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Abstract. In this paper we compare several search techniques for multi-
player games. We test the performance of the minimax-based search tech-
niques maxn, paranoid search and Best-Reply Search. Furthermore, we
investigate how the tree structure of each of the minimax-based tech-
niques can be applied in MCTS. The test domain consists of four different
multi-player games: Chinese Checkers, Focus, Rolit and Blokus. Based
on the experimental results, we may conclude that Best-Reply Search
is generally the best minimax-based search technique. Monte-Carlo Tree
Search performs best with the maxn tree structure.

1 Introduction

Multi-player games are games that can be played by more than 2 players. They
have several properties that makes them an interesting challenge for computers.
First, contrary to 2-player games, pruning in search trees is considerably more
difficult. Second, the opponents’ moves are more unpredictable, as coalitions may
occur.

Over the past years, several tree search techniques have been developed for
playing multi-player games. In 1986, Luckhardt and Irani proposed a modifica-
tion of the minimax-search technique to play multi-player games, called maxn

[10]. In 2000, Sturtevant and Korf proposed the paranoid search algorithm [17].
With this technique they showed, in the trick-based card game Sergeant Major,
that much more pruning is possible than in maxn. However, due to the, often
incorrect, assumption that all opponents cooperate against the root player, a
paranoid player often plays too defensively. Trying to overcome this shortcom-
ing of the paranoid algorithm, several techniques have been developed to make
the algorithm less paranoid. In 2005, Lorenz and Tscheuschner proposed the
coalition-mixer algorithm for 4-player chess [9] and in 2009, Zuckerman et al.
proposed the MP-Mix algorithm [19]. This algorithm uses an evaluation func-
tion to determine which search technique should be used. Another algorithm
was proposed by Schadd and Winands in 2011, namely Best-Reply Search (BRS)
[14]. This algorithm performs significantly better than paranoid search in various
multi-player games.

Over the past years, Monte-Carlo Tree Search (MCTS) [6, 8] has become a
popular technique for playing multi-player games as well. MCTS is a best-first
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search technique that, instead of an evaluation function, uses simulations to guide
the search. This algorithm is able to compute mixed equilibria in multi-player
games [16], contrary to maxn, paranoid and BRS. MCTS is used in a variety of
multi-player games, such as Focus [11, 12], Chinese Checkers [11, 12, 16], Hearts
[16], Spades [16], and multi-player Go [4].

In this paper we compare several search techniques that have been developed
over the years. We test the performance of maxn, paranoid and BRS in four
different multi-player games. Furthermore, we investigate how the tree structure
of these techniques can be applied in the MCTS framework.

The paper is structured as follows. In Section 2 we give an overview of the
search techniques used in this paper. Next, in Section 3 we explain the rules
and applied domain knowledge of the four games. In Section 4 we describe the
experiments and the results. Finally, in Section 5 we provide the conclusions and
an outline of future research.

2 Search Techniques

In this section we discuss the search techniques investigated in this paper. In
Subsection 2.1 we explain the three minimax-based search techniques: maxn,
paranoid and BRS. In Subsection 2.2 we briefly discuss MCTS and explain how
the tree structure of each of the minimax-based techniques can be applied in
MCTS.

2.1 Minimax-based search techniques

The traditional algorithm for playing multi-player games is maxn [10]. This tech-
nique is an extension of minimax search to multi-player games. In the leaf nodes
of the search tree, each player is awarded a payoff. Each player chooses the child
with the highest payoff. A disadvantage of maxn is that only a limited amount of
pruning is possible. Shallow pruning [17] is the easiest and safest way to achieve
some cut-offs.

Paranoid search [17] assumes that all opponents have formed a coalition
against the root player. Using this assumption, the game can be reduced to a
2-player game where the root player is represented in the tree by MAX nodes
and the opponents by MIN nodes. The advantage of this assumption is that
αβ-like pruning [7] is possible in the search tree, allowing deeper searches in the
same amount of time. The disadvantage is that, because of the often incorrect
paranoid assumption, the player may become too defensive.

In 2011, Schadd and Winands proposed a new algorithm for playing multi-
player games, namely Best Reply Search (BRS) [14]. This technique is similar
to paranoid search, but instead of allowing all opponents to make a move, only
one opponent is allowed to do so. The advantage of this technique is that more
MAX nodes are investigated. The disadvantage is that, if passing is not allowed,
illegal positions or positions that are unreachable in the actual game are taken
into account.
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Fig. 1. Monte-Carlo Tree Search scheme (Slightly adapted from [5]).

2.2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [6, 8] is a search technique that gradually
builds up a search tree, guided by Monte-Carlo simulations. In contrast to classic
search techniques such as αβ-search, it does not require a heuristic evaluation
function.

The MCTS algorithm consists of four phases [5]: selection, expansion, playout
and backpropagation (see Fig. 1). By repeating these four phases iteratively,
the search tree is constructed gradually. The tree is traversed using the Upper
Confidence bounds applied to Trees (UCT) [8] selection strategy. In our program,
UCT has been enhanced with Progressive History [11]. The child i with the
highest score vi in Formula 1 is selected.

vi = s̄i + C

√
ln(np)

ni
+W

s̄a
ni(1− s̄i) + 1

(1)

In this formula, s̄i denotes the win rate of child i, where s̄i ∈ [0, 1]. The variables
ni and np denote the total number of times that child i and parent p have been
visited, respectively. C is a constant that determines the exploration factor of
UCT. In the Progressive History part, s̄a represents the win rate of move a. W
is a constant that determines the influence of Progressive History.

The basic MCTS algorithm uses a tree structure which is analogous to the
maxn search tree. It is possible to apply the paranoid and BRS tree structures
to MCTS as well. The idea of using a paranoid tree structure in MCTS was
presented by Cazenave [4], however he did not implement or test it. When using
paranoid search or BRS in MCTS, the opponents use a different UCT formula.
Instead of considering their own win rate, they try to minimize the win rate of
the root player. In the MIN nodes of the tree, the following modified version of
Formula 1 is used.

vi = (1− s̄i) + C

√
ln(np)

ni
+W

(1− s̄a)

nis̄i + 1
(2)
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Fig. 2. A Chinese Checkers board.

3 Test Domains

The performance of the search techniques is tested in four different games: Chi-
nese Checkers, Focus, Rolit and Blokus. In this section we briefly discuss the
rules and the properties of these games in Subsections 3.2 – 3.4. In Subsection
3.5 we explain the move and board evaluators for the games.

3.1 Chinese Checkers

Chinese Checkers is a board game that can be played by 2 to 6 players. This
game was invented in 1893 and has since then been released by various publishers
under different names. Chinese Checkers is played on a star-shaped board. The
most commonly used board contains 121 fields, where each player starts with 10
checkers. We decided to play on a slightly smaller board [16] (see Fig. 2). In this
version, each player plays with 6 checkers. The advantage of a smaller board is
that games take a shorter amount of time to complete, which means that more
Monte-Carlo simulations can be performed and more experiments can be run.
Also, it allows the use of a stronger evaluation function.

The goal of each player is to move all his pieces to his home base at the other
side of the board. Pieces may move to one of the adjacent fields or they may
jump over another piece to an empty field. It is also allowed to make multiple
jumps with one piece in one turn, making it possible to create a setup that
allows pieces to jump over a large distance. The first player who manages to fill
his home base wins the game.

3.2 Focus

Focus is an abstract multi-player strategy board game, which was invented in
1963 by Sid Sackson [13]. This game has also been released under the name
Domination. Focus is played on an 8× 8 board where in each corner three fields
are removed. It can be played by 2, 3 or 4 players. Each player starts with a
number of pieces on the board. In Fig. 3, the initial board positions for the 2-,
3- and 4-player variants are given.

In Focus, pieces can be stacked on top of each other. A stack may contain up
to 5 pieces. Each turn a player may move a stack orthogonally as many fields as
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(a) 2 players (b) 3 players (c) 4 players

Fig. 3. Set-ups for Focus.

the stack is tall. A player may only move a stack of pieces if a piece of his color
is on top of the stack. It is also allowed to split stacks in two smaller stacks. If
a player decides to do so, then he only moves the upper stack as many fields as
the number of pieces that are being moved.

If a stack lands on top of another stack, the stacks are merged. If the merged
stack has a size of n > 5, then the bottom n−5 pieces are captured by the player,
such that there are 5 pieces left. If a player captures one of his own pieces, he
may later place one piece back on the board, instead of moving a stack. This
piece may be placed either on an empty field or on top of an existing stack.

There exist two variations of the game, each with a different winning condi-
tion. In the standard version of the game, a player has won if all other players
cannot make a legal move. However, such games can take a long time to finish.
Therefore, we chose to use the shortened version of the game. In this version,
a player has won if he has either captured certain number of pieces in total, or
a number of pieces from each player. In the 2-player variant, a player wins if
he has captured at least 6 pieces from the opponent. In the 3-player variant, a
player has won if he has captured at least 3 pieces from both opponents or at
least 10 pieces in total. In the 4-player variant, the goal is to capture at least 2
pieces from each opponent or capture at least 10 pieces in total.

3.3 Rolit

Rolit is a multi-player variant of the 2-player game Othello. This game was
introduced in 1975. It is similar to a game invented around 1880, called Reversi.
This game was invented by either Lewis Waterman or John W. Mollett. At the
end of the 19th century it gained much popularity in England and in 1898,
games publisher Ravensburger started producing the game as one of its first
titles. Othello is played by 2 players, Black and White, on an 8×8 board. On
this board, so-called discs are placed. Discs have two different sides: a black one
and a white one. If a disc on the board has its black side faced up, it is owned by
player Black and if it has its white side up, it belongs to player White. The game
starts with four discs on the board, as shown in Fig. 4(a). Black always starts
the game, and the players take turns alternately. When it is a player’s turn he
has to place a disc on the board in such a way that he captures at least one of
the opponents discs. A disc is captured when it lies on a straight line between
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Fig. 4. Set-ups for Othello (a) and Rolit (b).

the placed disc and another disc of the player making the move. Such a straight
line may not be interrupted by an empty square or a disc of the player making
the move. All captured discs are flipped and the turn goes to the other player. If
a player cannot make a legal move, he has to pass. If both players have to pass,
the game is over. The player who owns the most discs, wins the game.

For Rolit, the rules are slightly different. Rolit can be played by up to 4
players, called Red, Yellow, Green and Blue. The initial board position is shown
in Fig. 4(b). The largest difference is that if a player cannot capture any pieces,
which will occur during the first few rounds of a 4-player game, he may put a
piece orthogonally or diagonally adjacent to any of the pieces already on the
board. Using this rule, passing does not occur and the game is finished when
the entire board is filled. The scoring is similar to Othello; the player owning
the most pieces wins. We remark that, contrary to Focus and Chinese Checkers,
Rolit can end in a draw between several players.

3.4 Blokus

Blokus is a 4-player tile placement game developed by Bernard Tavitian in 2000.
The board consists of 20×20 squares. Each player receives 21 pieces varying in
size from one to five squares in all possible shapes. Alternately, the players place
one of their pieces on the board. The pieces may be rotated in any way. The
difficulty in this game is that any square may only be occupied by one piece
and two pieces of the same player may not be orthogonally adjacent. However,
they have to be adjacent diagonally to any of the player’s pieces already on the
board. The first pieces of the players should all be placed in one of the corners.

The game finishes when none of the players can place a piece on the board
anymore. The player who has the largest number of squares on the board occu-
pied is the winner. Note that, similar to Rolit, draws can occur. However, there
is one tie breaker in this game. If more than one player manages to place all
pieces on the board, the winner is the player who placed the piece of size 1 on
the board during the last round.

3.5 Domain Knowledge

For the minimax-based techniques, a board evaluator is necessary to evaluate the
leaf nodes of the search tree. This evaluator computes a heuristic value for each
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Fig. 5. A finished game of Blokus.

player, based on the current board position. A move evaluator is used for static
move ordering. The evaluator assigns a value to a move, without considering the
board position. The move evaluator is also used in the MCTS-framework, for
determining the moves in the ε-greedy playouts [18].

For Chinese Checkers, the board evaluator uses a lookup table [16]. This
table stores, for each possible configuration of pieces, the minimum number of
moves a player should perform to get all pieces in the home base, assuming that
there are no opponents’ pieces on the board. For any player, the value of the
board equals 28−m, where m is the value stored in the table which corresponds
to the piece configuration of the player. We remark that 28 is the highest value
stored in the table. The move evaluator of Chinese Checkers uses the function
ds−dt, where ds is the distance of the source location of the piece that is moved
to the home base, and dt the distance of the target location to the home base.

For Focus, the board evaluator is based on the minimum number of pieces
each player needs to capture to win the game, r, and the number of stacks each
player controls, c. For each player, the score is calculated using the formula
600− 100r + c. The move evaluator applies the function 10(n+ t) + s, where n
is the number of pieces moved, t is the number of pieces on the target location,
and s is the number of stacks the player gained. The value of s can be 1, 0, or
–1.

For Rolit, the board evaluator is similar to the pattern based evaluation
function used by Buro in his Othello program Logistello [3]. Over 90,000
games from the WTHOR database1 were analyzed on 12 different patterns for
15 stages (4 moves per stage) in the game. For each pattern, the average score
at the end of the game is stored. To use this pattern database in Rolit, we use
the assumption that all of the opponent’s pieces have the same color [14]. This
reduces the accuracy, but it is unfeasible to create a pattern database for four
colors. The move evaluator depends on the location of the square where the piece
is placed. The values of the squares are displayed in Fig. 6.

1 http://www.ffothello.org/info/base.php
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Fig. 6. The values of the squares in Rolit.

For Blokus, the board evaluator counts the number of squares that each
player has occupied. The move evaluator depends on the size of the piece that
is played on the board. Large pieces are preferred over small ones.

For all board and move evaluators, a small random factor is added to the
score. This factor is only to differentiate between board positions or moves that
have the same value. This random factor is added to prevent the players from
being deterministic.

4 Experiments

In this section, we describe the experiments performed. The program is written in
Java [11]. For Formula 1, the constant C is set to 0.2 andW is set to 5. All MCTS-
based players use ε-greedy playouts with ε = 0.05. These values were achieved by
systematic testing. All minimax-based players use a Deep transposition table [2]
and static move ordering. Furthermore, the paranoid and BRS players use killer
moves [1] and the history heuristic [15]. Finally, for the maxn player, shallow
pruning is applied [17], while the paranoid and BRS players use αβ pruning [7].

The experiments were run on a cluster consisting of AMD64 Opteron 2.4
GHz processors. For the games, there may be an advantage regarding the order
of play and the number of different players. Games where not all player types
are playing are not interesting, so these are not considered. Table 1 shows in
how many ways the player types can be assigned. Each assignment is played
multiple times until at least 1,000 games are played and each assignment was
played equally often.

Table 1. The number of ways 2 or 3 different player types can be assigned. Between
brackets is the number of games that are played per match.

Number of players 2 player types 3 player types

3 6 (1050) 6 (1050)
4 14 (1050) 36 (1044)
6 62 (1054) 540 (1080)
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Table 2. Results of maxn vs. paranoid vs. BRS

Maxn Paranoid BRS
Game Players Time Win rate Depth Win rate Depth Win rate Depth

(ms) (%) (ply) (%) (ply) (%) (ply)
Chinese Checkers 3 250 0.6±0.5 3.22 32.7±2.8 4.38 66.8±2.8 4.87
Chinese Checkers 3 1000 0.1±0.2 3.45 24.9±2.6 5.11 75.0±2.6 5.40
Chinese Checkers 3 5000 0.0±0.0 4.23 25.9±2.7 5.64 74.1±2.7 6.61
Chinese Checkers 4 250 4.5±1.3 3.09 7.2±1.6 3.64 88.3±1.9 4.39
Chinese Checkers 4 1000 3.5±1.1 3.66 21.2±2.5 4.83 75.3±2.6 5.01
Chinese Checkers 4 5000 3.9±1.1 4.23 19.3±2.4 5.38 76.8±2.6 5.73
Chinese Checkers 6 250 16.4±2.2 3.07 16.4±2.2 3.61 67.2±2.8 3.77
Chinese Checkers 6 1000 14.3±2.1 3.84 10.4±1.8 4.07 75.2±2.6 4.70
Chinese Checkers 6 5000 24.2±2.6 4.15 11.2±1.9 4.59 64.7±2.9 5.10

Focus 3 250 4.8±1.3 3.43 41.8±3.0 4.13 53.4±3.0 4.16
Focus 3 1000 4.0±1.2 3.87 34.0±2.9 4.84 62.0±2.9 4.96
Focus 3 5000 3.6±1.1 4.60 31.0±2.8 5.18 65.4±2.9 5.75
Focus 4 250 8.6±1.7 3.29 17.7±2.3 3.37 73.7±2.7 3.99
Focus 4 1000 6.0±1.4 3.69 22.7±2.5 4.48 71.3±2.7 4.82
Focus 4 5000 7.3±1.6 4.32 28.9±2.7 5.15 63.8±2.9 5.20
Rolit 3 250 0.8±0.5 4.48 41.4±3.0 6.31 57.9±3.0 6.15
Rolit 3 1000 11.0±1.9 5.26 28.3±2.7 7.74 60.7±3.0 7.39
Rolit 3 5000 0.3±0.3 6.01 66.5±2.9 8.97 33.2±2.8 8.61
Rolit 4 250 16.8±2.3 4.52 46.6±3.0 5.88 36.7±2.9 5.45
Rolit 4 1000 13.4±2.1 5.27 40.4±3.0 6.84 46.2±3.0 6.60
Rolit 4 5000 11.1±1.9 6.01 40.7±3.0 7.87 48.2±3.0 7.68
Blokus 4 250 22.2±2.5 1.89 29.0±2.8 2.37 48.8±3.0 2.46
Blokus 4 1000 19.6±2.4 2.27 25.8±2.7 2.97 54.7±3.0 3.36
Blokus 4 5000 11.8±2.0 2.76 20.8±2.5 3.38 67.3±2.9 4.03

4.1 Minimax-based techniques

In the first set of experiments we match the three basic minimax-based players
against each other: maxn, paranoid and BRS. The win rates and the average
search depths of the players in the different games are displayed in Table 2.

The results show that maxn is by far the weakest algorithm. In every game
with any number of players and time setting, maxn has a significantly lower win
rate that both paranoid and BRS. The exception is 6-player Chinese Checkers.
Because paranoid also has barely any pruning, maxn plays at least as strong
as paranoid. Maxn also plays relatively well in Blokus, where all players have
difficulty reaching a decent search depth. Only the BRS player can reach a
second level of MAX nodes. In most games, BRS is the best search technique.
Overall, the BRS players can search slightly deeper than the paranoid players.
The most notable exception is Rolit. In this game, the paranoid players can
generally search slightly deeper. Also, with some settings paranoid outperforms
BRS. This is comparable to the results achieved by Schadd and Winands [14].

4.2 MCTS variants

In the second set of experiments, we test the performance of three different
MCTS players. Each player uses a different tree structure: maxn (MCTS-maxn),
paranoid (MCTS-paranoid) or BRS (MCTS-BRS). The win rates and the median
number of playouts per move are summarized in Table 3.

The results reveal that MCTS clearly performs best using the standard maxn

tree structure. Only in Blokus, MCTS-maxn is not significantly stronger than
MCTS-paranoid. Paranoid and BRS perform well in the minimax framework
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Table 3. Results of MCTS-maxn vs. MCTS-paranoid vs. MCTS-BRS

MCTS-maxn MCTS-paranoid MCTS-BRS
Game Players Time Win rate Playouts Win rate Playouts Win rate Playouts

(ms) (%) (median) (%) (median) (%) (median)
Chinese Checkers 3 250 40.5±3.0 1,166 35.5±2.9 1,168 24.0±2.6 1,163
Chinese Checkers 3 1000 43.7±3.0 5,004 27.5±2.7 5,008 28.8±2.7 4,968
Chinese Checkers 3 5000 54.2±3.0 26,058 19.0±2.4 25,951 26.8±2.7 25,786
Chinese Checkers 4 250 42.5±3.0 898 33.0±2.9 900 24.4±2.6 891
Chinese Checkers 4 1000 49.1±3.0 4,042 29.8±2.8 4,022 21.1±2.5 3,962
Chinese Checkers 4 5000 62.1±2.9 21,680 17.9±2.3 21,531 20.1±2.4 20,893
Chinese Checkers 6 250 45.0±3.0 711 30.2±2.7 723 24.8±2.6 713
Chinese Checkers 6 1000 51.4±3.0 3,140 25.8±2.6 3,212 22.8±2.5 3,167
Chinese Checkers 6 5000 63.6±2.9 17,155 18.9±2.3 18,113 17.5±2.3 16,780

Focus 3 250 38.1±2.9 3,370 33.0±2.8 3,389 29.9±2.8 3,473
Focus 3 1000 37.4±2.9 12,745 29.0±2.7 13,058 33.5±2.9 12,837
Focus 3 5000 38.4±2.9 57,450 27.9±2.7 60,144 33.7±2.9 57,459
Focus 4 250 40.1±3.0 2,212 37.2±2.9 2,182 22.7±2.5 2,144
Focus 4 1000 39.1±3.0 9,189 33.0±2.9 9,220 27.9±2.7 8,881
Focus 4 5000 41.6±3.0 50,260 28.3±2.7 51,442 30.1±2.8 48,206
Rolit 3 250 44.3±3.0 2,011 31.6±2.8 2,024 24.1±2.6 2,017
Rolit 3 1000 55.6±3.0 8,333 26.0±2.7 8,356 18.4±2.3 8,320
Rolit 3 5000 67.3±2.8 41,553 16.6±2.3 41,459 16.1±2.2 42,049
Rolit 4 250 41.6±3.0 2,111 33.8±2.9 2,109 24.6±2.6 2,078
Rolit 4 1000 44.9±3.0 8,510 30.2±2.8 8,483 24.9±2.6 8,331
Rolit 4 5000 56.6±3.0 42,999 23.1±2.6 42,489 20.3±2.4 41,095
Blokus 4 250 34.9±2.9 184 36.2±2.9 185 28.9±2.7 177
Blokus 4 1000 33.3±2.9 776 34.7±2.9 780 32.1±2.8 749
Blokus 4 5000 33.0±2.9 4,170 34.5±2.9 4,212 32.6±2.8 4,061

because they increase the amount of pruning. Because αβ-pruning does not
occur in MCTS, this advantage is nonexistent in the MCTS framework. It also
becomes clear that MCTS-paranoid significantly outperforms MCTS-BRS. A
possible explanation for this result is that illegal positions are reached in the
tree. Performing a playout from these illegal or unreachable positions apparently
leads to unreliable results.

4.3 BRS versus MCTS-maxn

Based on the previous sets of experiments, we can conclude that BRS is the
strongest minimax-based technique and that MCTS-maxn is the strongest MCTS
technique. To determine which technique performs best in multi-player games,
we let these two players play against each other in the final set of experiments.
The results are displayed in Table 4.

From the results we can conclude that there is no clear winner. BRS sig-
nificantly outperforms MCTS-maxn in Focus, while MCTS-maxn is stronger in
Blokus and Rolit. In Chinese Checkers, the winner depends on the time settings.
With a higher time setting, MCTS-maxn becomes stronger than BRS. In all
games, MCTS-maxn performs relatively better with higher time settings.

5 Conclusions

Among the three minimax-based search techniques we tested, BRS turns out to
be the strongest one. Overall, it reaches the highest search depth, and because of
its tree structure more MAX nodes are investigated than in paranoid and maxn.
BRS significantly outperforms maxn and paranoid in Chinese Checkers, Focus
and Blokus. Only in Rolit, paranoid outperforms BRS with some settings.
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Table 4. Results of MCTS-maxn against BRS

MCTS-maxn BRS
Game Players Time Win rate Playouts Win rate Depth

(ms) (%) (median) (%) (ply)
Chinese Checkers 3 250 21.7±2.5 1,145 78.3±2.5 4.75
Chinese Checkers 3 1000 42.1±3.0 5,206 57.9±3.0 5.34
Chinese Checkers 3 5000 60.4±3.0 27,639 39.6±3.0 6.34
Chinese Checkers 4 250 26.1±2.7 874 73.9±2.7 4.22
Chinese Checkers 4 1000 55.2±3.0 4,007 44.8±3.0 4.93
Chinese Checkers 4 5000 71.5±2.7 21,603 28.5±2.7 5.52
Chinese Checkers 6 250 35.4±2.9 703 64.6±2.9 3.53
Chinese Checkers 6 1000 66.9±2.8 3,227 33.1±2.8 4.40
Chinese Checkers 6 5000 90.1±1.8 16,603 9.9±1.8 4.71

Focus 3 250 9.9±1.8 1,481 90.1±1.8 4.19
Focus 3 1000 19.4±2.4 7,449 80.6±2.4 4.88
Focus 3 5000 28.3±2.7 42,326 71.7±2.7 5.59
Focus 4 250 23.2±2.6 1,546 76.8±2.6 3.88
Focus 4 1000 29.1±2.8 6,883 70.9±2.8 4.69
Focus 4 5000 41.5±3.0 39,786 58.5±3.0 5.06
Rolit 3 250 83.6±2.2 1,954 16.4±2.2 6.19
Rolit 3 1000 93.4±1.5 8,103 6.6±1.5 7.44
Rolit 3 5000 93.6±1.5 41,397 6.4±1.5 8.60
Rolit 4 250 78.7±2.5 1,946 21.3±2.5 5.54
Rolit 4 1000 85.8±2.1 8,162 14.2±2.1 6.67
Rolit 4 5000 88.6±1.9 42,860 11.4±1.9 7.60
Blokus 4 250 47.8±3.0 165 52.2±3.0 2.46
Blokus 4 1000 68.8±2.8 818 31.2±2.8 3.25
Blokus 4 5000 83.7±2.2 4,412 16.3±2.2 3.83

In the MCTS framework, the maxn tree structure appears to perform best.
The advantages of paranoid and BRS in the minimax framework do not apply
in MCTS, because αβ-pruning is not applicable in MCTS. MCTS-paranoid out-
performs MCTS-BRS and a possible reason for this is that MCTS-BRS performs
playouts starting from an illegal or unreachable board position. This may lead
to inaccurate results.

Finally, in a comparison between MCTS-maxn and BRS, it turns out that
there is no clear winner. In Focus, BRS is considerably stronger, while in Rolit
and Blokus MCTS-maxn significantly outperforms BRS. In Chinese Checkers,
the winner depends on the thinking time. Overall, with higher time settings, the
MCTS-based player performs relatively better.

In this research we investigated three basic tree search algorithms, i.e. maxn,
paranoid and BRS. We did not consider algorithms derived from these tech-
niques, such as the Coalition-Mixer [9] or MP-Mix [19]. They use a combination
of maxn and (variations of) paranoid search. They also have numerous parame-
ters that need to be tuned. Tuning and testing such algorithms in multi-player
games is a direction of future research. Another possible future research direction
is the application of paranoid search and BRS in the playout phase of MCTS.
Cazenave [4] used paranoid playouts in multi-player Go, improving the perfor-
mance of an MCTS player significantly.
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