Enhancements for
Multi-Player Monte-Carlo Tree Search!

J. (Pim) A. M. Nijssen Mark H.M. Winands

Games and Al Group, Department of Knowledge Engineering
Maastricht University, Maastricht, The Netherlands

In this abstract we propose two new enhancements for Monte-Carlo Tree Search (MCTS) in multi-player
games. The first one is Progressive History, a combination of Progressive Bias [2] and the history heuristic
[4]. The second one is a multi-player variant of Monte-Carlo Tree Search Solver [6], called Multi-Player
Monte-Carlo Tree Search Solver (MP-MCTS-Solver). We test these enhancements in two different multi-
player games: Focus and Chinese Checkers.

A problem of MCTS is that it takes a while before enough information is gathered to calculate a reliable
value for a node. Chaslot ef al. [2] proposed Progressive Bias (a UCT variant [3]) to direct the search
according to heuristic knowledge. We propose an enhancement, called Progressive History, that combines
Progressive Bias and the history heuristic. The child ¢ with the highest score v; is selected as follows

vi:ﬁ—&—Cx M#—S—GXL,
ng n; Ng N;—8;+1

ey

where s; denotes the total score of child 7, and s, represents the score of the move a corresponding to node
i. The variables n; and n, denote the total number of times that child ¢ and parent p have been visited,
respectively. n, is the number of times move a has been played in any game in the past. C is a constant
that determines the exploration factor of UCT [3] and W is a constant that determines the influence of
Progressive History. In Formula 1, e —Vl/,- 7 represents the Progressive Bias part and :TZ the history heuristic
part. We remark that, in the Progressive Bias part, we do not divide by the number of visits as standard is
done [2, 6], but by the number of visits minus the score, i.e., the number of losses. In this way, nodes that
do not perform well are not biased too long, whereas nodes that continue to have a high score stay biased.
To ensure that we do not divide by 0, a 1 is added in the denominator.

In the first series of experiments we tested Progressive History (with different values of W) against an
MCTS player without Progressive History in Focus and Chinese Checkers. Table 1 shows that Progressive
History, provided the value of W is set correctly, is a considerable improvement for MCTS in Focus. Table
2 reveals that Progressive History works even better in Chinese Checkers. Moreover, additional experiments
revealed that dividing by the number of losses increased the performance of Progressive History.

Table 1: Progressive History player with different W values vs. default MCTS player in Focus.
2 players 3 players 4 players

W | wins | losses | winrate | wins | losses | winrate | wins | losses | win rate

0.1 | 2009 | 1351 | 59.8% | 2116 | 1244 | 63.0% | 1978 | 1382 | 58.9%

1 2219 | 1141 | 66.0% | 2196 | 1164 | 654% | 1957 | 1403 | 58.2%

5 1946 | 1414 | 579% | 2143 | 1217 | 63.8% | 2001 | 1359 | 59.6%

10 | 1593 | 1767 | 47.4% | 1941 | 1419 | 57.8% | 1911 | 1449 | 56.9%

Recently, Winands et al. [6] developed a method, called Monte-Carlo Tree Search Solver (MCTS-
Solver), to prove the game-theoretical value of a node in a Monte-Carlo search tree. This method was used
successfully in the two-player game Lines of Action. We developed a multi-player variant of MCTS-Solver,

The full version of this paper will be published in: Computers and Games (CG 2010), Lecture Notes in Computer Science,
Springer, Heidelberg, Germany.

Table 2: Progressive History player with different 1 values vs. default MCTS player in Chinese Checkers.
2 players 3 players 4 players

W | wins | losses | winrate | wins | losses | winrate | wins | losses | win rate

1 2279 | 1081 67.8% | 2132 | 1228 | 63.5% | 2079 | 1281 61.9%

5 2804 | 556 83.5% | 2211 | 1149 | 65.8% | 2244 | 1116 | 66.8%

10 | 2795 | 565 832% | 2193 | 1167 | 65.3% | 2337 | 1023 | 69.6%

20 | 2044 | 1316 | 60.8% | 2022 | 1338 | 60.2% | 2124 | 1236 | 63.2%

called Multi-Player Monte-Carlo Tree Search Solver (MP-MCTS-Solver). For the multi-player variant,
MCTS-Solver has to be modified, in order to accommodate for games with more than two players. Proving
a win works similarly as in the two-player version of MCTS-Solver: if at one of the children a win is found
for the player who has to move in the current node, then this node is a win for this player. If all children lead
to a win for the same opponent, then the current node is also labeled as a win for this opponent. However,
if the children lead to wins for different opponents, then updating the game-theoretical values becomes a
non-trivial task. Update rules have to be developed to take care of such situations. We tested three different
update rules: (1) The normal update rule only updates proven wins for the same opponent. This means that
only if all children lead to a win for the same opponent, then the current node is also set to a win for this
opponent. Otherwise, the simulation score is used. (2) The paranoid update rule uses the assumption that
the opponents of the root player will never let him win [1, 5]. Note that if there are still multiple winners
after removing the root player from the list of possible winners, then no game-theoretical value is assigned
to the node and the simulation score is used. Problems may arise when a player in a given node gives the
win to the player directly preceding him. In such a case, the parent node will receive a game-theoretical
value which is technically false. This problem can be diminished by using (3) the first-winner update rule.
When using this update rule, the player gives the win to the player who is the first winner after him. In this
way the player before him does not receive the win and, as a result, does not overestimate the position.

In the second series of experiments, we tested MP-MCTS-Solver with the three different update rules
playing against the default MCTS player. We performed these experiments in Focus, because MCTS-Solver
is only successful in sudden-death games [6]. Chinese Checkers is not a sudden-death game, and therefore
we expect MP-MCTS-Solver not to work well in this game. However, Focus is a sudden-death game and
is therefore an appropriate test domain for MP-MCTS-Solver. Progressive History was enabled for both
players with W =5. In Table 3, we see that in Focus the standard update rule works best.

Table 3: MP-MCTS-Solver player with different update rules vs. default MCTS player in Focus.
2 players 3 players 4 players

Type wins | losses | winrate | wins | losses | winrate | wins | losses | win rate
Standard 1780 | 1580 | 53.0% | 1844 | 1516 | 54.9% | 1792 | 1568 | 53.3%
Paranoid 1745 | 1615 | 519% | 1693 | 1667 | 50.4% | 1510 | 1850 | 44.9%
First-winner | 1774 | 1586 | 52.8% | 1732 | 1628 | 51.5% | 1457 | 1903 | 43.4%

Based on the results, we may conclude that Progressive History is an important enhancement for MCTS
in multi-player games. MP-MCTS-Solver with the standard update rule performs well. The other two update
rules, paranoid and first-winner, were not successful in Focus.

References

[1] T. Cazenave. Multi-player Go. In H.J. van den Herik, X. Xu, Z. Ma, and M.H.M. Winands, editors, Computers and
Games (CG 2008), volume 5131 of LNCS, pages 50-59, Berlin, Germany, 2008. Springer.

[2] G.M.J-B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and B. Bouzy. Progressive strategies
for Monte-Carlo Tree Search. New Mathematics and Natural Computation, 4(3):343-357, 2008.

[3] L. Kocsis and C. Szepesvari. Bandit based Monte-Carlo planning. In J. Fiirnkranz, T. Scheffer, and M. Spiliopoulou,
editors, Machine Learning: ECML 2006, volume 4212 of LNAI, pages 282-293, 2006.

[4] J. Schaeffer. The history heuristic. ICCA Journal, 6(3):16-19, 1983.
[5] N.R. Sturtevant and R.E. Korf. On pruning techniques for multi-player games.

[6] M.H.M. Winands, Y. Bjornsson, and J-T. Saito. Monte-Carlo Tree Search Solver. In H.J. van den Herik, X. Xu,
Z. Ma, and M.H.M. Winands, editors, Computers and Games (CG 2008), volume 5131 of LNCS, pages 25-36,
Berlin, Germany, 2008. Springer.

