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Abstract. Motion segmentation for 2D videos is usually based on tracked
2D point motions, obtained for a sequence of frames. However, the 3D
real world motion consistency is easily lost in the process, due to pro-
jection from 3D space to the 2D image plane. Several approaches have
been proposed in the literature to recover 3D motion consistency from
2D point motions. To further improve on this, we here propose a new cri-
terion and associated technique, which can be used to determine whether
a group of points show 2D motions consistent with joint 3D motion. It
is also applicable for estimating the 3D motion information content. We
demonstrate that the proposed criterion can be applied to improve seg-
mentation results in two ways: finding the misclassified points in a group,
and assigning unclassified points to the correct group. Experiments with
synthetic data and different noise levels, and with real data taken from
a benchmark, give insight in the performance of the algorithm under
various conditions.

1 Introduction

Motion provides an important clue for the analysis of video sequences. It can
be used for either detecting and segmenting the moving objects present in the
scene, or recovering the 3D structure of a scene [18, 5, 2, 4].

When an image is taken by a camera, it maps the 3D world onto a 2D image
plane by a projective transformation. The motions of the scene objects as well
as the camera, jointly cause the changes of corresponding pixels in the image.
We can detect these 2D motions by estimating the displacements of pixels be-
tween frames, or by tracking salient feature points from video sequences [11, 4,
20, 13]. Motion segmentation aims at grouping together the points (or pixels)
that have the same motion in the video sequence. The key issue of motion seg-
mentation is the definition of “same motion”, which can be a 3D motion in the
three-dimensional world, or simply a 2D motion of image pixels [24]. Motion
segmentation is difficult because the detected motions of points (or pixels) are
combined with displacements caused by camera motion and parallax caused by
3D structures [23].

Many motion segmentation approaches group together pixels undergoing the
same 2D motion between successive images in the sequence [2, 21, 1, 15, 19, 26].



However, 3D geometric properties are typically affected by the transformation,
such as shapes, angles and distances [9]. 3D motion consistency of points in the
world coordinate frame is therefore not assured to be preserved in the 2D image
coordinate frame. It implies that different parts of one and the same object, e.g.
the three visible sides of a cube, can show different 2D motion patterns in the
image plane. As a result, 2D motion based methods will fail to properly segment
out the object. Another class of motion segmentation methods, tries to capture
the 3D motion consistency with the help of constraints derived from geometric
or physical models, such as rigidity of an object, 2D homography, an epipolar
constraint, or a trilinear constraint [5, 10, 7, 24]. These constraints, with some
success, allow to group points (or pixels) moving with the same 3D motion,
based on their 2D motion information at the projected image.

In this paper, we propose a new criterion for measuring the 3D rigid motion
consistency of a group of points, based on their 2D motions. This criterion can
be used with singular value decomposition (SVD), to measure the ‘quality’ of
segmented groups of points in a way that will be made more precise later. It is
also applicable for recovering the parameters of 3D rigid motion giving the 2D
motion information of a collection of points from the same object. This is used to
detect misclassified points and to assign unclassified points to the correct group.

2 Related work

A key problem of motion segmentation is to determine whether a set of points
all have the same motion. Normally the motion of points (or pixels) is estimated
by detecting their 2D positions at each frame from a video sequence. The 2D
motion of each point (pixel) in image plane is a projection of a 3D motion in
the scene. The “same motion” can be defined based on either their 2D motion
consistency, or on their 3D motion consistency.

For segmentation of 2D motions in the image space, one straightforward way
is to define the “same motion” with a parametric motion model. Parametric
approaches use a 2D affine transformation to describe joint 2D motion [21, 2, 27].
The affine motion model neglects perspectivity effects, and is largely limited to
approximate the rigid motion of planar surfaces far away from the camera. Non-
parametric models, such as Gaussian processes, are more flexible and suitable
for curved surfaces [22]. However, these methods usually segment 3D objects
into multiple parts, because of discontinuities in projected 2D motions, caused
by perspective effects, depth discontinuities, occlusions, etc. [24]

3D motion segmentation searches for multiple-view geometric constraints to
measure the 3D motion consistency. The two-view-based approaches model the
motion by a fundamental matrix, based on the epipolar geometry [19, 12]. Other
approaches are based on the three-view geometry, and encapsulate the trilinear
relations of corresponding points in three images [16, 25]. These methods handle
3D motion consistency by preserving the 3D relations of points. Motion segmen-
tation based on such geometric constraints tends to suffer from a “chicken and
egg” problem, as it requires prior knowledge of the number of objects [5].

2



A variety of solutions are proposed to avoid estimating the motion model ex-
plicitly, thus solving this “chicken and egg” problem. The factorization method
introduced by Tomasi and Kanade [14], factorizes the trajectory matrix of points
tracked in a video sequence into a motion matrix and a shape matrix. The rigidity
of objects ensures the uniqueness of the shape matrix, and the feature trajec-
tories belonging to an object are linearly dependent. Then the “same motion”
is defined as belonging to a low-dimensional subspace, and trajectories lying in
the same subspace are regarded as belonging to the same object. Many devel-
opments of the factorization methods are made by the following researchers [14,
3, 24, 5, 7]. The factorization methods can group together points moving with
a consistent “behavior” over a long period of time, because they use the full
temporal trajectory of every tracked point [24]. However, current factorization
methods often fail to segment motions between only two frames [8].

In this paper, we investigate an efficient way of measuring 3D motion con-
sistency using the 2D image motion between just two frames. The proposed
criterion can be used for measuring the quality of segmented groups. Moreover,
it is able to estimate the 3D structure in an efficient way.

3 Background

3.1 3D rigid body motion

When a rigid object is moving in 3D space, all the points on the object will follow
the same motion model. It can be modeled as a combination of 3D rotation
and translation. Suppose a point moves from position p = [X,Y, Z]T to p′ =
[X ′, Y ′, Z ′]T, then

p′ = Rp + t (1)

where R is a 3D rotation matrix and t = [t1, t2, t3]T is a translation vector car-
rying the displacements in the directions of the three axes. The matrix R can be
parameterized as: R = Rz(ϕz)Ry(ϕy)Rx(ϕx). where ϕz ∈ (−π, π], ϕy ∈ [−π2 ,

π
2 ],

and ϕx ∈ [−π2 ,
π
2 ] are yaw, pitch, and roll angles respectively. For convenience

and conciseness we shall write sx = sinϕx, sy = sinϕy, sz = sinϕz and cx =
cosϕx, cy = cosϕy, cz = cosϕz. So:

R =

cz −sz 0
sz cz 0
0 0 1

 cy 0 sy
0 1 0
−sy 0 cy

1 0 0
0 cx −sx
0 sx cx

 (2)

We shall write rij to denote the entry in row i and column j of R.

3.2 Projections

The physical camera projects the 3D world onto a 2D image plane through some
projection mechanism. Accurate knowledge of this projection mechanism may
in principle be used to provide 3D information for understanding the images.
However, in practice the lens system in a real camera is too complex to perform
3D reconstruction for. Instead, approximate camera models are developed for
different applications, starting from corresponding simplifying assumptions.
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Fig. 1: Perspective camera model
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Fig. 2: Orthographic camera model

General perspective projection General perspective projection is an ideal-
ized mathematical model for a real camera, which is widely used in computer
vision applications. It assumes that the camera is sufficiently small compared to
the viewed scenes and objects.

Fig. 1 shows the simplest central-projection camera: the pinhole camera
model. The XY Z coordinate frame is centered at the camera, with the Z-axis
being the principal axis of the camera. The projected image plane coincides with
the focus plane, and employs the xy coordinate frame. The origin of this image
frame, o, is the projection of the camera center O on the image plane; their
distance is indicated by f . A point Xc = [Xc, Yc, Zc]

T in the camera frame, is
mapped to the point x = [x, y]T in the image frame by

x =
f

Zc
PXc where P = [ 1 0 0

0 1 0 ] (3)

Orthographic projection model If the camera is sufficiently far away from
the viewed scene, one may assume an infinite focal length. Then the points in
the camera frame are mapped to the image frame by parallel projection, as
illustrated in Figure 2. For this orthographic projection model, the coordinate
mapping takes the form:

x = PXc (4)

4 3D motion consistency

To analyze 3D motion consistency, we address the situation in which we have a
given set of matched pairs of feature points from two image frames. We aim to find
a 3D rigid body motion consistent with all those matched pairs. Combining such
a 3D motion with the camera projection mechanism, we can set up an equation
relating the coordinates for each matched pair. With sufficiently many points
from the same object, an overdetermined system of equations will be obtained.
Due to the rigid body motion assumption, this system will have certain structural
properties. By using matrix factorization techniques we then can analyze how
to recover a 3D rigid body motion in the best possible way.

4.1 Theorems

Consider a point on an object undergoing a rigid body motion. Suppose it moves,
in the camera coordinate system, from some position p at time t to another
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position p′ at time t′. Then according to Eqn. (1) we have that p′ = Rp + t,
where R is a rotation matrix and t a translation vector. The translation vector
can be eliminated by working relative to a selected point for which the movement
is known (e.g., a center of mass or any other point on the object): if it also holds
that p′

0 = Rp0 + t, then
p′ − p′

0 = R(p− p0). (5)

If the scene is far away from the camera, and focal length is small compared
to the distance of the object to the camera, then for every two points p and
p′ at distances Zc and Z ′c, we can assume f

Zc
≈ f

Z′
c
. Hence, we can ignore the

effect of the scaling factor f
Zc

and the camera projection can be approximated

by an orthographic projection. Thus the point p at position [x, y, z]T in the
camera frame is mapped (up to a fixed factor) to position [x, y]T in the image
frame. The following theorems apply, subject to this orthographic projection
assumption. The general situation is discussed in Section 4.3.

Theorem 1. A set of m + 1 matched pairs of 2D points (xi, yi)
T and (x′i, y

′
i)

T

(with i = 0, . . . ,m) can consistently be interpreted as the 2D coordinates of
orthographic projections onto the image plane of m + 1 pairs of 3D points in
camera space which are related by a single 3D rigid body motion, if and only if
the m× 4 data matrix

M =

 x̃1 ỹ1 x̃′1 ỹ′1
...

...
...

...
x̃m ỹm x̃′m ỹ′m

 (6)

where x̃i = xi − x0, ỹi = yi − y0, x̃′i = x′i − x′0 and ỹ′i = yi − y0, has a nontrivial
null space containing a vector v of which the four entries satisfy

v21 + v22 = v23 + v24 . (7)

Typically, we will be interested in situations with sufficiently many matched
pairs of data points (i.e., m ≥ 4), for which non-rigid motions would otherwise
produce the trivial null space {0}. For rigid body motion, the non-trivial null
space of M will normally be of dimension 1, unless the rigid body motion is of a
special type. The following theorem addresses the nature of the family of rigid
body motions consistent with such data.

Theorem 2. If the condition under Theorem 1 is satisfied, then there exists a
family of rigid body motions, consistent with the data, having at least one real
degree of freedom for the translation (corresponding to an arbitrary translation
in the z-direction) and at least one real degree of freedom for the 3D rotation.

Proof From 2 and 5, we have[
x̃′1 . . . x̃

′
m

ỹ′1 . . . ỹ
′
m

]
=
[
cz −sz
sz cz

] [
cy sysx sycx
0 cx −sx

] [x̃1 . . . x̃m
ỹ1 . . . ỹm
z̃1 . . . z̃m

]
(8)
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Every row x̃′i is a linear combination of x̃i, implying that M has a rank of at
most 3. We can rewrite the equation in terms of M :

M


cy 0
sysx cx
−cz sz
−sz −cz

 =

 z̃1...
z̃m

 [−sycx sx] (9)

Multiplying the result by
[ cx sx
−sysx sycx

]
:

M

 cycx cysx
0 sy

−czcx−szsysx −czsx + szsycx
−szcx + czsysx −szsx−czsycx

 =

 z̃1...
z̃m

 [−sy 0] (10)

If sy = 0, we have a nontrivial v = [1, 0, −cz, −sz]T such that Mv = 0; and if

sy 6= 0, we have a nontrivial vector v = [cysx, sy, −czsx + szsycx, −szsx−czsycx]
T

such that Mv = 0. In both cases v satisfies v21 + v22 = v23 + v24 . This proves one
implication of Theorem 1.

Conversely, if a non-zero vector v = [v1, v2, v3, v4]T is given in the kernel of
M which happens to satisfy v21 + v22 = v23 + v24 , we can proceed by the following
two cases with respect to the value of v2:

Case 1. Assume that v2 6= 0. Then let ϕy have an arbitrary nonzero value in
the interval

(
− arctan

∣∣ v2
v1

∣∣, arctan
∣∣v2
v1

∣∣). Next, compute ϕx = arcsin
(
v1
v2

tan(ϕy)
)
.

Let λ = v2
sinϕy

be a scaling factor, which is nonzero. Then v2 = λsy and v1 =

λcysx. Consequently λ can be computed from v21 + v22 = λ2(1−c2yc2x).

Note that [ v3v4 ] = λ
[
−cz sz
−sz −cz

]
[ sx
sycx ] should hold, which can be rewritten in

terms of cz and sz:
[
−v3 −v4
−v4 v3

]
[ czsz ] = λ [ sx

sycx ]. The values of sz and cz are ob-

tained, which uniquely specify ϕz ∈ (−π, π].

Case 2. Assumes that v2 = 0. Then let ϕy = 0 and note that v1 6= 0. Now choose
ϕx to have an arbitrary nonzero value in the interval

(
−π2 ,

π
2

)
. Then set λ = v1,

ϕz is determined through [ v3v4 ] = λ
[
−cz
−sz
]
. It follows that v21 + v22 = v23 + v24 = λ2.

In either of the two cases 1 and 2, a nonzero scaling factor λ and suitable
values for ϕz, ϕy and ϕx are obtained which make that the vector v is of the

form v = λ

[ cysx
sy

−czsx+szsysx
−szsx−czsycx

]
or simplified form v = λ

[
1
0
−cz
−sz

]
when sy = 0.

In Case 1 (where sy 6= 0), this allows one to construct a corresponding

vector (z̃1, . . . , z̃m)T to satisfy the required identity. Because
( cx sx
−sysx sycx

)
is in-

vertible, (z̃′1, . . . , z̃
′
m)T can be obtained by reconsidering the omitted third row

of R. Clearly, translations in the z-direction cannot be observed at all, while
coordinate values in all directions can only be obtained relative to an arbitrarily
chosen origin. For z0 and z′0 one can introduce arbitrary values, which shows
that the entry t3 of translation vector t is completely free.
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In Case 2 (where ϕy = 0), both columns in the matrix following M in Equa-
tion 10 are collinear; both columns are of the form k(1, 0, −cz, −sz)T (because
cy = 1, and k can be either cx or sx).

With ϕx from the indicated range (which ensures that cx and sx are both
nonzero), we have that both columns are collinear, and that the relationship in
Equation 10 is properly satisfied. However the matrix

( cx sx
−sysx sycx

)
is no longer

invertible, so to rewind our steps, we should reconsider Equation 9. With sx 6= 0
it follows that:  z̃1...

z̃m

 =
1

sx
M


0
cx
sz
−cz

 (11)

Then we can proceed as in Case 1 to construct a rotation and translation which
is consistent with the given observed data. This proves the converse implication
of Theorem 1.

It also proves Theorem 2 upon noting that in both Cases 1 and 2 a real
degree of freedom for R (for the angles ϕy and ϕx, respectively) and for the
coordinate t3 was encountered. In special cases, i.e., when the rank of M is less
than 3, more degrees of freedom may occur.

4.2 Applicability of theoretical results

Consistency with 3D rigid body motion In computer vision applications,
motion based image segmentation is an important and fundamental topic. The
aim is to partition visual elements (pixels or feature points) into groups, based
on their motion features. Segmentation algorithms are used in tasks like ob-
ject detection and tracking, where objects are represented by groups of points
(or pixels). For videos from a monocular camera, the key challenge of motion
segmentation is to segment the points w.r.t. their 3D motions, while only 2D
projection-coordinates of points are available.

Theorem 1 can be used to determine whether the movements of a group of
2D points (matched point from consecutive images) are consistent with a 3D
rigid body motion. Giving m + 1 pairs of points, we can decompose the m × 4
data matrix M using the SVD:

M = UDV T (12)

in which U is an m×m orthogonal matrix, V is a 4× 4 orthogonal matrix, and
D = diag {d1, d2, d3, d4} is an m×4 diagonal matrix with entries d1 ≥ d2 ≥ d3 ≥
d4 ≥ 0 on its main diagonal. Theorem 1 establishes that at least d4 = 0 should
hold if the movement of 2D points is consistent with a 3D rigid body motion.
However, when working with real data, deviations may occur for various reasons,
such as inaccuracies in feature extraction and motion detection. Moreover, the
orthographic projection hypothesis - which disregards the perspective - is an
approximation.
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The value of d4 can be taken as a measure for the (lack of) quality of 3D
rigid body motion consistency, for the group of points being analyzed. According
to Theorem 1, in case of a rigid 3D body motion, every vector v in the kernel
satisfies v21 + v22 = v23 + v24 if d3 > 0. This property can be also used as a quality
measure for the rigid body motion consistency. Note that a vector v is obtained
as the last column of matrix V if d4 = 0 and d3 > 0.

Reconstruction of 3D rigid body motion Theorems 1 and 2 also enable us
to estimate the parameters of a 3D rigid body motion for a given set of matched
pairs. Starting from data matrix M (Eqn.6) with a 1-dimensional null space,
using Equation 7, there will be one real degree of freedom when computing the
3D rotations ϕz, ϕy, ϕx. There is also one degree of freedom (the translation
in the z direction) in determining t. However, the values z̃1, . . . , z̃m completely
depend on the degree of freedom for the 3D rotation.

We may determine the value of ϕy or ϕx by minimizing a criterion function,
such as the sum of squares of values z̃1, . . . , z̃m. The idea is that the norm of the
vector of changes in the (unobserved) z-direction, consistent with the computed
rotation and translation, is minimized so that no unnecessarily large deviations
are included in the rigid body motion.

4.3 Error analysis

The proposed theorems are based on the orthographic projection, which is an
approximation of the perspective projection. In this subsection, we analyse the
errors of orthographic projection w.r.t. to the perspective projection.

Suppose a 3D point is moving from (Xc, Yc, Zc)
T at time t to (X ′c, Y

′
c , Z

′
c)

T at
time t′, and two images are captured at the two time points. The coordinates of
a projected point at time t and t′ under the perspective projections are (xp, yp)

T

and (x′p, y
′
p)

T respectively. The coordinates of the same projected point under

orthographic projection are (x, y)T and (x′, y′)T. According to the Equations
4 and 3: [x, y]T = [Xc, Yc]

T, [xp, yp]
T = f

Zc
[Xc, Yc]

T, [x′, y′]T = [X ′c, Y
′
c ]T and

[x′p, y
′
p]

T = f
Z′

c
[X ′c, Y

′
c ]T. The perspective projection scales the [Xc, Yc]

T with a

factor f
Zc

. We can compensate for the scaling of [xp, yp]
T by multiplying [xp, yp]

T

with µ = Zc

f . So, [x, y]T = µ[xp, yp]
T. By applying the same scaling to [x′p, y

′
p]

T,
we can compute the error caused by orthographic projection:[

x′

y′

]
− µ

[
x′p
y′p

]
= (1− Zc

Z ′c
)

[
X ′c
Y ′c

]
(13)

If the changes in z direction caused by translation and rotation are small, then
Zc

Z′
c
≈ 1, and the error is approximately 0.

5 Experiments

In this section, we evaluate the applicability of the theorems on synthetic data
in subsection 5.1, and subsequently on real video data in subsection 5.2. The

8



theorems can also be used to estimate the 3D rigid motion of an object with one
degree of freedom. We evaluate this aspect in subsection 5.3.

5.1 Improving motion segmentation using synthetic data
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There are two possible ways to apply our results in motion segmentation,

1. Giving the result of a segmentation, an object is represented as a group of
points. Usually there are miss-classified points in each group, which make
the result in an low precision. We can use the criterion in this paper to find
out the miss-classified point in a class of points.

2. Given a group of points that are belonging to an object, and a set of new
points without assignments, we can identify whether the new points belong
to the object. Failing to identify these points result is a low recall.

We generated a 3D synthetic scene containing a cube, which follows a 3D
transformation. Randomly chosen points on the surface of the cube are tracked.
We also randomly generate some noise points that have arbitrary 3D motions.
The motion of each point is represented by its initial position and the new posi-
tion after transformation. Figure 3 illustrates the 3D motion flows of the points
on the cube surface in camera space, while Figure 4 shows the orthographic
projection of these motion vectors on the image that is parallel to the xy plane.

For the first experiment, we choose 100 points from the cube object and n
noise points. We aim at allocating these points into two subgroups: the “objects”
and “noises” using the criterion in this paper. The accuracy is defined as the
percentage of points that are successfully classified, which is illustrated in Fig. 5
w.r.t. different noise ratios (i.e. the percentage of noise points in the mixture set).
We compare our method with a state-of-art method—sparse subspace clustering
(SSC) [6], whose result is illustrate as the blue line in Fig. 5. The result shows
that our method is more stable than SSC.

For the second experiment, m (m ∈ [4, 100]) points on the cube are chosen
to represent the object, which is used to determine the classification of 200 other
points (half from the object and half from the noises) based on the criterion in
our paper. We computed the error using error=

∥∥∥d4+√v21+v22−v23−v24∥∥∥. We assigned

a point to the group if its error is lower than a threshold value (which is 0.005 in
this experiment). We compared it with another error estimation method, which
is computed by the error to the affine motion model that is estimated using the
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m points represent the object [26]. The performance is evaluated by the accuracy
of correctly classifying the undetermined points, as shown in Fig. 6.
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Fig. 5: Identifying the mis-classified
points in a group.
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5.2 Improving motion segmentation using video data

In this experiment, we used the real video sequences from the Hopkins155 bench-
mark data set [17], for which the feature points on the objects’ surfaces and their
motions are provided. We chose 25 video sequences from the category named
“checkerboard”. Each video contains 29 frames, which records a scene with 3
objects following distinct 3D motions (rotation and translation). There are 75
objects in total. In each experiment we chose one object and used the motion
vectors between the frame pair {f1, fi} (i ∈ [2, 29]). We computed the average
accuracy of finding the misclassified points from a group over all objects w.r.t.
different frame pairs and noise ratio, which is illustrated in Fig. 7. For the second
experiment, we computed the average accuracy of allocating a point to a group
of points (which represent an object), w.r.t. the group size (i.e. the number of
points in the group) and the distance between frames, as shown in Fig. 8.
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Fig. 7: The accuracy of finding mis-
classified points as function of the
noise ratio and the distance between
two frames.
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Fig. 8: The accuracy of allocating a
point correctly to an object w.r.t.
the group size of the object and the
distance between two frames.

5.3 Recovering the 3D rigid body motion

Exp. 5 addressed the reconstruction of a 3D rigid body motion. We investigated
whether it is possible to handle the one degree of freedom for the 3D rotation by
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minimizing the sum of square of z̃1, . . . , z̃m. Our initial experiments with points
on the surfaces of a cube in the synthetic scene showed that for randomly chosen
rotations smaller than π/4 rad, we can recover the rotation angles ϕx, ϕy and
ϕz with average accuracies of 74.3%, 74.3%, 94.6% respectively.

6 Conclusion

This paper presented two theorems specifying properties of a 2D projection of
a 3D rigid body movement. The theorems state that the data matrix of 2D
projection of points on a 3D rigid body making a 3D movement, has a non-
trivial kernel with a specific structure. The theorems also show that we can
reconstruct the original 3D body movement with one degree of freedom for the
translation in z-direction and one degree of freedom for the 3D rotation.

We used the theorems to measure the 3D rigid motion consistency of a group
of 2D projection points. It can achieve above 95% accuracy in identifying misclas-
sified points when the rate of the misclassified points is below 10%, and remains
around 90% when the noise rate increases to 20%. We also used the theorems
to determining whether new points belong to a known object. If we known more
than 50 points belonging to the object, new points can be classified with an
accuracy around 90%. These results suggest that the theorems can be used to
improve the segmentation accuracy of existing motion segmentation algorithms.

Recovering the 3D rotation angle of a moving object has also been evaluated.
The initial results are promising but further research is required.
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