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Introduction

Protein sequence alignment is, in bioinformatics, a task which aims to identify the func-
tional, structural, or evolutionary relationships among a set of proteins believed to be
related in some way (for example, proteins sharing a common ancestor). More precisely,
it attempts to explain differences in proteins by finding the most likely substitutions,
insertions, or deletions of amino acids residues. This is done by inserting gaps in each
protein sequence, so that the gapped sequences can be represented as rows in a matrix,
with the matrix columns containing residues that are either identical or similar. Such
matrix is what we call an alignment.

Biologists have been comparing related proteins for a long time, but the earliest use
of computer-based approaches can be traced back to at least 1966, with the works of
Fitch [Fit66]. Since then, numerous sequence alignment algorithms have been developed,
many of which being used everyday in modern bioinformatics. The most famous of these
algorithms is probably the one of Needleman and Wunsch [NW70], which, although it
originated in 1970, is still applied today. Furthermore, its simplicity and historical
importance allowed it to become a standard introduction to many sequence alignment
courses.

A protein is more than a linear sequence of amino acids: it also has a three-dimensional
structure which is responsible for most of the protein’s biological function. For the
majority of proteins, this structure is unknown; but if the structure is known, even
partially, it can be used to produce alignments which are biologically more accurate
than alignments made by using the residue sequence alone.

In this thesis, we shall use a backbone flexibility predictor called DynaMine to acquire
some additional information on a protein’s structure, and we will try to use that infor-
mation for improving the Needleman-Wunsch algorithm. Classical uses of Needleman-
Wunsch uses a 20×20 matrix containing scores for each residue substitution. Using
DynaMine and reference alignments in the BAliBASE benchmark database, we will
create matrices for scoring matchings between DynaMine values. These matrices will
be combined with the classical residue substitution matrices, producing Needleman-
Wunsch algorithms which align sequences by using both DynaMine values and amino
acid residues.

We organized the thesis in the following manner. First there is the obligatory background
chapter containing all the theory necessary for the later experiments. In particular, the
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Needleman-Wunsch and matrices-generating algorithms are described in details, and
generalized so that we can use them with the values produced by DynaMine. The sec-
ond chapter is the preliminary to our experiments: it will explain our objective, our
choice of software, and how our dataset was obtained and preprocessed. Finally, there
is the chapter containing the actual experiments that were conducted: it includes the
creation of DynaMine scoring matrices, their combination with classical substitution ma-
trices, the analysis of the alignments obtained using our modified Needleman-Wunsch
algorithm, and a list of alternative methods that we could not further investigate be-
cause of time and scope constraints. We conclude the chapter with a summary of what
was learned when writing this thesis, as well as some self-criticism. For the ones inter-
ested in computer programming, we included an appendix explaining where to find the
(generalized) Needleman-Wunsch implementation used in our experiments.
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Chapter 1

Background

1.1 Sequence alignment

Our main object of interest in this thesis will be the ordered sequence of amino acids
along a protein backbone. We will begin by explaining how these sequences are encoded
as strings of letters, and, most importantly, what is an alignment of sequences. Some
basic concepts relating to proteins will be recalled, but we will not try to give an intro-
ductory course to molecular biology. Readers unfamiliar with the subject and willing to
learn more can use classic textbooks such as Campbell Biology [CR+13] and Molecular
Biology of the Gene [WB+13], but in any case, no advanced biological knowledge is re-
quired for understanding the experiments conducted in this thesis. On the other hand,
some familiarity with the more computational side of things (algorithms, mathematical
notation) is assumed.

The protein alphabet

Before giving the list of amino acids appearing in proteins, let us first recall some very
basic concepts of cell biology. Inside every cell lies molecules called deoxyribonucleic
acids (DNA) which encode the genetic instructions required for its development and
functioning. DNA consists of two complementary strands built from only 4 different
simpler units called the nucleotides: adenine (A), cytosine (C), guanine (G), and thymine
(T). Therefore, DNA is an example (certainly the most important one) of a biological se-
quence, and can be represented using a long string of letters on the ACGT alphabet.

The cell uses the information contained in the DNA to assemble the molecules respon-
sible for most biological mechanisms: the proteins. More precisely, when a protein is
produced in a cell, a particular segment of DNA (called a gene) is first copied into
another molecule called a ribonucleic acid (RNA), through a process called the tran-
scription. The chemical structure of a RNA molecule is very similar to that of DNA:
the main differences are that RNA is single-stranded, uses ribose sugar for its back-
bone (rather than deoxyribose), and the thymine nucleotide is replaced by an uracil (U)
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nucleotide. Therefore RNA is also a biological sequence, which uses the 4-letters al-
phabet ACGU. Once produced, the messenger RNA molecule is then read by a ribosome
– those are complex protein-building molecular machines found in all living cells – in
order to perform the translation: the nucleotide sequence is decoded into an amino acid
sequence, and a protein is produced. The set of rules for translating codons (triplets
of nucleotides) into amino acids is called the genetic code, and stays the same across
almost all organisms. The whole process we just described, and which could be summa-
rized as ‘DNA makes RNA makes proteins’, is known as the central dogma of molecular
biology.

The previous short description is of course a simplification. In reality, many other
biosynthetic mechanisms and subtleties can and do comes into play, for example post-
translational modification of proteins is possible (e.g. once out of the ribosome proteins
can be cut in smaller pieces or conversely assembled together, or some of their amino
acids can be converted to other ones), and slight variations on the genetic code can in
fact occur inside the same cell (e.g. the mitochondrial code has small differences with
the standard genetic code). But as we said earlier, our aim here is not to give a cell
biology course.

So, since proteins are sequences of amino acids, what are the amino acids possibly present
in a protein? What will be our alphabet? It is generally considered that there are 20
standard amino acids: their names and letter codes are listed in figure 1.1.1. However,
this is in fact a bit more complicated than that: some proteins also use two additional
amino acids, namely selenocysteine (U) and pyrrolysine (O). But these two are special,
as they are not coded for directly in the genetic code; for example, on a messenger
RNA the UGA and UAG codons, which are normally stop codons, can under very specific
circumstances act as selenocysteine or pyrrolysine codons respectively [BBC+91,SJK02].
Moreover, these 21st and 22nd amino acids are rare: selenocysteine is only found in 25
human proteins [KCN+03], and pyrrolysine-containing proteins apparently mostly occur
in organisms of the Archeae domain of life. There is also N-Formylmethionine which is
the first encoded amino acid in the biosynthesis of proteins in bacteria, mitochondria or
choloroplasts, but it is then often removed posttranslationaly [SST85].

In this thesis we focus on the standard 20-letters protein alphabet of figure 1.1.1, but
our experiments can be quite easily applied using an extended alphabet. Of course,
there exists also many non-proteinogenic amino acids, but since they are not found in
proteins, they will be of no interest in the context of this thesis.
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A Alanine L Leucine
R Arginine K Lysine
N Asparagine M Methionine
D Aspartic Acid F Phenylalanine
C Cysteine P Proline
Q Glutamine S Serine
E Glutamic Acid T Threonine
G Glycine W Tryptophan
H Histidine Y Tyrosine
I Isoleucine V Valine

Figure 1.1.1: The standard protein alphabet.

With this alphabet, and the convention that a protein sequence should be read from its
N-terminal end to its C-terminal end, any protein can now be represented as a sequence
of letters. For example, α-amanitin, one of the proteins responsible for the toxicity of the
infamous Amanita phalloides mushroom, has sequence IWGIGCNP. This is a very small
protein (an example of an oligopeptide), but most protein sequences are much longer
than that: according to [Sch08], human proteins have a median size of 341 amino acid
residues, and the largest one is a muscle protein with a length of 33 423 residues.

Definition of an alignment

Given a set of sequences (we are mostly interested in protein sequences but what follows
can apply to any sequences of symbols), the sequence alignment task consists in the
insertion of gaps (usually noted with the symbol ‘-’) between consecutive residues of
each sequence, such that 1) all gapped sequences have the same length and 2) if we
write the gapped sequences in rows (thus forming a matrix), then residues belonging to
a same column are similar. When using the word ‘residue’, we always mean an element
of the sequence (an amino acid in the case of proteins): gaps are never called residues.
We also allows the insertion of gaps before or after a whole sequence; those are called
end gaps.

What ‘similar’ means, as well as the penalty for inserting ‘too many’ gaps, must be
defined using a scoring system. A scoring system can be seen as a function assigning
a score to every possible alignment of the given set of sequences. The job of an align-
ment algorithm is then to find an alignment with maximum score (or, in the case of
approximation algorithms, an alignment with a ‘good-enough’ score).

There is no better way to explain what is a sequence alignment than showing one.
Therefore, we collected a few sequences of our choice on the UniProtKB [Con14] pro-
tein database, and aligned them using the online Clustal Omega [SWD+11, GML+10]
multiple sequence alignment program. We tried to find proteins related to the toxicity
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of the Amanita genus of mushrooms, mainly because they are generally very short and
we want to be able to fit the alignment on the page! In the set of sequences we also
included one completely unrelated protein (from a trypanosome), to see what the aligner
will do with it. The sequence alignment computed by Clustal Omega is shown in figure
1.1.2: we will first discuss it ‘naively’, by trying to guess what the aligner (or rather, its
developers) wanted to do.

Identifiers Aligned sequences Organisms

D6CFW3 MSDINATRLPI--W------GIG-CDPCIGDDVTALLTRGEASLC Amanita phalloides
D6CFW5 MSDINATRLPA--W------LVD-C-PCVGDDINRLLTRGENSLC Amanita virosa
A8W7M7 MSDINATRLPA--W------LVD-C-PCVGDDVNRLLTRGESL-C Amanita bisporigera
S4WL84 ----------I--W------GIG-CNPCVGDEVTALLTRGEA--- Amanita fuligineoides
U5L3J5 MSDINTARLPV--F------SLPVFFPFVSDDIQAVLTRGESL-C Amanita exitialis
H2E7Q5 MFDTNATRLPI--W------GIG-CNPWTAEHVDQTLASGNDI-C Galerina marginata
Q04078 MAPRSLYLLAVLLFSANLFAGVGFAAAAEGPEDKGL--------- Trypanosoma brucei

Figure 1.1.2: An example of sequence alignment. The five first proteins are toxins found in
poisonous mushrooms of the genus Amanita; the sixth one is a similar protein but coming from
another genus of mushrooms. The last sequence is totally unrelated to the others: it is a protein
produced by the parasite which causes the African trypanosomiasis disease, or sleeping sickness.
The first column is the sequence identifier in the UniProtKB database.

First observation: the aligner kind of ignored our ‘orphan’ trypanosome sequence. It did
not insert any gaps inside it (only end gaps), and its inclusion just forced the presence
of two gaps common to all the mushroom protein sequences. So the aligner recognized
that this sequence was very different than the others, and instead it focused on aligning
the other more similar sequences. From now on we will also ignore the trypanosome
sequence: it was just to show what happens when trying to align many similar proteins
together with one intruder protein.

Looking at the alignment again, it is clear that Clustal Omega tries to align identical
amino acids. Unsurprisingly, identical amino acids are considered ‘similar’, and any
biological alignment algorithm will try to do its best to get them in common columns.
But that is not all: even when different amino acids are aligned, we can see some pattern.
For example, it seems that valine (V), leucine (L), and isoleucine (I) often appear in the
same column: if we look at the columns containing at least one of these amino acids,
we can count 13V, 17L, 14I, but only 11 other amino acids (residues in the unrelated
trypanosome sequence were ignored). So the aligner seems to enjoy matching these three
amino acids together. In fact, valine, isoleucine, and leucine, form what are called the
branched-chain amino acids (BCAA), something we will no try to explain here as we
are not biologists (instead see [PKMH00] and [Pát07]). But what is important is that
amino acids which are distinct, but still share a common chemical property, also tends
to be aligned together, at least in our example.
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Therefore a biological alignment algorithm’s goal is not just making ‘good-looking’ align-
ments; rather it tries to produce alignments which are ‘good’ in a biological sense.

Modifications of the nucleotide sequences in a genome (the total genetic material carried
by an organism’s cells) can happen: for example because of genetic recombination during
reproduction, or because of mutations resulting from damage to DNA. In particular,
insertion, deletion, and substitution of nucleotides are events which sequence alignments
try to detect. Suppose for example that a part of a gene is changed from TGCGACCCGTGC
to TGCCCATGC. One way of aligning these two sequences is as follows:

T G C G A C C C G T G C
T G - - - C C C A T G C

In which case the meaning of the alignment is that one deletion of CGA and one G→A
substitution transformed the first sequence into the second (if we suppose that the
second sequence is the ‘original’ one, then we will rather talk of one insertion of CGA and
one A→G substitution). Since DNA contains the information for producing proteins,
these substitutions and indels (combinations of insertions and deletions) of nucleotides
translate to substitutions and indels of amino acids in proteins. In our example, if
we look at a DNA codon table, it could mean that the CDPC protein subsequence was
changed to CPC: there was a deletion of the D amino acid, but no amino acid substitution
because both CCG and CCA codons translate to the P amino acid.

So, to summarize: if the proteins in an alignment share a common ancestor, mismatches
can be interpreted as substitutions and gaps as indels introduced at some points during
their evolutionary history. Moreover, the presence of highly conserved regions in a
protein sequence alignment (see figure 1.1.2 for example) may suggest that these regions
have some biologically important function.

Types of protein alignments

There exists different kinds of protein alignments. We give here a short summary of
their most important differences, but in this thesis we will focus on only one kind of
alignments: pairwise global sequence alignments.

Local and global alignments.
Global alignment means aligning every residue in every sequence, and is most used
for sets of sequences that are roughly similar and of equal size. Local alignment
is more useful for dissimilar sequences of different sizes, but containing smaller
regions of similarity.

Pairwise and multiple alignments.
When there is only two sequences to align we speak of pairwise sequence alignment;
if there are more, we say multiple sequence alignment. Aligning a large number
of sequences together is generally much more complicated than aligning only two,
and often requires to first compute pairwise alignments for each pair of sequences.
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Structural alignments.
Something very important to know about proteins is that they are more than
linear sequences of amino acids: they have 3D geometric structures, from which
comes most of their biological functions. Much of this structure depends on the
residue sequence: the chemical properties (e.g. polarity, charge, hydrophobicity)
of the different amino acids force the protein to fold in a specific way (see 1.1.3 for
an example). Thus a protein should not be understood as a linear 1D molecule (a
common analogy is that of magnetized beads on a string). When this structure
is known (but for this, we need experimental methods for structure resolution,
such as X-ray Crystallography or Nuclear Magnetic Resonance), it can be used
for alignments: in this case we do not want to align similar residues, rather we
want to align structurally similar parts of the protein. This kind of alignment is
not always possible, as the structure of proteins is not always known. In fact,
as of 2014, the UniProtKB/TrEMBL protein sequence database [Con14] contains
almost 80 millions entries, while the PDB protein structure database [BWF+00]
contains around 100 000 protein structures. But when structural alignment is
possible, it gives rise to more biologically relevant alignments, as protein structure
is believed to be more conserved than protein sequence [IAE09].

G S S G S S G Q R N R T S F T Q E Q I E

A L E K E F E R T H Y P D V F A R E R L

A A K I D L P E A R I Q V W F S N R R A

K W R R E E K L R N Q R R Q S G P S S G

Figure 1.1.3: 3D shape of the backbone of a folded protein, together with its residue sequence.
This protein has identifier 2CUE on the PDB database.

Applications of sequence alignment

We would like to end this first section by listing some of the possible application of
sequence alignment. This list is by no means exhaustive and we only give a concise
description of each possible application; the interested reader can learn more by referring
to the cited books and articles.
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Sequence identification.
This is the most obvious one: if I give you a (fragment of) biological sequence, from
which DNA, RNA, or protein does it comes from? Biological sequence databases
such as BLAST [AGM+90] use local alignment algorithms to match a sequence
query to their database, and will give you a list of the most similar sequences
found. In the same way, sequence alignment can help you find the locus of a gene
in a genome.

Comparative modeling.
The huge gap between known protein sequences and known protein structures
was already mentioned previously. Experimental resolution of a protein structure
is expensive, so another approach is to align the protein to a ‘template’ protein
whose structure is already known, and then try to guess the unknown structure
using this alignment. This approach is also known as homology modeling [OA12].

Protein function prediction.
This is a corollary to the previous point, since the biological function of a protein
comes from its structure. Once the structure is known, many further applications
become possible, such as the prediction of protein-protein interactions [Fu04], or
the design of protein-binding ligands.

Phylogenetics.
Another obvious application of biological sequence alignment is phylogenetics, or
the study of evolutionary relationships among groups of organisms. For example,
a multiple alignment of sequences coming from different organisms can serves as
a guide to the construction of phylogenetic tree [DHH11].

Genome assembly.
Current technology does not allow for sequencing a whole DNA molecule in one go.
Rather, smaller overlapping DNA sequences are read and then assembled together.
Sequence alignment is used to align and merge these small DNA fragments. This
application was especially important for the completion of the Human Genome
Project [SSHJ93].

Motif discovery.
A motif is a nucleotide pattern which is widespread across a genome and has a
biological function, for example it could be a region of DNA to which the RNA
polymerase enzyme binds before initiating a gene transcription (such a region is
called a gene promoter). Alignment algorithms can be used to search these motifs,
and are thus useful in gene discovery [Bin06].

Applications outside biology.
Biological sequences are not the only objects that can be aligned. Alignments
algorithms have also been used for speech recognition [SC78] and computational
linguistics [Mit05].
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1.2 Predicting protein flexibility with DynaMine

We already explained in the previous section (see figure 1.1.3) that proteins have a 3D
structure (also called a conformation). The distinction between four levels of structure
is usually made, with the fourth level only present in the case of proteins composed of
multiple subunit proteins assembled together.

primary structure: the linear chain of amino acids (the residue sequence)
secondary structure: the helices, sheets, and other regular shapes along the chain

tertiary structure: the manner in which the chain fold in compact 3D structures
quaternary structure: the arrangement of multiple folded chains fitting together

But what really interests us here is not so much the protein structure, but the possible
alteration of this structure.

Protein dynamics

Besides the protein structure, there is also the protein dynamics. Indeed, the structure is
not unique and fixed; in fact it is instable and conformational change is possible because
of flexibility in some parts of the protein backbone [ROS+04]. There is for example the
case of intrinsically disordered proteins [DLB+01,Tom02], which lack a native structure
(we say that they have a random-coil conformation), although they could acquire one
when interacting with a partner protein, forming a multi-component complex that do
not fold correctly in the absence of other components [JS13]. It is possible to investigate
conformational fluctuations of proteins using Nuclear Magnetic Resonance techniques
[IT00, Kay98]; but these experimental methods will not be described here as it would
fall outside the scope of our subject.

The DynaMine predictor

DynaMine is a predictor of protein backbone flexibility [CPT+13] that was developed
at the (IB)2 institute [ibsquare.be]; a Web server [CPT+14] for using the predictor
has been set up on [dynamine.ibsquare.be]. DynaMine takes a protein sequence as
input, and returns a corresponding sequence of numbers in [0, 1] estimating the protein
backbone flexibility at each residue position. More exactly, these numbers are S2 order
parameters: their definition is somewhat technical, so we prefer to point the reader to
the [LS82] and [SGK96] articles. But the meaning of the S2 order parameters is simple:
a value of 0 is for very high flexibility (fully random bond vector movement) while a
value of 1 is for very low flexibility (stable conformation).

Measuring S2 parameters requires NMR, so the DynaMine predictor used the NMR
data in the BMRB database [MUB+08], to which it applied the RCI predictor [BW07]
to get a benchmark database of order parameters. DynaMine then uses a linear re-
gression algorithm for making its predictions, with the context of each residue taken in
consideration (the 25 preceding residues and the 25 following residues). Because of that,
DynaMine should not be used on short sequences.
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Figure 1.2.1 is an example of plot produced with the DynaMine Web server, for the
TSP9 protein (UniProtKB identifier: I6Y9K3).
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Figure 1.2.1: A protein containing disordered regions.

1.3 Needleman-Wunsch algorithm

For the remaining of this work we will be concerned with global pairwise sequence align-
ment. In the bioinformatics community, the most famous algorithm for this task is
generally called the Needleman-Wunsch algorithm, although it would maybe be more
correct to call it the Needleman-Wunsch-Gotoh algorithm. It is an optimal algorithm,
which means that it produces the best possible solution with respect to the chosen
scoring system. There exists also non-optimal alignment algorithms, most notably the
heuristic methods used by the BLAST [AGM+90,Mad13] and FASTA [LP85,LP88] soft-
wares. Although non-optimal, these methods are faster and better suited for querying
large biological databases (they were developed for this purpose). Other non-optimal
algorithms which deserve to be mentioned are those using probabilistic models, in partic-
ular Hidden Markov Models [E+95]. But in our case, the Needleman-Wunsch algorithm
will suffice, because we do not plan to compute multiple alignments, nor will we work
with extremely long sequences (such as whole genomes).
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Dynamic Programming

The Needleman-Wunsch algorithm uses a dynamic programming method. These meth-
ods were popularized by Richard Bellman in the late 1950s when working on optimization
problems for the RAND corporation [Bel52, Bel54, BD62], but the term is difficult to
define precisely. In fact, as Bellman himself explains in his autobiography [Bel84]:

[Dynamic] also has a very interesting property as an adjective, and that is it’s impossible
to use the word dynamic in a pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It’s impossible. Thus, I thought dynamic
programming was a good name.

However, maybe a possible definition would be to say that dynamic programming solves
a problem by recursively breaking it into smaller subproblems, although it is more or
less the same thing as what is usually called divide and conquer algorithms. In all cases,
the word programming does not refer to computer programming: rather it should be
understood as a synonym of mathematical optimization (like in integer programming or
linear programming).

But not matter the definition, in our case, the Needleman-Wunsch algorithm will indeed
compute an optimal alignment of sequences by recursively computing optimal subalign-
ments of subsequences. Some notation will clarify what we mean. Suppose we want
to align the two sequences x := (x1, . . . , xm) and y := (y1, . . . , yn). An alignment be-
tween the subsequences (x1, . . . , xi) and (y1, . . . , yj) is called a (i, j)-subalignment, and
its maximum possible score is noted S(i, j) :

S(i, j) := max score of all (i, j)-subalignments

Once the Needleman-Wunsch algorithm will have filled the dynamic array S with partial
scores, the global best score will be S(m,n), and we will backtrack from it down to S(0, 0)
to find an optimal global alignment (which is not unique in general).

The ‘score’ of an alignment still has to be defined, so that a recursion relation for
computing S(i, j) may be derived. We will begin with the scoring system most com-
monly used when introducing the Needleman-Wunsch algorithm: substitution scores
for matched residues and linear gap penalties. Although Needleman and Wunsch al-
ready discussed this scoring system in their 1970 article [NW70], the form in which it
is now most commonly presented is due to Gotoh [Got82] (who is also responsible for
the affine gap penalties version of the algorithm). An alignment algorithm very similar
to Needleman-Wunsch, but developed for speech recognition, was also independently
described by Vintsyuk in 1968 [Vin68]. Another early author interested in the subject is
Sellers [Sel74], who described in 1974 an alignment algorithm minimizing sequence dis-
tance rather than maximizing sequence similarity; however Smith and Waterman (two
authors famous for the algorithm bearing their name) proved in 1981 that both proce-
dures are equivalent [SWF81]. Therefore it is clear that there are many classic papers,
often a bit old, describing Needleman-Wunsch and its variants using different mathemat-
ical notations. For writing this section we mainly used the textbook [DEKM98].
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Basic Needleman-Wunsch

For each pair of symbols (xi, yj) we define a substitution score sub(xi, yj). This should
be a good (large) score when xi and yj are similar and a bad (small, or even negative)
score when they are dissimilar. We also define a gap penalty, a constant number which
should be nonpositive (otherwise the algorithm will just try to add gaps everywhere!).
This scoring system allows us to assign a score to each column of a pairwise alignment,
and the global alignment score will be the sum of the column scores. As a basic example,
let us consider

sub(xi, yj) :=
{

+2 if xi = yj

−1 if xi 6= yj
and gap := −1.

So that a match gives 2 points, but a mismatch or a gap gives a −1 penalty. On figure
1.3.1 below are two examples of alignments between sequences x = (CYSTEINE) and
y = (GLYCINE), with their columns scores and alignments scores computed.

C - Y S T E I N E
G L Y - C - I N E
−1 −1 +2 −1 −1 −1 +2 +2 +2 = 3

C Y S T E I N E
- G L Y C I N E
−1 −1 −1 −1 −1 +2 +2 +2 = 1

Figure 1.3.1: How to compute alignment scores.

Now, remark that a (i, j)-subalignment is always of one the following forms:

• a concatenation of a (i− 1, j)-subalignment with a column
[

xi

−

]
,

• a concatenation of a (i, j − 1)-subalignment with a column
[ −

yj

]
,

• a concatenation of a (i− 1, j − 1)-subalignment with a column
[

xi

yj

]
.

Therefore it is clear that a (i, j)-subalignment maximum score is:


S(i− 1, j ) + gap

S(i, j) = max S(i , j − 1) + gap
S(i− 1, j − 1) + sub(xi, yj)

We set S(0, 0) := 0 as a starting value (an ‘empty alignment’ is worth 0 points), and
for simplication we also set S(i, j) := −∞ whenever i or j is a negative number. This
recurrence relation allows us to easily compute the best score S(m,n): we just have to
fill the array starting from S(0, 0) (for example, row by row).

Once the dynamic array is filled, we can stop there if we are just interested in the best
score, but if we want to compute an optimal alignment, we have to backtrack from
S(m,n) to S(0, 0); although the procedure is relatively straighforward, we described the
backtracking algorithm in more details in figure 1.3.2.

15



Input: dynamic array S, sequences x and y

Output: optimal alignment A
• A :=

[ ]
(empty alignment)

• (i, j) := (m,n)
• while (i, j) 6= (0, 0) :

• choose (u, v) among :
• (1, 0) if S(i, j) = S(i− 1, j ) + gap
• (0, 1) if S(i, j) = S(i , j − 1) + gap
• (1, 1) if S(i, j) = S(i− 1, j − 1) + sub(xi, yj)

• if (u, v) = (1, 0) : A :=
[

xi

−

]
+A

• if (u, v) = (0, 1) : A :=
[ −

yj

]
+A

• if (u, v) = (1, 1) : A :=
[

xi

yj

]
+A

• (i, j) := (i, j)− (u, v)
• return A

Figure 1.3.2: The backtracking part of Needleman-Wunsch.

Multiple time in this algorithm, we have to make a choice between 1 and 3 pairs (u, v)
(they correspond to the direction in which to continue the backtracking). These choices
are up to you: they will all yield an alignment with the same score (recall that the
optimal alignment is not unique in general).

Remark that it would be simpler, and slightly more efficient, to keep track of backpoint-
ers when filling the dynamic array, rather than ‘rediscovering’ the path like it is done
in the above algorithm. Figure 1.3.3 gives an example of a filled dynamic array, along
with its backpointers, for the alignment of CYSTEINE and GLYCINE.
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C Y S T E I N E
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I
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E

0 -1 -2 -3 -4 -5 -6 -7 -8

-1 -1 -2 -3 -4 -5 -6 -7 -8

-2 -2 -2 -3 -4 -5 -6 -7 -8

-3 -3 0 -1 -2 -3 -4 -5 -6

-4 -1 -1 -1 -2 -3 -4 -5 -6

-5 -2 -2 -2 -2 -3 -1 -2 -3

-6 -3 -3 -3 -3 -3 -2 1 0

-7 -4 -4 -4 -4 -1 -2 0 3

E
E

N
N

I
I

E
-

T
-

S
C

Y
Y

-L

C
G

E
C

T
-

S
-

T
C

C
L

-G

C-YSTEINE C-YSTEINE C-YSTEINE -CYSTEINE -CYSTEINE -CYSTEINE
GLYC--INE GLY-C-INE GLY--CINE GLYC--INE GLY-C-INE GLY--CINE

Figure 1.3.3: Dynamic array filled with partial scores and backpointers, for the pairwise align-
ment of sequences CYSTEINE and GLYCINE with a match score of 2, a mismatch score of −1,
and a gap penalty of −1. The best alignment score is 3, possible backtracking paths are drawn in
red, and corresponding optimal alignments are showned under the array.

Generalized Needleman-Wunsch-Gotoh

The choice of a constant gap penalty is not ideal. Looking at optimal alignments of
figure 1.3.3, C-YSTEINE

GLY-C-INE and -CYSTEINE
GLYC--INE have the same score, but the latter alignment is

better in a biological sense, because one gap of length two instead of two gaps of length
one (in the bottom sequence) and one end gap instead of a gap between two residues (in
the top sequence) are more biologically plausible. Therefore we need a scoring system
which allows for variable gap penalties.

Scoring system. The one we will describe here use affine gap penalties and was
first introduced by Gotoh [Got82] (hence we think that the algorithm should be more
accurately named the Needleman-Wunsch-Gotoh algorithm, since most implementations
use affine gaps). This means that a gap of length n will cost an affine penalty of (d+n·g)
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rather than a linear penalty of (n · g). The number d is called the gap opening penalty
while the number g is the gap extending penalty.

Since the basic Needleman-Wunsch algorithm is going to be generalized in this section,
we thought that we may as well kill two birds with one stone by allowing gap penalties to
depend on their positions in the sequence, rather than on their lengths alone. This means
an algorithm more general than the classical Needleman-Wunsch-Gotoh one, but since
this generalization does not come with much additional complexity (and also because we
were not able to find it in the current bioinformatics litterature), we decided to include
it. Similarly, instead of having residue substitution scores sub(xi, yj), nothing prevents
us from using more general position matching scores sub(i, j), something which will be
useful later when using DynaMine data for aligning sequences.

In our formalism, the algorithm parameters are one m×n symmetric matrix noted ‘sub’
(with indices starting at 1) for substitution scores, and two (m + 1)×(n + 1) matrices
noted ‘gapX ’ and ‘gapY ’ (with indices starting at 0) for gap penalties in sequences x and
y respectively. Usually, gap penalties are always nonpositive numbers; exceptions could
occur if for example we believe that an insertion or deletion probably took place at a
specific position. The numbers contained in these three matrices are defined precisely
in figures 1.3.4 and 1.3.5.

sub(i, j) := score for matching xi with yj

gapX(i, 0) := penalty for opening a gap between xi and xi+1
gapY (0, j) := penalty for opening a gap between yj and yj+1

gapX(i, j) := penalty for matching a gap between xi and xi+1 with yj (j 6= 0)
gapY (i, j) := penalty for matching a gap between yj and yj+1 with xi (i 6= 0)

Figure 1.3.4: Parameters for the generalized Needleman-Wunsch-Gotoh algorithm: sub is a
m×n matrix with indices starting at 1, gapX and gapY are (m+1)×(n+1) matrices with indices
starting at 0.

Recall that the two sequences were noted x := (x1, . . . , xm) and y := (y1, . . . , yn), so
there are no residues noted x0, xm+1, y0, or yn+1. In the above figure, they are seen as
‘virtual residues’ used for defining the end gap penalties (e.g. a gap between x0 and x1
is a left end gap in the x sequence). How to set end gap penalties for each sequence is
explained more clearly in figure 1.3.5.

left end gap opening penalty: gapX(0, 0) and gapY (0, 0)
right end gap opening penalty: gapX(m, 0) and gapY (0, n)

left end gap extending penalties: gapX(0, j) and gapY (i, 0) (i, j 6= 0)right end gap extending penalties: gapX(m, j) and gapY (i, n)

Figure 1.3.5: End gap parameters in the generalized Needleman-Wunsch-Gotoh algorithm.
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In order to score an alignment, it suffices again to compute the score of every column, and
then to sum all the column scores. Besides the position-dependent scores and penalties,
we now have to add a gap opening penalty to the score of each column containing a first
gap. An example for the alignment

[ − x1 x2 x3 x4 − x5
y1 y2 − − y3 y4 y5

]
(written vertically) is shown in

figure 1.3.6.

gap opening + gap extending − y1 gapX(0, 0) + gapX(0, 1)

substitution x1 y2 sub(1, 2)

gap opening + gap extending x2 − gapY (0, 2) + gapY (2, 2)

gap extending x3 − gapY (3, 2)

substitution x4 y3 sub(4, 3)

gap opening + gap extending − y4 gapX(4, 0) + gapX(4, 4)

substitution x5 y5 sub(5, 5)


score

Figure 1.3.6: Generalized Needleman-Wunsch-Gotoh alignment score calculation.

Recursion relation. Now that the scoring system is defined, we need to find a re-
currence relation for computing maximum subalignment scores. This is a bit more
complicated this time, as we will use three dynamic arrays, each for a different kind of
subalignment.

• X(i, j) := max score of all (i, j)-subalignments ending with a gap in the x-subsequence:
[ · · · xi − − −
· · · ∗ ∗ ∗ yj

]
• Y (i, j) := max score of all (i, j)-subalignments ending with a gap in the y-subsequence:

[ · · · ∗ ∗ ∗ xi

· · · yj − − −

]
• Z(i, j) := max score of all (i, j)-subalignments ending with a matching of two symbols:

[ · · · · · · · · · · · xi

· · · · · · · · · · · yj

]
With a similar reasoning to the one used for deriving the basic Needleman-Wunsch
recursion, we remark that each different kind of subalignment can always be built by
appending a column to a smaller subalignment.

• X(i, j) :
[ · · · −
· · · yj

]
=
( [ · · · −

· · · yj−1

]
or

[ · · · xi

· · · −

]
or

[ · · · xi

· · · yj−1

] )
+

[ −
yj

]
• Y (i, j) :

[ · · · xi

· · · −

]
=
( [ · · · −

· · · yj

]
or

[ · · · xi−1
· · · −

]
or

[ · · · xi−1
· · · yj

] )
+

[
xi

−

]
• Z(i, j) :

[ · · · xi

· · · yj

]
=
( [ · · · −

· · · yj−1

]
or

[ · · · xi−1
· · · −

]
or

[ · · · xi−1
· · · yj−1

] )
+

[
xi

yj

]
Using these decompositions, we can now write recursion formulas for computing the
partial scores in the X, Y , and Z dynamic arrays; see figure 1.3.7.

19




X(i , j − 1)

X(i, j) = gapX(i, j) + max Y ( i , j − 1) + gapX(i, 0)
Z( i , j − 1) + gapX(i, 0)


X(i− 1, j ) + gapY (0, j)

Y (i, j) = gapY (i, j) + max Y ( i− 1, j )
Z( i− 1, j ) + gapY (0, j)


X(i− 1, j − 1)

Z(i, j) = sub(i, j) + max Y ( i− 1, j − 1)
Z( i− 1, j − 1)

Figure 1.3.7: Recursion relation for the generalized Needleman-Wunsch-Gotoh algorithm.

Of course, starting values must be defined. We again set Z(0, 0) := 0 for the ‘empty
alignment’, then for scores of nonexistent alignments (e.g. there is no (1, 0)-subalignments
ending with a gap in the x-sequence), we simply set scores of −∞.

X(i, 0) = Y (0, j) = Z(i+ 1, 0) = Z(0, j + 1) := −∞ for all i ≥ 0 and j ≥ 0

Backtracking. When using the recursion relation for filling the three (m+ 1)×(n+ 1)
matrices X, Y , and Z with partial scores, into each of their cells we should also store a
pointer back to the cell from which the partial score was derived (there can be up to three
different pointers per cell: store them all if you want to produce all possible optimal
alignments). Then the backtracking part is easy: we start from the cell holding the
best global score (so, among X(m,n), Y (m,n), and Z(m,n), we pick the one containing
the highest score), and then we just follow the pointers back to Z(0, 0) to build the
alignment in reverse. Going to a X cell means adding a gap in the x-sequence, to a Y
cell adding a gap in the y-sequence, and to a Z cell matching a xi with a yj .

It is difficult to provide a picture explaining a completed Needleman-Wunsch-Gotoh
algorithm, because there are three arrays to depict. We attempted it in figure 1.3.8:
it shows a (m + 1)×(n + 1) array of cells, with each (i, j) cell containing the values of
X(i, j), Y (i, j), and Z(i, j). The backtracking path is also drawn.
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Figure 1.3.8: The three dynamic arrays (X in cyan, Y in magenta, and Z in yellow) for
the Needleman-Wunsch-Gotoh alignment of sequences CYSTEINE and GLYCINE, with a match
score of 5, a mismatch score of −2, a gap opening penalty of −3, a gap extending penalty of −1,
and no end gap penalties. The best alignment score is 13, and there is only one backtracking
path (hence an unique optimal solution).

Additional remarks on Needleman-Wunsch-Gotoh

Common parameters. In most implementations of the algorithm, such as the needle
program of the EMBOSS software package [RLB00], gap penalties are not position-
dependent. Rather, they let you choose a global gap opening penalty d and a global
gap extending penalty g. In our notations, this means that gapX(i, 0)=gapY (0, j) := d

and gapX(i, j) = gapY (i, j) := g, Also, substitution scores come from a scoring matrix,
so sub(i, j) := M(xi, yj) where M is a BLOSUM matrix for example.

The advantage of our generalized algorithm is that it permits us to do things such as
customizing gap penalties in certain parts of the protein, for example depending on the
subsequence that will be inserted/deleted.
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Consecutive indels. The Needleman-Wunsch-Gotoh algorithm as described in this
section may allow a deletion to be directly followed by an insertion (and conversely), this
means that it could produce alignments of the form CYS--TE--INE

---GL--YCINE , something which may
be seen as undesirable from a biologist’s standpoint. But in practice such alignments
almost never occur, and as we shall see, it is easy to derive conditions on the algorithm
parameters which if satisfied will disallow consecutive indels in optimal alignments.

Suppose a (i, j)-subalignments is of the form
[ · · · xi −
· · · − yj

]
. If we replace its last two columns

so that it becomes
[ · · · xi

· · · yj

]
, we have added a residue substitution, removed an opening

gap in the x-sequence, and removed a gap in the y-sequence. So the alignment score
has changed by at least

(
sub(i, j) − gapX(i, 0) − gapX(i, j) − gapY (i, j−1)

)
, and if we do not

want the original subalignment to be optimal, this change should be positive. Therefore
(sufficient) conditions for avoiding specific consecutive indels are:[ · · · xi − · · ·
· · · − yj · · ·

]
is not optimal if gapX(i, 0) + gapX(i, j) + gapY (i, j−1) < sub(i, j)[ · · · − xi · · ·

· · · yj − · · ·

]
is not optimal if gapY (0, j) + gapY (i, j) + gapX(i−1, j) < sub(i, j)

Or more simply, if d and g are the smallest opening and extending gap penalties respec-
tively (without accounting end gaps if they are set to zero), and s is the lowest substi-
tution score, then a sufficient condition for avoiding consecutive indels is d+ 2g < s. In
the case of global gap penalties, this condition is almost always satisfied: for example
the default gap penalties of EMBOSS needle are d = −10 and g = −0.5, and the lowest
mismatch score in the BLOSUM62 matrix is s = −4.

Computational complexity. The algorithm takes quadratic time in the size of the
input: it is O(mn) with m and n being the lengths of the sequences to align. If we are
just interested in the global score (and have no use for an actual optimal alignment),
then it is possible to fill the arrays rows by rows (for example), discarding the rows
previously computed. This allows for a linear space complexity, but then an optimal
alignment can not be produced; only its score can.

However, Myers and Millers [MM88] were able to modify the algorithm so that it pro-
duces an optimal alignment in linear space, using a divide and conquer method common
in the computer science literature [Hir75], but which at the time had still not be used
in bioinformatics. As this algorithm is somewhat more complicated, we will not explain
it here. In all cases, although it is possible to improve Needleman-Wunsch so that it
has linear space complexity, the time complexity stays quadratic (because the dynamic
arrays still need to be computed, even if we later discard some of its values).

Dynamic Time Warping

As a conclusion to the section, we will briefly describe another alignment algorithm,
originally developed for matching continuous signals (in particular, time series) and
used in a wide range of disciplines such as speech recognition [SC78] or biomedical
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informatics [TGQS09]. Our motivation for including a short presentation of Dynamic
Time Warping (DTW) in this thesis comes from the fact that it was actually one of
the first method we tried for matching DynaMine data (although the approach was
fruitless). We then discovered that the algorithm was a special case of the generalized
Needleman-Wunsch-Gotoh (NWG) algorithm, and we think it could be interesting to
explain how it is so. A good introduction can be found in [M0̈7], a book more concerned
with analysis of music and audio data, but which provides a clear description of the
DTW algorithm.

The DTW algorithm. From the point of view of DTW, two sequences x := (x1, . . . , xm)
and y := (y1, . . . , yn) are seen as time series that need to be matched together, using
local ‘dilatations’ so that the distance between them is minimized. Formally, a DTW
alignment of x and y is a sequence of pairs of indices (ik, jk)k=1...` satisfying:

(i1, j1) = (1, 1) and (i`, j`) = (m,n) (Boundary condition)
i1 ≤ · · · ≤ i` and j1 ≤ · · · ≤ j` (Monotonicity condition)

(ik+1, jk+1)− (ik, jj) ∈ { (0, 1), (1, 1) (1, 0) } (Step size condition)

Taking again our examples of x = (CYSTEINE) and y = (GLYCINE), a possible DTW
alignment would be [ 1 1 2 3 4 5 6 7 8

1 2 3 3 3 4 5 6 7 ], where each column is a pair of indices (ik, jk). Using
the sequence symbols rather than the indices, the alignment is [ CCYSTEINE

GLYYYCINE ]. DTW align
by repeating certain symbols, not by inserting gaps.

Once a local distance function dist(x, y) is given, we can compute the total distance∑`
k=1 dist(xik

, yjk
) of an alignment. For example, if the distance between two letters

is defined as the absolute difference of their positions in the alphabet, then the total
distance of [ CCYSTEINE

GLYYYCINE ] is (4+9+0+6+5+2+0+0+0) = 26. Of course, the goal of DTW is to
produce an optimal alignment which minimizes the total distance.

As its names implies, the algorithm uses a dynamic programming method, and is very
similar to Needleman-Wunsch. The minimum total distance D(i, j) among all possi-
ble (i, j)-subalignments is defined, and the array is filled using a simple recursion for-
mula: 

D(i , j − 1)
D(i, j) = dist(xi, yj) + min D(i− 1, j )

D(i− 1, j − 1)

An optimal alignment (or, in DTW terminology, a warping path) can again be found by
backtracking from D(m,n) to D(0, 0).

DTW with NWG. It should not be a surprise that DTW can be encoded into the
much more general alignment algorithm that is Needleman-Wunsch-Gotoh. We just
have to choose the right parameters, and then NWG will act like DTW. In the produced
alignments, a gap will be understood as a repetition of the last encountered symbol, e.g.
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[ C-YSTEINE
GLY--CINE ] is converted to [ CCYSTEINE

GLYYYCINE ]. For a given distance function, NWG parameters
must be set as shown below (indices i and j range from 1 to m and n respectively).

sub(i, j) := − dist(xi, yj) (local distance)
gapX(i, j) = gapY (i, j) := − dist(xi, yj) (local distance)
gapX(i, 0) = gapY (0, j) := 0 (no gap penalty)
gapX(0, 0) = gapY (0, 0) := −∞ (left boundary)

It is not difficult to understand how it works. We want to minimize a distance, but NWG
maximizes a score, so on the first line we simply use negative distances as substitution
scores. The second line means that gaps following a symbol are understood as repetitions
of this symbol, e.g. a gap after xi and matched to yj is counted as a matching between xi

and yj . Since DTW does not give a special penalty for repeating a symbol, gap opening
penalties are disabled on the third line. Finally, the fourth line ensures that we have no
gaps at the very beginning of the sequences, since there is no symbol before x1 or y1 to
be repeated. Plugging all these parameters into the NWG recursion formulas (see figure
1.3.7), we obtain the following system:

X(i, j) = − dist(xi, yj) + max
{
X(i , j−1), Y (i , j−1), Z(i , j−1)

}
Y (i, j) = − dist(xi, yj) + max

{
X(i−1, j ), Y (i−1, j ), Z(i−1, j )

}
Z(i, j) = − dist(xi, yj) + max

{
X(i−1, j−1), Y (i−1, j−1), Z(i−1, j−1)

}
And recovering the DTW recursion from it is just a matter of three lines.

D(i, j) := −max
{
X(i, j), Y (i, j), Z(i, j)

}
= dist(xi, yj) − max

{
−D(i, j−1), −D(i−1, j), −D(i−1, j−1)

}
= dist(xi, yj) + min

{
D(i, j−1), D(i−1, j), D(i−1, j−1)

}
Therefore Dynamic Time Warping is a special case of Needleman-Wunsch-Gotoh.

1.4 Substitution and alignment scores

In the preceding chapter, the Needleman-Wunsch algorithm was described in details,
but up to now, nothing has been said on how the parameters sub(i, j), gapX(i, j) and
gapY (i, j) should be chosen. This is a very important matter: parameters should re-
flect our knowledge of sequence transformations, and may be different for aligning all
proteins, or only proteins sharing a common characteristic or function (e.g. highly dis-
similar proteins, or membrane proteins), or even non-protein sequences (e.g. DNA and
RNA sequences, or sequences coming from outside biology). In this thesis, we shall
use gap penalties that are the same everywhere in both sequences: so we will assume a
constant opening penalty gapX(i, 0) = gapY (0, j) := d and a constant extending penalty
gapX(i, j) = gapY (i, j) := g, with the exception of end gaps that will often be set to
zero. Therefore we focus on substitution scores sub(i, j), which in this section will only
depend on the residues at positions i and j: sub(i, j) := M(xi, yj) for some given amino
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acid substitution matrix M . Of course the d and g gap penalties also have to be chosen,
but this matter will not be discussed here; rather we will set them to the default values
used by most aligner programs in bioinformatics. Let us just say that the gap penalties
should be adjusted to the substitution matrix (or conversely), for example having larger
values in M should come with larger gap penalties.

It should be stressed out that an alignment score can mean two different things: the
number determined by the choice of gap penalties and substitution scores (this is the
score which the Needleman-Wunsch algorithm maximizes), but also the quality of a
given alignment compared to a reference alignment (believed to be correct) of the same
sequences (this way, we can know if our choice of parameters is good). Which score we
will discuss should be clear from the context.

We begin the section with a short overview of substitution matrices, including the de-
scription of a ‘naive’ matrix which, although never used in modern bioinformatics, is
very simple to derive while still carrying some biological meaning. Then the BLOSUM
family of matrices will be described in details, and finally we will explain how to score
an alignment quality when comparing it to a reference alignment.

Amino acid substitution matrices

Generally, an amino acid substitution matrix is a 20×20 symmetric matrix M of num-
bers, containing scores M(x, y) for each x↔y substitution of amino acids x and y. These
scores should be additive: it means that we may add them together for computing a
score for several substitutions occuring simultaneously in an alignment (which is how
the Needleman-Wunsch scoring system works). In particular, scores are not probabili-
ties, which would be multiplicative rather than additive. However, the construction of
substitution matrices often begin by computing probabilities, before converting them to
additive scores.

A basic example using biological knowledge. Besides the trivial case of using a
match score and a mismatch score, for example M(x, y) =

{
1 if x=y
0 if x 6=y , the oldest example

of an amino acid substitution matrix we could find is described in the original Needleman
and Wunsch article [NW70]. After describing their algorithm, the authors use it with a
matrix derived from the DNA codon table. Recall that a codon is a triplet of nucleotides
encoding a specific amino acid (different codons can translate to the same residue), and
the set of codon-residue translation rules (the genetic code) is traditionally represented
in a DNA (or RNA) codon table. The authors’ idea was to set for each pair of amino
acids the maximum number of corresponding bases in their respective codons. For
example, M (methionine) is encoded by a ATG codon and Q (glutamine) can be encoded
by both CAA and CAG codons. There is no corresponding nucleotides in [ ATG

CAA ] but there
is one in [ ATG

CAG ], so the score for a M↔Q substitution is set to 1. This method gives rise to
a substitution matrix with scores in {0, 1, 2, 3}, depicted in figure 1.4.1. In the article
the two authors try their algorithm with different (linear) gap penalties and variations
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of this matrix (replacing {0, 1, 2, 3} by other values).

Corresponding DNA codons A R N D C Q E G H I L K M F P S T W Y V

GCT GCC GCA GCG A 3 1 1 2 1 1 2 2 1 1 1 1 1 1 2 2 2 1 1 2
CGT CGC CGA CGG AGA AGG R 1 3 1 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 1

AAT AAC N 1 1 3 2 1 1 1 1 2 2 1 2 1 1 1 2 2 0 2 1
GAT GAC D 2 1 2 3 1 1 2 2 2 1 1 1 0 1 1 1 1 0 2 2
TGT TGC C 1 2 1 1 3 0 0 2 1 1 1 0 0 2 1 2 1 2 2 1
CAA CAG Q 1 2 1 1 0 3 2 1 2 1 2 2 1 0 2 1 1 1 1 1
GAA GAG E 2 1 1 2 0 2 3 2 1 1 1 2 1 0 1 1 1 1 1 2

GGT GGC GGA GGG G 2 2 1 2 2 1 2 3 1 1 1 1 1 1 1 2 1 2 1 2
CAT CAC H 1 2 2 2 1 2 1 1 3 1 2 1 0 1 2 1 1 0 2 1

ATT ATC ATA I 1 2 2 1 1 1 1 1 1 3 2 2 2 2 1 2 2 0 1 2
TTA TTG CTT CTC CTA CTG L 1 2 1 1 1 2 1 1 2 2 3 1 2 2 2 2 1 2 1 2

AAA AAG K 1 2 2 1 0 2 2 1 1 2 1 3 2 0 1 1 2 1 1 1
ATG M 1 2 1 0 0 1 1 1 0 2 2 2 3 1 1 1 2 1 0 2

TTT TTC F 1 1 1 1 2 0 0 1 1 2 2 0 1 3 1 2 1 1 2 2
CCT CCC CCA CCG P 2 2 1 1 1 2 1 1 2 1 2 1 1 1 3 2 2 1 1 1

TCT TCC TCA TCG AGT AGC S 2 2 2 1 2 1 1 2 1 2 2 1 1 2 2 3 2 2 2 1
ACT ACC ACA ACG T 2 2 2 1 1 1 1 1 1 2 1 2 2 1 2 2 3 1 1 1

TGG W 1 2 0 0 2 1 1 2 0 0 2 1 1 1 1 2 1 3 1 1
TAT TAC Y 1 1 2 2 2 1 1 1 2 1 1 1 0 2 1 2 1 1 3 1

GTT GTC GTA GTG V 2 1 1 2 1 1 2 2 1 2 2 1 2 2 1 1 1 1 1 3

Figure 1.4.1: A ‘naive’ substitution matrix derived from the DNA codon table alone.

If we gave this example, it is only because it is easy to understand, built using biological
knowledge, and is historically one of the earliest amino acid substitution matrix. But is
not a ‘good’ matrix, and to our knowledge matrices built with this simplistic method are
not used in real modern bioinformatics; in fact Needleman and Wunsch were not trying
to derive good scores for amino acid substitutions, they just wanted something to try
their new algorithm. One obvious problem with this method is that it assumes that the
only possible mutations in a genome are nucleotide substitutions or indels of a number
of nucleotides divisible by three. But a single nucleotide insertion or deletion could
also happen, changing the subsequent grouping of the codons and thus resulting in a
completely different translation of the rest of the sequence (such a phenomenon is called
a frameshift mutation). For example, (GATCCGTGCATT· · ·) translates to (DPCI· · ·), but
(GAATCCGTGCATT· · ·) translates to (ESVH· · ·). Moreover, building a matrix from a codon
table alone completely ignores the evolutionary mechanisms responsible for a protein’s
existence in the first place. Indeed, a substitution can modify the structure or function
of a protein (e.g. when an amino acid which is hydrophobic is replaced by one which
is not), in which case the modified protein may be rejected by the processes of natural
selection (e.g. because it prevents its host organism from reproducing by rendering it
infertile); therefore that particular substitution would be less likely to occur.

Inferring scores using biological data. The first successful substitution matrices
in bioinformatics are probably the PAM matrices, introduced by Dayhoff in 1978 [DS78].
This family of matrices was calculated from observed mutations in the phylogenetic trees
of 71 families of closely related proteins: hence the substitution score are inferred from
known biological data (in this case, an evolutionary history of proteins). The PAM name
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comes from point accepted mutation, which is an amino acid substitution accepted by
natural selection; and the probability of a substitution to be accepted can be estimated
from a phylogenetic tree. These substitution probabilities are then converted to a matrix
of substitution scores that can be used in the Needleman-Wunsch algorithm.

This approach, using reference biological data, is the most common way of creating
substitution matrices; of course, the question of how to generate a reference dataset in
the first place still has to be answered. One possible method is to use a set of structural
alignments of proteins whose 3D structures were experimentally resolved [PDS00]. Since
structure is more conserved than sequence [IAE09], structural alignments are probably
of good quality, hence we can use them to learn how to align sequences with unknown
3D structures. The reference dataset may also be chosen depending on which kind of
proteins we want to align, for example substitution matrices for aligning transmembrane
proteins have been created in this manner [NHH00].

The BLOSUM substitution matrices [HH92], which are maybe the ones most commonly
used in bioinformatics today, were also inferred from reference biological data. In this
thesis we are especially interested in this family of matrices: in fact custom BLOSUM
matrices will be generated in the later chapters. For this reason, the algorithm for
creating them will now be described in details.

BLOSUM matrices

The procedure for creating BLOSUM matrices, first described by Henikoff and Henikoff
in 1992 [HH92] (a more modern and informal presentation can also be found in [Edd04]),
can be summarized in the following steps:

1) Choose a reference dataset of gap-free alignments (called blocks).
2) Cluster similar sequences in each block.
3) Compute observed and expected substitution probabilities.
4) Compute substitution likelihood ratios ( observed probabilities

expected probabilities ).
5) Substitution scores are logarithms of likelihoods ratios.

A block is a multiple sequence alignment devoid of any gap (hence all sequences in
a block have the same length). If we want to generate BLOSUM matrices from a
dataset of gapped alignments, we need to first convert it to a dataset of blocks. For
example, each alignment could either be stripped of its gaps-containing columns, or
be splitted into several blocks of a minimum size. The second point is important:
the clustering threshold may be chosen, so that different BLOSUM matrices may be
generated from a same dataset. If we decide to cluster together sequences with more
than T% residue identity, the resulting matrix is called a BLOSUMT matrix. Higher
clustering thresholds will produce matrices designed for aligning more closely related
sequences. The remaining steps are just the calculations of what are usually called
log-odd scores in bioinformatics, or log-likelihood ratios in statistics.

We will begin with the formulas for computing the numbers in the last three steps,
assuming no clustering at all (i.e. T = 100%). The second step (clustering) is a bit more
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complicated, but once it is done the formulas of the remaining steps stay unchanged,
hence we prefer to explain the clustering part afterwards. Also, in what follows, a
‘residue’ is not necessarily an amino acid but just a symbol taken from an arbitrary
alphabet: we want our description to be general, so that it can later be used for any
kind of sequences (of course, what we really have in mind are sequences of DynaMine
values). Without loss of generality, we will in fact take the { 1, 2, 3, . . . , R } set of
numbers as our residue alphabet (so in the case of proteins we just have R = 20 with
residue x being the xth amino acid).

Computing scores (without clustering). In order to compute substitution proba-
bilities, we have to count, for each pair (x, y) of residues, the number of x↔y substitu-
tions in the dataset. More precisely, we first define a R×R substitution frequency array
F (x, y) that is initialized with zero everywhere. Then for each block in the dataset, we
loop on each possible pair (s, t) of sequences coming from this block, count the number
of [ x

y ] columns in the [ s1 ··· sN
t1 ··· tN

] pairwise alignment, and add that number to F (x, y).
Equivalently, we can increment F (sn, tn) for each column [ sn

tn
] in the pairwise alignment,

with n going from 1 to N (the number of columns). By looping on pairs of sequences
coming from a block, we mean ordered pairs: both (s, t) and (t, s) pairs, with s 6= t,
have to be considered. So if there are M sequences in a block, we have to count the
number of [ x

y ] columns in (M2−M) pairwise alignments.

If done correctly, the resulting substitution frequency array F (x, y) should be symmetric
with even numbers on its diagonal. The substitution scores are then computed using the
formulas in figure 1.4.2 (all matrices defined by these formulas are of course symmetric).
Remark that our counting method differs from the one presented in [HH92], resulting in
a frequency array different from the one in the original article. But the formulas below
were adapted so that in the end the same scores are computed. If we chose to do things
a bit differently, it is simply because we think it allows for prettier formulas

obs(x, y) := F (x, y) /
R∑

i=1

R∑
j=1

F (i, j) (observed probabilities)

exp(x, y) :=
( R∑

j=1
obs(x, j)

)
·
( R∑

i=1
obs(i, y)

)
(expected probabilities)

rat(x, y) := obs(x, y) / exp(x, y) (likelihood ratios)

score(x, y) := 1
λ

log
(

rat(x, y)
)

(substitution scores)

Figure 1.4.2: Formulas for computing BLOSUM scores from a frequency array F (x, y)
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It is easy to make sense of these formulas. If we have a [ x
y ] column in a pairwise

alignment, according to our reference dataset the probability of it happening because
of a x↔y substitution is obs(x, y) while the probability of it happening by chance is
exp(x, y). Therefore the likelihood ratio rat(x, y) expresses how many times the substi-
tution hypothesis is more likely than the by-chance hypothesis. We then conveniently
assume that aligned pairs are independent of each other (although it is biologically un-
likely), allowing us to compute a global likelihood ratio for the pairwise alignment by
multiplying the individual ratios of each aligned pair. However, we want additive sub-
stitution scores, that can be summed to get a global substitution score. For this reason
we use a logarithm of the likelihood ratio, turning multiplication into addition. The λ
constant is just a number that lets us scale the scores so that they can be rounded to
nice integers.

Clustered frequencies. A problem that can arises when the dataset contains highly
similar sequences that are not clustered together (i.e. T = 100%), is that too many
x↔y substitutions will be counted in the F (x, y) frequency array; something which
is undesirable if we plan to use the generated matrix for aligning sequences with low
similarity. The solution used in [HH92] is to cluster together the similar sequences
appearing in each dataset block, assigning a weight of 1 to each cluster.

Clustering is a task that can be realized using different methods (see [XW+05] and
[Ber06] for surveys of clustering algorithms), and the chosen one often depends on the
structure of the data to be clustered (for example, its dimensionality). Different algo-
rithms will yield different clusters of sequences, hence different BLOSUM matrices. In
their [HH92] article, Henikoff and Henikoff do not name the exact clustering algorithm
they use: instead they describe it using an example, that is reproduced below using
their own words:

For example, if the percentage is set at 80%, and sequence segment A is identical to
sequence segment B at ≥80% of their aligned positions, then A and B are clustered and
their contributions are averaged in calculating pair frequencies. If C is identical to either
A or B at ≥80% of aligned positions, it is also clustered with them and the contributions
of A, B, and C are averaged, even though C might not be identical to both A and B at
≥80% of aligned positions.

If we understood that extract correctly, their method is what is usually called single-
linkage agglomerative hierarchical clustering. The ‘agglomerative hierarchical’ part means
that the algorithm starts with each element in a cluster of its own, which are then it-
eratively merged together to obtain larger clusters [Joh67]. Then ‘single-linkage’ means
that the similarity between two clusters is the largest similarity between their elements,
i.e. the similarity between a single pair of elements: namely the two (one in each cluster)
that are the most similar. Two clusters may then be merged together if their similarity
is at least T%. In mathematical terms, if sequence similarity is noted sim(s, t) :

clusters A and B may be merged ⇐⇒ max
(s,t)∈A×B

(
sim(s, t)

)
≥ T

Clusters are then iteratively merged until all remaining pairs of clusters have a similarity
less than T%. The order in which we merge the clusters is irrelevant: it can be proven
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that we will always end with the same set of clusters. This clustering algorithm for one
block is described using pseudocode in figure 1.4.5.

Input: a block and a clustering threshold T

Output: a set of clustered sequences C

• C :=
{
{s} for all sequences s in the block

}
• loop on :

• pick distinct clusters A,B ∈ C with max
(s,t)∈A×B

(
sim(s, t)

)
≥ T

• if these two clusters exist :
• C :=

{
C ∈ C with C 6= A and C 6= B

}
∪
{
A ∪B

}
• else :

• return C (quitting the loop)

Figure 1.4.3: Clustering algorithm for a block.

Once the clustering is done, we assign a 1/c weight to each sequence belonging to a
cluster of size c, so that a whole cluster has a weight of 1 and two sequences belonging
to the same cluster are not compared together. The resulting F (x, y) frequencies are
called clustered frequencies.
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clustered sequences when T = 60%
38% TRDVDCDNIMSTNLFHCKDKNTFIYSRPEPVKAICKGIIASKNVLTTSEF N/A

56% DRYCERMMKRRSLTSPCKDVNTFIHGNKSNIKAICGANGSPYRENLRMSK N/A

40% TYCNQMMQRRGMTSPVCKFTNTFVHASAASITTVCGSGGTPASGDLRDSN N/A

46% LQCNKAMSGVNNYTQHCKPENTFLHNVFQDVTAVCDMPNIICKNGRHNCH N/A

54% SYCNLMMQRRKMTSHQCKRFNTFIHEDLWNIRSICSTTNIQCKNGQMNCH 92%

52% AYCNLMMQRRKMTSHYCKRFNTFIHEDIWNIRSICSTSNIQCKNGQMNCH 92%

52% NYCNLMMKARDMTSGRCKPLNTFIHEPKSVVDAVCHQENVTCKNGRTNCY 70%

52% NYCNEMMKKREMTKDRCKPVNTFVHEPLAEVQAVCSQRNVSCKNGQTNCY 80%

54% NYCNQMMMRRKMTQGRCKPVNTFVHESLEDVKAVCSQKNVLCKNGRTNCY 86%

52% NYCNVMMIRRNMTQGRCKPVNTFVHESLADVQAVCFQKNVLCKNGQTNCY 88%

50% NYCNQMMQSRNLTQDRCKPVNTFVHESLADVQAVCFQKNVACKNGQSNCY 92%

50% NYCNQMMKSRNLTQSRCKPVNTFVHESLADVQAVCSQKNVACKNGQTNCY 98%

50% NYCNQMMKSRNLTQGRCKPVNTFVHESLADVQAVCSQKNVACKNGQTNCY 98%

40% QQCTNAMQVINNYQRRCKNQNTFLLTTFANVVNVCGNPNMTCPSNKTRKN 68%

38% PRCTIAMRAINNYRWRCKNQNTFLRTTFANVVNVCGNQSIRCPHNRTLNN 68%

56% DRYCESIMRRRGLTSPCKDINTFIHGNKRSIKAICENKNGNPHRENLRIS 66%

52% DEYCFNMMKNRRLTRPCKDRNTFIHGNKNDIKAICEDRNGQPYRGDLRIS 66%

36% NCNTIMDNNIYIVGGQCKRVNTFIISSATTVKAICTGVINMNVLSTTRFQ 66%

34% DCNTIMDKAIYIVGGKCKERNTFIISSEDNVKAICSGVSPDRKELSTTSF 76%

38% NCNTIMDKSIYIVGGQCKERNTFIISSATTVKAICSGASTNRNVLSTTRF 76%

m
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other

sequences
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the
cluster

Figure 1.4.4: Clustering of similar sequences inside a block.
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An example of a block with clustered sequences is shown in figure 1.4.4. Remark that
instead of using clustered frequencies, some authors prefer to replace every cluster by
a consensus sequence; this is simpler than weighting sequences, however this not the
method described in [HH92].

The exact algorithm for generating the F (x, y) is described in figure 1.4.5 ; if we set
T := 100%, this is the same method as described earlier. In this algorithm, we suppose
that each sequence in a block is numbered from 1 to M (the number of sequences in
the block). Once the F (x, y) array is computed, substitution scores for a BLOSUMT

matrix can be derived from the same formulas than in figure 1.4.2.

Input: a set of blocks and a clustering threshold T

Output: clustered frequencies F (x, y)
• F (x, y) := 0 for all pairs (x, y) of residues
• for each block in the dataset :

• M := number of sequences in the block
• N := length of sequences in the block
• cluster together sequences with more than T% residue identity
• for each (s, t) with 1 ≤ s < t ≤M :

• if sequences s and t belong to different clusters :
• u := number of sequences in the cluster containing sequence s
• v := number of sequences in the cluster containing sequence t
• for each n with 1 ≤ n ≤ N :

• x := residue at position n in sequence s
• y := residue at position n in sequence t
• F (x, y) := F (x, y) + 1 / (u · v)
• F (y, x) := F (y, x) + 1 / (v · u)

• return F (x, y)

Figure 1.4.5: Algorithm for computing clustered frequencies from a set of blocks.

Measuring alignment quality

Suppose that we just computed a pairwise alignment using some algorithm: how ‘good’
is this alignment? The most common way to answer this question is to compare the
computed alignment to a reference alignment (of the same two sequences) which is
believed to be ‘correct’; for example because it is a structural alignment, or because
it comes from a known phylogenetic tree of proteins. A score measuring how close
the computed alignment is to the reference alignment can then be computed using
different methods (but in this thesis we will focus on only one of these). And if a
benchmark database of reference alignments is given, quality assessment of different
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alignment algorithms becomes possible [LS05] [LS02] [Elo02]. Remark that in the rest
of this section, an ‘alignment score’ means a measure of alignment quality, i.e. a number
which is large when the considered alignment is close to its corresponding reference
alignment. It should not be confused with the number that the Needleman-Wunsch
algorithm wants to maximize.

The alignment score we chose to use is the sum-of-pairs score. Its idea is very simple:
we just take the percentage of aligned pairs in the computed alignment that are also
in the reference alignment; an example is provided in figure 1.4.6. For the moment we
only consider sum-of-pairs scores for pairwise alignments, but in section 3.2 an extension
to multiple alignments will be described. Because of the simplicity of the sum-of-pairs
scoring method, it is difficult to find out where and when it was originally defined,
but the method is described in most articles concerned with benchmark databases and
alignment quality assessment, such as [TPP99b], or the three ones cited earlier.

Number of pairs in the reference pairwise alignment: 52
FKIIASQCTSCSACEPLCPNVAI-SEKGGNFVI---EAA-KCSECVGHFDEPQCAAACPVDNTCVVDR
||||||||||||||||||||||| ||||||||| ||| |||||||| || |||||||
VQIDEAKCIGCDTCSQYCPTAAIFGEMGEPHSIPHIEACINCGQCLTH---------CP--ENAIYEA

Number of pairs in the computed pairwise alignment,
that are also present in the reference pairwise alignment: 34

FKIIASQCTSCSACEPLCPNVAISEKGG-----NFVIEAAKCSECVGHFDEPQCAAACPVDNTCVVDR
||||||||||||||||||||||| || || |||||||
VQIDEAKCIGCDTCSQYCPTAAIFGEMGEPHSIPHIEACINC---------GQCLTHCP--ENAIYEA

Sum-of-pairs score of the computed pairwise alignment,
with respect to the reference pairwise alignment: 34/52 = 65%

Figure 1.4.6: Sum-of-pairs score for a computed pairwise alignment, with respect to a reference
pairwise alignment of the same couple of sequences.

Much criticism could be made, and has been made [Edg10] [JB09], on using the sum-of-
pairs method for measuring alignment quality. A basic example where the method may
give an unsatisfactory score is :

-VTG---EINPTRAPDIRGPVSLAF --VTG---EINPTRAPDIRGPVSLAF
ESDRLALNDVR----RIRGPIS--- ESDRLALNDVR----RIRGPIS----

(reference alignment) (computed alignment)

Both reference and computed alignments are very similar: their internal gaps are inserted
at the same place. However, the top sequence in the computed alignment is translated
by one residue to the right, because of one additional opening gap. This cause all pairs to
be aligned differently than in the reference, yielding a sum-of-pairs score of 0%, although
visually the two alignments are almost the same.
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Chapter 2

Design of the experiments

2.1 Outline of the experiments

We would like to use this short section to explain in more details what will actually be
carried out in this thesis, and which data and tools we shall be using. Our general moti-
vation is to align sequences using the Needleman-Wunsch-Gotoh algorithm described in
section 1.3, but by incorporating DynaMine-predicted data into the algorithm parame-
ters. There are many ways to do this, but we will use the following procedure:

1) Choose a benchmark database containing datasets of references multiple alignments
2) Truncate every sequence so that they are devoid of end gaps
3) Run DynaMine on every sequence in the dataset
4) Put DynaMine values in [0, 1] into 50 equal-width bins
5) Partition the data into a training set (for inferring matrices) and a test set (for aligning)
6) Recreate the classical seqBLOSUM matrices, to ensure the implementation correctness
7) Generate 50×50 dynBLOSUM matrices for scoring matchings of DynaMine bins
8) Normalize dynBLOSUM matrices to avoid undesirable expected scores
9) Implement an aligner program that can use both seqBLOSUM and dynBLOSUM

10) Extend the sum-of-pairs score to multiple alignments and whole datasets
11) Find out the best seqBLOSUM using our aligner and scoring system
12) Use our aligner with different weighted averages of seqBLOSUM and dynBLOSUM
13) Investigate the averaging method improvements in the case of dissimilar sequences

This procedure is just a quick summary of what will be done in the coming sections.
The reasoning behind each step will be made more precise, and we will of course dis-
cuss the obtained results. Also, by seqBLOSUM we mean a 20×20 BLOSUM matrix
containing scores for amino acid substitutions, and by dynBLOSUM a 50×50 BLOSUM
matrix containing scores for DynaMine values matchings. This terminology will be used
throughout this chapter and the next.
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Tools and data used

Our main scripting language is Python [VRD11], often used with the SciPy/NumPy
[Bre12] and BioPython [biopython.org] libraries, and of course we used the MatPlotLib
[matplotlib.org] library for generating most of our plots. Python was used for most
small tasks, such as parsing text files, but also for implementing the BLOSUM gener-
ating algorithm. The language used for implementing the Needleman-Wunsch-Gotoh
algorithm is the C programming language [KR88]. Besides programming languages, we
also used some programs from the EMBOSS software package [RLB00], namely seqret
and needle. The operating systems on which computing was done were either Arch
Linux [archlinux.org] (for small tasks), or Scientific Linux [scientificlinux.org]
(for more computationally expensive tasks: this OS was the one installed on a computer
cluster at the university that I was allowed to use); of course, it came with extensive
usage of the Bash Unix shell [RF02].

The data was taken from the BAliBASE [TPP99a,TPP99b,TKRP05] benchmark database;
although it suffers from some criticism [Edg10,JB09] (but this is the case of any bench-
mark database), this is one of the most widely used, and also the one suggested by my
thesis advisor. Other possible choices would have been SABmark [VWLW05] (which was
coincidentally developed at the Vrije Universiteit Brussel), or one of those discussed in
the [BWLH06] survey article.

2.2 Running DynaMine on the BAliBASE database

The last version of the BAliBASE database was obtained from the website of the LBGI
Bioinformatique et Génomique Intégratives research group at the Université de Stras-
bourg: http://lbgi.fr/balibase/. It comes in a compressed archive containing multi-
ple sequence alignments in the MSF, RSF, and XML file formats, and the alignments are
grouped in 6 different subsets (described on figure 2.2.1). Files are named following the
pattern BBxxyyy, with xx being the two-digit dataset identifier and yyy the three-digit
sequence identifier. Similarly, files for the truncated alignments (see next paragraph)
are named in the BBSxxyyy pattern.

dataset description
RV11 equi-distant sequences with <20% identity
RV12 equi-distant sequences with 20–40% identity
RV20 families aligned with a highly divergent “orphan” sequence
RV30 subgroups with <25% residue identity between groups
RV40 sequences with N/C-terminal extensions
RV50 internal insertions

Figure 2.2.1: The 6 different datasets in the BAliBASE database.

With the exception of RV40, each dataset is further subdivided into two subsets: one
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containing complete alignments, and one with the same alignments truncated so that
all end gaps are eliminated and only the core block of alignments remain (see figure
2.2.2 for an example). The RV40 dataset is an exception, and only exist in a complete-
alignments version, because its purpose is to test the effect of long terminal extensions,
i.e. its alignments all contain a few sequences much longer than the other ones, hence
long end gaps are required in any good sequence alignment. Therefore it would not
make much sense to truncate the RV40 alignments.

---GKGDP KKPRGKSYAFFVQTSREEHKKKHPDASVNFSEFSKKCSERWKT----EEDAKADKARYEREMKTYIPPKGE ----------
------MQ DRVKRPNFIVWSRDQRRKMALENP--RMRNSEISKQLGYQWKMLTEAEFQAQKLQAMHREKYPNYKYRPRR KAKMLPK---
MKKLKKHP DFPKKPTYFRFFMEKRAKYAKLHP--EMSNLDLTKILSKKYKELPEKKIQFQREKQEFERNLARFREDHPD LIQNAKK---
-------- MHIKKPNFMLYMKEMRANVVAEST--LKESAAINQILGRRWHALSREEYEARK----HMQLYPGWSARDNY GKKKKRKREK

Figure 2.2.2: In their truncated versions, alignments have been stripped of their left and right
end gaps, keeping only the center block (in bold in this example).

We chose to conduct the test on the truncated alignments only, thus ignoring the RV40
dataset. Statistics on the size of the relevant datasets are summarized in the table on
figure 2.2.3.

dataset RV11 RV12 RV20 RV30 RV50 total
# alignments 38 44 41 30 16 169
# sequences 261 396 1 869 1 895 447 4 868

# residues 66 304 119 542 470 228 510 425 154 986 1 321 485

Figure 2.2.3: Sizes of the datasets used in the experiments.

DynaMine had to be run on each sequence in the database, so that we can use the
resulting data for experimenting with alignments. DynaMine takes FASTA file formats
as input, so all alignments files in the database were first converted to this format
using the seqret program from the EMBOSS software package. Although we will work
with truncated alignments, special care was taken to run DynaMine on the full sequences
rather than the truncated ones. Indeed, protein flexibility is of course context-dependent
(i.e. it does not depend on the local residue only, but also on the surrounding ones), so
residues at the beginning and the end of the sequences should be accounted for when
inferring the flexibility, even if terminal extensions will be discarded before aligning.
An example of inaccuracies arising when running DynaMine on truncated sequences
is portrayed on figure 2.2.4. Therefore DynaMine values were computed for the full
sequences, then truncated, keeping only the core sequences.
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Figure 2.2.4: DynaMine values computed using a whole sequence and computed using the
corresponding truncated sequence. The correct way of using DynaMine is to run it on a whole
sequence rather than on a subsequence.

A DynaMine value of 1 means complete order (stable conformation), while a value of 0
means fully random bond vector movement (highly dynamic). However, since the values
come from a linear prediction, DynaMine sometimes ‘over-predicts’ and outputs values
outside of these bounds. We addressed this problem by simply capping all values to
the [0, 1] range. Furthermore, all values were binned into 50 equal-width bins, i.e. a
DynaMine value of x ∈ [0, 1] is replaced by the integer b50 · xc, allowing us to work
with integer values (from now on these integer values will also be called ‘Dynamine
values’).

At this point, for each multiple sequence alignment in BAliBASE we had one FASTA
file (containing the actual alignment) and several text files (one for each sequence in
the alignment) containing the (binned) DynaMine values. In order to minimize the
time spent on writing text-handling computer code, the data on amino acid residues,
DynaMine values, and inserted gaps were combined in one single text file per alignment,
using a custom and easily-parsable file format.

In addition to aligning the benchmark data, we will also use it to infer the parameters
used in the alignment algorithm. To avoid using the same data for both tasks, 50-50
cross-validation was used: we partitioned the alignments into a training set and a test
set, the first one to be used for inferring parameters (such as dynBLOSUM matrices),
and the second one providing the data to be aligned. Since alignments contained in a
given BAliBASE dataset all share the same characteristics, how we partition the data
is irrelevant. Therefore we chose to simply gather even-numbered alignments into one
set and odd-numbered alignments into another set.
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BAliBASE
train-set

RV11 BB11??{0,2,4,6,8}.txt
RV12 BB12??{0,2,4,6,8}.txt
RV20 BB20??{0,2,4,6,8}.txt
RV30 BB30??{0,2,4,6,8}.txt
RV50 BB50??{0,2,4,6,8}.txt

test-set
RV11 BB11??{1,3,5,7,9}.txt
RV12 BB12??{1,3,5,7,9}.txt
RV20 BB20??{1,3,5,7,9}.txt
RV30 BB30??{1,3,5,7,9}.txt
RV50 BB50??{1,3,5,7,9}.txt

Figure 2.2.5: Directory structure of the benchmark database used in this thesis. Next to each
dataset folder is the UNIX pattern-matching string corresponding to its alignments.

The final structure of our resulting benchmark database is summarized on figure 2.2.5.
To give an idea of the computational challenge involved in aligning sequences in the
test set, we counted that it contains a total of 79 947 pairs of sequences, each of which
requires quadratic time (in sequence size) to be aligned. This will be time-consuming,
even on a powerful computer.

2.3 Statistics about the predicted data

Before starting any experiment with our data, we thought it would be interesting to
give some general statistics on the distribution of DynaMine values in the BAliBASE
databases. Those are depicted on the three figures in this section. Figure 2.3.1 shows
that most DynaMine values are around 0.7; in fact there was no value under 0.4 in our
data. Figure 2.3.2 clearly shows that values decreased near the ends of a sequence; which
justify our decision of truncating sequences in the previous section. Finally, figure 2.3.3
depicts the median, interquartiles, minimum and maximum values for each amino acid;
but in our opinion they are mostly all the same.
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Figure 2.3.1: DynaMine values distribution.
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Figure 2.3.2: DynaMine values near end gaps.
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Figure 2.3.3: DynaMine values for each amino acid residues.
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Chapter 3

Improving Needleman-Wunsch

3.1 Inferring the BLOSUM matrices

The algorithm for generating BLOSUM matrices, which we described in section 1.4,
makes no assumption on the nature of the ‘residues’ in a sequence alignment. Therefore
we may use the algorithm for inferring a 50×50 dynBLOSUM matrix rather than a 20×20
seqBLOSUM matrix. This is what will be done in this section; however, as a safeguard
against implementation mistakes, we will first generate seqBLOSUM62 matrices and
compare them with the standard BLOSUM62 matrices available in most bioinformatics
software packages. Once assured that our computer code produces correct matrices, we
will adapt it to work with DynaMine values.

Recreating seqBLOSUM62

As a first step we wrote a Python script which computes a seqBLOSUM matrix from
a set of multiple sequence alignments, using the algorithm of section 1.4. Note that
the algorithm needs gap-free alignments of same-length sequences. Therefore the script
extract gap-free blocks from the alignments, by discarding columns containing a gap
(see figure 3.1.1), and use the resulting set of blocks as its input.

NLFVALYDFV ASGDNT LSITKGEKLRVLLGY N--------------H NYGEWCEAAQTK N---------- GQGYWVPFSNYITPVN
YQYRALYDYK KEREED IDLHLGDILTVKNKG SLVALGFSDGQEARPE EQIGWLNAGYNE TTG-------- ERGNDFPFGTYVEYIG
NFRVYYRDSR ------ DPVWKGPAKLLLWKG ---------------- EQGAVVIAQDNS ----------- DIKFVVPFRRKAKIIR
FKVQAQHDYT ATDTDE LQLKAGDVVLVLIPF QN----------PEEQ DYEGWLMAGVKE SDWNQHKELEK CRGEVFPFENFTERVQ
EIAQVTSAYV ASGSEQ LSLAPGQLILIKLKK N--------------- TYSGWWQAGELQ ARGKK-----R QKGNWFPFASHVKLLG

Figure 3.1.1: This multiple sequence alignment contains 4 gap-free blocks.

Besides a set of benchmark alignments, our script also requires two parameters: the
clustering threshold T and the scaling constant λ. We fixed T = 62 and for λ we used
the same scaling constant that was originally used for creating the standard BLOSUM62
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matrix used by common software such as EMBOSS or BLAST; its value can be found
in (for example) the substitution matrix files available in the EMBOSS source code. In-
ferring a seqBLOSUM62 matrix from the BAliBASE database may of course produce a
matrix very different than the one of EMBOSS, which was inferred from another bench-
mark database called BLOCKS and specifically created for the purpose of investigating
amino acids substitution [HGPH00,HHP99]. Therefore the BLOCKS database was ob-
tained from its server at http://blocks.fhcrc.org/ and its alignments converted to
a format readable by our script (BLOCKS comes in the form of a large single text file).
The seqBLOSUM62 matrices inferred from BLOCKS and BAliBASE are pictured and
compared with the standard one in figures 3.1.2 and 3.1.3.
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Figure 3.1.2: Three seqBLOSUM62 matrices pictured as heat maps, from left to right: the
standard one, the one generated from BLOCKS, and the one generated from BAliBASE. Scores
range from +11 (dark green) to −11 (dark red, not present here).
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Figure 3.1.3: Comparison of the seqBLOSUM62 matrices generated from BLOCKS (left) and
BAliBASE (right) with the standard matrix used in most bioinformatics software. Score differ-
ence is 0 when white, 1 when red, and 2 when dark red.

Counting the red cells of the first matrix on figure 3.1.3, we see that the seqBLOSUM62
matrix generated from the BLOCKS database differ from the standard seqBLOSUM62
matrix in 32 of its 1 + · · · + 20 = 210 substitution scores. This is consistent with
the claim in [SJRS08] that the standard seqBLOSUM62 matrix is wrong in 15% of its
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positions.

We thought it would be interesting to also compare our generated matrices with the
‘correct’ one (rather than the incorrect standard one). Our seqBLOSUM62 matrix
generated from the BLOCKS database is again depicted on figure 3.1.4, together with
the ‘correct’ matrix from [SJRS08] (which is available in the supplementary notes of the
article). We see that in both matrices, differences with the standard BLOSUM62 matrix
often occur at the same positions (but not always). There are still differences between
our matrix and the ‘correct’ one: we counted that 12/210 = 5.7% of the values do not
match (but they never differ by more than 1). We think that these errors are due to
different interpretations of the clustering method described in [HH92]; see section 1.4
for more information.

Whichever is the real correct BLOSUM62 matrix (if such a thing is even possible to de-
fine), we believe that our own version is likely close to it, and therefore the seqBLOSUM-
generating program we implemented is probably mostly correct. Moreover, the [SJRS08]
article claims that the errors in the standard BLOSUM62 matrix actually slightly im-
prove alignment performance, therefore there is likely no reason to worry about minor
miscalculations in our implementation.
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Figure 3.1.4: Substitution scores in the seqBLOSUM62 matrix generated from BLOCKS (left),
and in what is the ‘correct’ BLOSUM62 matrix according to [SJRS08] (right). Differences with
the standard BLOSUM62 matrix are again depicted using red cells. Boxed cells have different
values in the left and right matrices.
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Adapting for dynBLOSUM

Our Python script was then adapted to produce dynBLOSUM matrices. The algorithm
stays the same, except that we now count pairs of DynaMine values rather than pairs
of amino acid residues. However, caution is required, as it is possible that some pairs of
values never appear in the data. Recall the definition of the scoring matrix:

sij := 1
λ

log
(
qij

pipj

)

When there is no value i in the data, we have pi = 0 and a division by zero. We take
care of this situation by setting sij = 0 when pi = 0 or pj = 0. This makes sense: setting
a zero score for DynaMine values never encountered simply means that we are neutral
to any substitution involving such values.

Another problematic situation is when there are some values i and j in the data, but
no pairs (i, j), so that we have qij = 0, pipj 6= 0, and hence sij = −∞. In this case, we
set sij to be the minimum value (other than −∞) in the substitution matrix.

Suppose we want to generate a dynBLOSUM62 matrix. So we must have T = 62, but
how to choose the scaling constant? The scaling constant only purpose is to have ‘nice’
scores that can be rounded to integer values; it can be changed at will as long as we scale
the gap penalties accordingly. However, our main experiment in this thesis requires the
averaging of a seqBLOSUM with its corresponding dynBLOSUM. Having one matrix
with large scores and the other one with small scores is therefore undesirable.

Our approach will be to choose the scaling constant λ of a dynBLOSUM so that the
matrix has the same expected substitution score as the corresponding standard seqBLO-
SUM matrix. Since pipj is the probability of having a (i, j) pair at a random position
in a random pairwise alignment, the expected substitution score is µ =

∑
i

∑
j pipjsij ,

and the desired λ can be computed from µ (which is −0.5209 for BLOSUM62, for
example).

We can now use our script to infer dynBLOSUM matrices from any BAliBASE dataset
and for any clustering threshold. See figure 3.1.5 for an example.
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Figure 3.1.5: A dynBLOSUM62 matrix generated from the RV30 dataset. There was no value
under 0.4 in this dataset, hence the large ‘empty’ area.

Remark. In this thesis we use the BAliBASE database as a benchmark but also as a
train set for inferring parameters, such as BLOSUM matrices. Since the seqBLOSUM
matrices were originally inferred from the BLOCKS database, it would be natural to do
the same for dynBLOSUM matrices, i.e. we could run the DynaMine predictor on every
sequence in the BLOCKS database, and then use the resulting alignments of DynaMine
values to infer a dynBLOSUM matrix. However, most blocks in the BLOCKS database
are quite short (often under 20 residues), consisting of highly conserved domains rather
than complete sequences. Therefore running DynaMine on these short sequences will
give untrustworthy values (see figure 2.2.4 in the preceding chapter).

3.2 Creating and scoring alignments

A small C library implementing the Needleman-Wunsch-Gotoh algorithm of section 1.3
was created for the thesis; information about where to obtain it is available in the
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Appendix. We compared alignments produced with this library with the ones produced
by the needle program from the EMBOSS software package, and got the exact same
results, so we believe the implementation to be correct.

Once alignments are computed they still need to be compared to their benchmark coun-
terparts. For this purpose we will use the sum-of-pairs score already described in section
1.4, for scoring individual pairwise alignments but also multiple alignments or whole
datasets.

Aligners

All aligners used in our experiments were written using the aforementioned library. Most
of them are small command-line applications, usually taking the following positional
arguments:

• one seqBLOSUM matrix file (in NCBI/EMBOSS format)

• one dynBLOSUM matrix file (50 lines of 50 space-separated integer values)

• one or more numerical parameters, depending on what we want to investigate

• one (benchmark) multiple sequence alignment (in some custom file format)

For each pairs of sequences in the input alignment file, the program compute a pairwise
alignment and print a line containing:

• the identifiers of the two sequences

• the number of correctly matched residues in the computed pairwise alignment

• the number of matched residues in the benchmark pairwise alignment

See figure 3.2.1 for an example of how it works. The program does not output the
computed pairwise alignments, it just discards them instead. This is because at this
point we do not really need to see the actual alignments: after all if it appears that some
computed alignments have interesting sum-of-pairs scores, we can always recompute just
those ones to examine them more closely. Moreover, this prevents us from having to
store and organize almost 80 000 FASTA files for every tested combination of substitution
matrices and numerical parameters.

In fact, with the BAliBASE database comes a small C program, called baliscore, which
reads two alignments in the MSF file format and outputs its sum-of-pairs score. How-
ever using this ready-made program would require us to store every computed pairwise
alignment, before converting them to MSF so that we can feed them to baliscore. We
found that implementing the scoring function ourselves was simpler and quicker, so we
did not use baliscore, although we compared its output with our program’s output
(scores were always identical).
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$ ./aligner seqBLOSUM.txt dynBLOSUM.txt 50 BB11003.txt
1ad3 A 1uzb A 337 413
1ad3 A 1eyy A 209 397
1ad3 A 1o20 A 218 381
1uzb A 1eyy A 290 417
1uzb A 1o20 A 221 337
1eyy A 1o20 A 223 394

Figure 3.2.1: Output of the program that will be used to compute and score pairwise alignments
made by averaging two BLOSUM matrices (here with 50%− 50% weighting). First two columns
are the protein identifiers, third column is the number of correct pairs in the computed pairwise
alignment, and fourth column is the number of pairs in the benchmark pairwise alignment.

Gap penalties. There are parameters other than substitution scores in a Needleman-
Wunsch algorithm: the gap penalties. How to choose them is not clear [RP02,Mou08].
Here we chose to use penalties of 10 for opening gaps and 0.5 for extending gaps.
Those are the default values of needle, the Needleman-Wunsch implementation from
the EMBOSS software package.

On the other hand end gaps require special take. Since we work with truncated align-
ments devoid of end gaps, it makes no sense to let the aligners insert end gaps. So end
gaps were forbidden, by setting very large gap opening penalties before the first residue
and after the last residue.

Sum-of-pairs scores

Our aligners output scores for each pairwise alignment created. When faced with the
problem of obtaining a total score for all pairwise alignments coming from one common
multiple sequence alignment, we simply divided the sum of correctly aligned residues by
the sum of benchmark aligned residues. So for example, in the case of figure 3.2.1, the
total score is 337+209+218+290+221+223

413+397+381+417+337+394 ≈ 64%. We used the same method for obtaining
a score for pairwise alignments coming from a whole BAliBASE dataset rather than a
single multiple sequence alignment.

The rationale for this method is best described using graded school homeworks. Suppose
you are in school, you have homeworks using a grading system akin to ‘12/20’, but they
are not all worth the same amount of points. So if you get a 10/20 for an important
course and a 8/10 for a less important course, your average grade in percents is not
50% + 80%

2 = 65%. Rather, it is 10 + 8
20 + 10 = 60%. This is why we do not simply compute

the total sum-of-pairs score as the average of the scores in percents: some pairwise
alignments are longer than others, hence should make up for a larger part of the total
sum-of-pairs score.

For further clarification, and as a future reference, our scoring method is more precisely
summarized in figure 3.2.2.
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Using the following notation:

• D for a benchmark dataset

• M for a benchmark multiple alignment (contained in some D)

• P for a benchmark pairwise alignment (taken from some M)

• P̂ for the pairwise alignment computed from the two sequences in P

We define scores as follows:

pairs(P ) := number of pairs in P that are also in P̂

total(P ) := total number of pairs in P

score(P ) := pairs(P )
total(P )

score(M) :=
∑

P∈M pairs(P )∑
P∈M total(P )

score(D) :=
∑

M∈D

∑
P∈M pairs(P )∑

M∈D

∑
P∈M total(P )

Figure 3.2.2: How sum-of-pairs scores are computed for a pairwise alignment, a multiple
alignment, and a whole dataset. Recall that a multiple alignment of n sequences contains n(n−1)

2
pairwise alignments.

Which seqBLOSUM is the best?

To ensure we had an efficient workflow in place before moving to more serious things,
we aligned all the data in our test set, using every seqBLOSUM matrix available in the
EMBOSS software package. Results are pictured on figures 3.2.3 and 3.2.4. Best results
were attained with BLOSUM60 and worst with BLOSUM40, however the difference
is thin. For the remainder of the thesis, we mostly use BLOSUM62 (the most com-
monly used substitution matrix in bioinformatics). Remark that results for the RV11
dataset are much worse than for the other ones. This is because RV11 is made up of
highly dissimilar sequences (<20% residue identity), therefore using amino acid residues
information alone is more susceptible of producing residue mismatches.
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Figure 3.2.3: Heat map of the (total) sum-of-pairs scores (red is 0%, green is 100%) for each
BAliBASE alignment and each seqBLOSUM matrix in the EMBOSS software package.

30 35 40 45 50 55 60 62 65 70 75 80 85 90
min 24 27 23 28 24 22 27 28 25 26 25 18 19 21 R

V
11

max 78 77 78 81 80 76 85 85 85 84 78 66 77 77
mean 45 46 44 47 44 42 49 49 47 46 44 33 41 39
total 35 38 36 39 35 34 41 40 39 37 35 26 32 31
min 59 62 59 62 59 57 63 63 62 60 59 52 55 55 R

V
12

max 92 92 93 92 92 92 93 93 92 92 92 86 91 90
mean 77 78 76 78 77 75 80 79 79 78 77 68 74 73
total 75 77 75 77 75 74 79 78 77 76 75 65 72 71
min 55 56 55 57 55 54 58 57 57 56 56 49 53 53 R

V
20

max 93 94 93 94 93 93 95 95 94 94 94 89 92 92
mean 81 82 81 82 81 80 84 83 83 82 81 74 79 79
total 85 86 85 86 85 84 87 87 87 86 85 79 84 83
min 40 42 40 42 40 39 43 43 42 41 40 34 38 37 R

V
30

max 82 84 82 84 82 81 85 85 84 83 82 73 80 78
mean 62 64 62 63 62 61 65 64 64 62 62 54 59 58
total 59 60 59 61 59 58 62 62 61 60 59 51 57 56
min 43 46 43 45 44 41 48 46 46 44 43 33 39 38 R

V
50

max 87 88 87 88 87 86 89 89 88 88 87 82 86 85
mean 63 65 64 66 64 63 67 67 66 65 64 56 62 61
total 59 61 59 61 60 58 63 62 62 61 60 52 58 57

Figure 3.2.4: Minimum, maximum, average, and total sum-of-pairs scores (in percentages)
for each dataset and each seqBLOSUM matrix. By total score, we mean the one obtained by
counting correct pairs across all multiple alignments in the dataset (see figure 3.2.2).

An interesting observation is that the total dataset score is always worst than the average
of the multiple alignments scores, except in the case of RV20 where it is the opposite and
total score is always better than average score. This is probably because every RV20
alignment is made of sequences from a same protein family but aligned with one highly
divergent sequence (see BAliBASE dataset descriptions on figure 2.2.1). The inclusion of
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one very different sequence in each alignment decreases the score for this alignment (and
thus the average multiple alignment score), but if we choose to look at all residue pairs
across all alignments, then the few divergent sequences become less relevant and the
total dataset score is better. This example shows us why it is important to investigate
sum-of-pairs scores at all three levels (i.e. pairwise, alignment, and dataset scores; see
figure 3.2.2).

3.3 Averaging seqBLOSUM and dynBLOSUM

We now have BLOSUM-type matrices for pairs of residues (seqBLOSUM) and for pairs of
DynaMine values (dynBLOSUM). What remains is finding out a way to combine both
kinds of matrices into one single substitution score function, so that the Needleman-
Wunsch algorithm can use it to align sequences using information from both the residue
and the DynaMine value sequence. The main combination method used in this thesis is
averaging.

Recall (see section 1.3) that the substitution score for aligning position i (in the first
sequence) with position j (in the second sequence) was noted sub(i, j). We will set it to
the following weighted average of seqBLOSUM and dynBLOSUM:

sub(i, j) := α · seqBLOSUM(xi, yj) + (1− α) · dynBLOSUM(ui, vj)

Where xi, yj and ui, vj are respectively the amino acid residues and DynaMine values at
position i and j in each sequence. The number α is the proportion of seqBLOSUM: it
ranges from 0.0 (pure dynBLOSUM alignment, amino acid residues are ignored) to 1.0
(pure seqBLOSUM alignment, so just like in common implementation of Needleman-
Wunsch). Also recall that in section 3.1 we generated the dynBLOSUM matrices so that
they have the same expected substitution score than their seqBLOSUM counterparts.
Therefore, in theory, gap penalties can stay the same when varying the value of α.
Alignments parameters used for the experiments in this section are summarized on
figure 3.3.1.

seqBLOSUM standard BLOSUM62 matrix
dynBLOSUM same clustering and expected score as the seqBLOSUM
gap penalties 10 (opening) and 0.5 (extending)

end gaps disallowed

Figure 3.3.1: Alignments parameters used in the experiments.

Using the aligner program described in the previous section, we computed sum-of-pairs
scores for all pairs of sequences in our BAliBASE test set. If it is not explicitly stated
otherwise, we are always using a 62% clustering percentage (see discussion surrounding
figure 3.2.3. The α parameter was varied in 0.01 increments, which required several
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millions of pairwise alignments to be computed, each of whose costs quadratic time
in sequence time, so the experiment took a quite long computation time, especially
if we factor in all the inevitable first attempts which failed because of errors in data
preprocessing, algorithm implementation, parameter choices, and so on.

Results for our BAliBASE test datasets

The relationship between the α parameter and the total sum-of-pairs score for each
BAliBASE dataset is plotted on figure 3.3.2. Of course, we generated (from the training
sets) a different dynBLOSUM matrix for each of the test datasets. Scores can be com-
puted for pairwise sequence alignments (PSA), for multiple sequence alignments (MSA)
and for the whole dataset (see scoring methods summary on 3.2.2). For each dataset, we
plotted the median PSA score, the average (arithmetic mean) MSA score, and the total
dataset score. We chose to use the median for PSA scores because there are usually
many PSAs in a given dataset, many of which are extreme cases. Since there are only
a few MSAs in each dataset, we rather used the mean for these.
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RV50
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1
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%

median score of 3429 PSAs

mean score of 8 MSAs

total score of dataset

Figure 3.3.2: Median PSA score, average MSA score, and total dataset score for α going from
0 (pure dynBLOSUM62) to 1 (pure seqBLOSUM62), shown for each BAliBASE test set.

Some observations can already be made: for example, best improvements occur in the
RV11 and RV12 datasets, which contain alignments with low similarity; we will talk
about that in details in a later subsection. Also, the total dataset score is always lower
than the mean MSA score, except in the case of RV20: this was already explained in
the discussion following figure 3.2.4, this is probably because all alignments in RV20
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have many similar sequences plus one very different ‘orphan’ sequence. These many
similar sequences in each RV20 alignment also explains why the improvement is low in
this dataset: another link between similarity and possible improvements.

Results of particular interest are summarized in figure 3.3.3 (using the total dataset
score only). Since alignments were also computed for BLOSUM30, their scores are also
depicted on the table.

BAliBASE dataset RV11 RV12 RV20 RV30 RV50
clustering percentage 30 62 30 62 30 62 30 62 30 62

best α value 0.50 0.57 0.53 0.59 0.50 0.58 0.50 0.58 0.50 0.57
best score 43% 46% 81% 82% 88% 89% 64% 65% 64% 66%

pure seqBLOSUM score 35% 40% 75% 78% 85% 87% 59% 62% 59% 62%
pure dynBLOSUM score 11% 10% 14% 13% 27% 27% 22% 22% 15% 15%

Figure 3.3.3: Best total dataset scores, with the corresponding α values, when averaging both
seqBLOSUM and dynBLOSUM, compared to scores obtained when using only one of each BLO-
SUM matrix (i.e. when setting α = 1 or α = 0).

Unsurprisingly, aligning sequences using DynaMine information alone gives bad results.
When averaging however, it is usually possible to obtain a slight increase in the sum-of-
pairs score (the best increase being 6% for the RV11 dataset; we will talk about it again
later). What is particularly noticeable is that the best seqBLOSUM percentage (i.e. the
best α value) seems to stay the same across all datasets: around 50% for BLOSUM30
and 60% for BLOSUM62.

Keep in mind that scores in the two previous figures are total sum-of-pairs scores for
whole datasets, all having different sizes and shapes. Therefore the improvements read-
able from figure 3.3.3 are only rough estimates of what happens at the individual pairwise
alignment level. We need to zoom in on this data.

In the remaining of the section we will measure improvements by using the difference
between the score with the overall best α (for the given dataset, see previous table)
and the score with a pure seqBLOSUM matrix (α = 1). For example an improvement
of 10% means that a sum-of-pairs score went from 20% to 30% (and not to 22%!). It
also means that 10% of the pairs in the benchmark were obtained with the averaging
method, but were not obtained with the pure seqBLOSUM method.
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Figure 3.3.4: Increase in the sum-of-pairs score of each multiple sequence alignment, grouped
by dataset. Bar width indicate the number of sequences in an alignment.

On figure 3.3.4, score improvements are showed on a multiple sequence alignment level.
Since the number of sequences in a multiple alignment is relevant (an improvement is
more worthy of attention if it occurs when considering many pairwise alignments), we use
bar widths to indicate alignment sizes. A first encouraging observation is that scores are
improved in nearly all multiple alignments, with only two exceptions in datasets RV11
and RV30. However, the largest improvements occur in the smallest alignments (see
RV11 especially) and are therefore probably less significant.

Zooming in again on the data, we can look at improvements at the pairwise alignment
level. However because of the large number of pairwise scores to consider (around
80 000), an accurate data visualization becomes difficult. Bar plots for each dataset were
still attempted on figure 3.3.5, with one bar for each pairwise alignment (bar widths are
now irrelevant), but in the larger datasets pairwise alignments are so numerous that we
can no longer clearly distinguish the different bars. One observation we can still made
from this plot is that the improvements pictured in figure 3.3.4 were in fact a bit too
optimistic. This is particularly clear for the RV30 dataset, whose pairwise alignment
score improvements seem to be often negative, although its multiple alignment score
improvements were mostly positive.
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Figure 3.3.5: Improvement of the sum-of-pairs score in each pairwise sequence alignment,
grouped by the source multiple alignment.

This observation brought us to create yet another plot, similar to figure 3.3.4, but
this time showing the median pairwise score improvement for each multiple sequence
alignment (figure 3.3.6). Many supposed improvements now disappear, for example in
the RV20 dataset the median pairwise improvement is mostly zero. Still, for most pairs
of sequences our averaging method is not worst than the pure seqBLOSUM method:
the only two multiple alignments where median pairwise scores have decreased are in
RV11.
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Figure 3.3.6: Median increase in pairwise score for each multiple sequence alignment. Bar
width indicate the number of sequences in an alignment.

More details on improvements inside the RV11 dataset are available on figure 3.3.7.
The two multiple alignments with decreased median pairwise scores are BB11025 and
BB11027.

BB11001 BB11003 BB11005 BB11007 BB11009 BB11011 BB11013

BB11015 BB11017 BB11019 BB11021 BB11023 BB11025 BB11027

BB11029 BB11031 BB11033 BB11035 BB11037
score improvement

-60% +60%

measured as the increase in
correctly aligned pairs when
using the averaging method

rather than a pure seqBLOSUM

Figure 3.3.7: Details of the sum-of-pairs score improvements for the RV11 dataset, when
α = 0.57 and with 62% clustering percentage. There is one matrix for every multiple sequence
alignment in RV11, itself containing one cell for every pairs of sequences in the alignment. Hence
matrices are symmetric and cells on the diagonals are always blank.
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Improvement and sequence similarity

Taking a look again at figure 3.3.6 we see that largest improvements reside in the RV11
and RV12 datasets. According to the BAliBASE documentation, these datasets contain
sequences with low residue identity between themselves (see the description on figure
2.2.1). This is probably not a coincidence: if two sequences are highly dissimilar, it
makes senses to use some information other than the amino acid residues (such as
DynaMine values) when trying to align them. Motivated by this idea, we investigated
the link between sequence similarity and score improvement when using a dynBLOSUM
matrix.

We used two different measures of sequence similarity. The first one is the most obvious:
the percentage of identical matched residues in the benchmark pairwise alignment. That
is, we take a pairwise alignment from BAliBASE, count the number of pairs of identical
amino acids, and divide it by the total number of pairs in the alignment. For the second
similarity measure, we used the seqBLOSUM62 matrix in order to get a substitution
score for each matched pair, summed all of these local scores, and then again we divided
by the total number of pairs. We computed these two numbers for all 80 000 pairwise
alignments in our BAliBASE test set, and compared them with the corresponding score
improvements by using scatter plots on figure 3.3.8.
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Figure 3.3.8: Relation between pairwise score improvement and pairwise sequence similarity.
There is one dot for every pairwise alignment in the BAliBASE test set.

Both best and worst score improvements tend to occur with dissimilar pairwise align-
ments, however the very best ones mostly occur when similarity is lower than 25% (in
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residue identity) or 1.0 (in mean seqBLOSUM62 scores). We should keep in mind that
DynaMine uses the residue sequence to predict flexibility, therefore low similarity can
also worsen DynaMine-based alignments.

Still, we wanted to further investigate possible improvements when using the averaging
method on dissimilar sequences. Another experiment was set up: we took all pair-
wise sequence alignments in both RV11 and RV12 datasets (those contain equi-distant
sequences with less than 40% identity), measured their similarity (in residue identity
percentage), and randomly partitioned them into a training set and a test set. In order
to avoid extreme cases arising from very short sequences, we also removed all pairwise
alignments having less than 150 matched residues.

With the training set, we generated a dynBLOSUM matrix, but without using any clus-
tering this time (after all, we already know that these sequences have low similarity);
though we still normalized the matrix so that it has the same mean score as the seqBLO-
SUM62 matrix (see section 3.1). We then aligned every pair of sequences in the test set,
for α going from 0 to 1, keeping track of the best α value and best corresponding score
improvement. When several α values yielded the same improvement, we always picked
the largest α, this way we avoid being overoptimistic about our averaging method.

Results were then ordered by sequence similarity, taking for each identity percentage
the mean best alpha, the mean best improvement, and the total best improvement (the
one obtained by summing all correct pairs, all benchmark pairs, and dividing the two
numbers to get a percentage): see figure 3.3.9.
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Figure 3.3.9: Best possible improvements and corresponding best α values for each pairwise
alignment similarity. Data generated using RV11 and RV12 datasets only.
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As we hoped, it seems that best possible improvements occur for more dissimilar pairwise
alignments. The best α value (i.e. the percentage of seqBLOSUM used for aligning) also
seems to slightly increases with similarity. However it should be noted that this experi-
ment was conducted with a very small dataset: there are only 1288 pairwise alignments
in our RV11+RV12 test set, and we further partitioned them by similarity. For this
reason figure 3.3.9 also includes a bar plot showing how much pairwise alignments there
are for each identity percentage (and we did not show the results for identity percentages
concerning less than 10 pairwise alignments). It would be interesting to conduct the
same experiment with a larger dataset of dissimilar pairwise alignments, maybe coming
from a benchmark database other than BAliBASE, but unfortunately we had no time
for such thing.

3.4 Other DynaMine-based scoring methods

Variations on averaging dynBLOSUM and seqBLOSUM matrices, or completely differ-
ent ways of using DynaMine values in Needleman-Wunsch, were considered. We tried
them, but not extensively, and because of computational time constraints, only with
the (small) RV11 and RV12 datasets. We still think it is interesting to briefly list these
other methods, as it is possible that some of them could give better improvements than
those obtained in the preceding section.

Binning the DynaMine values differently.
In our averaging method, we first binned the DynaMine values into 50 equal-width
bins. We tried using different numbers of bins, but this did not lead to significantly
better score improvements. In the extreme case of 1000 bins (which means, no bins
at all, since DynaMine values in [0, 1] are only predicted up to three digits after
the decimal point), we obtained very bad results. This is unsurprising since many
DynaMine values never appear in our training data (hence having zero scores in
the inferred dynBLOSUM matrix), although they could appear in the testing data.
The other extreme of using very few bins (say, 10 bins or less) was of course also
uninteresting. Another way of binning, which seemed a good idea at first, was to
use equal-frequency bins, but unfortunately this did not yield better results either.

Scaling the dynBLOSUM matrix differently.
When generating a dynBLOSUM matrix, we scaled its values so that its expected
score for random pairwise alignments was the same as the one of the corresponding
seqBLOSUM matrix. We could have chosen another way of scaling the matrix,
but then default gap penalties would probably have to be changed as well, and we
did not know how to find the correct ones.

Two weighting parameters
Instead of using matrices weights summing to 1, we can also simply use two dif-
ferent unrelated weighting coefficients:

sub(i, j) := α · seqBLOSUM(xi, yj) + β · dynBLOSUM(ui, vj)
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An advantage of this approach is that we no longer have to worry about the choice
of the scaling constant for the dynBLOSUM matrix (this constant is built-in into
the β coefficient). But since we then have to try (α, β) pairs of coefficients, the
number of pairwise alignments to compute becomes quadratic rather than linear
in the number of pairs of sequences. It is therefore much more time-consuming,
which prevented us of investigating this approach more closely. But for the very
few (α, β) pairs that we did try, we did not notice any significant improvement
than when simply setting β = 1− α.

Using dynBLOSUM scores as scaling coefficients.
Rather than averaging seqBLOSUM and dynBLOSUM matrices, we can use the
scores in the second matrix as proportions by which to increase (or decrease) the
scores in the first matrix. More formally, the scoring function used is:

sub(i, j) := seqBLOSUM(xi, yj) + dynBLOSUM(ui, vj)
α

· |seqBLOSUM(xi, yj)|

The idea is easier to understand using an example. Suppose that α = 100 and
that for a given pair of positions (i, j), the corresponding dynBLOSUM score is
-20. Then it means that the sub(i, j) score will be the corresponding amino acid
substitution score from seqBLOSUM, but decreased by 20% of this value. Varying
the α parameter then increases or decreases the effect of the dynBLOSUM matrix.
However, when testing this approach, it seemed that best alignments were always
for large values of α, in which case we just have a pure seqBLOSUM substitution
matrix.

An unified mixBLOSUM matrix.
A more general way of using both amino acid residues information and DynaMine
values is to infer a single large BLOSUM matrix with scores for every pair of
(acid, value) pairs. This means that instead of having one 20 × 20 seqBLOSUM
for the 20 amino acids and one 50 × 50 dynBLOSUM for the 50 DynaMine bins,
we use a 1000× 1000 ‘mixBLOSUM’ for the 20× 50 = 1000 (acid, value) possible
pairs:

sub(i, j) := mixBLOSUM ((xi, ui), (yj , vj))

Unfortunately we are not sure that the BAliBASE database contains enough data
to infer such a mixBLOSUM matrix, so this approach was not investigated.

Dynamic Time Warping.
Although nothing interesting arised from this approach, we believe it is worth men-
tioning, since it was one of the first experiment done for this thesis. DynaMine
values can be seen as a continuous signal (when we do not use bins), so it makes
sense to try a signal-matching algorithm such as Dynamic Time Warping. How-
ever, we could not get good alignments with DTW, we believe it is mainly because
there is no gap opening penalty in DTW, so it tends to insert many small gaps
everywhere, something which is biologically undesirable. Once we discovered that
DTW was just a special case of Needleman-Wunsch-Gotoh (see section 1.3), we
abandonned the idea of using it. Figure 3.4.1 is one example of DTW alignment.
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GKGDPKKPRGKM--SSYAFF--------V-Q--TSREEHKKKHPDASVNFSEFSKKCSERWKTMSAKEKGK-F------E------------------DMA-KADKARYER----EMKTYIPP-KGE
M-------QDRVKRPMNAFIVWSRDQRRKMALENP-------------RM---------------R----NSEISKQLGYQWKMLTEAEKWPFFQEAQKLQAMH-REK-YPNYKYRPRRKAKMLPK-

Figure 3.4.1: Pairwise sequence alignment created by matching the DynaMine signals with
DTW (using Euclidean distance).

3.5 Conclusion

In conclusion, we list what we learned in this thesis, in chronological order.

Needleman-Wunsch-Gotoh.
The usual algorithm, as described in [DEKM98], can easily be generalized to allow
for position-dependent substitution scores and gap penalties. Moreover, this gener-
alization permits us to see Dynamic Time Warping as a special case of Needleman-
Wunsch-Gotoh.

Clustering for BLOSUM.
The original BLOSUM article [HH92] is not very clear when describing the cluster-
ing method used. Our own interpretation was described in section 1.4 but maybe
it is not the right one. This can results in different clusters, and therefore in
slightly different BLOSUM matrices.

Recreating seqBLOSUM62.
The matrix we inferred from the BLOCKS database is slightly different than the
classical seqBLOSUM62 matrix. The article [SJRS08] claims that the classical
matrix in fact contains errors, but the ‘correct’ matrix provided by the authors
is also slighly different than the one we generated ourselves. These differences
could be imputable to the use of different clustering methods for each matrix (see
previous point), so in a sense, all three matrices are correct since they all used
the BLOCKS database with the algorithm of [HH92]. The problem is that this
algorithm is not sufficiently well defined.

Best seqBLOSUM.
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Our little experiment whose results are listed on figure 3.2.4 showed us that, for
all BAliBASE datasets, the best matrix was always seqBLOSUM60.

Averaging seqBLOSUM and dynBLOSUM.
Small sum-of-pairs score improvements are possible when using the averaging
method, and interestingly enough, the best averaging weights are always (60%, 40%)
for seqBLOSUM62/dynBLOSUM62 and (50%, 50%) for seqBLOSUM30/dynBLOSUM30
(see figure 3.3.3). So it seems that the averaging weights stay the same for every
dataset, although they contain different kinds of sequences.

Using DynaMine data is more useful for dissimilar sequences.
It seems that our averaging method works best for highly dissimilar sequences (see
figure 3.3.9). This was expected: if very few residues are identical, it makes sense
to use more structural data (such as DynaMine values) in a sequence alignment.
However this experiment was done with a small dataset, so we should not jump
to conclusions too quickly.

Of course, there is some valid criticism that one could make about our thesis. We
think that the main issue is the narrow-minded focus: we used only one alignment algo-
rithm (Needleman-Wunsch), one matrix-generating algorithm (BLOSUM), one bench-
mark database (BAliBASE), one scoring method (sum-of-pairs), one method of incor-
porating DynaMine values (averaging), we did not play with gap penalties, and we only
worked with pairwise alignment (although multiple alignments seem to be more stud-
ied in bioinformatics). In particular, we are not convinced that BAliBASE was the
best benchmark database for the job: since we wanted to use DynaMine values for im-
proving alignments, a benchmark of highly dissimilar sequences would have been more
interesting, because it is believed that structure is more conserved than sequences, and
DynaMine gives us information on structure. But DynaMine is still a flexibility predic-
tor, therefore, although it was built using benchmark experimental data, a large part
of the information provided by DynaMine still comes from the amino acid sequence.
Another point is the problem of the sum-of-pairs score for scoring everything, using
another scoring system could have lead to different conclusions.
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Appendix

This short appendix is meant to concisely explain where to obtain the C implemen-
tation of the Needleman-Wunsch-Gotoh algorithm developed for this thesis (see sec-
tion 1.3), and how to use it. The source code is available on GitHub at https:
//github.com/oboes/gotoh. We tried to stay as minimalist as possible (around 500
lines of code in total) while still providing correct code. The implementation is C99-
compliant, and no exotic features or libraries are used: in fact the only C header files
needed for compiling are stdio.h, stdlib.h, string.h, and ctype.h. Therefore the
code should be compilable on almost any C compiler.

The implementation is more of a small library, providing functions for creating a dy-
namic array (gth init), setting substitution scores and gap penalties (gth set sub
and gth set gap), filling and then backtracking the dynamic array (gth align), and
the freeing the allocated memory (gth free). What distincts our implementation from
other ones is that it allows a programmer to modify gap penalties and substitution
scores depending on their positions in the sequences. Therefore the code can be used
for much more than implementing a classical Needleman-Wunsch aligner: for example,
it is possible to set gap penalties depending on the residues surrounding the gap or
substitution scores which differ near the ends of a sequence. It is also possible to use
the implementation for algorithms unrelated to biological sequences, such as Dynamic
Time Warping (see section 1.3).

Basic input/output handling was also developed: the program can read FASTA files
and NCBI/EMBOSS scoring matrix files, and a command-line interface is provided.
We compared the results of our software, and got the exact same alignments as those
produce by the needle program of the EMBOSS software package, thereforce we believe
the implementation to be correct.

More information, as well as some C code example showcasing how to use the functions
developed for this software is available on the GitHub repository of the program: https:
//github.com/oboes/gotoh.
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