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This abstract describes how Monte-Carlo Tree Search (MCTS) [1, 4] can be applied to play the hide-
and-seek game Scotland Yard. This game is played by 6 players: 5 seekers and 1 hider. The seekers work
together to capture the hider by moving one of their pawns to the location occupied by the hider. The game
is played on a map consisting of 199 locations, connected by 4 different transportation types. The hider’s
location is announced every 5 turns. The seekers always know which transportation type the hider uses.

The basic MCTS algorithm is designed for two-player games with perfect information. When using
MCTS in a hide-and seek game, which is a game with imperfect information, the algorithm has to be altered
slightly. When we use MCTS in Scotland Yard, the seekers can guess the location of the hider at each
iteration of the algorithm and place him on any of the empty locations on the board. This group of locations
can be limited by removing the locations where the hider cannot be located, based on the old list of possible
locations, the current locations of the seekers, and the type of transportation used by the hider. The list of
possible locations is updated every move.

Some of the possible locations are more probable than others. The performance of the seekers could be
improved by biasing the possible locations of the hider. This is done by categorizing the possible locations.
These categories are numbered from 1 to L, where L is the number of categories. This technique is called
Location Categorization. The type of categorization is game-dependent. For Scotland Yard, we use a
categorization based on the distance of the possible location to the nearest seeker. After the hider performs
a move, the possible locations are divided into the different categories. There are two ways to store the
information about the possible categories and the category of the location of the hider. In the general table,
we store for each category the number of times one or more possible locations belonged to the category, n,
and the number of times the actual location of the hider belonged to the category, a. This way of storing and
using information is similar to the transition probabilities used in Realization Probability Search [7]. In the
detailed table, for each possible combination of categories, we store how many times the actual location of
the hider belonged to each category. There are two different ways to gather the information for these tables:
offline and online. When using offline information gathering, first a large number of games is played and
the information is stored in a file. This information can later be used by the seekers. When using online
information gathering, the seekers start without any information. At the end of each game, the seekers
update the information with the statistics gathered from the last game. The seekers use a vector with length
L to select a location for the hider at the start of each MCTS iteration. These values represent the weights
of the categories. When using the general table, this vector consists of the values [ a1

n1
, a2

n2
, · · · , aL

nL
]. When

using the detailed table, this vector is directly taken from the table, by extracting the vector corresponding
to the combination of categories. To select a possible location, roulette-wheel selection is used. The size of
each possible location on the wheel is corresponding to the value of its category in the vector.

Scotland Yard is a cooperative multi-player game. Therefore, the seekers can be considered as one
player, making the game essentially a 2-player game. If in a playout one seeker captures the hider, the
playout is considered a win for all seekers and the result is backpropagated accordingly. However, when
using this backpropagation rule, we observed that seekers sometimes rely too much on the other seekers and
do not make any efforts to capture the hider. For solving this problem, we propose Coalition Reduction. If
the seeker who is the root player captures the hider, a score of 1 is returned. If another seeker captures the
hider, a smaller score, 1− r, is returned, where r ∈ [0, 1].
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Beside these two enhancements, we also incorporated some rudimentary domain knowledge [2] by im-
plementing ε-greedy playouts [5, 6] for both the hider and the seekers. Move filtering is implemented for
the hider, which prunes bad moves from the root node, based on the domain knowledge.

In the experiments we use different types of players. The Greedy player uses a straightforward heuristic
to select a move. The Basic-MCTS player uses MCTS with Upper Confidence Bounds applied to Trees
(UCT) [4]. It uses uniform random playouts. The Greedy-MCTS player uses ε-greedy playouts. It uses the
same heuristics as the Greedy player. The MCTS-based players use 10,000 playouts to select a move. In all
experiments, 2,500 games are played. The results are given with a confidence level of 95%.

In the first set of experiments we tested the performance of Location Categorization. We let different
seekers with and without Location Categorization play against different hiders. The results are given in
Table 1. For each setting, Location Categorization improved the performance of the seekers significantly.

Seekers Hider With LC Without LC
Basic-MCTS Basic-MCTS 54.1% ± 2.0 (detailed, offline) 47.7% ± 2.0
Basic-MCTS Greedy-MCTS 40.2% ± 1.9 (detailed, online) 33.8% ± 1.9
Basic-MCTS Greedy 85.4% ± 1.4 (detailed, online) 82.4% ± 1.5
Greedy-MCTS Greedy-MCTS 77.4% ± 1.7 (general, online) 72.1% ± 1.8

Table 1: Win rates of the seekers with and without Location Categorization (LC).

To test the performance of seekers with Coalition Reduction, we let different types of seekers with and
without Coalition Reduction play against different hiders. The results are given in Table 2. Except for the
Greedy-MCTS player, Coalition Reduction increased the performance of the seekers significantly.

Seekers Hider With CR Without CR
Basic-MCTS Basic-MCTS 54.0% ± 2.0 (r = 0.375) 47.7% ± 2.0
Greedy-MCTS Greedy-MCTS 73.6% ± 1.7 (r = 0.125) 72.1% ± 1.8
Greedy-MCTS + LC (general, offline) Greedy-MCTS 80.6% ± 1.6 (r = 0.250) 75.3% ± 1.7

Table 2: Win rates of the seekers with and without Coalition Reduction (CR).

Finally, to test the performance of the MCTS program, it was matched against a Scotland Yard program
on the Nintendo DS. The AI of this program is rather strong [3]. For our seekers, we used ε-greedy playouts,
Location Categorization (general, offline), and Coalition Reduction (r = 0.25). For our hider, ε-greedy
playouts and move filtering were used. A total of 50 games were played, where each program played 25
times as the seekers and 25 times as the hider. Out of these 50 games, 33 games were won by our program;
19 games were won as the seekers and 14 as the hider. The Nintendo DS program won 17 games, of which
11 as the seekers and 6 as the hider.

From the results we may conclude that Location Categorization is a robust enhancement for the seekers,
which can be used against any type of opponent. Coalition Reduction is a significant improvement for the
seekers as well. By using MCTS we are able to create a strong program for playing Scotland Yard. It plays
significantly stronger than the commercial program on the Nintendo DS.
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