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Abstract

For over 50 years, board games have been an important subject in the field
of Artificial Intelligence (AI). Making an AI player that can beat the human
world champion, and eventually solving the game, is the ultimate achievement
for computer scientists. Over the course of these years, thousands of computer
programs have been created to play hundreds of different games, some of them
being able to even beat the best players in the world. Chess program Deep
Blue beating Kasparov in 1997 is the most famous example.

Some games, like chess, have been investigated thoroughly by a lot of people
for a long time. However, there also still exists a number of games that have not
been investigated yet. One of these games is Khet, formerly known as Deflexion.
Khet is a board game, played by two players, where strategic thinking is the
key to success. It is a zero-sum game with perfect information.

This thesis describes the analysis of the game Khet and the implementation
of the game engine and the AI players. First, the computations of the state-
space complexity and the game-tree complexity are given. They turn out to be
of the same order as those for chess. Based on these results, search techniques
are selected that can be used to create an AI player which can play Khet as
good as possible. These search techniques are improved to make them run more
efficiently, so they can search more extensively and, thus, play stronger.

From the experiments that are performed, we can conclude that Khet can
best be played by the alpha-beta search algorithm, enhanced by a transposition
table, killer moves, and Qn-limited search, a variation on quiescence search.
These three enhancements cause a significant improvement of the strength of
the AI player. Using these search techniques we are able to create a computer
program which can play Khet at a reasonable level.
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Chapter 1

Introduction

In this chapter, first an introduction to games and computer games is given.
Next, the problem statement and the research questions are stated. Finally, an
outline of the thesis is described.

1.1 Games

Board games have been around as long as civilisation has. For thousands of
years already, people have developed and played board games to challenge their
intellect.

The first board games were invented over 5000 years ago. Around 3500 BC,
the ancient Egyptians played a game called Senet. It was played on a board
with 30 squares, where both players have to strategically move their team of
draughtsmen over these squares. The exact rules of this game have long been
forgotten, but it is known that this game was played for around 3000 years [20].

Also in China, people have been playing board games for thousands of years.
The well-known board game Go originates in China and has been played there
for around 4000 years. The game used to be most popular in East Asia, but
in the recent years, the game has also become more popular in the rest of the
world.

Over the past hundreds of years, the number of different games has grown
enormously. Nowadays, games exist in almost every form or shape imaginable.
They can be categorised by looking at properties that games have in common,
for instance the number of players, the amount of information that is available,
the presence of a chance element, and components that are required to play (for
example a board and pieces, or playing cards).

Since the advent of computers, board games have produced a new challenge:
to let computers play the games that humans have been playing for centuries.
The ultimate challenge would be to make a computer player that is better than
any human in the world.

1



2 CHAPTER 1. INTRODUCTION

1.2 Computer Games

The idea of having computers playing games has been around for over 50 years
already. Shannon [24] and Turing [25] were the first ones in the early 1950s to
describe how computers can be used to play chess. This would eventually lead
to the creation of the Deep Blue chess computer which defeated the world
champion, Garry Kasparov, in 1997 [13].

During these years, many advancements have been made. Computers are
getting faster every year and new techniques allow computers to work more
efficiently or make them smarter. There are several reasons why games are an
interesting subject for AI research.

First, games have well-defined rules. They are much more structured than
real-life situations. This makes it easier to translate them to computer programs
[11]. But even though the rules are often pretty simple, playing the game well
is difficult. Most games are easy to learn, but hard to master [17].

Games are well suited for testing new problem-solving techniques. If it turns
out that these techniques work well for playing games with a computer, they
can often also be used in other research areas [19].

Another reason why games are an interesting research subject is that by
creating a computer program that is able to play games, researchers may get
more insight in the way humans think and reason [10, 18].

Chess has always been the most important game in the research field of
Artificial Intelligence, but recently a lot of other games have also gained a lot
of popularity. This has lead to the solving of various games, like Nine Men’s
Morris [7], Connect Four [1] and Awari [21]. Some other games, like Othello,
can already be played on a super-human level, meaning that computer programs
are already able to beat the best players in the world. There are, however, also
still quite some games where humans are still better than computer players, like
Go.

1.3 Problem Statement and Research Questions

Nowadays, still a lot of new board games are invented. One game that combines
the simplicity and abstract of classic board games with modern techniques is
called Khet. Khet was invented in 2004 under the name Deflexion. It can be
seen as a combination of chess, checkers and lasergaming. The rules are simple,
but it requires a lot of strategic thinking in order to play it well.

Since Khet is still such a new game, only little information can be found
about it. No research in the field of Artificial Intelligence concerning Khet has
been done before.

The goal of this research is to make a computer program that is able to play
Khet as good as possible. Thus, the problem statement is defined as follows:

Is it possible to develop a computer program to play the game Khet
effectively and efficiently?
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In order to give an answer to this problem statement, we define some research
questions in order to break the problem into smaller sub-problems. First, it is
important to know how complex the game is:

What is the game complexity of Khet?

After answering this question, some search techniques can be selected to let the
program play Khet:

Which search techniques can be used to play Khet?

These search techniques can then be refined in order to make them work more
efficiently, so that they can perform a more extensive and/or more efficient
search in the same amount of time:

How can these search techniques be improved to increase the strength?

Finally, after answering the previous research questions, experiments can be
performed in order to answer the final question:

Which combination of techniques has the best balance between speed
and strength?

1.4 Outline of the Thesis

The thesis is structured as follows:

• Chapter 1 gives a general introduction to games and computer games and
describes the problem statement and the research questions.

• Chapter 2 gives an introduction to Khet. It describes the rules of the
game and some strategies.

• Chapter 3 describes the complexity analysis of Khet. This complexity
analysis consists of the analysis of both the state-space complexity and
the game-tree complexity.

• Chapter 4 gives a description of the search techniques that have been
used, including the improvements that have been implemented. Also,
some important implementational details are given.

• Chapter 5 gives a description of the experiments that have been performed
and shows the results.

• Chapter 6 lists the conclusions that can be drawn from the experimental
results and answers the research questions and, consequently, the problem
statement.
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Chapter 2

The Game Khet

Khet [14] is a new game, formerly known as Deflexion. The game was invented
by Tulane University professor Michael Larson and two students, Del Segura
and Luke Hooper. Deflexion was first released in 2004. In 2006, its name was
changed to Khet. Currently, the game is released by Innovention Toys LLC.

In this chapter, a description of the game Khet is given, including the rules
and some common strategies.

2.1 The Rules

Khet is a 2-player zero-sum game with perfect information. The two players are
called Silver and Red. It is played on an 8× 10 board.

Each player receives 14 pieces at the start of the game: 7 pyramids, 4
obelisks, 2 djeds and 1 pharaoh (see Section 2.3). Some of these pieces have
mirrors attached to them. The two players take turns alternately. Each move
consists of two parts.

First, the player needs to move one of his pieces. This can be either moving
a piece one square orthogonally or diagonally, or by rotating it by 90 degrees,
either clockwise or counter-clockwise. A piece can only be moved to an adjacent
square if the target square is not occupied by another piece. There are exceptions
to this rule, which will be explained in Section 2.3.

Then, the player has to fire his laser, which is mounted inside the edge of the
board. If this laser hits a piece on a mirrored side, the laser beam is reflected
with an angle of 90 degrees. Eventually, the beam will either hit the side of
the board, or it will hit a piece on an unmirrored side. If a piece is hit on an
unmirrored side, it is captured and removed from the board, otherwise nothing
happens. After the laser has been fired and, if necessary, the captured piece has
been removed from the board, the other player is to move.

The game is over whenever one of both pharaohs is hit by a laser. The
player with the remaining pharaoh is the winner of the game. The game can
also end in a draw. Whenever the same board position occurs for the third

5



6 CHAPTER 2. THE GAME KHET

time, the next player can claim a draw. Two board positions are the same when
the same type of pieces with the same colors occupy the same squares with the
same orientation.

2.2 The Board

The board consists of 80 squares: 60 grey (neutral) squares, 10 red squares and
10 silver squares. On silver squares, only silver pieces are allowed, while on red
squares, only red pieces are allowed.

There are two lasers mounted inside the edge of the board. The laser of
Silver is located at the bottom of column j and the laser of Red is located at
the top of column a. This is illustrated in Figure 2.1.

Figure 2.1: Khet board.

2.2.1 Notation

There exists no official notation for the board locations and the moves in Khet,
so we will introduce an unofficial notation that will be used in this thesis.

For the indication of a board location, a notation is used that is similar to
chess. The columns are denoted by a letter, ‘a’ to ‘j’ from left to right, and
the rows by a number, ‘1’ to ‘8’ from bottom to top. In the notation, first the
column letter is given and then the row number. This means that the bottom
left corner of the board is denoted by a1 and the upper right corner by j8.

When moving a piece, the location of the piece to move and the target
location are written down. For instance, moving the pyramid from j4 to j3
is denoted as j4j3. For denoting the rotation of a piece, the location of the
piece to rotate is written, followed by either r+, indicating a clockwise rotation,
or r-, indicating a counter-clockwise rotation. So, rotating the pyramid on h2
clockwise is denoted as h2r+. For djeds, it does not matter in which direction
you rotate them, since the result is in both cases the same. In that case, the +
or - can be omitted. Rotating the djed on f4 can be denoted as f4r.
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When moving a stacked obelisk (see Section 2.3.3), the standard notation is
used. However, if only one of the two obelisks is moved, so the stacked obelisk is
unstacked, then the letter u is added between the piece location and the target
location. For example, unstacking the stacked obelisk at d1 by moving one of
the obelisks to e2 is denoted as d1ue2.

If a piece is captured, the move notation will be appended by an x and the
location of the captured piece. For example, if the piece at g3 is captured after
the move j4j3, this is written down as j4j3xg3.

2.2.2 Set-ups

Contrary to, for example, chess, Khet starts with the pieces of both players
spread over the board. Also, there is no officially fixed starting configuration;
players can use their own imagination to create new starting positions. The
makers of Khet have defined three possible starting configurations that give a
good balance between offense and defense and gives neither player a considerable
advantage:

• Original (see Figure 2.2)

• Imhotep (see Figure 2.3)

• Dynasty (see Figure 2.4)

2.3 The Pieces

Khet contains four different types of pieces: djeds, pyramids, obelisks, and
pharaos. Table 2.1 shows more information about these different types.

2.3.1 Djeds

Djeds are the most powerful pieces in the game. They have two mirrors, so
they cannot be captured by a laser. Djeds have the ability to swap places with
(stacked) obelisks and pyramids. This is only allowed if the two pieces are
adjacent to each other. Djeds can not only swap with pieces of the same color,
but also with pieces of the opposing color. This is only allowed if neither piece
lands on a square of the opposing color. So a silver djed may not swap with
a piece on a red square. Also, a djed on a silver square may not swap with a
red piece, since then the red piece would land on a silver square, which is not
allowed.

Since djeds have no unprotected sides, they can never be removed from the
board. Because of this property, they are ideally suited for attacking purposes.
They can also be used as defenders, but pyramids can do this task just as well.
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Figure 2.2: Original Setup.

Figure 2.3: Imhotep Setup.

Figure 2.4: Dynasty Setup.
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Name Symbol Mirrors

Djed 2

Pyramid 1

Obelisk 0

Stacked obelisk 0

Pharaoh 0

Table 2.1: Khet Pieces.

2.3.2 Pyramids

Pyramids are moderately powerful pieces. They have one mirror and two un-
protected sides. They can be used to attack the opponent, but they have to be
used with care, since they can also be attacked by the opponent. Pyramids are
also often used to defend the pharaoh.

This makes pyramids the most balanced pieces of the game. Also, they have
no special abilities.

2.3.3 Obelisks

Obelisks are the weakest pieces in the game, since they do not have mirrors.
They do, however, have a special ability. Obelisks can be stacked on top of each
other, making it possible to move two obelisks at once. When making a move,
a player is allowed to stack two obelisks, as long as they belong to the same
player and if they are adjacent to each other. Also, a stack may not be larger
than two obelisks. Making triple or quadruple stacks is not allowed. Whenever
a stack of obelisks is hit by a laser, only the top obelisk is removed.

Obelisks may also be unstacked. When unstacking, the player places the
top obelisk on an empty square adjacent to the location of the stacked obelisk.
Both stacking and unstacking count as one move.

Since obelisks do not have any mirrors, they can only be used as defenders.
The main function of obelisks in Khet is to protect the pharaoh from the lasers.

2.3.4 Pharaohs

The pharaohs are the most important pieces in the game. If a player’s pharaoh
is hit by a laser, he loses the game. A pharaoh has no mirrors, so it cannot
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defend itself.

2.4 Strategies

Khet is still a new game. It is also a rather unknown one. This means that
it is it difficult to find strategies that can be used as domain knowledge in the
search algorithms. However, we can define some basic strategies that are useful
to make a computer program play Khet at a reasonably high level.

2.4.1 Protecting

Whenever one’s pharaoh is hit by a laser, he loses. Since a pharaoh cannot
protect itself with a mirror, one needs to protect his pharaoh with other pieces.
Since obelisks do not have mirrors, they can only fulfill defensive tasks. Usually,
both players start with their obelisks in two stacks of two pieces, adjacent to
their pharaohs. These stacks of obelisks can be used to block a laser beam from
the opponent, in order to prevent the pharaoh from being hit. This is done by
moving a stack of obelisks in the opponent’s laser route. Now the opponent will
have to take two turns to capture the obelisks, giving the player two turns to
set up his defenses, instead of one. So keeping the obelisks close to the pharaoh
is an important strategy.

Usually, both players start with two stacks of two obelisks. It is often not
a good idea to unstack these obelisks. If they are stacked, the player can move
both of them in one turn, increasing the mobility of his pieces. Unstacked
obelisks are also pretty useless. If a player uses a single obelisk to prevent the
opponent from hitting the pharaoh with his laser beam, the opponent will hit
the obelisk, leaving the pharaoh just as vulnerable as before, while he has lost
one piece. If the player uses a stack of two obelisks to protect his pharaoh, he
has one extra turn before the pharaoh will be exposed. This gives him time to
organise his defenses. So generally speaking, to unstack obelisks is not a good
move.

2.4.2 Attacking

Besides defending his own pharaoh, a player should also try to attack his oppo-
nent’s pharaoh. Attacking is considerably more difficult than defending. Also,
since Khet is a relatively unknown game, there are not many strategies available.
There are, however, some basic rules that every player applies.

With the standard set-ups, both players start with two pyramids on their
own column. One of these pyramids is used to reflect the laser beam into the
playing field. This pyramid should not be rotated or moved from its column.
Otherwise, the player’s laser beam is not deflected from his own column, making
it impossible to attack the opponent. Theoretically, also a djed can be used for
this purpose, but this is useless. Djeds are much more useful when they are
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used inside the playing field. Moreover, one of its mirrors will not be used if it
is positioned on the player’s own column.
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Chapter 3

Complexity Analysis

In order to get some insight into the game Khet, the complexity of the game
has to be determined. There are two types of complexity measures: state-
space complexity and game-tree complexity. In this chapter, both of these
complexities of Khet are calculated. At the end of this chapter, the results are
used to compare Khet to a number of other board games.

3.1 State-Space Complexity

The state-space complexity denotes the number of possible states a game can
be in. If the number of possible states is small enough, it is possible to store
the best move for a player for each state. However, for most games, including
Khet, the number of states is way too large.

Determining the state-space complexity in Khet is rather tricky. There are
several rules which make it very difficult to give an exact calculation of the
number of possible game states in Khet. Therefore, only a rough estimate is
given. A Khet board consists of 80 squares: 10 silver ones, 10 red ones and 60
neutral ones. First, let us consider only the 14 silver pieces. These 14 pieces
can be placed on 70 different squares. This leads to the following amount of
possible ways to place the pieces:

n0,silver =
(

70
1

)
·
(

69
7

)
·
(

62
2

)
·
(

60
4

)
= 6.9641 · 1019

Here, the first term accounts for the placement of the pharaoh on 70 possible
locations, the second for the placement of the 7 pyramids on the remaining 69
squares, the third for the placement of the 2 djeds and the fourth for the 4
obelisks.

This, however, does not take into account the possible rotations of the pieces.
A pyramid can have four different orientations, while a djed can have two dif-
ferent ones. Theoretically, obelisks and pharaohs can also be rotated, but their

13
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orientation does not affect the game state in any way. This leads to the follow-
ing, updated formula:

n0,silver =
(

70
1

)
· 47

(
69
7

)
· 22

(
62
2

)
·
(

60
4

)
= 4.5640 · 1024

After the silver pieces have been placed on the board, we consider the red
pieces. The problem is that there is no fixed amount of possible squares where
the red pieces can be placed. Red pieces can only be placed on the 10 red
squares and the remaining neutral squares, but it depends on the setup of the
silver pieces how many neutral squares are left. Of course, it is possible to
make an exact computation, but this is painstakingly difficult and the result
will be unnecessarily accurate. So the assumption is made that, on average,
Silver places 2 of his pieces on a silver square and 12 of his pieces on neutral
ones. This is a reasonable assumption because 1 out of 7 squares where Silver
can place his pieces is silver, so on average 1 out of 7 pieces will be placed on
a silver square. This leaves Red with 58 squares (10 red + 48 neutral) to place
his pieces. This leads to the following formula, which is roughly the number of
ways to place all 28 pieces on the board:

n0 =
(

70
1

)
·47

(
69
7

)
·22

(
62
2

)
·
(

60
4

)
×

(
58
1

)
·47

(
57
7

)
·22

(
50
2

)
·
(

48
4

)
= 1.0933·1048

The stacking rule in Khet allows two obelisks of the same player to be stacked
on top of each other. However, in the previous calculation it is assumed that
obelisks cannot be stacked.

Table 3.1 shows in which ways the obelisks can be stacked. Table 3.2 gives
another representation, which can be used to simplify the calculations. This
leads to the following calculation:

n0 = 1 ·
(70

1

)
· 47

(69

7

)
· 22

(62

2

)
·
(60

4

)
·
(56

0

)
×

(58

1

)
· 47

(57

7

)
· 22

(50

2

)
·
(48

4

)
·
(44

0

)
+

2 ·
(70

1

)
· 47

(69

7

)
· 22

(62

2

)
·
(60

4

)
·
(56

0

)
×

(58

1

)
· 47

(57

7

)
· 22

(50

2

)
·
(48

2

)
·
(46

1

)
+

2 ·
(70

1

)
· 47

(69

7

)
· 22

(62

2

)
·
(60

4

)
·
(56

0

)
×

(58

1

)
· 47

(57

7

)
· 22

(50

2

)
·
(48

0

)
·
(48

2

)
+

1 ·
(70

1

)
· 47

(69

7

)
· 22

(62

2

)
·
(60

2

)
·
(58

1

)
×

(59

1

)
· 47

(58

7

)
· 22

(51

2

)
·
(49

2

)
·
(47

1

)
+

2 ·
(70

1

)
· 47

(69

7

)
· 22

(62

2

)
·
(60

2

)
·
(58

1

)
×

(59

1

)
· 47

(58

7

)
· 22

(51

2

)
·
(49

0

)
·
(49

2

)
+

1 ·
(70

1

)
· 47

(69

7

)
· 22

(62

2

)
·
(60

0

)
·
(60

2

)
×

(60

1

)
· 47

(59

7

)
· 22

(52

2

)
·
(50

0

)
·
(50

2

)
= 1.7711 · 1048

This number does not include the positions where one or more pieces are
removed from the board. In order to get an idea about how the number of
possible positions decreases if a number of pieces is removed from the board,
we will now calculate the number of possible locations with one piece removed
from the board.
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Silver Red
Index Unstacked Stacked Unstacked Stacked

1 4 0 4 0
2 2 1 4 0
3 0 2 4 0
4 4 0 2 1
5 2 1 2 1
6 0 2 2 1
7 4 0 0 2
8 2 1 0 2
9 0 2 0 2

Table 3.1: Possible ways to stack obelisks.

Player 1 Player 2
Index Unstacked Stacked Unstacked Stacked Occurrences

1 4 0 4 0 1 (1)
2 4 0 2 1 2 (2, 4)
3 4 0 0 2 2 (3, 7)
4 2 1 2 1 1 (5)
5 2 1 0 2 2 (6, 8)
6 0 2 0 2 1 (9)

Table 3.2: Possible ways to stack obelisks. The values between brackets under
Occurences correspond to the indices of Table 3.1.

The only two pieces that can be removed from the board are pyramids and
obelisks. If a pharaoh is hit, the game is over, so a position with only one
pharaoh cannot occur during a game. Also, djeds cannot be removed from the
board, so board positions where one of both players has only one djed are also
illegal.

The following calculation shows the estimated number of positions where
one piece is removed from the board:

n1 = 2 ·
(70

1

)
· 47 ·

(69

7

)
· 22 ·

(62

2

)
·
(60

4

)
×

(58

1

)
· 46 ·

(57

6

)
· 22 ·

(51

2

)
·
(49

4

)
+

2 ·
(70

1

)
· 47 ·

(69

7

)
· 22 ·

(62

2

)
·
(60

4

)
×

(58

1

)
· 47 ·

(57

7

)
· 22 ·

(50

2

)
·
(48

3

)
= 2.7939 · 1047

In this calculation, the first line represents the situation where a pyramid is
missing, and the second where an obelisk is missing. Note that both calculations
are multiplied by a factor 2. This is to accomodate for both situations where
Silver or Red is the player who is missing one piece.

This calculation does not include stacked obelisks, but from the previous
calculations we can conclude that they do not increase the number of positions
significantly. This increase will even be relatively lower, since one of the obelisks
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can be removed from the board.
From this calculation we can conclude that if one piece is removed from the

board, the number of possible positions drops significantly. From this we can
assume that if one or more pieces are removed from the board, the number of
possible positions is small compared to the number of positions when all pieces
are present. This means that any further calculations are unnecessary and that
the state-space complexity of Khet can be assumed to be 1048, with an upper
bound of 1048.

3.2 Game-Tree Complexity

The game-tree complexity denotes how many different games can be played. In
other words, it indicates how many terminal nodes a complete search tree has.
The game-tree complexity can be computed using the formula GTC = bd. Here,
b denotes the branching factor of the search tree and d the depth of the tree. In
other words, b is the average number of valid moves a player has and d is the
average length of a game.

Khet is a relatively unknown game. There is no information available on the
characteristics that are used to determine the game-tree complexity. We have
to use the computer program to determine the average braching factor and the
average game length.

Determining the branching factor is not very difficult. While simulating a
game, each turn the number of valid moves is stored and finally, the average of
these numbers is taken.

Figures 3.1, 3.2 and 3.3 show the frequencies of the branching factors in a
large number of games for three different AI’s. All graphs have a peak at a
branching factor of 80. This is because at the start of the game the first player
can make 80 different moves. The average branching factor for each type of AI
is displayed in Table 3.3.

AI Average branching factor
random 63.81
alpha-beta (depth 2) 67.10
alpha-beta (depth 4) 68.92

Table 3.3: Average branching factor for three different AI’s (simplified).

Determining the average game length is considerably more difficult. The
length of a game can vary drastically. Table 3.4 shows the average game length
for the same players in the same games as previously described.

Contrary to the average branching factor, the average game length varies
drastically for different AI’s. These differences can be explained. The random
AI plays completely randomly and, besides ‘accidentally’ hitting pieces of the
opponent, might also hit his own pieces, including the pharaoh. The depth-2
alpha-beta AI is only concerned with trying to hit pieces of the opponent and
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Figure 3.1: Frequency of branching factors in 1000 games played by two random
AI’s.

Figure 3.2: Frequency of branching factors in 100 games played by two alpha-
beta AI’s with a fixed depth of 2.
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Figure 3.3: Frequency of branching factors in 100 games played by two alpha-
beta AI’s with a fixed depth of 4.

AI Average game length
random 154.9
alpha-beta (depth 2) 557.6
alpha-beta (depth 4) 67.95

Table 3.4: Average game length for three different AI’s.

preventing the opponent from hitting his own. This makes both AI’s very pro-
tective and as a result a game can take hundreds, or sometimes even thousands
of turns. The depth-4 alpha-beta AI looks further ahead and is willing to sac-
rifice one of his pieces to capture one of the opponent. This makes the games
with these AI’s considerably shorter.

Since the depth-4 alpha-beta AI is assumed to be the strongest player and
gives the most plausible result, we use the average branching factor and the
average game length of the alpha-beta player with depth 4, and neglect the
results of the other two AI’s.

From these experiments, we can conclude that the average branching factor
in Khet is 69 and the average game length is 68. This leads to the following
computation of the game-tree complexity: GTC = 6968 ≈ 10125.

3.3 Comparison with Other Games

To put the complexities in perspective, we need to compare them to those of
other games. Table 3.5 shows the state-space complexity and the game-tree
complexity for a number of games [12], including Khet.

From these numbers we can conclude that both the state-space complexity
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Game log state-space compl. log game-tree compl.
Awari 12 32
Checkers 21 31
Chess 46 123
Chinese Chess 48 150
Connect-Four 14 21
Dakon-6 15 33
Domineering (8× 8) 15 27
Draughts 30 54
Go(19× 19) 172 360
Go-Moku (15× 15) 105 70
Hex (11× 11) 57 98
Kalah(6,4) 13 18
Khet 48 125
Nine Men’s Morris 10 50
Othello 28 58
Pentominoes 12 18
Qubic 30 34
Renju (15× 15) 105 70
Shogi 71 226

Table 3.5: State-space complexity and game-tree complexity for various games.

and the game-tree complexity for Khet are comparable to chess.
This means that Khet is, just like chess, unsolvable, at least in the near

future. Because of the large state-space complexity, it is infeasible to enumer-
ate all possible states. The large game-tree complexity makes it impossible to
perform a full-depth search in the game tree of Khet.
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Chapter 4

Implementation

In this chapter, we give a description of the tree-search techniques that are
used to let the computer program play Khet. There are two search techniques
that we investigate: alpha-beta search and Monte Carlo Tree Search (MCTS).
Alpha-beta search is the most commonly used search technique in games. In
Chapter 3, we saw that the complexity of Khet is close to the complexity of
chess. Alpha-beta search has proven to be a good search technique for playing
chess, so it is likely that alpha-beta search can also give good results for Khet.
MCTS is a technique that is used not as often as alpha-beta search, but it has
given very good results in a number of games. The best known example is Go.
MCTS has some advantages over alpha-beta search that could make it a good
alternative.

4.1 Alpha-Beta Search

The alpha-beta search technique is basically an improved version of the minimax
search algorithm. During the traversal of the search tree, the algorithm might
stumble upon moves that can impossibly affect the outcome of the search. The
alpha-beta search algorithm takes advantage of this by pruning subtrees that
cannot affect the result.

The idea for the alpha-beta algorithm was proposed by John McCarthy
at the Dartmouth Conference in 1956. Alexander Brudno, who published his
results in 1963, was the first one to make a thorough investigation of the alpha-
beta algorithm [4]. In 1975, Donald E. Knuth and Ronald W. Moore refined
the algorithm and proved its correctness [15].

For a detailed explanation of the alpha-beta search algorithm, please refer
to [22].

21
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4.1.1 Evaluation function

At each leaf node of the alpha-beta search tree, the evaluation function is called
to give a score to the board position. The evaluation function is absolutely the
most important part of the alpha-beta search algorithm.

As explained previously, since Khet is still a very new game, there is not much
information about strategies available. The implemented evaluation function
only looks at the most basic strategic elements.

The first and most important element is the number of pieces. Usually,
having more pieces than your opponent is better than having less. To implement
this in the evaluation function, each piece is given a certain value. If a piece
belongs to the player, the value is added to the total, if the piece belongs to the
opponent, the value is substracted.

Obelisks are the weakest type of pieces in the game. Therefore, they have
the lowest value, in our case 10,000 points. Stacked obelisks are two obelisks
stacked on top of each other. However, as explained in Chapter 2, stacked
obelisks are more useful than two separate obelisks. Therefore, the value of a
stacked obelsisk is more than twice as large as the value of a single obelisk. In
our implementation, the value of a stacked obelisk is 25,000 points.

Since the main task of the obelisks is to protect the pharaoh, they become
more useless as they move further away from the pharaoh. So the value of
the (stacked) obelisks should decrease when they are further away from their
pharaoh. To take care of this, the basic value (10,000 points for an obelisk,
25,000 points for a stacked obelisk) is divided by their Manhattan distance to
the pharaoh. If the obelisks are adjacent to the pharaoh, the Manhattan distance
is 1, so only then they receive their basic score. Because of this, obelisks will
stay close, preferably adjacent, to their pharaoh.

Pyramids are moderately powerful pieces in the game and for each pyramid
on the board, the player receives 75,000 points. The position or orientation of
the pyramid does not affect the value of the piece, except for one. One pyramid
should be used to send the player’s laser beam into the playing field. If such a
pyramid exists, a small bonus of 5000 points is awarded.

Djeds are the most powerful pieces of the game. However, djeds do not
receive any points for the player. This is because djeds can never be destroyed
and thus are present on every legal board position. They also do not receive
any bonuses for their position or for sending the laser beam into the playing
field. The latter is because a pyramid can do this job as well.

Finally, a random value is added to the score. This is a 12-bit value, so it lies
between 0 and 4095. This random value is added to ensure that the computer
player will play different moves in identical situations. If this random value
would not be added, the computer player would be deterministic, so then it
would be possible to beat it every time by playing the same sequence of moves.
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4.1.2 Iterative deepening

Since alpha-beta search is a depth-first search algorithm, it always first expands
the deepest unexpanded node.

As explained before, Khet is too complex to make a search through the whole
tree. That is why a maximum depth of the search tree needs to be set. However,
instead of setting a fixed maximum depth of the search tree, it is also possible
to use iterative deepening.

Instead of performing one search up to a fixed depth, a sequence of tree
searches is performed, where for each following search the maximum search
depth is increased.

Intuitively, it might seem that iterative deepening causes a large waste of
time. However, it turns out that this waste of time is relatively small. If we
traverse a search tree of depth 4 with a branching factor of 80, then the number
of investigated nodes will be (without pruning):

1 + 80 + 6, 400 + 512, 000 + 40, 960, 000 = 41, 478, 481

With iterative deepening, the number of investigated nodes will be

Search 1: 1 + 80 = 81
Search 2: 1 + 80 + 6, 400 = 6, 481
Search 3: 1 + 80 + 6, 400 + 512, 000 = 518, 481
Search 4: 1 + 80 + 6, 400 + 512, 000 + 40, 960, 000 = 41, 478, 481 +

42, 003, 524

This shows that the total number of investigated nodes is only 1.27% higher
than without iterative deepening. This percentage will be even lower with
deeper searches.

Beside the fact that iterative deepening causes barely any overhead, there
are also some advantages to using this technique.

The first advantage of iterative deepening is that the program has more
control over the time that is spent on a certain move. This is especially useful
in a timed game. Without iterative deepening it is quite hard to predict how
long it will take to do a search up to a certain depth, because search times
can vary significantly for different positions, even with similar search depths.
Iterative deepening allows, using the spent times of the previous searches, to give
a reasonable estimate of how long the next search will take. This information
can then be used for determining whether the program should perform the next
search or whether it should return the results of the last search.

Also, some of the data of the previous search can be used to improve the
speed of the next search. There are several techniques for using this data,
including transposition tables, killer moves and aspiration search. By using
these techniques, the number of nodes that have to be investigated can be
considerably reduced. So as a result, by using iterative deepening to some
depth, often less nodes are investigated than when using a fixed-depth search
to the same depth.
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In the next sections, we will explain more about these techniques.

4.1.3 Incremental move generation

One way to speed up the alpha-beta algorithm is by implementing incremental
move generation (IMG). Originally, the complete set of valid moves for a player
is generated. Whenever pruning occurs, all remaining moves are left uninvesti-
gated, but they still were generated by the move generator, which is a waste of
time. IMG only generates the moves for one piece at a time, which means that
the moves for the pieces that are uninvestigated whenever pruning occurs are
not generated, which saves time.

4.1.4 Quiescence search

One large disadvantage of the alpha-beta search technique is the horizon effect.
The search tree is traversed up to a fixed depth and then a heuristic is used
to determine a value for the current position. However, it is possible that one
move further the situation is entirely different. In order to take care of this,
quiescence search [2] can be used.

Normally, whenever the search algorithm reaches a leaf node, the heuristic
value of the node is returned. When quiescence search is applied, the algorithm
searches for ‘noisy’ moves. These are moves that cause a large change in the
evaluation of the board position. There are several ways the evaluation value of
the board position can change, as was explained in Section 4.1.1, but capture
moves are the most important ones.

So at each leaf node, all moves that cause a piece to be captured are further
investigated. For each of these resulting board positions, this process is repeated,
until there are no more capture moves left.

Contrary to most of the other improvements, quiescence search may cause
more nodes to be investigated, instead of less. Because of this, the algorithm can
often search one or two plies less deep than without quiescence search. However,
the results for each ply are more reliable, so this offsets the disadvantage of
searching less deep.

Qn-limited search

For the basic quiescence-search algorithm, there is no limit on how deep the
search can go. As long as capture moves exist, the search tree can grow deeper.
In Chapter 5 we will show that it is possible in Khet to create very long sequences
of capture moves, so it can be a good idea to limit the search depth of the
quiescence search.

With Qn-limited search, at each leaf node of the regular alpha-beta search
tree, quiescence search can build a subtree with a maximum depth of n. All
nodes at depth n of the quiescence search tree are leaf nodes.

Of course, when applying Qn-limited search, the horizon effect still exists. In
order to minimise this effect, we only allow leaf nodes to occur after a sequence
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of an even number of capture moves, so both players have the same amount
of capture moves. This means that at depth n − 1 in the quiescence search
tree, nodes that follow a sequence of an even number of capture moves are not
expanded, since this can lead to an odd number of capture moves, in which case
one of the players has one capture move more than the opponent.

Note that Q∞-limited search works in the exact same way as the basic
quiescence-search algorithm.

4.1.5 Transposition tables

During an alpha-beta search, it often happens that on different locations in the
search tree, identical situations occur. For example, consider the position in
Figure 4.1. This position can be reached from the Original setup (see Figure
2.2) via the moves 1. j4j3 h4r+ 2. h2h3, but also via 1. h2h3 h4r+ 2. j4j3. Even
though both move sequences lead to the same position, this position occurs in
two different locations in the search tree.

Figure 4.1: Early position which is reachable in two different ways.

Whenever the search algorithm arrives at a node which represents a situa-
tion that has been evaluated in the past, it is a waste of time to perform the
evaluation of the node again. Instead, the results of the evaluation of the pre-
vious node should be used. In order to take care of this, a transposition table
(first described in [9]) is used.

Zobrist hashing

Ideally, we would store every position that has been evaluated in the past,
but unfortunately this is not possible. Computers nowadays have not enough
memory to store all this data. Therefore, we use a transposition table including
a hashing method.

A transposition table consists of 2n entries, where each entry can hold in-
formation about a certain position. In order to determine where each position
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is stored, a hash function called Zobrist hashing is used [27].
First, for each possible piece with each possible orientation on each possible

square, a random 64-bit number is generated. This means that in total 3200
numbers are generated, since there are 80 squares, 10 different types of pieces
(five, including the stacked obelisk, for each player) and each piece can have
a maximum of four different orientations. The Zobrist value is calculated by
performing an XOR operation on the random numbers corresponding to all
pieces, including their orientation and position, on the board. This leads to a
64-bit number which is the hash value of the current position.

Of this hash value, the last n bits are used to determine the location of the
current board position in the transposition table. The other 64−n bits are used
as the hash key, which will be explained next.

Table entries

An entry in the transposition table contains the following elements:

• The hash key

• The value of the corresponding node

• A flag indicating whether the stored value is a bound (in case of a cut-off)
or a value

• The best move

• The search depth

Using the transposition table

At the start of every node evaluation, it is first checked whether the Zobrist value
of the board corresponding to the node already exists in the transposition table.
If it does, which means that also the hash key matches, then the information
stored in the transposition table can be used. If the hash key does not match,
then the information cannot be used, as the Zobrist value, and thus the position,
is obviously different. If the previously searched depth of the node is at least
the depth that currently has to be searched and the result was an exact value,
then this value can immediately be returned as the value of the current node.
If the result was a bound, then α is set to the value of the bound if this value
is higher than the current value of α. If this makes α higher than the current
value of β, the value of α can be returned. Otherwise, the search still has to be
executed. The move that was considered to be the best one previously (i.e., the
move which caused the cut-off) is during this search investigated first, as there
is a good chance that this move will produce a cut-off again. If the previously
searched depth of the node is smaller than the depth that currently has to be
searched, most of the information cannot be used. The only information that
can be used is the best move according to the transposition table. This best
move will be investigated first, as this is the move which has the highest chance
to produce a cut-off.
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Errors

Using a transposition table is not without risks. There are chances that two
different board positions need to be stored on the same entry in the table.
When using transposition tables, there are two types of errors that can occur:
type-1 errors and type-2 errors.

Type-1 errors occur when two different board positions have the exact same
hash value. It is very difficult to recognise this type of error, as the hash key for
both board positions is the same. One possible way to detect this type of error
is checking whether the stored best move is a legal move. If it is not, we can be
assured that we have found a type-1 error. If it is, the error will go unnoticed
and might lead to wrong evaluations.

A type-2 error, also called a collision, occurs when two different board posi-
tions with two different hash values are assigned the same table entry. In other
words, the last n bits of the hash values of the two board positions are the same.

This type of error is easily recognised, since the rest of the hash value is
stored in the entry as a hash key. As explained before, if an entry is retrieved
from the table with a different hash key than the hash key of the current board
position, then the data cannot be used.

Whenever the evaluation of the board position is finished, either by having
evaluated all children or by performing a cutoff, the node information has to
be stored in the transposition table. A problem can be that the information
of another node is already stored at the location where the information of the
current node should be stored. This means that the data of one of the two
nodes has to be omitted. A replacement scheme is used to determine which
node should be stored. One of the most commonly used replacement schemes is
called Deep [3]. When using this replacement scheme, the node with the largest
search depth is stored in the table, since this node contains more information
and thus is, in general, more useful. If both nodes have the same search depth,
then the old one is replaced by the new one.

4.1.6 Killer moves

Alpha-beta search works best if good moves are investigated first. As explained
above, a transposition table can be used to store the best move for each node.
Another way to order moves is using killer moves. The killer-moves heuristic
uses the assumption that a certain best move is not only the best one in the
current situation, but also in similar ones.

For each ply in the search tree, a small number of killer moves is stored.
A move can be a killer move if it has produced a cut-off in the search tree or
if it turns out to be the best one. Since only a small number of killer moves
is stored, the algorithm needs to make a selection. When a new killer move is
found, the ‘oldest’ move in the list is replaced.

At each node the killer moves of the corresponding ply are checked first,
possibly after the best move stored in the transposition table. Contrary to the
best moves stored in the transposition table, it is possible that a killer move is
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not a valid move. Therefore, before playing a killer move, it first needs to be
checked whether it is a valid move.

In our program, we store two killer moves per ply.

4.1.7 Aspiration search

Typically, the alpha-beta search starts with a search window between −∞ and
∞. The speed of the search can be increased if a smaller window is used, because
a smaller window will cause more cutoffs. The smaller the window, the faster
the search will be. The technique of using smaller search windows is called
aspiration search.

Instead of starting with search window (−∞,∞), the search starts with
(V − ∆, V + ∆), where V is the expected value of the search tree and ∆ is a
small value. If the value of the game tree indeed lies between V −∆ and V +∆,
then the value will be found much faster than when the search starts with the
window (−∞,∞).

There is, however, a risk that the value of the tree lies outside the specified
window. This is the case when the result of the search is smaller than or equal
to V − ∆ or larger than or equal to V + ∆. In the former case, we say that
the search fails low. In this case, the search needs to be performed again, but
now starting with search window (−∞, V − ∆). In the latter case, the search
fails high and a re-search will be performed, starting with the search window
(V + ∆,∞).

In order to make aspiration search as efficient as possible, it is critical to make
a good estimation of the value of V . Often, when using iterative deepening, the
result of the previous search can be used as an estimate for the next search. So
at depth d, the value of the search tree with depth d − 1 can be used as the
value of V .

Also, the choice of the value of ∆ is important for the efficiency of the
technique. This value should not be too small, because otherwise the first
search will fail too often. It also should not be too large, since otherwise there
will be no gain compared to starting with the maximum search window. The
best value of ∆ is very dependent on the evaluation function of the alpha-beta
search algorithm and can best be determined experimentally.

4.1.8 Avoiding self-destruction

In Khet it is possible for a player to destroy one of his own pieces. Usually,
these are very bad moves that a player will never do. There might be some
hypothetical situations where a player might want to hit one of his own pieces,
but if they exist they are extremely rare.

During the alpha-beta search, self-destruction moves occur regularly. Even
though in practice such moves will never be performed, they are still fully in-
vestigated. However, by avoiding self-destruction, all moves where a player
captures one of his own pieces are ignored. They are not investigated, because
it can be assumed that such move is never part of the perfect-play strategy of
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the player. As a result, large subtrees are pruned, so the number of nodes that
have to be investigated is decreased.

4.1.9 Endgame databases

In order to speed up the search at the end of the game, an endgame database
can be used. An endgame database contains the game-theoretical values (win,
loss or draw) for a large number of board positions in the late game. Whenever
in the search tree a board position is reached which is stored in the database, the
stored value can be used and no further search is needed. Endgame databases
work only well with convergent games, since these have a limited number of
endgame positions. Since Khet is a convergent game, an endgame database can
in principle be used.

There can be some trouble, however, if the number of endgame positions is
too large. The absolute minimum number of pieces on the board is 6: two silver
djeds, two red djeds and the two pharaohs. These pieces can be placed roughly
on the following number of ways:

nend =
(

70
1

)
· 22

(
69
2

)
×

(
67
1

)
· 22

(
66
2

)
= 3.7761 · 1011

If we would use one bit per position, the size of the endgame database for
these six pieces would be 43.96 GB. On modern computers, this is feasible. The
problem, however, is that board positions with the absolute minimum number
of pieces are very rare. If we would only store these positions, the endgame
database will rarely be used. If we would extend the database with all positions
where both players also have one pyramid, the number of possible board posi-
tions rises to more than 2.4 · 1016. Such a database would require more than 22
million GB harddisk space while using one bit per position. It is obvious that
this is infeasible. As a conclusion, endgame databases will not be used in Khet.

4.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [6] is a technique that can be used to play a
large variety of games [5]. There are several reasons for choosing MCTS to play
Khet.

The first reason is that MCTS does not necessarily need any heuristic knowl-
edge about the game. The only domain knowledge it needs are the rules and
those are well defined. Contrary to alpha-beta search, it does not need any
strategic knowledge. Since we do not have much strategic knowledge about
Khet at hand, this can be an advantage for MCTS.

The second reason is that a search tree of Khet has a large branching factor,
at the start of the game around 80. Alpha-beta search can have some problems
with trees with such high branching factors, while MCTS has proven itself with
games with a branching factor much higher than Khet’s, for example Go.
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The basic workings of the Monte Carlo algorithm are quite simple. Starting
with the current board position, the game is finished by selecting random moves
for both players. The simulation of one such game is called a sample. For
selecting a move, a large number of samples are carried out.

After the simulations are done, the algorithm chooses the move which has
the highest win rate. The win rate is the number of times the move eventually
resulted in a win for the player, divided by the number of times the move has
been played. The move with the highest win rate is considered to be the best
move to play and is returned by the algorithm.

This bare Monte Carlo algorithm can be extended in multiple ways. Often,
a game tree is constructed that is used for storing statistics about the board
positions that are represented by the nodes. These statistics can then be used for
improving the search. There exist multiple Monte Carlo Tree Search algorithms.
The one that we will investigate is called Upper Confidence bounds applied to
Trees. This technique was succesfully used in the Go-playing-program MoGo,
which has won multiple large Computer Go tournaments [26].

4.2.1 Upper Confidence bounds applied to Trees

The basic Monte Carlo algorithm selects a move completely randomly while
simulating a game. The disadvantage of this is that bad, unlikely moves are
played about as often as good, likely ones. By implementing Upper Confidence
bounds applied to Trees (UCT) [16], a best-first search algorithm, it is possible
to let the algorithm play better moves more often than bad ones.

At each node of the tree, two values are stored. The first is the number of
times the node has been visited. The second is the number of times a game
passing this node resulted in a win.

While simulating a game, after each move the algorithm checks whether
there already exists a node in the tree that represents the new board position.
If this is the case, then the UCT value for all children is calculated. The UCT
value is calculated using the following formula:

vUCT (n, c) =
wc

pc
+

√
ln(pn)
C × pc

This formula is described in [23]. It is a slightly modified version of the UCT
formula described in [8].

Here, n is the current node and c is the child. wx stands for the number
of wins for node x and px for the number of times node x has been visited. C
is a constant value, which determines the exploration/exploitation trade-off. In
other words, it determines to which degree the algorithm uses past results to
determine which move to choose and how often the algorithm should explore
alternative moves. A lower value of C causes more exploration, while a higher
value of C causes the algorithm to exploit the results earlier. The best value of
C should be determined experimentally.
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After calculating the UCT value for all children, the child with the highest
UCT value is chosen.

If at a node some children have not been investigated yet, which means a
UCT value cannot be determined, one of these children is chosen, and a node
representing this child is added to the tree. From this point on, the game is
finished completely randomly, without adding any new nodes to the tree. This
is because most of these nodes will never be visited again.

If enough samples are played, the algorithm will eventually converge to the
best move.

4.2.2 Transposition tables

Similar to an alpha-beta tree, in a Monte Carlo search tree transpositions can
occur. A transposition table in a Monte Carlo search tree works in a similar
way as a transposition table in an alpha-beta search tree.

In each entry, the number of visits of the node and the number of eventual
wins is stored. These are the data that were stored in the search tree. Also the
hash key is stored, which is used for type-2 error detection. This is similar to
the transposition table used for alpha-beta search. Finally, the move number
is stored. This number is used for the replacement scheme. This is slightly
different from the transposition table for alpha-beta search, where the depth is
stored. Whenever a collision occurs, the node with the lowest move number is
stored (or kept) in the table, because this node has the highest chance to be
visited again.

If a transposition is found, then the statistics that are stored in the table
can be used to calculate the UCT value of the child.

Because in a transposition table nodes can have multiple parents, it is possi-
ble that the sum of the number of visits of the child nodes exceeds the number
of visits of the current node. Some nodes might have been visited via other
parents. The result of this is that these nodes will have a considerably smaller
chance to be chosen, but since they can be reached by multiple parents, they
will still be played often enough.

4.2.3 Maximum game length

Games of Khet can take a long time to finish. Random games can take more
than 1000 moves before either player wins or the game ends in a draw. Such
samples take a relatively long time to finish. In order to prevent such long
samples, a maximum game length can be used.

If after a certain number of moves, called dmax, the game is still not finished,
the simulation is terminated and a heuristic value is returned. There are several
ways to determine this heuristic value. The easiest way is to always declare the
game a draw. This is a really fast heuristic, as no calculations are needed.

Another way is to do a quick heuristic evaluation of the board. If one of the
players has a clear advantage over the other, then this player can be declared the
winner. This can make the results more useful, but such a heuristic evaluation
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takes some time to be performed. Also, some extra domain knowledge is needed
to make a reliable estimation.

In our program we will only use the ‘draw heuristic’. Future research will
be necessary in order to determine how domain knowledge can best be used to
improve the MCTS algorithm.

4.3 Move Generation

One of the most important functions of the program is the function that gener-
ates a list of all valid moves for a player in a given board position. Generating
a list of all valid moves for a player is not a difficult task in Khet. The program
keeps track of a list of the locations of the pieces for both players. For each
piece, a list of possible moves is generated. For each of the eight possible target
locations of the piece, a check is performed whether it is a legal move. Also,
the rotation moves for the pyramids and the djeds are added. Then, the lists of
possible moves for all pieces are combined and returned as the list of all possible
moves for the player.

There are some variations on this move generation algorithm. One of them
is Incremental Move Generation, which has been explained in Section 4.1.3.
Another variation is the move generation algorithm used by quiescence search.

As explained in Section 4.1.4, quiescence search only needs capture moves.
Even though it is impossible in Khet to determine beforehand which moves will
be capture moves and which will not, it is often possible to filter out a fair
amount of moves that can never be capture moves.

If we have a situation where, if the player would not perform a move, but
just fire his laser, no piece is captured, then we know that all moves that do not
change the course of the laser are not capture moves. This means that there are
only two types of moves that can be capture moves:

1. All moves of the pieces that are within the course of the laser.

2. The moves of the pieces that are outside the course of the laser and move
inside.

All other moves can never be capture moves, and thus they can be filtered
out.

If we have a situation where the player would capture a piece without moving,
then all moves can be capture moves. The moves that do not change the course
of the laser are capture moves for sure, but also the moves that do change the
course of the laser can be capture moves, although we cannot be sure.

4.4 Draw Detection

In Khet it is a rule that whenever a position occurs for the third time, the game
can be declared a draw. In order to detect a draw, the program needs to keep
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track of the history of the game. This can be done in several ways. The first
one is saving all board positions that occurred in the past. By comparing the
current position to the past ones, the program can check for a draw.

Another way is by saving Zobrist keys instead of complete board positions.
This introduces the chance of a type-1 error. It is possible that a new board
position is detected to be a draw because in the past different board positions
occurred with the same Zobrist key. However, the chance that this happens
is negligibly small when using a 64-bit key. This method can be improved by
emptying the history whenever a piece is removed from the board. This may
be done, because whenever a piece is removed from the board, a past position
cannot occur anymore in the future.

This technique is much more efficient than the first one. The program does
not need to store the board positions, but only the 64-bit values, which makes
it more space-efficient. Checking for a draw is also more effecient, since the
program only needs to compare the Zobrist values, instead of the boards square-
by-square. This means that this method is also more time-efficient.

The third method is the use of a hash table. It looks like a transposition
table, but works differently. Just like with a transposition table, the table entry
of a board position is determined by its Zobrist value. In each entry, the hash
key is stored, along with the number of occurrences of the current position in
the game. Again, a type-1 error can occur, but the chance of this happening is
extremely small. It is even possible to throw away the hash key, because even
a type-2 error has a very small chance of occurring.

This technique is less space-efficient, but it is much more time-efficient. The
program does not need to count how many times the current board position has
occured in the past, because this number is stored in the table.

Since we want this function to be as fast as possible, since it will be called
at each node in the search tree, we will use the hash table technique in our
program. In order to save memory, the hash key will not be stored.
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Chapter 5

Experiments and Results

In this chapter a description of all experiments that have been performed is
given. Also, the results of these experiments are presented. This chapter also
provides some conclusions that can be drawn from these results. The general
conclusions and the answers to the research questions are given in Chapter 6.

5.1 Alpha-Beta Search

In this section, we will give a description of the experiments concerning the
alpha-beta search technique that were performed. Some experiments are per-
formed to determine the best parameter settings for the aspiration search and
quiescence search improvements. Also, the quality of all improvements is deter-
mined. This is done for each improvement by letting an alpha-beta player with
the improvement play against an alpha-beta player without improvements, in
order to check whether the improvement does make the player play stronger.
For all these experiments where two players play against each other, both play-
ers receive 300 seconds to play the whole game. There is no maximum time per
move. All games start with the Original set-up.

Another type of experiment is checking whether an improvement reduces the
number of nodes that are investigated. By comparing the number of investigated
nodes with and without improvements, we can conclude whether an improve-
ment works the way it should and to what extent the improvement reduces the
size of the search tree.

5.1.1 Quiescence search

For quiescence search, there is no use in finding out how many nodes are investi-
gated at each ply. This is because, contrary to for example transposition tables
or killer moves, more nodes are investigated instead of less. Therefore, we will
only let an alpha-beta player with quiescence search play against an alpha-beta
player without improvements. The results are displayed in Table 5.1.

35
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As Silver As Red Total score
wins draws losses wins draws losses (out of 50)

4 0 21 5 0 20 9

Table 5.1: Experimental results for alpha-beta search with quiescence search
versus bare alpha-beta search.

It is obvious from these results that quiescence search causes the player to
play much worse. There are several reasons for why the basic quiescence-search
algorithm does not work with Khet.

The first problem is that determining quiet moves in Khet is not a trivial
task. When generating the list of valid moves, it is impossible to determine
which moves will be quiet and which will not. In order to determine whether a
move is quiet, the move needs to be performed, the laser needs to be fired and
then it can be determined whether or not a piece is captured. If this is not the
case, then we have found a quiet move and the move has to be undone, since it
will not be investigated. Even when filtering out all moves that can never be a
capture move, this causes a large amount of overhead, since all the time spent
on moving the piece and determining the path of the laser is wasted.

Another problem is that the branching factor can be very high. In some oc-
casions, almost all of a player’s moves are capture moves. Consider the situation
depicted in Figure 5.1. This position can be reached from the Original set-up,
after the moves 1. d6c6 h4g4. In this position, Silver has 80 possible moves, 78
of which are capture moves (only 2. j4j3 and 2. j4r- are not). Even when not
counting the moves where Silver hits one of his own pieces, there are still 72
capture moves left. Since Silver will hit Red’s obelisk at g8 even without mov-
ing, all moves that do not change the course of the laser are, by default, capture
moves. Situations like these occur regularly and cause the average branching
factor during quiescence search to be relatively high.

Figure 5.1: Position after 1. d6c6 h4g4.
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The third problem is that it is possible in Khet to have a large sequence of
capture moves. Observation has shown that when applying quiescence search
to a 2-ply deep search from the Original setup, subtrees are built that reach
depths of 16 ply or more. For example, one of the paths in the tree reads:
1. c5c6 h4g5xc4 2. e4e3xg5 e5f6xd6 3. c1b1xh5 f8f7xc6 4. f4e4xe8 f5rxf1 5.
j5r+xe8 f6e7xf1 6. h2h3xc7 f5g4xj5 7. e4d5xg8 e7d8xd1 8. e3f4xg8 g4g5xd1 9.
f4rxf7, 1-0.

Here, Silver wins after a sequence of 16 consecutive capture moves. This
is only one of many complete games that are built when applying quiescence
search to a 2-ply alpha-beta search.

Qn-limited search

The previous results show that basic quiescence search does not work well in
Khet. Therefore, we used Qn-limited search. We performed experiments in
order to determine the best value for n. We let an alpha-beta player with Qn-
limited search play against an alpha-beta player without improvements, with
various values of n. The results are displayed in Table 5.2.

It is clear that Qn-limited search can be a considerable improvement to the
alpha-beta search algorithm. If the value of n is set to 2 or 3, the algorithm
works much better than bare alpha-beta search.

As Silver As Red Total score
n wins draws losses wins draws losses (out of 50)
1 12 0 13 12 1 12 24 1

2
2 20 2 3 14 0 11 35
3 19 0 6 15 0 10 34
4 12 1 12 9 0 16 21 1

2
∞ 4 0 21 5 0 20 9

Table 5.2: Experimental results for alpha-beta search with Qn search for various
values of n versus bare alpha-beta search.

5.1.2 Transposition tables

The main goal of transposition tables is to reduce the number of nodes that
are investigated. This goal is achieved by detecting transpositions and by using
move ordering. We can determine the usefulness of a transposition table by de-
termining the number of nodes that are investigated while using a transposition
table compared to the number of nodes that are investigated without a trans-
position table. Table 5.3 shows how many nodes are investigated with several
search depths by the Silver player on the Original starting position.

These results show that for a search depth of 4 or more, the transposition
table causes a considerable reduction of the number of investigated nodes.

A similar experiment can be done with an endgame position. Figure 5.2
shows an endgame position with the minimum number of pieces possible. Table
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Ply Without TT With TT % gain
1 80 80 0.00
2 1,388 1,349 2.77
3 39,451 37,099 5.96
4 803,056 193,160 75.95
5 22,431,125 3,949,921 82.39

Table 5.3: Number of nodes investigated at different search depths on the Orig-
inal starting position with and without transposition table.

Figure 5.2: Example endgame position.

5.4 shows how many nodes are investigated by Silver on this endgame position
with several search depths.

Again, the transposition table causes a reduction of the number of investi-
gated nodes with a search depth of 4 or more, though the gain is not as large as
on the opening position. The reason for this is obvious. In this situation, there
is no clear best move. Because of the random factor, in each iteration another
move turns out to be the best one. This makes the best move that is stored in
the transposition table useless, so there is no gain here. The only gain comes
from the transpositions in the search tree.

We can repeat these experiments with the random factor in the evaluation
function turned off. This will cause the first move always to be the ‘best’ one.
The results are displayed in Table 5.5 (opening position) and Table 5.6 (endgame
position).

We can see that the number of nodes is drastically reduced now, especially
for the endgame position.

Now that we have seen how transposition tables can reduce the number
of nodes, we will show that a player with a transposition table plays stronger
than a player without. Table 5.7 shows that, surprisingly, a player with only a
transposition table does not play stronger than a bare alpha-beta player. The
reason for this is the horizon effect. If a player can search deeper, it does
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Ply Without TT With TT % gain
1 18 18 0.00
2 183 182 0.76
3 2,065 1,928 6.63
4 21,302 15,696 26.31
5 197,052 116,829 40.71
6 1,897,196 981,053 48.29
7 10,249,628 5,222,414 49.05

Table 5.4: Number of nodes investigated at different search depths on the ex-
ample endgame position of Figure 5.2 with and without transposition table.

Ply Without TT With TT % gain
1 80 80 0.00
2 278 286 -2.88
3 18,102 16,363 9.61
4 50,246 31,901 36.51
5 10,573,712 2,213,587 79.07
6 65,615,083 14,473,885 77.94

Table 5.5: Number of nodes investigated at different search depths on the Orig-
inal starting position with and without transposition table with the random
factor turned off.

Ply Without TT With TT % gain
1 18 18 0.00
2 52 52 0.00
3 413 411 0.48
4 1,100 1,040 5.45
5 8,648 6,973 19.37
6 23,401 16,517 29.42
7 238,076 91,660 61.50
8 635,364 210,622 66.85
9 6,277,169 1,026,730 83.64
10 31,886,010 2,288,274 92.82
11 451,894,920 11,733,500 97.40
12 42,928,527
13 292,704,813

Table 5.6: Number of nodes investigated at different search depths on the exam-
ple endgame position of Figure 5.2 with and without transposition table with
the random factor turned off.
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As Silver As Red Total score
wins draws losses wins draws losses (out of 50)

Without Q2-limited 14 0 11 10 1 14 24 1
2

With Q2-limited 17 1 7 14 0 11 31 1
2

Table 5.7: Experimental results for alpha-beta search with a transposition table
versus bare alpha-beta search, with and without Q2-limited search enabled for
both players.

not necessarily mean that the results are better, due to the horizon effect. If we
repeat this experiment, but now with Q2-limited search enabled for both players,
we can see that the transposition table now turns out to be a considerable
improvement.

5.1.3 Killer moves

The strength of the killer moves can, just as with transposition tables, be deter-
mined by comparing the number of nodes investigated when using killer moves
to the number of nodes that are investigated without killer moves. The results
are given in Table 5.8.

Ply Without KM With KM % gain
1 80 80 0.00
2 1,388 1,394 -0.00
3 39,451 19,152 51.45
4 803,056 78,035 90.28
5 22,431,125 887,925 96.04
6 4,317,365
7 65,626,000

Table 5.8: Number of nodes investigated at different search depths on the Orig-
inal starting position with and without killer moves.

From these results it is obvious that killer moves cause a huge decrease of
the number of investigated nodes.

The results of the matches of alpha-beta search with killer moves versus an
alpha-beta player without killer moves are displayed in Table 5.9. It is obvious
that killer moves cause a very large improvement of the strength of the alpha-
beta player. It turns out that, contrary to transposition tables, it does not even
need the presence of Q2-limited search in order to cause a great improvement
of the performance of the alpha-beta player.

5.1.4 Aspiration search

For aspiration search, we need to find the best value for ∆. Aspiration search
works best if ∆ is chosen such that the search window is narrow enough to
produce extra cut-offs, but wide enough to still find the right value often enough.
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As Silver As Red Total score
wins draws losses wins draws losses (out of 50)

Without Q2-limited 21 0 4 20 1 4 41 1
2

With Q2-limited 20 2 3 21 0 4 42

Table 5.9: Experimental results for alpha-beta search with killer moves versus
bare alpha-beta search, with and without Q2-limited search enabled for both
players.

For these experiments, we enable Q2-limited search for both players. Be-
cause of the horizon effect, the resulting value can change considerably between
iterations, making it almost impossible to provide a reasonable expectation of
the value of the next iteration. By enabling Q2-limited search, these fluctuations
are decreased.

From the results in Table 5.10, we can conclude that aspiration search works
best with ∆ = 500. However, aspiration search only makes the alpha-beta player
play modestly better.

As Silver As Red Total score
∆ wins draws losses wins draws losses (out of 50)
1 10 4 11 11 1 13 23 1

2
100 11 2 12 11 1 13 23 1

2
500 14 2 9 13 1 11 28 1

2
1000 12 1 12 12 1 12 25

Table 5.10: Experimental results for alpha-beta search with aspiration search
with various values of ∆, and Q2-limited search versus alpha-beta search with
only Q2-limited search.

5.1.5 Summary

In the previous sections, we have given the experimental results for the trans-
position table, killer moves, quiescence search and aspiration search. In Table
5.11, all these results, along with the results for incremental move generation
and avoiding self-destruction, are summarised.

As Silver As Red Total score
Improvement wins draws losses wins draws losses (out of 50)
Incr. move generation 13 0 12 14 0 11 27
Q2-limited search 20 2 3 14 0 11 35
Transposition table (+Q2) 17 1 7 14 0 11 31 1

2
Killer moves (+Q2) 20 2 3 21 0 4 42
Aspiration search (+Q2) 14 2 9 13 1 11 28 1

2
Avoiding self-destruction 10 2 13 10 1 14 21 1

2

Table 5.11: Experimental results for the alpha-beta algorithm with single im-
provements versus bare alpha-beta search.
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These results show that the win rates of incremental move generation, aspi-
ration search and avoiding self-destruction are less than 60%, for the last one
even less than 50%. From these results we can conclude that these improve-
ments do not cause the alpha-beta player to play much stronger. They can
even cause the player to play worse. It turns out, with aspiration search, that
the first search fails too often. Both incremental move generation and avoiding
self-destruction cause the player to search barely any deeper than without these
improvements.

Quiescence search (in the form of Qn-limited search), transposition tables
and killer moves are good improvements. These three improvements cause a
considerable increase of the strength of the alpha-beta player.

5.2 Monte Carlo Tree Search

This section describes the experiments and results for the Monte Carlo Tree
Search algorithm. We will investigate the strength of UCT and whether or
not setting a maximum game length causes the MCTS player to play stronger.
The experiments are similar to those for the alpha-beta player. We will let
an MCTS player with one improvement play against an MCTS player without
improvements. The settings are also the same: again both players receive 300
seconds to play one game and all games start with the Original setup.

5.2.1 Upper Confidence bounds applied to Trees

As explained in Section 4.2.1, the formula for calculating the UCT value of the
children of a node contains a constant factor C. In order to determine the best
value of C and to test the performance of UCT, we let an MCTS player with
UCT play against a bare Monte Carlo player without UCT, with different values
for C. The results of these experiments are summarised in Table 5.12.

From these results, we can conclude that UCT causes a great performance
improvement of the MCTS player. UCT works best with C = 7.

As Silver As Red Total score
C wins draws losses wins draws losses (out of 50)
1 17 0 8 16 0 9 33
3 24 0 1 20 0 5 44
5 23 0 2 21 0 4 44
7 24 0 1 25 0 0 49
9 23 0 2 20 0 5 43
11 24 0 1 21 0 4 45
13 21 0 4 24 0 1 45
15 21 0 4 18 0 7 39

Table 5.12: Experimental results for MCTS with UCT with various values for
C versus bare Monte Carlo.
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5.2.2 Maximum game length

In order to prevent the Monte Carlo algorithm from playing endlessly long
games, we can define a maximum game length. After a certain number of
moves, dmax, an evaluation function is called to determine a score for the game.
In our program, the evaluation function returns a score of 0.5, denoting a draw.

In order for this improvement to work as good as possible, we need to find the
best value of dmax. If the value of dmax is too low, too few games are completed
to give good results. If the value is too high, then the effect of this improvement
decreases. With dmax = ∞, a game is never cut off and the improvement has
no effect.

The results of the MCTS players with different values of dmax are displayed
in Table 5.13. These results show that the MCTS player plays best with dmax =
100.

As Silver As Red Total score
dmax wins draws losses wins draws losses (out of 50)
25 14 0 11 11 0 14 25
50 14 1 10 17 0 8 31 1

2
100 17 0 8 19 0 6 36
200 15 0 10 17 0 8 32

Table 5.13: Experimental results for MCTS with various values for dmax versus
MCTS with dmax = ∞.

5.3 Alpha-Beta Search versus MCTS

Finally, we let the best alpha-beta player play against the best MCTS player in
order to determine which algorithm works best. We let them play three tourna-
ments, where in each tournament the players receive a different amount of time
per game. For the alpha-beta player, we use a combination of a transposition
table, killer moves, Q2-limited search, incremental move generation, and aspi-
ration search (with ∆ = 500). The MCTS player uses UCT with C = 7 and
a maximum game length dmax = 100. All games are played starting with the
Original set-up. The results are displayed in Table 5.14.

As Silver As Red Total score
Time wins draws losses wins draws losses Alpha-beta MCTS
60 50 0 0 50 0 0 100 0
300 25 0 0 25 0 0 50 0
1800 5 0 0 5 0 0 10 0

Table 5.14: Experimental results for alpha-beta search versus MCTS

From these results, it becomes immediately clear that alpha-beta search
works much better than MCTS. The alpha-beta player wins all games. It turns
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out that because of the lack of strategic domain knowledge, MCTS does not
stand a chance. Even the small amount of extra domain knowledge makes the
alpha-beta player play on a much higher level than the MCTS player.

One example game between alpha-beta search and MCTS, along with a
detailed explanation, can be found in Appendix A. Using this example game,
we will show some of the strengths and weaknesses of both players.



Chapter 6

Conclusions

In this chapter, we will give answers to the research questions and the problem
statement given in Section 1.3. Moreover, we will give an overview of possible
subjects for future research.

6.1 Answering the Research Questions

In Section 1.3, we have defined four research questions stemming from the prob-
lem statement. The answers to these research questions can be found in the
previous chapters. In this section, we will revisit the research questions and
summarise the answers.

What is the game complexity of Khet?

This research question has been answered in Chapter 3. The state-space com-
plexity is, according to our calculations, 1048. The game-tree complexity of Khet
is 10124. These numbers are only rough approximations. Especially the value
of the game-tree complexity is subject to change as more information about
Khet becomes available. This value is only based on a relatively small number
of games between two basic alpha-beta players. If more research is done, this
value may be revised.

With these numbers we can conclude that the complexity of Khet is very
close to the complexity of chess. This means that the game is, in the near future
at least, unsolvable, but it should be possible to create a computer player that
can challenge the world’s best players.

Which search techniques can be used to play Khet?

In general, there are two different search techniques that have been investi-
gated during this research: alpha-beta search and MCTS. Alpha-beta search is
a strong and highly expandable depth-first search algorithm which works for a
large variety of games. MCTS is a Monte-Carlo-based search algorithm which
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also works well for a large variety of games, and which does not need strategic
knowledge.

How can these search techniques be improved to increase the strength?

In Chapter 4, we have defined a number of possible improvements for both
alpha-beta search and MCTS.

For alpha-beta search, most improvements are concerned with reducing the
number of nodes that have to be investigated during the search. Killer moves,
transposition tables, avoiding self-destruction and aspiration search are exam-
ples of improvements that try to achieve this. An endgame database can be
used to store the values of endgame positions, so the search can be terminated
whenever a position is reached in the search tree that is stored in the endgame
database, thus reducing the number of investigated nodes. Another way of im-
proving the search is by increasing the number of nodes that can be investigated
per second. Incremental move generation is a technique that can do this. Qui-
escence search, including a variation called Qn-limited search, does not try to
increase search speed or reduce the number of nodes investigated, but it extends
the search tree in a smart way to improve the quality of the results.

Which combination of techniques has the best balance between speed
and strength?

In order to determine how well the techniques and improvements work, we have
performed a number of experiments that are described in Chapter 5. Among the
tested improvements for alpha-beta search, the combination of a transposition
table, killer moves and Q2-limited search gives the best results. MCTS works
best with UCT enabled and with C = 7 and dmax = 100.

According to the results of the final experiments, the alpha-beta search al-
gorithm works far better than MCTS.

6.2 Answering the Problem Statement

Now that we have answerd the research question, we can formulate an answer
to the problem statement that we have given in Section 1.3.

Is it possible to develop a computer program to play the game Khet
effectively and efficiently?

Yes, it is possible to create a computer program that can play Khet efficiently
and effectively. The complexity of Khet lies very close to the complexity of
chess, which means that it will not be possible to solve the game now, or in the
near future, but it should be possible to play the game at the level of a world
champion.

Alpha-beta search turns out to be the best algorithm to play the game. A
transposition table, killer moves and quiescence search (in the form of Q2-limited
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search) are significant improvements to the alpha-beta algorithm that let the
player play stronger.

Although it is difficult to judge the overall strength of our program due to the
lack of artificial and human opponents, based on the experiments our educated
guess is that the program plays Khet at a reasonable level, though there is still
a lot of room for improvement.

6.3 Future Research

This research is the first one for the game Khet. This means that there is still
a lot of possible future research.

One thing that really needs improvement is the evaluation function of the
alpha-beta algorithm. The strength of the alpha-beta player relies heavily on the
quality of the evaluation function and currently the evaluation function is pretty
basic. This causes the alpha-beta player to follow the basic Khet strategies, but
that will not be enough to challenge the world’s best players. More strategic
knowledge will be necessary to increase the strength of the alpha-beta player.

Strategic knowledge can also improve the performace of the MCTS player.
It is, however, questionable whether MCTS will ever match the performance of
alpha-beta search. Currently, the difference is very large, and, considering the
complexity analysis, alpha-beta search is likely to remain the strongest search
algorithm.

An addition that is used in many games, but is still missing in our program,
is an opening book. In Khet this is tricky, since there is no official starting
position. This means that for each set-up a different opening book needs to
be created. Games with the same set-up often start in a similar way and the
implementation of an opening book will cause the player to play much faster
in the early stage of the game, causing it to have more time left during the
mid-game and the all-important endgame. Unfortunately, such opening books
are not yet available.
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Appendix A

An Example Game

Here, we will show one of the games between alpha-beta and MCTS. This game
comes from the last set of experiments, where both players receive 1800 seconds
to play a game. In this example game, the alpha-beta player plays as Silver and
the MCTS player plays as Red.

Silver starts with 1. j4j3 (see Figure A.1). This is generally a good move
to start with, as he puts immediately pressure on the red pyramid at h4. This
piece can be captured by Silver by either 2. j3j2 or 2. h2h3. Possible ways
for Red to defend this pyramid are 1. ... g3h3 or h4r+. Unfortunately, Red
answers with 1. ... g3g4 (see Figure A.2). The MCTS player does not care
about losing a piece, as this strategic domain knowledge is not implemented for
this player.

Red can capture the pyramid on h4 now, but instead chooses 2. f4e3xg4
(see Figure A.3). This is an even better choice, since there is no way Red can
defend his pyramid at h4 anymore. Instead of trying to limit the damage, Red
responds by capturing one of his own pyramids by the move 2. ... a5b4xa4
(see Figure A.4). The reason for this becomes clear after the next two turns: 3.
e3f3xh5 b4a3 4. h2h3xh4 a3a2 (see Figure A.5).

While Silver captures two more of Red’s pyramids, Red moves his pyramid
down trying to put pressure on Silver’s pharaoh. At least, Red has now put
pressure on the silver pyramid at c4, but Silver responds with 5. c4r-, preventing
Red from capturing this pyramid. Red is not able to capture one of Silver’s
pieces and performs the move 5. ... g8uf7 (see Figure A.6). Apparently, this
looks a little bit safer, according to Red.

The game continues as follows: 6. c4b3 h8g7 7. e4d5 e8e7 8. d5d6 e5f6 9.
d6e7 f5e6 (see Figure A.7). Silver has moved one of his djeds from e4 to e7,
putting it very close to Red’s pharaoh. Also, he moved the red stacked obelisk
from e7 to d6, reducing its value. Meanwhile, Red has improved his defenses.
He even set up a booby-trap with his djeds. If Silver is not careful, he might hit
his own pharaoh. This opportunism is very characteristic for the MCTS player.
However, an alpha-beta player will never make this mistake.

Next, Silver turns up the pressure with the moves 10. d5r+ c7d7 11. j5r-
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Figure A.1: Position after 1. j4j3.

Figure A.2: Position after 1. ... g3g4.

Figure A.3: Position after 2. f4e3xg4.
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Figure A.4: Position after 2. ... a5b4xa4.

Figure A.5: Position after 3. e3f3xh5 b4a3 4. h2h3xh4 a3a2.

Figure A.6: Position after 5. c4r- g8uf7.
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Figure A.7: Position after 6. c4b3 h8g7 7. e4d5 e8e7 8. d5d6 e5f6 9. d6e7 f5e6.

Figure A.8: Position after 10. d5r+ c7d7 11. j5r- g7g6.

g7g6 (see Figure A.8). Now, Silver can move the pyramid at j3 out of the route
of the laser beam, in order to capture one of the red obelisks at d6. This might
have been Silver’s plan before Red moved his pyramid from g7 to g6. But now,
Silver chooses another strategy and plays 12. j5i6 (see Figure A.9). Apparently,
Silver now wants to use this pyramid and the pyramids at h3 and j3 to try
to attack Red’s pharaoh. The djed at e7 now also might come in handy. Red
should react by returning the pharaoh from g6 back to g7, but plays 12. ...
d6c7 (see Figure A.10). Now Silver can easily finish the game.

Silver keeps moving his pharaoh forward and Red does not even try to defend
his pharaoh anymore. He could try to use his djeds to delay his defeat, but he
does not. The game continues with the moves 13. i6h7xf7 g8h8 14. h7g8xh8
(see Figure A.11).

Now, there is no way for Red to defend his pharaoh anymore. He plays the
completely random move 14. ... c7ub7 and Silver finishes with 15. g8h8xf8 1-0.
It is a rather short game, but it shows some interesting characteristics of both
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Figure A.9: Position after 12. j5i6.

Figure A.10: Position after 12. ... d6c7.

Figure A.11: Position after 13. i6h7xf7 g8h8 14. h7g8xh8.
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the alpha-beta player and the MCTS player.
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