LSTM benchmark models. In case of Multi-
mmNet (combination) however, without being explicitly trained to do so, the
sub-sentence encoder produced MMs as we hypothesized they could be used.

5.3 Sub-sentence encodings

To illustrate the MMs (and scores if applicable) produced by the fully-connected
sub-sentence encoder, Table 3 shows the rounded outputs for a selection of sub-
sentences. The outputs of Single-mmNet without scores are easily interpreted
as MMs corresponding to the sub-sentence. When only one MM is sufficient to
represent the information in the sub-sentence, it is copied to all three outputs.
Despite using scores to allow the network to use less MMs for each sub-sentence
in the Single-mmNet with scores, the network learned to output all scores as 1.

The encoder of Multi-mmNet (direct output) did not learn to output MMs
at all. Although the network achieves perfect accuracy, the output of the sub-
sentence encoder is not easily interpreted: the vectors do not correspond to MMs
of sub-sentences, with scores close to 0 for all outputs. The introduction of the
Mental Model Combination layer in Multi-mmNet (combination) enabled sub-
sentence encoder to output MMs, and subsequently improved the interpretability
of the encodings. Additionally, the encoder learned to use less outputs by setting
corresponding scores to 0. That said, the encoder still sets two scores to 1 for
most of the sub-sentences, therefore the duplication of MMs is still present in
the output.

The networks were trained in end-to-end fashion and were not directly op-
timized to internally employ MMs. The usage of MMs as an intermediate rep-
resentation is imposed through MM-Inference Layer in all three architectures
exhibiting this behaviour. In case of these architectures - and in contrast to the
Multi-mmNet (direct output) - this layer is the last (output) layer of the net-
works, which were trained to predict MMs. The layer preserves the diminsionality
of the input as it is being processed, and the processing itself was designed utilize
of the semantics of the introduced representation of MMs. This leads to a sub-
stantial improvement for the interpretability of the latent space of the proposed
architectures.

6 Conclusion

This paper investigated enabling neural networks to make use of Mental Mod-
els for solving reasoning tasks. We conclude that it is possible to construct and
train neural network architecture to generate Mental Models for the input infor-
mation. This can been done by introducing vector encoding of Mental Models,
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Table 3: Rounded output of the sub-sentence encoder in MM architectures
Architecture Sub-sentence Y1 S1 Y2 S2 Y3 S3

Single-mmNet
without scores

(x2 or x1) [1, 1, 0, 0, 0] - [-1, 1, 0, 0, 0] - [1, -1, 0, 0, 0] -
not x1 [-1, 0, 0, 0, 0] - [-1, 0, 0, 0, 0] - [-1, 0, 0, 0, 0] -
x5 [0, 0, 0, 0, 1] - [0, 0, 0, 0, 1] - [0, 0, 0, 0, 1] -

(x1 and x5) [1, 0, 0, 0, 1] - [1, 0, 0, 0, 1] - [1, 0, 0, 0, 1] -
(x3 and x2) [0, 1, 1, 0, 0] - [0, 1, 1, 0, 0] - [0, 1, 1, 0, 0] -
(x2 or x1) [ 1, 1, 0, 0, 0] - [-1, 1, 0, 0, 0] - [1, -1, 0, 0, 0] -
(x1 and x3) [1, 0, 1, 0, 0] - [1, 0, 1, 0, 0] - [1, 0, 1, 0, 0] -

not x3 [0, 0, -1, 0, 0] - [0, 0, -1, 0, 0] - [0, 0, -1, 0, 0] -
x1 [1, 0, 0, 0, 0] - [1, 0, 0, 0, 0] - [1, 0, 0, 0, 0] -

Single-mmNet
with scores

(x2 or x1) [1, -1, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 1
not x1 [-1, 0, 0, 0, 0] 1 [-1, 0, 0, 0, 0] 1 [-1, 0, 0, 0, 0] 1
x5 [0, 0, 0, 0, 1] 1 [0, 0, 0, 0, 1] 1 [0, 0, 0, 0, 1] 1

(x1 and x5) [1, 0, 0, 0, 1] 1 [1, 0, 0, 0, 1] 1 [1, 0, 0, 0, 1] 1
(x3 and x2) [0, 1, 1, 0, 0] 1 [0, 1, 1, 0, 0] 1 [0, 1, 1, 0, 0] 1
(x2 or x1) [1, -1, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 1
(x1 and x3) [1, 0, 1, 0, 0] 1 [1, 0, 1, 0, 0] 1 [1, 0, 1, 0, 0] 1

not x3 [0, 0, -1, 0, 0] 1 [0, 0, -1, 0, 0] 1 [0, 0, -1, 0, 0] 1
x1 [1, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0] 1

Multi-mmNet
(direct output)

(x2 or x1) [1, 0, 0, -1, -1] 0 [0, 1, 0, -1, 0] 0 [0, -1, 1, 0, 0] 0
not x1 [1, 1, -1, 1, -1] 0 [-1, 1, 1, 0, 0] 1 [-1, 1, 0, 1, 1] 0
x5 [1, 0, 1, 1, -1] 1 [1, 0, 0, 1, 0] 1 [0, 1, 1, 1, 0] 0

(x1 and x5) [0, -1, 1, 1, -1] 1 [1, 0, 0, 1, 1] 1 [1, -1, 1, 1, 0] 1
(x3 and x2) [1, 1, -1, -1, -1] 0 [1, 1, -1, 0, 0] 0 [1, 1, -1, 0, -1] 1
(x2 or x1) [1, 0, 0, -1, -1] 0 [0, 1, 0, -1, 0] 0 [0, -1, 1, 0, 0] 0
(x1 and x3) [-1, 1, -1, 0, -1] 1 [1, 0, 0, 1, 1] 1 [1, -1, -1, 0, -1] 1

not x3 [0, -1, 1, -1, -1] 1 [-1, 0, 1, 0, 0] 1 [0, 1, 1, 0, 1] 0
x1 [-1, 0, 0, -1, -1] 1 [1, 0, 0, 1, 1] 1 [1, -1, 1, 0, 0] 1

Multi-mmNet
(combination)

(x2 or x1) [1, 0, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 0
not x1 [0, 1, 1, 0, 1] 0 [-1, 0, 0, 0, 0] 1 [-1, 0, 0, 0, 0] 1
x5 [-1, 1, 1, 1, 0] 0 [0, 0, 0, 0, 1] 1 [0, 0, 0, 0, 1] 1

(x1 and x5) [1, 1, 1, 1, 1] 0 [1, 0, 0, 0, 1] 1 [1, 0, 0, 0, 1] 1
(x3 and x2) [-1, 1, 1, 1, 1] 0 [0, 1, 1, 0, 0] 1 [0, 1, 1, 0, 0] 1
(x2 or x1) [1, 0, 0, 0, 0] 1 [-1, 1, 0, 0, 0] 1 [1, 1, 0, 0, 0] 0
(x1 and x3) [1, 1, 1, 1, 1] 0 [1, 0, 1, 0, 0] 1 [1, 0, 1, 0, 0] 1

not x3 [0, 1, 1, 0, 0] 0 [0, 0, -1, 0, 0] 1 [0, 0, -1, 0, 0] 1
x1 [1, 1, 1, 0, 1] 0 [1, 0, 0, 0, 0] 1 [1, 0, 0, 0, 0] 1

and formulating neural network layers that perform differentiable operations to
combine those encodings. By incorporating those layers with existing neural net-
works, we created several architectures and trained them using gradient-based
methods for the Boolean algebra reasoning tasks. All proposed neural networks
achieved accuracy comparable to existing architectures. Additionally, three out
of four architectures exhibited the internal usage of Mental Models in the latent
space (the exception was Multi-mmNet with direct output). Only when there
exists a direct path through the MM layers to the output, which is also an en-
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coded MM, we observe that the simple sub-sentence encoder learned to output
human-interpretable encodings - even though we trained the architectures in the
end-to-end fashion. We see this fact as the advantage of those architectures as it
can be used to achieve greater explainability of neural networks. The code-base
of the project can be found on Github. 5

Currently mental models are being processed in a specific order in the neural
networks. The networks are good at predicting what to expect. However, in
real world problems, the order of the mental models is irrelevant. This could be
solved by using a permutation invariant loss function but is left for future work.
A restriction of our research is how this theoretical setting can be translated
to a real world problem. In this work, a specific Boolean algebra problem was
explored. The presented experiments were intended as a proof-of-concept and the
experiments involving larger datasets (in terms of both the number of variables
and the depth of the Boolean expressions) should be conducted. The difficulties
could arise when the architectures are adapted to accept other forms of input
(ultimately, natural language). Additionally, our architecture is limited to reason
from exactly two sub-sentences. This is left for future research.
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