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Abstract. This paper proposes a new form of diagnosis and repair based
on reinforcement learning. Self-interested agents learn locally which agents
may provide a low quality of service for a task. The correctness of learned
assessments of other agents is proved under conditions on exploration
versus exploitation of the learned assessments.
Compared to collaborative multi-agent diagnosis, the proposed learning-
based approach is not very efficient. However, it does not depend on
collaboration with other agents. The proposed learning based diagnosis
approach may therefore provide an incentive to collaborate in the exe-
cution of tasks, and in diagnosis if tasks are executed in a suboptimal
way.

1 Introduction

Diagnosis is an important aspect of systems consisting of autonomous and pos-
sibly self-interested agents that need to collaborate [4–7, 10, 8, 9, 11, 12, 14–18,
20, 19, 29, 30, 21–23, 25, 24, 26–28, 32–34, 37]. Collaboration between agents may
fail because of malfunctioning agents, environmental circumstances, or malicious
agents. Diagnosis may identify the cause of the problem and the agents respon-
sible [31]. Efficient multi-agent diagnosis of collaboration failures also requires
collaboration and requires sharing of information. Agents responsible for collab-
oration failures may be reluctant in providing the correct information. Therefore
it is important to have an incentive to provide the right information. The ability
to learn an assessments of other agents without the need to exchange informa-
tion, may provide such an incentive.

This paper addresses the learning of a diagnosis in a network of distributed
services. In such a network, tasks are executed by multiple agents where each
agent does a part of the whole task. The execution of a part of a task will be
called a service.

The more than 2000 year old silk route is an example of a distributed network
of services. Local traders transported silk and other goods over a small part of the
route between China and Europe before passing the goods on to other traders. A
modern version of the silk route is a multi modal transport, which can consists
of planes, trains, trucks and ships. Another example of distributed services is the
computational services on a computer network. Here, the processing of data are
the distributed services. In smart energy networks, consumers of energy may also
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be producers of energy. The energy flows have to be routed dynamically through
the network. A last example of a distributed service is Industry 4.0. In Industry
4.0, the traditional sequential production process is replaced by products that
know which production steps (services) are required in their production. Each
product selects the appropriate machine for the next production step and tells
the machine what is should do.

To describe a network of distributed services such that diagnosis can be
performed, we propose a directed graph representation. An arc of the graph
represents the provision of a service by some agent. The nodes are the points
where a task1 is transferred from one agent to another. Incorrect task executions
are modeled as transitions to special nodes.

The assumption that agents are self-interested and no agent has a global view
of the network, limits the possibility of diagnosis and repair. We will demonstrate
that it is still possible to learn which agents are reliable w.r.t. the quality of
service that they provide.

The remainder of the paper is organized as follows. In the next section, we
will present our graph-based model of a network of distributed services. Section
3 presents an algorithm for locally learning the reliability of agents providing
services. Section 4 presents the experimental results and Section 5 concludes the
paper.

2 The model

We wish to model a network of services provided by a set of agents. The services
provided by the agents contribute to the executions of tasks. The order of the
services needed for a task need not be fixed, nor the agents providing the services.
This suggests that we need a model in which services cause state transitions, and
in each state there may be a choice between several agent-service combinations
that can provide the next service. The service that is provided by an agent may
be of different quality levels. We can model this at an abstract level by different
state transitions. If we also abstract from the actual service descriptions, then
we can use a graph based representation.

We model a network of services provided by a set of agents Ag using a graph
G = (N,A), where the N represents a set of nodes and A = {(ni, n

′
i, ag i) | {ni, n

′
i}

⊆ N, agi ∈ Ag}|A|i=1 set of arcs. Each arc (n, n′, ag) ∈ A represents a service (n, n′)
that is provided by an agent ag ∈ Ag . We allow for multiple services between
two nodes provided that the associated agents are different; i.e., several agents
may provide the same service.

A set of tasks T is defined by pairs of nodes (s, d) ∈ T . Any path between
the source s and the destination d of a task (s, d) ∈ T ; i.e., a path (a1, . . . , ak)
with ai = (ni, ni+1, ag i), n1 = s and nk+1 = d, represents a correct execution of
the task.

An incorrect execution of a task (s, d) ∈ T is represented by a path that ends
in a node d′ not equal to d; i.e., a path (a1, . . . , ak) with ai = (ni, ni+1, ag i),

1 In smart energy networks the tasks are the directions in which energy must flow.
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n1 = s and nk+1 = d′ 6= d. A special node f is used to denote the complete
failure of a service provided by an agent. No recovery from f is possible and no
information about this failure is made available.

To describe a sub-optimal execution of a task (s, d) ∈ T , we associate a
set of special nodes with each destination node d. These nodes indicate that
something went wrong during the realization of the task. For instance, goods may
be damaged during the execution of a transport task. The function D : N → 2N

will be used for this purpose. Beside the nodes denoting suboptimal executions,
we also include the normal execution; i.e., d ∈ D(d). Moreover, f ∈ D(d).

To measure the quality of the execution of a task (s, d) ∈ T , we associate
a utility with every possible outcome of the task execution: U(d′, d) for every
d′ ∈ D(d). Here, U(f, d) ≤ U(d′, d) < U(d, d) for every d′ ∈ D(d)\d.

The possible results of a service provided by agent ag in node n for a task
t = (s, d) with destination d, will be specified by the function E(n, d, ag). This
function E : N ×N × Ag → 2N specifies all nodes that may be reached by the
provided service. The function must satisfy the following requirements:

– E(n, d, ag) ⊆ {n′′ | (n, n′′, ag) ∈ A}
We also define a probability distribution e : N × N × Ag × N → [0, 1] over
E(n, d, ag), describing the probability of every possible outcome of the provided
service; i.e.,

– e(n, d, ag , n′) = P (n′ | n, d, ag)
where n′ ∈ E(n, d, ag) and

∑
n′∈E(n,d,ag) e(n, d, ag , n′) = 1.

There may be several agents in a node n that can provide the next service
for a task t = (s, d) with destination d. The function succ : N × N → 2Ag will
be used to denote the set of agents succ(n, d) = {ag1, . . . , agk} that can provide
the next service.

s1	

s2	 n3	

n2	

n1	

f	 n6	

n5	

n4	

n7	

d3	

d2	

d1	

d4	

ag1	

ag1	

ag2	

ag2	

ag4	

ag4	

ag5	

ag5	

ag6	

ag6	

ag9	

ag9	

ag10	
ag10	

ag11	

ag12	 agd4	

agd1	

n8	 d5	

ag7	

ag14	

ag13	

n8	

ag3	

ag8	

ag12	

Fig. 1. An example network.

Figure 1 gives an illustration of a network of services represented as a graph.
The network shows two starting nodes for tasks, s1 and s2, two successful desti-
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nation nodes for tasks, d1 and d4, two unsuccessful destination nodes for tasks,
d2 and d3, the failure node f and seven intermediate nodes.

3 Distributed learning of agent reliability

Agents may learn locally diagnostic information using feedback about the result
of a task execution. The diagnostic information learned by each agent may enable
it to pass on a task in a node to a next agent such that the task is completed in
the best possible way. So, an agent must learn the reputation of the agents to
which it passes on tasks. This reputation may depend on the node in which the
coordination with the next agent takes place as well as on all future agents that
will provide services for the task.

We could view our model of a network of services provided by agents as
a Markov Decision Process (MDP) [1, 13]. In this markov decision process the
nodes in D(d) given the task (s, d), are absorbing states. Only when reaching
a node in D(d) a reward is received. All other rewards are 0. The transition
probabilities are given by e(n, d, ag , n′). If these probabilities do not depend on
the destination; i.e., e(n, d, ag , n′) = P (n′ | n, ag), then we have a standard
markov decision process for which the optimal policy can be learned using Q-
learning [35, 36]. However, Q-learning requires that an agent providing a service
knows the Q-values of the services the next agent may provide. This implies that
we have a Decentralized MDP [2, 3] in which collaboration is needed to learn the
optimal Q-values of services. If agents are willing to collaborate, it is, however,
more efficient to use the traditional forms of diagnosis [31]. Therefore, in this
section, we assume the agents are self-interested and do not collaborate.

To enable local learning of the agents’ reputations, we assume that for every
task t = (s, d) ∈ T one and the same agent agd is associated with all nodes in
D(d)\f . Moreover, we assume that each agent that provided a service for the
task execution, has added its signature to the task. The incentive for adding
a signature is the payment for the provided service. The agent agd uses these
signatures to make the payments and to inform the agents that provided a service
about the success of the whole task execution. The latter information enables
each service agent to assess the quality of the agents to which it passes on tasks.
If the payments depend on the quality of service of the whole chain, the agents
providing services will have an incentive to provide the best possible service and
to pass on a task to a next agent such that the quality of the next services is
maximized.

An agent ag that provided a service must pass on task t = (s, d) ∈ T to the
next agent if the task is not yet finished. There may be k agents that can provide
the next service: ag1, . . . , agk. Assuming that agent ag can identify the current
node n and thereby the quality of its own service, ag would like to learn which
of the k agents is the most suited to provide the next service for the task.

The agent agd associated with the destination d of task t = (s, d) ∈ T will
inform agent ag about the actual quality d′ ∈ D(d) that is realized for the task.
This feedback enables agent ag to evaluate the quality of the whole chain of
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services starting with a next agent ag i. So, even if agent ag i is providing a high
quality service, it may not be a good choice if subsequent agents are failing.

An agent ag can learn for each combination of a task destination (the node
d) a next agent ag ′ and the current node n, the probability that the remainder
of the task execution will result in the quality d′ ∈ D(d)\f . The probability
estimate is defined as:

pe(d′ | d, ag ′, n, i) =
Cd′ | i

i

where i is the number of times that a task t with destination d is passed on to
agent ag ′ in the node n, and Cd′ | i is the number of times that agent agd gives
the feedback of d′ for task t with destination d.

Agent ag may not receive any feedback if the execution of task t ended in a
complete failure, unless agent agd knows about the execution of t. In the absence
of feedback, agent ag can still learn the probability estimate of a complete failure:

pe(f | d, ag ′, n, i) =
Cf | i

i
where Cf | i is the number of times that no feedback is received from agent agd.
An underlying assumption is that agent agd always gives feedback when a task
is completed, and that the communication channels are failure free.

Estimating the probability is not enough. The behavior of future agents may
change over time thereby influencing the probability estimates pe(d′ | d, ag ′, n, i).
Assuming that the transition probabilities e(n, n′, ag , n′′) of provided services do
not change over time, the coordination between agents when passing on tasks
is the only factor influencing the probability estimate pe(d′ | d, ag ′, n, i). Since
agents have an incentive to select the best possible next agent when passing on a
task, we need to address the effect of this incentive on the probability estimates.
First, however, we will investigate the question whether there exist an optimal
policy for passing on a task to a next agent and a corresponding probability
P (d′ | d, ag ′, n, i).

To answer the above question, utilities of task executions are important.
With more than two possible outcomes for a task execution, i.e., |D(d)| > 2, the
expected utility of a task execution needs to be considered. Therefore, we need
to know the utility U(d′, d) of all outcomes d′ ∈ D(d). We assume that either
this information is global knowledge or that agent agd provides this information
in its feedback.

Using the utilities of task outcomes, we can prove that there exists an optimal
policy for the agents, and corresponding probabilities.

Proposition 1. Let ag be an agent that has to choose a next agent ag ′ to provide
a service for the task t = (s, d) ∈ T in node n. Moreover, let P (d′ | ag ′, d, n) be
the probability of reaching d′ given the policies of the succeeding agents.

The utility U(d, ag , n) an agent ag can realize in node n for a task t with des-
tination d, is maximal if every agent ag chooses a next agent ag∗ in every node
n in which it can provide a service, such that the term

∑
d′∈D(d) P (d′ | ag∗, d, n)·

U(d′, d) is maximal.
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Proof. Given a task t = (s, d) ∈ T we wish to maximize the expected utility
agent ag can realize in node n by choosing the proper next agent to provide a
service for the task.

U(d, ag , n) =
∑

d′∈D(d)

P (d′ | d, n) · U(d′, d)

=
∑

d′∈D(d)

∑
ag′

P (d′ | ag ′, d, n) · P (ag ′ | d, n) · U(d′, d)

=
∑
ag′

P (ag ′ | d, n) ·
∑

d′∈D(d)

P (d′ | ag ′, d, n) · U(d′, d)

Here P (ag ′ | d, n) is the probability that agent ag chooses ag ′ to be the next
agent.

Suppose that the term
∑

d′∈D(d) P (d′ | ag ′, d, n) · U(d′, d) is maximal for

ag ′ = ag∗. Then U(d, ag , n) is maximal if agent ag chooses ag∗ to be the next
agent with probability 1; i.e., P (ag∗ | d, n) = 1. Therefore,

U(d, ag , n) =
∑

d′∈D(d)

P (d′ | ag∗, d, n) · U(d′, d)

We can rewrite this equation as:

U(d, ag , n) =
∑

d′∈D(d)

P (d′ | ag∗, d, n) · U(d′, d)

=
∑

d′∈D(d)

∑
n′∈E(n,d,ag∗)

P (d′ | d, n′) · P (n′ | ag∗, d, n) · U(d′, d)

=
∑

n′∈E(n,d,ag∗)

P (n′ | ag∗, d, n) ·
∑

d′∈D(d)

P (d′ | d, n′) · U(d′, d)

=
∑

n′∈E(n,d,ag∗)

e(n, d, ag∗, n′) · U(d, ag ′, n′)

Here P (n′ | ag∗, d, n) is the transition probability of the service provided by
agent ag∗, and U(d, ag∗, n′) =

∑
d′∈D(d) P (d′ | d, n′) · U(d′, d) is the expected

utility agent ag∗ can realize in node n′ by choosing the proper next agent to
provide a service.

We can now conclude that to maximize U(d, ag , n), agent ag must choose
the agent ag∗ for which the term

∑
d′∈D(d) P (d′ | ag ′, d, n) ·U(d′, d) is maximal,

and agent ag∗ ensures that U(d, ag∗, n′) is maximized. This result enables us to
prove by induction to the maximum distance to a node d′ ∈ D(d) that for every
agent ag , U(d, ag , n) is maximal if every agent ag chooses a next agent ag∗ for
which the term

∑
d′∈D(d) P (d′ | ag∗, d, n) · U(d′, d) is maximal.

– Initialization step Let the current node be d′ ∈ D(d). Then the maximum
distance is 0 and the current agent is the agent agd receiving the result of
the task. So, U(d, agd, d

′) = U(d′, d).
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– Induction step Let U(d, agd, n
′) be maximal for all distances less than

k. Let n be a node such that the maximum distance to a node in D(d)
is k. Then according to the above result, U(d, ag , n) is maximal if agent
ag chooses a next agent ag∗ for which the term

∑
d′∈D(d) P (d′ | ag∗, d, n) ·

U(d′, d) is maximal, and for every n′ ∈ E(n, d, ag∗), U(d, ag∗, n′) is maximal.
The former condition holds according to the prerequisites mentioned in the
proposition. The latter condition holds according to the induction hypothesis.
Therefore, the proposition holds.

2

The proposition shows that there exists an optimal policy for the agents,
namely choosing the next agent for which the expected utility is maximized.
The next question is whether the agent can learn the information needed to make
this choice. That is, for every possible next agent, the agent must learn the
probabilities of every value in D(d) for a task t = (s, d) ∈ T with destination d.
Since these probabilities depend on the following agents that provide services,
the optimal probabilities, denoted by the superscript ∗, can only be learned if
these agent have learned to make an optimal choice. So, each agent needs to
balance exploration (choosing every next agent infinitely many times in order to
learn the optimal probabilities) and exploitation (choosing the best next agent).
We therefore propose the following requirements

– Every agent ag uses a probability Pi(ag ′ | d, n) to choose a next agent ag ′

for the task with destination d. The index i denotes that this probability
depends on the number of times this choice has been made till now.

– The probability Pi(ag ′ | d, n) that agent ag will choose agent ag ′ of which
the till now learned expected utility is sub-optimal, approximates 0 if i→∞.

–
∑

i→∞ Pi(ag ′ | d, n) =∞

The first requirement states that we use a probabilistic exploration. The sec-
ond requirement ensures that the agent will eventually only exploit what it has
learned. The third requirement ensures that the agent will select every possible
next agent infinitely many times in order to learn the correct probabilities.

A policy meeting the requirements is the policy in which the agent ag chooses
the currently optimal next agent ag′ with probability 1− 1

(k−1)i . Here, k is the

number of agents that can perform the next service for a task with destination
d, and i is the number of times agent ag has to choose one of these k agents for
a task with destination d. The agents that are currently not the optimal choice
are chosen with probability 1

(k−1)i .

We can prove that any approach meeting the above listed requirements will
enable agents to learn the optimal policy.

Theorem 1. Let every agent ag meet the above listed requirements for the prob-
ability Pi(ag ′ | d, n) of choosing the next agent. Moreover, let P ∗(d′ | ag , d, n) be
the optimal probability of reaching the node d′ ∈ D(d) if every agent chooses a
next agent ag∗ for which the term

∑
d′∈D(d) P (d′ | ag∗, d, n)·U(d′, d) is maximal.
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Then, every agent ag learns P ∗(d′ | ag ′, d, n) through pe(d′ | ag ′, d, n, i) if
the number of tasks with destination d for which agent ag has to choose a next
agent ag ′, denoted by i, goes to infinity.

Proof. We have to prove that: limi→∞ pe(d′ | ag ′, d, n, i) = P ∗(d′ | ag ′, d, n).

We can rewrite limi→∞ pe(d′ | ag , d, n, i) as:

lim
i→∞

pe(d′ | ag ′, d, n, i) = lim
i→∞

Cd′ | i

i

= lim
i→∞

∑
n′∈E(n,d,ag′)

Cn′ | i

i
·
Cd′ | Cn′ | i

Cn′ | i

= lim
i→∞

∑
n′∈E(n,d,ag′)

pe(n′ | ag ′, d, n, i) ·
Cd′ | Cn′ | i

Cn′ | i

=
∑

n′∈E(n,d,ag′)

P (n′ | ag ′, d, n) · lim
i→∞

Cd′ | Cn′ | i

Cn′ | i

We will prove that Cn′ | i → ∞ if i → ∞ and P (n′ | ag ′, d, n) > 0. That is,
for every x ∈ N, limi→∞ P (Cn′ | i > x) = 1.

lim
i→∞

P (Cn′ | i > x) = lim
i→∞

1− P (Cn′ | i ≤ x)

= 1− lim
i→∞

x∑
j=0

(P (n′ | ag ′, d, n))j · (1− P (n′ | ag ′, d, n))i−j

= 1

So, Cn′ | i →∞ if i→∞. Therefore,

lim
i→∞

pe(d′ | ag ′, d, n, i) =
∑

n′∈E(n,d,ag′)

P (n′ | ag ′, d, n) · lim
j→∞

pe(d′ | d, n′, j)

The estimated probability pe(d′ | d, n′, j) depends on the probability of choosing
the next agent. This probability is a function of the j-th time agent ag ′ must
choose a next agent ag ′′ for a task with destination d in node n′.

lim
j→∞

pe(d′ | d, n′, j) = lim
j→∞

∑
ag′′∈succ(n′,d)

Pj(ag ′′ | d, n′) ·
Cd′ | ag′′,j

Cag′′ | j

where Cag′′ | j is the number of times that agent ag ′′ was chosen to be the next
agent, and Cd′ | ag′′,j is the number of times that subsequently node d′ was
reached.

We will prove that Cag′′ | j → ∞ if j → ∞ and Pj(ag ′′ | d, n) > 0 for every
j. That is, for every x ∈ N, limi→∞ P (Cag′′ | j > x) = 1. A complicating factor
is that Pj(ag ′ | d, n) can be different for every value of j. Let y be the index of
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the last time agent ag ′′ is chosen, and let px be the probability of all possible
sequences till index y. Then we can formulate:

lim
j→∞

P (Cag′′ | j > x) = lim
j→∞

1− P (Cag′′ | j ≤ x)

= 1− px · lim
j→∞

j∏
k=y+1

(1− Pk(ag ′′ | d, n))

= 1− eln(px)+
∑∞

k=y+1 ln(1−Pk(ag
′′ | d,n))

According to the Taylor expansion of ln(·): ln(1−Pk(ag ′′ | d, n)) < −Pk(ag ′ | d, n).
Therefore,

lim
j→∞

P (cag′′ | j > x) = 1− eln(px)−
∑∞

k=y+1 Pk(ag
′′ | d,n)

= 1− eln(px)−∞ = 1

The above result implies:

lim
j→∞

pe(d′ | d, n′, j) = lim
j→∞

∑
ag′′∈succ(n′,d)

Pj(ag ′′ | d, n′) · lim
k→∞

pe(d′ | ag ′′, d, n′, k)

We can now prove the theorem by induction to the maximum distance to a
node d′ ∈ D(d).

– Initialization step Let the current node be d′ ∈ D(d). The maximum dis-
tance is 0 and the current agent is the agent agd receiving the result of the
task. So, limi→∞ pe(d′ | agd, d, d

′, i) = P ∗(d′ | agd, d, d
′) = 1.

– Induction step Let limj→∞ pe(d′ | ag ′, d, n′, j) = P ∗(d′ | ag ′, d, n′) be max-
imal for all distances less than k. Moreover, let the maximum distance from
n to d′ be k.
Then, the expected utility of agent ag ′′ ∈ succ(n′, d) is:

lim
j→∞

Uj(ag ′′, d, n′) = lim
j→∞

∑
d′∈D(d)

pe(d′ | ag ′′, d, n′, j) · U(d′, d)

=
∑

d′∈D(d)

P ∗(d′ | ag ′, d, n′) · U(d′, d) = U∗(ag ′′, d, n′)

According to the requirement,

lim
j→∞

Pj(ag∗j | d, n′) = 1 for ag∗j = argmaxag′′Uj(ag ′′, d, n′)

So,

ag∗ = lim
j→∞

ag∗j

= lim
j→∞

argmaxag′′Uj(ag ′′, d, n′)

= argmaxag′′U
∗(ag ′′, d, n′)
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This implies:

lim
j→∞

pe(d′ | d, n′, j) = lim
j→∞

∑
ag′′∈succ(n′,d)

Pj(ag ′′ | d, n) · lim
k→∞

pe(d′ | ag ′′, d, n′, k)

=
∑

ag′′∈succ(n′,d)

P ∗(d′ | ag ′′, d, n′) · lim
j→∞

Pj(ag ′′ | d, n)

= P ∗(d′ | ag∗, d, n′) = P ∗(d′ | d, n′)

Therefore,

lim
i→∞

pe(d′ | ag ′, d, n, i) =
∑

n′∈E(n,d,ag′)

P (n′ | ag ′, d, d) · lim
j→∞

pe(d′ | d, n′, j)

=
∑

n′∈E(n,d,ag′)

e(n, d, ag ′, n′) · P ∗(d′ | d, n′)

= P ∗(d′ | ag ′, d, n)

2

The theorem shows us that each agent can learn which next agent results in
an expected high or low quality for the remainder of a task. In order to learn
this assessment, the agents must explore all possible choices for a task infinitely
many times. At the same time the agents may also exploit what they have learned
sofar. In the end the agents will only exploit what they have learned. Hence, the
learning-based approach combines diagnosis and repair.

An advantage of the learning-based approach is that intermitting faults can
be addressed and that no collaboration between service agents is required. A
disadvantage is that making diagnosis requires information about many execu-
tions of the same task. However, as we will see in the next section, a repair is
learned quickly at the price that correctly functioning agents may be ignored.

Agents learn an assessment for each possible destination. In special circum-
stances, they need not consider the destination, and can focus on the next agent
that can provide a service for a task. First, the quality of service provided by
an agent does not depend on the destination of the task. Second, we do not use
utilities for the result of a task and only identify whether a task execution is
successful. If these conditions are met, an agent can learn for every next agent
the probability that the task execution will be successful.

4 Experiments

To determine the applicability of the theoretical results of the previous section,
we ran several experiments. For the experiments, we used a network of n2 normal
nodes organized in n layers of n nodes. Every normal node in a layer, except
the last layer, is connected to two normal nodes in the next layer. Moreover,
from every normal node in de first layer, every normal node in the last layer
can be reached. With every transition a different agent is associated. To model
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that these agents may provide a low quality of service, for every transition from
normal node n to normal node n′ representing the correct execution of a service
by an agent, there is also a transition from n to an abnormal node n′′ representing
the incorrect execution of the service. Here, the abnormal node n′′ is a duplicate
of the normal node of n′. For every normal node except the nodes in the first
layer, there is a duplicate abnormal node denoting the sub-optimal execution of
a service. In this model, no recovery is possible. Figure 2 show a 4 by 4 network.
The normal nodes that can be used for a normal execution of tasks are shown
in yellow, blue and green. The duplicate abnormal nodes representing a sub-
optimal execution are shown in orange. The transitions to the latter nodes and
the transitions between the latter nodes are not shown in the figure.

2,4	

2,2	

2,1	

2,3	

3,3	

3,2	

3,1	

3,4	

4,3	

4,2	

4,1	

4,4	

1,4	

1,2	

1,1	

1,3	

Fig. 2. The network used in the experiments. Note that the dashed arrows denote
transitions from nodes (1,4), (2,1) and (3,4) to nodes (2,1), (3,4) and (4,1) respectively.

In our first experiment we determined how often a randomly chosen service
is executed in 10000 randomly chosen tasks. We used a network of 10 by 10
nodes in this experiment. Figure 3 shows the cumulative results as a function of
the number of processed task. Figure 4 shows in which experiment the service
is used.

In the second experiment we used the same network. A fault probability
of 0.1 was assigned to the randomly chosen service. Again, we measured how
often a service is executed in 10000 randomly chosen tasks. Figure 5 shows the
cumulative results as a function of the number of experiments, and Figure 6
shows in which task the service is executed. We clearly see that the agents learn
to avoid the agent that provides a low quality of service.

The results show that each agent learns to avoid passing on a task to an
agent that may provide a low quality of service. An agent uses the estimated
probabilities of a successful completion of a task when passing on the task to
the next agent. Nevertheless, as shown in Figure 6, the agents still try the low
quality service, but with an increasingly lower probability. This exploration is
necessary to learn the correct probabilities.
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Fig. 3. The number of times a selected service is chosen as a function of the number
of processed task.
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Fig. 4. The tasks in which a selected service is chosen.

Inspection of the learned probabilities shows that the learning process is
slow w.r.t. the total number of executed tasks. Figure 7 shows the learning of
the probability that choosing an agent in a node n will result in a good quality
of service for a task with a specific destination d. The probability that must be
learned is 0.5. The agents only learn when they provided a service for a task
with destination d. In Figure 7, the service is executed only 4 times for tasks
with destination d of 10000 executions of randomly chosen task. Although the
learning process is slow, it is not a problem for the behavior of the network of
distributed services. However, it does result in avoiding the services provided by
some agents while there is no need for it.

In the third experiment we learned the probability that choosing an agent will
result in a good quality of service for a task, independent of the destination of
the task. Figure 8 shows the result of the learning process. Again the probability
that must be learned is 0.5. The learning process is much faster. However, as
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Fig. 5. The number of times a selected service is chosen as a function of the number
of processed task.
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Fig. 6. The tasks in which a selected service is chosen.

discussed at the end of the previous section, ignoring the destination of a task
is only possible if the quality of service does not depend on the destination, and
if we only identify whether a task is successful.
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Fig. 7. Learning of the service success probability given a destination.
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Fig. 8. Learning of the service success probability ignoring the destination.

5 Conclusions

This paper presented a model for describing a network of distributed services
for task executions. Each service is provided by an autonomous, possibly self-
interested agent. The model also allows for the description of sub-optimal and
failed services.

When a task is completed with a low quality, we would like to determine
which service was of insufficient quality, which agent was responsible for the
provision of this service, and how we can avoid agents that might provide a low
quality of service. To answer these questions, the paper investigated an approach
for learning in a distributed way an assessment of other agents. The learned in-
formation can be exploited to maximize the quality of a task execution. The
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correctness of the learned diagnosis an repair approach is proved, and demon-
strated through experiments.

An important aspect of the distributed learning approach is that agents do
not have to collaborate. Since diagnosis of distributed services is about identify-
ing the agents that are to blame for a low quality of service, this is an important
property. It provides an incentive for being honest if agents make a diagnosis in
a collaborative setting. Systematic lying will be detected eventually.

This research opens up several lines of further research. First, other policies
that balance exploration and exploitation could be investigated. Second, more
special cases in which the learning speed can be improved should be investi-
gated. The topology might, for instance, be exploited to improve the learning
speed. Third, since agents learn to avoid services of low quality before accu-
rately learning the corresponding probabilities, we may investigate whether we
can abstract from the actual probabilities. Fourth, as mentioned in the Introduc-
tion and above, the learned assessments provide an incentive for honesty when
agents make a collaborative diagnosis. Is this incentive sufficient for agents to
collaborate if traditional diagnostic techniques are used?
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