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Over the past years, Monte-Carlo Tree Search (MCTS) [2, 3] has become a popular technique for playing
deterministic perfect-information multi-player games. MCTS is a best-first search technique that instead of
an evaluation function uses simulations to guide the search. For MCTS, a tradeoff between search and
knowledge has to be made. The more knowledge is added, the slower each playout gets. The trend seems
to favor fast simulations with computationally light knowledge, although recently, adding more heuristic
knowledge at the cost of slowing down the playouts has proven beneficial in some games [8].

In this abstract we propose Playout Search for MCTS in multi-player games. Instead of playing random
moves biased by computationally light knowledge in the playout phase, domain knowledge can be incorpo-
rated by performing small searches. These searches employ more expensive evaluation functions to assess
the leaf nodes of non-terminal positions. This reduces the number of playouts per second significantly, but
it improves the reliability of the playouts. When selecting a move in the playout phase, one of the following
three search techniques is used to choose a move.

Two-ply maxn [4]. A two-ply maxn search tree is built where the current player is the root player and
the first opponent plays at the second ply. Both the root player and the first opponent try to maximize their
own score. αβ-pruning in a two-ply maxn search tree is not possible.

Two-ply Paranoid [7]. Similar to maxn, a two-ply search tree is built where the current player is the
root player and the first opponent plays at the second ply. The root player tries to maximize its own score,
while the first opponent tries to minimize the root player’s score. Contrary to maxn, αβ-pruning is possible.

Two-ply Best Reply Search (BRS) [5]. The tree structure of BRS is similar to that of Paranoid search.
The difference is that at the second ply, not only the moves of the first opponent are considered, but the
moves of all opponents are investigated. Similar to paranoid, αβ-pruning is possible.

The major disadvantage of incorporating search in the playout phase of MCTS is the reduction of the
number of playouts per second [8]. In order to prevent this reduction from outweighing the benefit of the
quality of the playouts, enhancements should be implemented to speed up the search and keep the reduction
of the number of playouts to a minimum. The number of searches can be reduced by using ε-greedy playouts
[6]. With a probability of ε, a move is chosen uniform randomly. Otherwise, the selected search technique
is used to select the best move. The amount of αβ-pruning in a tree can be increased by using move
ordering. When using move ordering, a player’s moves are sorted using a static move evaluator. Another
move ordering technique is applying killer moves [1]. In each search, two killer moves are always tried first.
These are the two last moves that were best or caused a cutoff, at the current depth. Moreover, if the search
is completed, the killer moves for that specific level in the playout are stored, such that they can be used
during the next MCTS iterations. Killer moves are only used with search techniques where αβ-pruning is
possible, i.e., Paranoid and BRS search. The size of the tree can be further reduced by using k-best pruning.
Only the k best moves are investigated. This reduces the branching factor of the tree from b to k.

To test the performance of Playout Search, we performed several round-robin tournaments where each
participating player uses a different playout strategy. These playout strategies include 2-ply maxn, 2-ply
Paranoid and 2-ply BRS. Additionally, we include players with one-ply and the static move evaluator as
reference players. The tournaments were run for 3-player and 4-player Chinese Checkers and 3-player and
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4-player Focus. In each game, two different player types participate. If one player wins, a score of 1 is
added to the total score of the corresponding player type.

In the first set of experiments, all players were allowed to perform 5000 playouts per move. For 3-player
Chinese Checkers, BRS is the best technique. It performs slightly better than maxn and Paranoid. BRS wins
53.4% of the games against maxn and 50.9% against Paranoid. These three techniques perform significantly
better than one-ply and the move evaluator. In the 4-player variant, maxn, Paranoid and BRS remain the best
techniques, where BRS performs slightly better than the other two. BRS wins 53.8% of the games against
Paranoid and 51.9% against maxn. For 3-player Focus, the best technique is BRS, winning 54.8% against
maxn and 55.5% against Paranoid. Maxn and Paranoid are equally strong. BRS is also the best technique in
4-player Focus, though it is closely followed by maxn and Paranoid. BRS wins 51.5% of the games against
maxn and 51.8% against Paranoid.

In the second set of experiments, we gave each player 5 seconds per move. In 3-player Chinese Checkers,
one-ply and Paranoid are the best techniques. Paranoid wins 49.2% of the games against one-ply and 68.5%
against the move evaluator. BRS ranks third, and the move evaluator and maxn are the weakest techniques.
In 4-player Chinese Checkers, one-ply is the best technique, closely followed by Paranoid. Paranoid wins
46.3% of the games against one-ply. Paranoid is still stronger than the move evaluator, winning 64.6% of
the games. BRS comes in third place, outperforming maxn and the move evaluator. One-ply also performs
the best in 3-player Focus. Paranoid plays slightly stronger than the move evaluator, with Paranoid winning
51.9% of the games against the move evaluator and 46.1% against one-ply. The move evaluator and Paranoid
perform better than BRS and maxn. In 4-player Focus, Paranoid performs better than in the 3-player version
and slightly outperforms one-ply. Paranoid wins 51.7% of the games against one-ply and 59.9% against
the move evaluator. Maxn also performs significantly better than in the 3-player version. It is as strong as
one-ply and better than the move evaluator.

In the final set of experiments, we gave the players 30 seconds per move. Because these games take
quite some time to finish, only the one-ply player and the Paranoid player were matched against each other.
In the previous set of experiments, these two techniques turned out to be the strongest. Paranoid appears
to perform slightly better when the players receive 30 seconds per move compared to 5 seconds per move.
In 3-player Chinese Checkers, Paranoid wins 53.9% of the games, compared to 49.2% with 5 seconds. In
4-player Chinese Checkers, 48.3% of the games are won by Paranoid, compared to 46.3% with 5 seconds.
In 3-player Focus, the win rate of Paranoid increases from 46.1% with 5 seconds to 50.7% with 30 seconds
and in 4-player Focus from 51.7% to 54.1%.

The results show that Playout Search significantly improves the quality of the playouts in MCTS. This
benefit is countered by a reduction of the number of playouts per second. Especially BRS and maxn suffer
from this effect. Based on the experimental results we may conclude that Playout Search for multi-player
games might be beneficial if the players receive sufficient thinking time and Paranoid search is employed.
Under these conditions, Playout Search outperforms playouts using light heuristic knowledge in the 4-player
variant of Focus and the 3-player variant of Chinese Checkers.

References
[1] S.G. Akl and M.M. Newborn. The Principal Continuation and the Killer Heuristic. In Proceedings of the ACM Annual Conference,

pages 466–473, New York, NY, USA, 1977. ACM.
[2] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In H.J. van den Herik, P. Ciancarini, and

H.H.L.M. Donkers, editors, Computers and Games (CG 2006), volume 4630 of LNCS, pages 72–83, Berlin, Germany, 2007.
Springer.
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